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Fields around their source determine a curved geometry. Velocity dependent phenomena
in these fields involve a curvature tensor, whose elements depend on the value and the
direction of the velocity of the source of the interaction gauge field, as observed from the
reference frame of the matter field. This double (space-time and velocity) dependency of
the curvature requires the field to follow a Finsler geometry.
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1 Conservation laws in the presence
of a velocity dependent gauge field

[1] showed that in the presence of a velocity dependent gauge field Dμ̇=Dμ̇(ẋ
μ) with a La-

grangian density L(φk, Dμ̇,α), where ϕk, (k=1, . . . , n) are the matter fields — which also in-
cludes the velocity field ẋμ= ẋμ(xν), and Dμ̇,α, (α=1, . . . , N), are the (kinetic) gauge fields,
assumed also that L(ϕk, Dμ̇,α) is invariant under the local transformations of a compact, simple
Lie group G generated by Tα, (α=1, . . . , N), where [Tα, Tβ] = iCγαβTγ , and C

γ
αβ
are the so-called

structure constants, corresponding to the actually considered individual physical interactions
symmetry group, there appear two conserved Noether currents:

J (1)να = ∂μF
(1)μν
α ∂νJ

(1)ν
α = 0 (1)

J (2)να = ∂μF
(2)μν
α ∂νJ

(2)ν
α = 0. (2)

These equations form a complete system with the additional condition

∂L

∂(∂μDν̇,α)
∂ν ẋ

ρ +
∂L

∂(∂νDμ̇,α)
∂μẋ

ρ = 0.

1.1 Mathematical background

[2] gave a mathematical proof for the conservation of the currents J (1)μα and J (2)να as well as
demonstrated that — at least in this specific case — the replacement of an f(ẋμ, xν) dependence
with an f(ẋμ(xν)) dependence led to the same result. This can be seen easily, for the currents
J
(1)μ
α coincide with those what we received in a simply space-time dependent field. However, the
introduction of a velocity dependent gauge field provided an additional J (2)να current family that
extends and coexists with the previous ones simultaneously. The extension of the arguments of
the fields is in full agreement with the original general formulation of Noether’s second theorem
[3-5]. The simultaneous existence holds although the respective components of the two current
families are not independent.
Application of Finsler geometry can be investigated by analysing the currents J (2)να where

the velocity dependence presents itself. J (2)να which is a current interpreted in the velocity
dependent gauge field, can be written in the form

J (2)να (x) = iג

[
∂L

∂(∂μϕk)
(Tα)klϕl(ẋ)∂μẋ

ν − Cγ
αβ
Dω̇,β(ẋ)∂μẋ

ω × F (2)μνγ (x)

]

(3)
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where ג [gimel, the third letter of the Hebrew alphabet] denotes a general coupling constant,
which can be replaced by a concrete coupling constant for each individual physical interaction,
for example by g for gravity.
Writing F 2μνα

1 in the left side of (3) considering (2) and writing the covariant derivative
(denoted by careted ∂̂μ) of F

(2)μν
α in the form

∂̂μF
(2)μν
α (x)= ∂μF

(2)μν
α (x) + iגCγ

αβ
Dω̇,β∂μẋ

ω×F (2)μνγ (x)

one gets

∂̂μF
(2)μν
α (x) = iג

∂L

∂(∂μϕk)
(Tα)klϕl(ẋ)∂μẋ

ν (4)

This form has the advantage that the right side of the equation depends solely on the matter
fields, and all dependencies on the gauge fields are separated in the left side. The velocity
dependent (that means, direction dependent) curvature tensors appear also in the left side of
the equation.

1.2 Physical considerations

The physical meaning of the couple of conserved currents is the following.
Eq. (1) can be written in the form:

∂μF
(1)μν
α (ẋ) = iג

∂L

∂(∂νϕk)
(Tα)klϕl(ẋ) (5)

Relations (5) and (4) provide the equations of motion for the potential part2 of the system’s
Lagrangian density. As mentioned in [2], it is generally the case that when (5) or (4) is satisfied,
the matter-field current associated with the Lagrangian acts as the source for the gauge fields.
This is a consequence of the fact that the matter-field dependent and the gauge-field dependent
currents are at separate sides in each of the latter two equations.3

The covariant dependence on the velocity-space gauge field is obvious from (4), and it was
shown in a similar way for (5) in [2]. The derived conserved currents make a correspondence
between the matter fields and the kinetic (velocity-dependent) gauge fields. They open the
way to conclude invariance between the sources of the scalar fields on the one side, and the
gauge vector fields on the other.
There is easy to see that F (1)μνα (ẋ) and F (2)μνα (x) transform in the same way, as isovec-

tors, under a local transformation V (ẋ) ∈ G [1]: F (1)
′μν

α (ẋ)=V −1F
(1)μν
α (ẋ)V and F (2)

′μν
α (x) =

V −1F
(2)μν
α (x)V. Notice, that the forms of J (1)να (ẋ) conserved currents in the presence of ve-

locity depending fields coincide with the form of those currents that we had obtained for
space-time depending fields. With respect to this identical form, as well as to the variety
of the symmetry groups that they may obey, one can replace ϕ(ẋ) → ϕ(x), D(ẋ) → B(x)

and J (1)α (ẋ) → j
(1)
α (x), where B(x) are familiar physical gauge fields with symmetries, e.g.,

U(1), SU(2), [and SU(2) × U(1)], SU(3) or SO(3, 1), with the substitution of ג by the cor-
responding coupling constants. F

(1)μν
α (ẋ) take the same forms and transform in a velocity

dependent D gauge field like the components of a jν(x) current and isovectors fμν(x) of a

1The F (2)μν fields take the general form F (2)μνα (x) =
∂Dρ̇,α∂μẋ

ρ

∂xν
−
∂Dσ̇,α∂ν ẋ

σ

∂xμ
− iגCγ

αβ
Dρ̇,β∂μẋ

ρDσ̇,γ∂ν ẋ
σ.

2I.e., which serves as the source for the gauge-fields, and consequently as the source for the characteristic
charges of the given fields.

3Here the only condition assumed was that the field equations be satisfied. No restriction was imposed on
the form of the Lagrangian density except that it be invariant under local gauge transformations as defined
in (3).
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general matter field ϕ(x) and gauge field B, defined by fμν = ∂νBμ − ∂μBν − Bμג ×Bν in the
four dimensional space-time. (This yields the information, that in a boundary situation, i.e.,
in the absence of relativistic accelerations, our derivation produces the same result as it was
known without the assumption of a velocity dependent gauge field. We got back to the results
that were known in the absence of a velocity-dependent gauge field, and that were based on cal-
culations in an only space-time dependent gauge field. So, without employing accelerations, we
derived the same conserved currents. This justifies our preliminary assumption, that handling
the space-time coordinates as implicit parameters not only provides additional information but
it preserves the physical relevance of the theory.)

1.3 First conserved quantity:
Conservation of the field charge (k)

We denoted [1] the sources of the individual physical fields (for example, gravitational, elec-
tromagnetic, and so on) by the letter k (dalet, the fourth letter of the Hebrew alphabet) and
we call them field charges (for example, mass, electric charge, etc.) which have two isotopic
states. The field charges form four-currents each (at least in the Standard Model). In a gen-
eral case, the Tγ (which appear in the presented conserved currents) as introduced above, are
matrix-representation operators generating the group G, with the mentioned commutation rule
[Tα,Tβ] = iCγ

αβ
Tγ. They can be replaced by concrete operators of the concerned fields, accord-

ing to their characteristic symmetry groups, like U(1), SU(2), SU(3) or SO(3, 1), and their
combinations, and в can be substituted by the concrete coupling constants of the individual
physical fields. Thus, in a general case, and with group G of an arbitrarily chosen physical field
B, one can write ϕ(x) and ג in the equations for the currents J (1)μα and substitute the above
equations with:

J (1)να (x) = iג
∂L

∂(∂νϕk)
(Tα)klϕl(x), J (1)να (x) = ∂μF

(1)μν
α (x),

F (1)μνα (x) =
∂L

∂(∂μBν,α(x))
, (6)

and
∂̂μF

(1)μν
α (x) = ∂μF

(1)μν
α (x) + iגCγ

αβ
Bμ,β(x)× F

(1)μν
γ (x)

The operators of the quanta of the given physical field are determined by the generators {Tα}
of the symmetry group of the respective field. The full conserved field charge currents J (1)μα will
provide the conserved quantities of the field ϕ(x), which the gauge field B interacts with. We
called these conserved quantities field charges and denoted by k. (We will see in subsections
1.4 and 1.5 that k appears in two isotopic states, what we call isotopi field charges.) We can
get the conserved quantity by integration of the current in the usual way, applying Gauss’
theorem, where the integral of the spatial components vanishes at an infinite boundary, and
we get:

d

dt

ג
c

∫
∂L

∂(∂4ϕk)
(Tα)klϕl(x)dV = 0 (7)

where the integral provides the conserved field charge k of the source field ϕ.
The results derived in this subsection coincide with the well known conservation laws of

field theories. We treat it here in order to make it comparable with the results of the next
subsection (1.4), and to demonstrate that the two conserved quantities appear simultaneously
(Sec. 1.5).
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1.4 Second conserved quantity:
Conservation of the isotopic field charge spin (Δ)

What is isotopic field charge spin (IFCS)? [1] assumed that the field charges appearing in the
potential part of a Hamiltonian as the scalar sources of a matter field, and the field charges
appearing in the kinetic part of a Hamiltonian, and in currents as sources of gauge fields are
qualitatively different physical quantities. They are called isotopic field charges. For example,
the mass of gravity and the mass of inertia are considered here, and from now on, as two,
qualitatively different physical properties (although equal in their values in rest), and serve
as the sources of gravitational and kinetic fields, respectively. In a similar way, the electric
charges appearing in the Coulomb potential and the electric charges appearing in the currents
that serve as sources of magnetic fields are also qualitatively different physical quantities. The
same is assumed on the sources of other interaction fields. These twin couples of physical
quantities, like isotopes of each other, are called with the common name isotopic field charges.
This means, there appear two different isotopes of a given field charge in the individual

elements of a four-current. This distinction between the isotopic field charges would distort
the Lorentz invariance of these currents, what is not in accordance with our physical experience.
Therefore, the assumption of the distinction between the isotopic field charges must involve
the assumption that they are members of a group whose elements can be transformed into
each other. This symmetry among the members of an individual isotopic field charge couple
counteracts the symmetry lost by the introduction of the distinction between them. This new
invariance can be represented by an SU(2) group, which rotates the two isotopic states of the
field charges in a gauge field, and can take two stable positions. [1] (a) proved (as cited below)
that the introduced velocity dependent D gauge field serves as the field where the isotopic
states of the field charges are rotated, (b) introduced that the rotated property (the two stable
states of the isotopic field charges) be called (by analogy) isotopic field charge spin (Δ), and (c)
proved that the conservation of the J(2) currents provides the conservation of the isotopic field
charge spin. So, the above cited, derived J (2)να (x) are the isotopic field charge spin currents,
which — similar to J (1)μα — are also conserved and yield a conservation law. The conserved
quantity derived from J

(2)ν
α (x) is the isotopic field charge spin Δ.

The conserved current in the kinetic field can be read from (3). The right side of (3)
represents the full conserved isotopic field charge spin current, which includes the contribution
of the D field.4

We have introduced the D field — which is shown to be responsible for the isotopic field
charge spin transformation — to counteract the dependence of a V (ẋ) = e−ipα(ẋ)Tα transfor-
mation on ẋμ. The field equations, which are satisfied by the twelve independent components
of the D field, and their interaction with any field that carries isotopic field charge spin are
unambiguously determined by the defined currents and covariant F (2)μν-s constructed from the
components of D. Considering a general Lorentz- and gauge invariant Lagrangian, we obtain
from the equations of motion that J (2)1,2,3 and J (2)4 are, respectively, the isotopic field charge
spin current density and isotopic field charge spin (Δ) density of the system. The total isotopic
field charge spin

Δ =
i

ג

∫
J (2)4d3x (8)

is independent of time and independent of Lorentz transformation. J (2)μ does not transform as
a vector, while Δ transforms as a vector under rotations in the isotopic field charge spin field.

4Similar attempts (like our in the velocity space) were made by [6] in the phase space (with a particular
mapping from the configuration space to phase space), and they anticipated the quantization of the models.
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1.5 Coupling of the two conserved quantities (k and Δ)

The dependence of the two currents J (1)μα and J (2)μα on each other has physical consequences.
Once, it justifies that the quantities, whose conservation they represent and which are coupled,
exist simultaneously. Secondly, the coupling of a conserved quantity in a space-time dependent
field — which coincides with one of our familiar physical fields — with another in a kinetic
(velocity dependent, introduced in [2] and [1]) gauge field indicates that the derived conservation
verifies just the invariance between the two isotopic states of the field charges, namely between
the potential kV and the kinetic kT (where the indices V and T refer to the potential and the
kinetic components of a Hamiltonian, respectively, and the two kinds of k correspond to the
two isotopic field charges). (Remember that k can be field charges of different physical fields
marked in common with B, while Δ represents a single quantity belonging to the kinetic gauge
field D).
In the presence of kinetic fields we have two conserved currents that are effective simultane-

ously. The kinetic gauge field D is present simultaneously with the interacting matter [ϕ] and
gauge [B] fields. The presence of D corresponds to the property of the field charges k of the
individual fields that they split in two isotopic states, and analogously to the isotopic spin, we
named these two states isotopic field charge spin (IFCS) what we denote by Δ. The source of
the isotopic field charge spin (Δ) is the field ϕ(ẋ) in interaction with the kinetic gauge field D.
In summary, the physical meaning of Δ can be understood, when we specify the transfor-

mation group associated with the D field, which describes the transformations of k (i.e., the
isotopic field charges). k can take two (potential and kinetic) isotopic states kV and kT in a
simple unitary abstract space. Their symmetry group is SU(2), that can be represented by 2×2
Tα matrices. There are three independent Tα that may transform into each other, following the
rule [Tα, Tβ] = iCγαβTγ, where the structure constants can take the values 0, ±1. Let T1 and T2
be those which do not commute with T3; they generate transformations that mix the different
values of T3, while this “third” component’s eigenvalues represent the members of a Δ doublet.
For the isotopic field charges compose a k doublet of kV and kT , the field’s wave function can
be written as

ψ =

(
ψT
ψV

)

. (9)

(9) is the wave function for a single particle which may be in the “potential state”, with am-
plitude ψV , or in the “kinetic state”, with amplitude ψT . ψ in (9) represents a mixture of the
potential and kinetic states of the k, and there are Tα that govern the mixing of the compo-
nents ψV and ψT in the transformation. Tα (α = 1, 2, 3) are representations of operators which
can be taken as the three components of the isotopic field charge spin, Δ 1, Δ2, Δ3 that follow
the same (non-Abelian) commutation rules as do the Tα matrices, [Δ 1,Δ 2] = iΔ3, etc. These
operators represent the charges of the isotopic field charge spin space, and ψ are the fields on
which the operators of the gauge fields act.
The quanta of the D field should carry isotopic field charge spin Δ. The Δ doublet, as a

conserved quantity, is related to the two isotopic states of field charges (k), and the associated
operators (Δi) induce transitions from one member of the doublet to the other.

1.6 Interpretation of the isotopic field charge spin conservation

Invariance between kV and kT means that they can substitute for each other arbitrarily in the
interaction between field charges of any given fundamental physical interaction. They appear
at a probability between [0, 1] in a mixture of states in the wave function

ψ =

(
ψT
ψV

)
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so that the Hamiltonian of a single particle oscillates between V and T , while the Hamiltonian
of a composite system is a mixture of the oscillating components of the particles that constitute
the system. The individual particles in a two-particle system are either in the V or in the T
state respectively, and switch between the two roles permanently; while the observable value
of H is the expected value of the mixture of the actual states of the two, always opposite state
particles. In the case of mechanics this means that the mass of any physical object is a mixture
of unit masses of gravity and unit masses of inertia that oscillate between the two states each.
In gravitational interaction between two unit masses, one of them is in gravitational state, and
the other in kinetic state. They swap their roles permanently by the exchange of the quantum
of the Δ field.
The invariance between kV and kT (what is ensured by the conservation of Δ), and their

abilitiy to swap means also that they can restore the symmetry in the physical equations which
was lost when we replaced the general k (namely mass m, electric charge q, . . . etc.,) by their
isotopes kV and kT .5

2 Finsler geometry in the presence of isotopic field charges

Let us specify (5) for the gravitational field [9]. The right side of the equation contains the
scalar field that serves for the source of the gravitational field. The ג can be replaced by the
gravitational coupling constant g. As we noticed, the dependence on the gauge fields is on the
left side of the equation (5). F (1)μνα (ẋ) must satisfy the

Tμν = FμλFλν +
1

4
δμνg

kσFλσg
λρFkρ

identity for the energy-momentum tensor Tμν . (In order to bring this form in compliance with
the indices in (5), one should raise the indices by multiplying with the metric tensor gβγ in the
right side.) This energy-momentum tensor Tμν can be expressed by the way of the Einstein
equation

Tμν = −
1

8πGN
(Rμν −

1

2
Rgμν + Λgμν) (10)

where Rμν is the Ricci tensor defined by the help of the derivatives of the metric tensor gμν ,
R is the Ricci scalar formed from the Ricci tensor (Riemann curvature) and the metric tensor,
and Λ is a constant of Nature, as well as GN the constant of Newton.
The metric tensor gμν and its derivatives depend on the localisation of the given point in the

space-time in the General Theory of Relativity (GTR), and are subject of Riemann geometry.
In the presence of a kinetic field, that means, isotopic mass field D (mass being the field-
charge of the gravitational field), however, the curvature depends also on velocity. (Whose
velocity? On the actual inertial velocity of a test unit-mass placed in a given space-time point
in the reference frame fixed to the source of a scalar gravitational field ϕ which appears on the
right side of (5).) The gμν metric tensor, and consequently the affine connection field and the
curvature tensor formed from its derivatives, depend on space-time and velocity co-ordinates.
With the appearance of the dependence on the velocity vector, the curvature becomes dependent
on its direction in each space-time point. The direction (additional parameter) attributed to
each space-time point is defined by the orientation of the velocity of a test unit-mass in the
given space-time point,

v

|v|
. The curvature can no more follow a “simple” Riemann geometry,

it follows a Finsler geometry whose metric is defined by the dependence of gμν on (xσ and) ẋρ.

5Consequences of the application of effective field theories were analysed e.g., in philosophy by [7] and in
physics by [8].
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Of course, the space-time plus four-velocity dependence of the metric tensor gμν affects its
all derivatives, including the formation of the affine connection field (from first derivatives)
and the Riemann curvature (or Ricci tensor, second, covariant derivative)

Γλμν =
1

2
[∂μgλν + ∂νgλμ − ∂λgμν ] Γλμν = g

λρΓρμν

and
Rμν = ∂μΓ

λ
νλ − ∂λΓ

λ
μν + Γ

λ
μσΓ

σ
νλ − Γ

λ
σλΓ

σ
μν .

The solution of the Einstein equation in velocity dependent field with Finsler geometry must
necessarily lead to solutions different from that of Schwarzschild.

3 The role of the isotopic field charge spin conservation
The role of equation (4) is to retain the invariance between the two isotopic forms, namely
gravitational and inertial, of masses. The importance of this is to save the covariance of our
equations. Since there appear two different kinds of (isotopic) masses in the energy-momentum
“four-vector” (in the fourth column of Tμν ,) it does no more transform as a vector, and Lorentz
transformation can no more guarantee alone the covariance of our equations.
As a consequence of the distinction between mV and mT , as well as the association of the

energy content with the mass mV and the components of the momentum with mT , we lose
also the symmetry of the Tμν energy-momentum tensor. To retain symmetry in Einstein’s field
equations we must require again the invariant transformation of mV and mT into each other in
an appropriate gauge field, namely inD. We refer to [10] who foresaw the possible generalisation
of YM type gauge invariance in general relativity “in close analogy with the curvature tensor”. If
we consider the energy-momentum tensor (in which both isotopic states of mass appear) as the
source of the gravitational field, then — in the usual way — the scalar and the vector potential
can be separated. See, m4 in T44 does not compose a fourth component of a four-vector in the
classical theory of gravitation where there is a single scalar mass. If we consider now m4 = mV ,
the three components of the kinetic mass mT can compose a three-vector, however Tμ4 will not
form a four vector either.
To maintain the Lorentz invariance of our physical equations in the gravitational field, we

must demand to restore the invariance of

(
~mT
mV

)

under an additional transformation that

should counteract the loss of symmetry caused by the introduction of two isotopic states of
mass. We discussed that transformation in section 1. Further, in the case of gravitation the
relation of the scalar and the vector fields are not linear even if we have not made distinction
between the potential and kinetic masses. The non-linearity is coded in the relation of the
tensors [11] at the right side of the Einstein equation (10) (in units c = 1), or we can write

Gμν + Λgμν = 8πGTμν where the Einstein tensor is defined as Gμν = Rμν −
1

2
Rgμν whose

covariant derivative must vanish.
Since our Tμν tensor has already lost its symmetry, we can take Λgμν into account within

a modified T ′μν — handling the gravitational and kinetic masses in it together with the dark
energy — and we get the following formally symmetric equation: Gμν = 8πGT

′

μν .
The symmetry of the energy-momentum tensor can be saved by the invariant gauge trans-

formation of the IFCS. The most important analogy is between the behaviour of the potential
and the kinetic field charges of the individual fields that makes probable to postulate a unique
transformation to assure their invariance (cf., section 1).6 So the invariance under the Lorentz

6As [12] stated, “In contrast to the symmetry or invariance requirement in STR, the principle in GTR is
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transformation combined with the invariance of the isotopic field charge spin field provide to-
gether the covariance of the gravitational equation. However, this combined transformation
should now be taken into consideration in a field with a metric depending on all space-time
and velocity co-ordinates, following a Finsler geometry.

Appendix
Comparison of the invariance properties in classical GTR and in the IFCS model.

In classical physics, conservation laws — as consequences of the invariance properties of the
investigated systems — can be obtained by integration of the Euler-Lagrange equations of
motion of classical mechanical point systems. According to Hamilton’s principle the variation
of the action integral of the system’s Lagrangian must be zero. These conservation laws include
the conservation of the energy — invariance under translation in time. That conserved energy
is equivalent with a well determined amount of mass E = mc2, where m = mV is gravitational
mass, and this conservation law does not provide any information on the quantity of kinetic
mass.
In general relativistic treatment, the source of the gravitational field is the Tμν momentum-

energy stress tensor, which includes the sources of inertial and gravitational effects as well. Ap-
plying the same variational method and integration for the Einstein equation (using [+ + + −]
signature) we derive the conservation of the −T44 element of the Tμν momentum-energy stress
tensor. −T44 is energy density of the gravitational field, and is proportional to a certain amount
of mass. According to invariance under translations in the Minkowski space (Lorentz transfor-
mation) the conserved current can be written in the form

∂μTμν ≡ ∂μ

(

Lδμν − ∂νϕr
∂L

∂∂μϕr

)

= 0

where ϕr denote functions on which (and their first derivatives) the Lagrangian may depend.
The Einstein equation

Rμν −
1

2
Rgμν + Λgμν = 8πGTμν

provides the elements of Tμν in which — according to the left side — the contribution of the
kinetic and potential components are mixed by the gμν curvature tensor. Applying the usual
integration method and Gauss’ theorem, we get the fourth column of the momentum-energy
stress tensor for a conserved quantity, what is no else than the four-momentum density, which
behaves like a four-vector and whose individual components are

Pν =
1

ic

∫
T4νdV

or separated

Pk =
1

ic

∫
T4kdV =

1

ic

∫
∂kϕi

∂L

∂∂4ϕi
dV (k = 1, 2, 3);

most often presented as strictly speaking a covariance requirement.” Gauge theories behave like GTR, at least
in this respect. General covariance “is not tied to any geometrical regularity of the underlying spacetime, but
rather the form invariance (covariance) of laws under arbitrary smooth coordinate transformations” [12, p.
34]. [13] found that the more general geometry resulting from admitting local changes called gauges described
not only gravity but also electromagnetism. He showed also that the conservation laws of Noether follow in
two distinct ways in theories with local symmetries. This led to the Bianchi identities, which hold between the
coupled equations of motion, and which are due to the local gauge invariance of action. Later [14] demonstrated
that the conservation of the electric charge followed from the local gauge invariance in the same way as does
energy-momentum conservation from co-ordinate invariance in GTR.
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H = icP4 = −
∫
T44dV =

∫ (

∂4ϕi
∂L

∂∂4ϕi
− L

)

dV

what are considered the conserved total momentum and energy of the field respectively.
If we take into account the qualitative difference between the masses mT (what appear in

the components of Pk) and mV (what appears in H) that are mixed by the curvature tensor
gμν in the elements of Tμν , this consideration will involve the mixed mT and mV dependence
of the Lagrangians as well. As a consequence, Pk and H cannot be considered separately, and
independently of each other, conserved quantities. (We do not investigate here the ambiguous
interpretations of invariant mass.) The covariance of the gravitational equation can no more
be secured by the Lorentz invariance alone. The lost symmetry of nature can be restored only
with the shown invariance between the isotopic mass states (as field charges of the gravitational
field, conservation of Δ) which are rotated in an isotopic field charge spin gauge field. The
covariance of the gravitational equation is a result of invariance under the combination of
the Lorentz transformation and rotation in the isotopic field charge field. In the latter case
the four components of (Pk[mT ], H[mV ]) transform as isovectors. Due to the IFCS gauge
transformation, the transformation of the field components can be described in a (space-time
+) velocity dependent gauge field, whose metric, consequently, depends also on the velocity
components, and is subject of a Finsler geometry.
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ФИНСЛЕРОВА ГЕОМЕТРИЯ ОТО В ПРИСУТСТВИИ
ЗАВИЯСЯЩИХ ОТ СКОРОСТИ КАЛИБРОВОЧНЫХ ПОЛЕЙ
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Поля в окрестности источников задают искривленную геометрию. Зависящие
от скорости явления в этих полях требуют для своего описания тензор кривизны,
элементы которого зависят от величины и направления скорости движения источника
взаимодействующих калибровочных полей в системе отсчета поля материи. Эта
двойная зависимость кривизны от пространства-времени и скорости требует для
своего описания финслерову геометрию.

Ключевые слова: фундаментальные взаимодействия, заряды поля, инвариантность,
ковариантность, изотопический спин зарядов поля, сохранение, симметрия,
калибровочный бозон, поля зависящие от скорости, финслеров тензор кривизны,
модифицированное уравнение Эйнштейна.


