Hypercomplex Numbers in Geometry and Physics, 2 (18), Vol 9, 2012, pp. 263-269 263

DIFFERENTIAL GEOMETRY OF FINSLER-SPACETIME
TANGENT BUNDLE

Howard E. Brandt
U.S. Army Research Laboratory, Adelphi, USA

howard.e.brandt.civ@mail.mil

I draw on my earlier work to review various aspects of the differential geometry of a
Finsler-spacetime tangent bundle, all based on the possible existence of a physical upper
bound on proper acceleration. In particular, the bundle connection and associated differ-
ential geometric fields are calculated for a Finsler-spacetime tangent bundle particularized
for the case of a statioinary measuring device.
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1 Introduction

In the present work, I draw on my earlier work to review various aspects of the differential
geometry of a Finsler-spacetime tangent bundle, all based on the possible existence of a physical
upper bound on proper acceleration. The appropriate bundle coordinates are the spacetime
coordinates of the measuring device in the base manifold and the four-velocity coordinates of
the measuring device in the tangent space manifold [1]. Of particular interest is the case of a
stationary measuring device in which it is implicit that the gravitational force on the device
is balanced by a non-gravitational force, as in the case of an ordinary scale measuring weight.
For a Finsler-spacetime tangent bundle, the Levi-Civita connection coefficients reduce to the
form given by Yano and Davies for a generic tangent bundle of a Finsler manifold [2,3]. The
components of the connection in the spacetime-spacetime-fiber sector have a form consistent
with Cartan’s theory of Finsler space, provided that the gauge curvature field vanishes. A
vanishing gauge curvature field is equivalent to the condition that the four-velocity of the
measuring device be a parallel vector field. The latter is equivalent to Cartan’s condition that
there be absolute parallelism of the line elements, and that the tangent space coordinates form a
parallel vector field [3|. This is consistent with Deicke, who proved that a Finsler space cannot
be represented as a nonholonomic subspace of a Riemannian space unless the latter condition
is imposed [3, 4]. Deicke subsequently proved that a Finsler space can always be represented
as a nonholonomic subspace of a space with torsion [3, 5, 6]. If bundle torsion is included in
the Finsler-spacetime tangent bundle, then the bundle connection becomes compatible with
Cartan’s connection for Finsler space if a component of the contorsion is made to cancel the
contribution of the gauge curvature field to the connection in the spacetime-spacetime-fiber
sector [7]. The spacetime tangent bundle of a Finsler spacetime is almost complex [8]. Also
provided that the gauge curvature field is vanishing, then the Finsler-spacetime tangent bundle
is Kaehlerian with vanishing covariant derivative of the almost complex structure [8]. The
vanishing of the gauge curvature field is also the condition that the Finsler-spacetime tangent
bundle have a vanishing Nijenhuis tensor (torsion of the almost complex structure) in the
anholonomic frame adapted to the spacetime connection, and that it be complex [9]. If bundle
torsion satisfying prescribed conditions is introduced, the Finsler-spacetime tangent bundle
can be made to remain almost complex, and the covariant derivative of the almost complex
structure can be made to remain vanishing, without the need to impose the relatively restrictive
condition of vanishing gauge curvature field |7, 10|. However, the Finsler-spacetime tangent
bundle cannot be complex unless the gauge curvature field is vanishing. In the present work,
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drawing on this earlier work, the bundle connection and associated differential geometric fields
are calculated for a Finsler-spacetime tangent bundle particularized for the case of a stationary
measuring device.

2 Bundle connection

The gauge curvature field for the Finsler-spacetime tangent bundle is given by [2]

FOLV = POUAEQAMW (1)

where Greek indices range from 0 to 3, corresponding to the time component and the three
space components, respectively; po is a constant of the order of the Planck length; v*is the
four-velocity of the measuring device; and Ri,w is the spacetime Riemann curvature tensor

R Ay = Faﬂ&w B Faﬂ%cs + Faﬂvrﬂﬁé B Faﬁwrﬂﬂw (2)

written in an anholonomic basis adapted to the spacetime affine connection I'g;. In the anholo-
nomic basis, a comma followed by a lower-case Greek index implicitly denotes

0 _ 0
= g~ Mg )

expressed in terms of the gauge potential
A
Aﬁu = pov F’g)\u. (4)

The condition of vanishing gauge curvature field, Eq. (1), for the stationary measuring device
is thus given by _
Fo,fw = pOUOR Opv — 0. (5)

The four-velocity v* of the measuring device satisfies
gV’ =1, (6)
and the Finsler metric function L then becomes [2]
L? = g, v =1, (7)

which is satisfied by the indicatrix. From Eq. (6), it follows that for the stationary measuring
device, 1° is a solution to
goo(x,1°,0,0,0)0% = 1. (8)

It is to be noted that for a Finsler metric g,,(z,v), there may be multiple stationary frames
for the measuring device satisfying Eq. (8).
Thus for a stationary measuring device, the four-velocity is

{00, 0% 0%} = {2°,0,0,0}, (9)
and the gauge curvature field, Eq. (1), becomes
FO/.{I,Z/ = pOUORaO,uV' (10)
Also, the gauge potential, Eq. (4), becomes

Aﬁu = povol"ﬁ()u. (11)
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It follows from the homogeneity of the Finsler metric function that

0
0 Gl v) =0, (12)
0 0
%guu = wgaw (13)
and 5 9
Ua%gwj == angm, =0. (14)
Thus, for a stationary measuring device, it follows from Eqs. (12) - (14) that
0 0
Uoﬁguy = Uow‘goy = 0. (15)
Also from Eq. (6), it follows that
0 0
%LQ(J?, v) = Uozﬁgoo + 21}090# =0, (16)
and o o 3
L? = 0% 40’ — 29w = 0. 17
Gungort ) =V g o0 AV G 0wt 20 17)

For the Finsler spacetime, the Christoffel symbols for the four-velocity tangent space are given
by [2]
1 0

o o —1 _u\
Wos = 500 9" 5 398 (18)
which for the stationary measuring device, according to Eq. (15), for non-vanishing v°, becomes
1 0
B -1 _uk
Was = 5p0° 9" 5 5 9a8: (19)

in which the lower-case Latin index k& ranges from 1 to 3.
If the spacetime connection FZB is of the Levi-Civita form, then in the adapted anholonomic
basis, the gauge potential is given by [2]

4, =7, ), (20)
in which the Christoffel symbols are given by
1
{6 /\u} = Egu)\(ga)\,ﬁ + 98ra — JaB); (21)

and for the stationary measuring device, the gauge potential becomes

Aﬁu = pgvom. (22)

The bundle connection in the spacetime sector of the Finsler-spacetime tangent bundle is given
by [2]

(8)Fuaﬂ - {M aﬁ} = {u ocﬂ} B gwj (AA aH}\BV + AA ﬁH)\D”’ - AA VH)‘O‘B) ’ <23)

in which {“ aﬁ} is the canonical Levi-Civita symbol written in a coordinate basis. Next substi-
tuting Eq. (23) in Eq. (20), one has

A)‘ a = p0’06 {)\ 5a} — pov‘sg’w’ (A¢ 5H¢a¢ + Al/) aH¢5¢ — Aw¢H¢5a) . (24)
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From Eq. (18), one has
Po l%gaﬂ = 2ILhag, (25)
and also, from the symmetry of the spacetime metric,
yap = aps = Ugay = Hypa. (26)
Next substituting Eq. (25) in Eq. (14) and using Eq. (26), one obtains for a Finsler spacetime:
V' oy = v 1,0 = v 0 = 0. (27)

Also, substituting Eqs. (27) and (20) in Eq. (24), and solving for the gauge potential, one
obtains

A)\ a = IOO/U(S {/\ 5o¢} - p(Q)U’Y,UlS{w’WS}Hwa )\‘ (28)
Furthermore, from Eq. (23) it follows that
U”U‘;{d’w} = "0 {wvé} — g (AB gsa + AP sHgya — AP H/gws) (29)

Next using Eq. (27) in Eq. (29), one obtains

v”v‘;m = "0’ {’ﬁw} : (30)

and then substituting Eq. (30) in Eq. (28), and using Eq. (26), one gets

A 5 fA 2 5,6 A
A a = Pov { 604} - Po”ﬂlv {w'yzS} II o) (31)
For a stationary measuring device, this becomes

AN = pov { Oa} pov” {woo}HAaw- (32)

The bundle connection in the spacetime-spacetime-fiber and spacetime-fiber-spacetime sectors
is given by [2]

(8)]‘—Wab :(8) FM = HM ab + Rb)\oz p()v)\7 (33)

and for a stationary measuring device, this becomes

1 _
—POUORbOa g (34)

(O) IO
ab 9

ba

= Huab +
The bundle connection in the base-fiber-fiber sector is given by [2]

D

in which o
D
qugH H= Hab ) + r 5¢Hab - F5a¢H5b — F5b¢Ha5 : (36>

in the anholonomic basis. Alternatively, one has [2]

®rr =V, A, ", (37)
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where L
1 D
= _p 0¥
and
At = LIL " (39)
For a stationary measuring device, Egs. (35) and (37), using Eq. (6), become
D
(S)Fuab = pOUOD_xOHab ~. (40)
The bundle connection in the fiber-base-base sector is 2]
m 1=m
®rm 5= —I,,™ + 3B asPov” (41)
which for a stationary measuring device becomes
m m 1 D
(8)F Ozﬁ == _Haﬂ + §p0/UOR Oaﬂ' (42)
In the fiber-base-fiber sector, the bundle connection is [2]
®pm — _, ¢ ™
" = —pov Do 11, a, (43)
or alternatively
B, = —V,4,, ™ (44)
For a stationary measuring device, Eqs. (43) and (44) become, using Eq. (6),
D
®&rm _ 0~ rm
r ab — — PV DLEOH¢ a,* (45)
The bundle connection in the fiber-fiber-base sector is 2]
(8)Fmba = {mba}7 (46)
and this will clearly also hold for a stationary measuring device.
In the fiber sector, the bundle connection is [2]
(S)Fmab = Hmab' (47)

Summarizing the expressions for the connection in the various sectors of the Finsler-spacetime

bundle in the anholonomic frame and for a stationary measuring device, one has

Or s ={" s}

1 = n
(S)Fuab =@ M, =1, + §pOUORb0a ;

D
(S)Fuab = 0, ODQ;O Hab "

m m 1 DM
(8)F aB — _Ha,B + §IOOUOR 0af3>

m
«,?

m D
e, = _Povoﬁnb

(48)
(49)
(50)
(51)

(52)
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BT, = {"h}- (53)
(8)Pmab = 1"y, (54)
in which the Christoffel symbols of four-velocity space are given by

1 0

5 = 5009 55 Gas: (55)
and one also has
{"aph = {"ap} — AN I — AYSIL M — AN, (56)
in which the gauge potential is given by
A)\ a — pOUO {A Oa} - pg,UOZ {wOO} H)\cm/; : (57)

3 Curvature scalar

The Riemann curvature scalar of a Finsler-spacetime tangent bundle is [2]

= 1
8 _ af3 el B
“R = R—  F"Fop, = 217 T, — 2

D
Dpovg

1%,

Q, (6% D (03
—VI**'VIl,s, — VII*? VII” ; + 25— VII

(58)
]

o

A special case of the Finsler-spacetime tangent bundle is the Riemannian-spacetime tangent
bundle, for which the four-velocity space Christoffel symbols I1* . are vanishing. In this case
Eq. (58) reduces to

— 1 o
®R=R-— ZF ﬁ’yFaﬁ’Y’ (59)
For a stationary measuring device, using Eqgs. (1), (7), and (9), this becomes

a08y—=
7RocO,@“w (60)

@RZF—E%E
Equation (60) was used earlier in a perturbative calculation of possible corrections to the
gravitational red shift for a static emitter on a Schwarzschild star and for a stationary measuring
device at a large distance from the star [11|. A stationary measuring device was also invoked
in reducing the action for the spacetime tangent bundle to the ordinary vacuum Einstein’s
field equations in a Riemannian spacetime in the mathematical limit of infinite maximal proper
acceleration [12].
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B cBoux 6omee paHHIX paboTax aBTOP PaCcCMOTPEJ pa3andHbe acIeKThl auddepeHinaib-
HOIl TeOMEeTpUN KacaTeJbHBIX PacC/JIOeHUN (PUHCIEPOBa IMPOCTPAHCTBA-BPEMEHN, KOTOPHIE
OCHOBBIBAaIOTCAd Ha BO3MOZKHOM CyIlLeCTBOBaHI/H/I BerHefI I'paHUIbl PEJIATUBUCTCKHA
PaBHOYCKOPEHHOI'O JBUXKEHMsSI. B YaCTHOCTH, BBIYMCIEHBI CBSA3HOCTHL PACCIOCHUS
1 accoluupoBaHHble HUdhEepeHInalbHO-IPeOMETPUIECKIE II0JIsd I KacaTe/bHOrO
paccioeHusi (pUHCIEPOBa IIPOCTPAHCTBA-BPEMEHH JJI CJIydast CTAlMOHAPHOTO H3MepH-
TeJILHOTO MTpubdopa.

KunroueBbie ciioBa: QGUHCIEPOBA I'€OMETPUS, KacaTe/JbHOE PACC/IOeHHE IPOCTPAHCTBa-
BpeMeHU, MaKCUMaJIbHOe COOCTBEHHOE yCKOpeHue, (pusndeckrne (bUHCIEPOBBI KOOPINHATEI,
CTPYKTypa  IPOCTPAHCTBa-BPEMEHM, IIPOCTPAHCTBO-BpeMsi Ksjepa,  KOMILIEKCHOE
[IPOCTPAHCTBO-BPEMSI, BPAIIICHHE.



