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I draw on my earlier work to review various aspects of the differential geometry of a
Finsler-spacetime tangent bundle, all based on the possible existence of a physical upper
bound on proper acceleration. In particular, the bundle connection and associated differ-
ential geometric fields are calculated for a Finsler-spacetime tangent bundle particularized
for the case of a statioinary measuring device.
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1 Introduction
In the present work, I draw on my earlier work to review various aspects of the differential
geometry of a Finsler-spacetime tangent bundle, all based on the possible existence of a physical
upper bound on proper acceleration. The appropriate bundle coordinates are the spacetime
coordinates of the measuring device in the base manifold and the four-velocity coordinates of
the measuring device in the tangent space manifold [1]. Of particular interest is the case of a
stationary measuring device in which it is implicit that the gravitational force on the device
is balanced by a non-gravitational force, as in the case of an ordinary scale measuring weight.
For a Finsler-spacetime tangent bundle, the Levi-Civita connection coefficients reduce to the
form given by Yano and Davies for a generic tangent bundle of a Finsler manifold [2, 3]. The
components of the connection in the spacetime-spacetime-fiber sector have a form consistent
with Cartan’s theory of Finsler space, provided that the gauge curvature field vanishes. A
vanishing gauge curvature field is equivalent to the condition that the four-velocity of the
measuring device be a parallel vector field. The latter is equivalent to Cartan’s condition that
there be absolute parallelism of the line elements, and that the tangent space coordinates form a
parallel vector field [3]. This is consistent with Deicke, who proved that a Finsler space cannot
be represented as a nonholonomic subspace of a Riemannian space unless the latter condition
is imposed [3, 4]. Deicke subsequently proved that a Finsler space can always be represented
as a nonholonomic subspace of a space with torsion [3, 5, 6]. If bundle torsion is included in
the Finsler-spacetime tangent bundle, then the bundle connection becomes compatible with
Cartan’s connection for Finsler space if a component of the contorsion is made to cancel the
contribution of the gauge curvature field to the connection in the spacetime-spacetime-fiber
sector [7]. The spacetime tangent bundle of a Finsler spacetime is almost complex [8]. Also
provided that the gauge curvature field is vanishing, then the Finsler-spacetime tangent bundle
is Kaehlerian with vanishing covariant derivative of the almost complex structure [8]. The
vanishing of the gauge curvature field is also the condition that the Finsler-spacetime tangent
bundle have a vanishing Nijenhuis tensor (torsion of the almost complex structure) in the
anholonomic frame adapted to the spacetime connection, and that it be complex [9]. If bundle
torsion satisfying prescribed conditions is introduced, the Finsler-spacetime tangent bundle
can be made to remain almost complex, and the covariant derivative of the almost complex
structure can be made to remain vanishing, without the need to impose the relatively restrictive
condition of vanishing gauge curvature field [7, 10]. However, the Finsler-spacetime tangent
bundle cannot be complex unless the gauge curvature field is vanishing. In the present work,
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drawing on this earlier work, the bundle connection and associated differential geometric fields
are calculated for a Finsler-spacetime tangent bundle particularized for the case of a stationary
measuring device.

2 Bundle connection
The gauge curvature field for the Finsler-spacetime tangent bundle is given by [2]

Fαμν = ρ0v
λR

α

λμν , (1)

where Greek indices range from 0 to 3, corresponding to the time component and the three
space components, respectively; ρ0 is a constant of the order of the Planck length; vλis the
four-velocity of the measuring device; and R

α

λμν is the spacetime Riemann curvature tensor

R
α

λμν = Γ
α
βδ,γ − Γ

α
βγ,δ + Γ

α
μγΓ

μ
βδ − Γ

α
μδΓ

μ
βγ , (2)

written in an anholonomic basis adapted to the spacetime affine connection Γαβδ. In the anholo-
nomic basis, a comma followed by a lower-case Greek index implicitly denotes

,μ ≡
∂

∂xμ
− ρ−10 A

β
μ

∂

∂vβ
, (3)

expressed in terms of the gauge potential

Aβμ = ρ0v
λΓβλμ. (4)

The condition of vanishing gauge curvature field, Eq. (1), for the stationary measuring device
is thus given by

Fαμν = ρ0v
0R

α

0μν = 0. (5)

The four-velocity vμ of the measuring device satisfies

gμνv
μvν = 1, (6)

and the Finsler metric function L then becomes [2]

L2 = gμνv
μvν = 1, (7)

which is satisfied by the indicatrix. From Eq. (6), it follows that for the stationary measuring
device, v0 is a solution to

g00(x, v
0, 0, 0, 0)v02 = 1. (8)

It is to be noted that for a Finsler metric gμν(x, v), there may be multiple stationary frames
for the measuring device satisfying Eq. (8).
Thus for a stationary measuring device, the four-velocity is

{
v0, v1, v2, v3

}
=
{
v0, 0, 0, 0

}
, (9)

and the gauge curvature field, Eq. (1), becomes

F αμν = ρ0v
0R

α

0μν . (10)

Also, the gauge potential, Eq. (4), becomes

Aβμ = ρ0v
0Γβ0μ. (11)
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It follows from the homogeneity of the Finsler metric function that

vα
∂

∂vα
gμν(x, v) = 0, (12)

∂

∂vα
gμν =

∂

∂vμ
gαν , (13)

and

vα
∂

∂vα
gμν = v

α ∂

∂vμ
gαν = 0. (14)

Thus, for a stationary measuring device, it follows from Eqs. (12) - (14) that

v0
∂

∂v0
gμν = v

0 ∂

∂vμ
g0ν = 0. (15)

Also from Eq. (6), it follows that

∂

∂vμ
L2(x, v) = v02

∂

∂vμ
g00 + 2v

0g0μ = 0, (16)

and
∂2

∂vμ∂vν
L2(x, v) = v02

∂2

∂vμ∂vν
g00 + 4v

0 ∂

∂vν
g0μ + 2gμν = 0. (17)

For the Finsler spacetime, the Christoffel symbols for the four-velocity tangent space are given
by [2]

Πμαβ =
1

2
ρ−10 g

μλ ∂

∂vλ
gαβ, (18)

which for the stationary measuring device, according to Eq. (15), for non-vanishing v0, becomes

Πμαβ =
1

2
ρ−10 g

μk ∂

∂vk
gαβ, (19)

in which the lower-case Latin index k ranges from 1 to 3.
If the spacetime connection Γμαβ is of the Levi-Civita form, then in the adapted anholonomic

basis, the gauge potential is given by [2]

Aβ μ = ρ0v
λ
{
β
λμ

}
, (20)

in which the Christoffel symbols are given by
{
β
λμ

}
=
1

2
gμλ(gαλ,β + gβλ,α − gαβ,λ), (21)

and for the stationary measuring device, the gauge potential becomes

Aβ μ = ρ0v
0
{
β
0μ

}
. (22)

The bundle connection in the spacetime sector of the Finsler-spacetime tangent bundle is given
by [2]

(8)Γμαβ =
{
μ
αβ

}
=
{
μ
αβ

}
− gμν

(
Aλ αΠλβν + A

λ
βΠλαν − A

λ
νΠλαβ

)
, (23)

in which
{
μ
αβ

}
is the canonical Levi-Civita symbol written in a coordinate basis. Next substi-

tuting Eq. (23) in Eq. (20), one has

Aλ α = ρ0v
δ
{
λ
δα

}
− ρ0v

δgλφ
(
Aψ δΠψαφ + A

ψ
αΠψδφ − A

ψ
φΠψδα

)
. (24)
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From Eq. (18), one has

ρ−10
∂

∂vλ
gαβ = 2Πλαβ, (25)

and also, from the symmetry of the spacetime metric,

Πμαβ = Παμβ = Πβαμ = Πμβα. (26)

Next substituting Eq. (25) in Eq. (14) and using Eq. (26), one obtains for a Finsler spacetime:

vαΠαμν = v
αΠμαν = v

αΠμνα = 0. (27)

Also, substituting Eqs. (27) and (20) in Eq. (24), and solving for the gauge potential, one
obtains

Aλ α = ρ0v
δ
{
λ
δα

}
− ρ20v

γvδ
{
ψ
γδ

}
Π λ
ψα . (28)

Furthermore, from Eq. (23) it follows that

vγvδ
{
ψ
γδ

}
= vγvδ

{
ψ
γδ

}
− vγvδgψα

(
Aβ γΠβδα + A

β
δΠβγα − A

β
αΠβγδ

)
. (29)

Next using Eq. (27) in Eq. (29), one obtains

vγvδ
{
ψ
γδ

}
= vγvδ

{
ψ
γδ

}
, (30)

and then substituting Eq. (30) in Eq. (28), and using Eq. (26), one gets

Aλ α = ρ0v
δ
{
λ
δα

}
− ρ20v

γvδ
{
ψ
γδ

}
Πλαψ. (31)

For a stationary measuring device, this becomes

Aλ α = ρ0v
0
{
λ
0α

}
− ρ20v

02
{
ψ
00

}
Πλαψ . (32)

The bundle connection in the spacetime-spacetime-fiber and spacetime-fiber-spacetime sectors
is given by [2]

(8)Γμαb =
(8) Γμbα = Π

μ
αb +

1

2
R

μ

bλα ρ0v
λ, (33)

and for a stationary measuring device, this becomes

(8)Γμαb =
(8) Γμbα = Π

μ
αb +

1

2
ρ0v

0R
μ

b0α . (34)

The bundle connection in the base-fiber-fiber sector is given by [2]

(8)Γμab = ρ0v
φ D

Dxφ
Π μ
ab , (35)

in which
D

Dxφ
Π μ
ab = Π

μ
ab ,φ + Γ

μ
δφΠ

δ
ab − Γ

δ
aφΠ

μ
δb − Γ

δ
bφΠ

μ
aδ (36)

in the anholonomic basis. Alternatively, one has [2]

(8)Γμab = ∇oA
μ

ab , (37)
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where

∇0 ≡
1

L
ρ0v

φ D

Dxφ
, (38)

and
A μ
aδ = LΠ

μ
aφ . (39)

For a stationary measuring device, Eqs. (35) and (37), using Eq. (6), become

(8)Γμab = ρ0v
0 D

Dx0
Π μ
ab . (40)

The bundle connection in the fiber-base-base sector is [2]

(8)Γmαβ = −Π
m

αβ +
1

2
R
m

λαβρ0v
λ, (41)

which for a stationary measuring device becomes

(8)Γmαβ = −Π
m

αβ +
1

2
ρ0v

0R
m

0αβ . (42)

In the fiber-base-fiber sector, the bundle connection is [2]

(8)Γmαb = −ρ0v
φ D

Dxφ
Π m
b α,, (43)

or alternatively
(8)Γmab = −∇oA

m
bα . (44)

For a stationary measuring device, Eqs. (43) and (44) become, using Eq. (6),

(8)Γmαb = −ρ0v
0 D

Dx0
Π m
φ α,. (45)

The bundle connection in the fiber-fiber-base sector is [2]

(8)Γmbα = {
m
bα}, (46)

and this will clearly also hold for a stationary measuring device.
In the fiber sector, the bundle connection is [2]

(8)Γmab = Π
m
ab. (47)

Summarizing the expressions for the connection in the various sectors of the Finsler-spacetime
bundle in the anholonomic frame and for a stationary measuring device, one has

(8)Γμαβ =
{
μ
αβ

}
, (48)

(8)Γμαb =
(8) Γμbα = Π

μ
αb +

1

2
ρ0v

0R
μ

b0α , (49)

(8)Γμab = ρ0v
0 D

Dx0
Π μ
ab , (50)

(8)Γmαβ = −Π
m

αβ +
1

2
ρ0v

0R
m

0αβ , (51)

(8)Γmαb = −ρ0v
0 D

Dx0
Π m
b α,, (52)
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(8)Γmbα = {
m
bα}. (53)

(8)Γmab = Π
m
ab. (54)

in which the Christoffel symbols of four-velocity space are given by

Πμαβ =
1

2
ρ−10 g

μλ ∂

∂vλ
gαβ, (55)

and one also has

{
μ
αβ

}
=
{
μ
αβ

}
− Aλ αΠ

μ
λβ − A

λ
βΠ

μ
λα − A

λμΠλαβ, (56)

in which the gauge potential is given by

Aλ α = ρ0v
0
{
λ
0α

}
− ρ20v

02
{
ψ
00

}
Πλαψ . (57)

3 Curvature scalar
The Riemann curvature scalar of a Finsler-spacetime tangent bundle is [2]

(8)R = R−
1

4
FαβγFαβγ − 2Π

αγ
αΠ

β
γβ − 2

D

Dρ0vβ
Παβα

−∇Παβγ∇Παβγ −∇Π
αγ

α∇Π
β
γβ + 2

D

Dxβ
∇Παβα. (58)

A special case of the Finsler-spacetime tangent bundle is the Riemannian-spacetime tangent
bundle, for which the four-velocity space Christoffel symbols Πμγβ are vanishing. In this case
Eq. (58) reduces to

(8)R = R−
1

4
F αβγFαβγ . (59)

For a stationary measuring device, using Eqs. (1), (7), and (9), this becomes

(8)R = R−
1

4
ρ20R

α0βγ
Rα0βγ . (60)

Equation (60) was used earlier in a perturbative calculation of possible corrections to the
gravitational red shift for a static emitter on a Schwarzschild star and for a stationary measuring
device at a large distance from the star [11]. A stationary measuring device was also invoked
in reducing the action for the spacetime tangent bundle to the ordinary vacuum Einstein’s
field equations in a Riemannian spacetime in the mathematical limit of infinite maximal proper
acceleration [12].
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ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КАСАТЕЛЬНЫХ
РАССЛОЕНИЙ ФИНСЛЕРОВОГО
ПРОСТРАНСТВА-ВРЕМЕНИ
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В своих более ранних работах автор рассмотрел различные аспекты дифференциаль-
ной геометрии касательных расслоений финслерова пространства-времени, которые
основываются на возможном существовании верхней границы релятивистски
равноускоренного движения. В частности, вычислены связность расслоения
и ассоциированные дифференциально-геометрические поля для касательного
расслоения финслерова пространства-времени для случая стационарного измери-
тельного прибора.

Ключевые слова: финслерова геометрия, касательное расслоение пространства-
времени, максимальное собственное ускорение, физические финслеровы координаты,
структура пространства-времени, пространство-время Кэлера, комплексное
пространство-время, вращение.


