A self-sufficiency principle in Finsler geometry 2009jax | G.I. Garas'ko // HSGPH, Electrotechnical Institute of Russia, Moscow, Russia,
gri9z@mail.ru
By using the self-suuficiency principle of Finsler geometry, one can derive the field equations, where the gravitational field and electromagnetic field naturally join together as in the pseudo- Riemannian 4D space as well as in the curvilinear Berwald-Moor 4D space; there always exists an energy-momentum tensor related to conservation laws.
It has been shown that, in the approximation of small fields, the new geometric approach in the field theory following from the self-sufficiency principle of the Finsler geometry can result in linear field equations valid for several independent fields. When the strength of the fields increases, which means the use of the second approximation, the field equations become generally nonlinear and the fields loose independence that leads to the violation of the superposition principle for each separate field, and results in the interaction among different fields.
English: |
|
Russian: |
|
|
|
|