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Line integration of generalized functions is studied. Second order partial differential equa-
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this purpose a non-commutative line integration is used. Examples of solutions of partial
differential equations are given.
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1 Introduction

It is well-known, that differential equations have many-sided applications in different sciences
including physics, mechanics, other natural sciences, techniques, economics, etc. The differen-
tial equations also are very important for mathematics |7, 13, 34, 15, 29, 37|. Predominantly
differential equations are considered over fields such as real, complex, or with non-archimedean
norms. Recently they are also begun to be studied over Clifford algebras |9, 10, 11].

Such algebras have a long history, because quaternions were first introduced by W.R. Hamil-
ton in 1843. He had planned to use them for problems of mechanics and mathematics [12, 33].
Their generalization known as the octonion algebra was introduced by J.T. Graves and A.
Cayley in 1843-45. Then Dickson had investigated more general algebras known now as the
Cayley-Dickson algebras [1, 2, 14].

The Cayley-Dickson algebras, particularly, octonions and quaternions are widely used in
physics, but mainly algebraically. Already Maxwell had utilized quaternions to derive his equa-
tions of electrodynamics, but then he had rewritten them in real coordinates.

In the 50-th of the 20-th century Yang and Mills had used them in quantum field theory,
but theory of functions over octonions and quaternions in their times was not sufficiently
developed to satisfy their needs. Discussing that situation they have formulated the problem
of developing analysis over octonions and quaternions [8]. This is natural, because quantum
fields are frequently non-abelian [35]. Dirac had used complexified quaternions to solve the
Klein-Gordon hyperbolic differential equation with constant coefficients.

This work continues previous articles of the author. In those articles (super)-differentiable
functions of Cayley-Dickson variables and their non-commutative line integrals were investi-
gated (22, 23, 21, 25, 26]. In the papers [24, 20] differential equations and their systems over
octonions and quaternions were studied.

The Cayley-Dickson algebras A, have the even generator iy = 1 and the purely imaginary
odd generators i, ...,79r_1, 2 < 7, 2% = —1 and igi = 1, and 1,5 = —iig for each 1 < k # .
For 3 < r the multiplication of these generators is generally non-associative, so they form not
a group, but a non-commutative quasi-group with the property of alternativity iz (ixi;) = (i3 )7
and (ijig)ix = 4,(:2) instead of associativity. Ordinary super-analysis operates with graded
algebras over Abelian groups. Therefore, super-analysis over the Cayley-Dickson algebras is
in some respect more complicated than usual super-analysis, for example, over the Grassman
algebras.
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The aim of this paper is in developing of Dirac’s approach on partial differential equations
with variable piecewise continuous or generalized coefficients.

The technique presented there is developed here below for solutions of partial differential
equations of the second order of arbitrary signatures and with variable coefficients which may
also be piecewise continuous or generalized functions. Moreover, signatures may change piece-
wise in a domain. Formulas for integrations of such equations are deduced. For this purpose
a non-commutative line integration of generalized functions is developed. Examples of partial
differential equations are given. Moreover the approach of §§2-25 over the Cayley-Dickson al-
gebras A, gives the fundamental solution of any first and second order linear partial differential
equation with variable z-differentiable A,-valued coefficients, z € U C A,, where U is a domain
in A, satisfying some mild convexity conditions described below. These results can be used
for solutions of concrete partial differential equations or their systems of different orders with
piecewise continuous or generalized coefficients, for example, of Helmholtz’ or Klein-Gordon’s
types, which are important in optics of composite materials or quantum field theory. Finally
solutions of some types of non-linear partial differential equations over Cayley-Dickson algebras
are studied.

Main results of this paper are obtained for the first time.

2 Partial differential equations of the second order.

1. Remarks and notations. For a subset U in either the quaternion skew field H = A, or in
the octonion algebra O = A3 or the Cayley-Dickson algebra A,, r > 4, we put 75,+(U) := {u :
zeUz=7) WV, U=ws+wpp} for each s # p € b, where t := Zveb\{s,p} wyv € Ao =
{ze A 2= pwyv, ws =w, =0, w, € RV € b}, where b := {ig,i1,...,79-_1} is the
family of standard generators of the algebra A, so that z? = —1, for each 7 > 1, i1 = —i41;
for each j # k > 1, ip = 1. Geometrically the domain 7 ,+(U) means the projection on the
complex plane G, of the intersection U with the plane s, 3 t, Csp := {as+bp: a,b € R},
since sp* € b:=b\ {1}. Recall that in §§2.5-7 [22] for each continuous function f : U — A, it
was defined the operator f by each variable z € A,. If a function f is z-differentiable by the
Cayley-Dickson variable z € U C A,, 2 < r, then f(z) = dg(z)/dz, where (dg(z)/dz).1 = f(z).

A Hausdorff topological space X is said to be n-connected for n > 0 if each continuous map
f: S* — X from the k-dimensional real unit sphere into X has a continuous extension over
RX*1 for each k < n (see also [36]). A 1-connected space is also said to be simply connected.

It is supposed further, that a domain U in A" has the property that

(D1) each projection p;(U) =: U; is (2" — 1)-connected;

(D2) msp+(U;) is simply connected in C for each k = 0,1,...,2" 1, s = dgg, p = dogy1,
te A, and u € G, for which there exists z =u+t € Uj,
where e; = (0, ...,0,1,0,...,0) € A™ is the vector with 1 on the j-th place, p;(z) = 7z for each
ze€ A", 2z = 27;1 izej, 72 € A, for each j = 1,...,m, m € N := {1,2,3,...}. Frequently
we take m = 1. Henceforward, we consider a domain U satisfying Conditions (D1, D2) if any
other is not outlined.

The family of all A, locally analytic functions f(z) on U with values in A, is denoted by
H(U, A,). It is supposed that a locally analytic function f(z) is written in the z-representation
v(z), also denoted by v = v/. The latter is equivalent to the super-differentiability of f (see
[23, 22, 24]). Each such f is supposed to be specified by its phrase v.

For each super-differentiable function f(z) its non-commutative line integral fw f(z)dz in

U is defined along a rectifiable path v in U. It is the integral of a differential form f (x).dz,
where

(11) f(z) = dg(x)/dz,
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(12) [dg(x)/dx)].1 = f(z) for each x € U.

A branch of the non-commutative line integral can be specified with the help of either the
left or right algorithm (see [23, 22, 24]). We take further for definiteness the left algorithm if
something another will not described. For f € H(U, A,) and a rectifiable path ~ : [a,b] — A,
the integral f,y f(z)dz depends only on an initial @ = 7(a) and final 5 = ~(b) points due to
the non-commutative analog of the homotopy theorem in U, where a < b € R. When initial
and final points or a path are not marked we denote the operation of the non-commutative line
integration in the domain U simply by [ f(z)dz analogously to the indefinite integral.

To rewrite a function from real variables z; in the z-representation the following identities
are used:

(1) 7 = (—2i; + 652 =)=z + T2 inlzi0)})/2
foreach j =1,2,...,2" — 1,

271

(2) z0=(z+ 2 =2) {2+ Y inl=ip)})/2,

where 2 < r € N, z is a Cayley-Dickson number decomposed as

(3) 2 = 2080 + ... + zor_1i2r_1 € A,, z; € R for each j, i} = ix = —iy, for each k > 0, 49 = 1,
since i (07)) = 90 = 1, x(251)) = —ix(i5i;) = —(ixt})i; = —i; for each kK > 1 and j > 1 with
k # j (shortly k # j > 1), ix(ixi}) = ix for each k > 0.

As usually C°(U, A,) denotes the R-linear space of all continuous A,-valued functions
f:U — A,. More generally C"(U, A,) denotes the R-linear space of all n times continuously
differentiable by real variables z, ..., z9v_1 functions f : U — A,, where n € N. Certainly,
C™(U, A,) can be supplied with the structure of left- and right-module over the Cayley-Dickson
algebra A, using point-wise multiplication of functions f(z) on Cayley-Dickson numbers from
the left and the right.

2. Factorization and integration of equations.

We consider the second order partial differential equation:

(1) Af = g, where

k k
A= Z a;;m0° /0T 0T, + Z a,0/07
=1

l,m=1

is a partial differential operator of the second order. Let us suppose that the quadratic form
a(T) := Z a,mTiTm
Im

is non-degenerate and is not always negative, because otherwise we can consider —A. Moreover,
let a matrix of coefficients be real and symmetric a;,,(7) = a, (1) € R, ay, 77 € R for each
I,m =1,....,k. Then we reduce this form a(7) by an invertible R linear operator C' = C(7) to
the sum of squares. This means, that

k k
(2) A= b0*/0si+ > _30/0s,
=1 =1

where 0s;/0m = C) (1), C = (C;;), with real-valued functions b; and g, for each . Here

blfsj,l = Z ap,meijmJ and

p?m

k
Bi = aym(0C,;/07m) + Y a,Cl;
v=1
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for all j,l = 1,...,k. In the case when coefficients of A are constant, using a multiplier of the
type exp(D_, €5;) it is possible to reduce this equation to the case so that if b; # 0, then 5, = 0
(see §3, Chapter 4 in [34]). Therefore, one can as usually simplify the operator with the help
of such change of coordinates and consider that only #; may be non-zero if by = 0.

Thus one can choose an invertible real matrix (¢pm)nm=1,. % corresponding to C' = C(1)
so that by < Oforp+1 <l <kand b, >0for 0 <!l <p, where 0 <p <k, q:=Fk—np.
When ¢ = 0 and §; = 0 for each [ the operator is elliptic, for ¢ = 0 and (; # 0 the operator
is parabolic, for 0 < p < k and §; = 0 for each [ the operator is hyperbolic. Sometimes the
matrix C' can be chosen constant on a domain, where the signature (p, ¢) of the quadratic form
a(7) is constant. We suppose that the sums Y7, b?(z) > 0 and Ef:pﬂ b?(z) > 0 are positive
A-almost everywhere on a domain U, where A is the measure induced by the Lebesgue measure
on the real shadow of the Cayley-Dickson algebra. Generally the natural number k — p = ¢(x)
may either be constant or change while crossing the surface {z € U : Y.F_ b?(z) = 0}, when
the domain U satisfies Conditions 1(D1, D2).

We consider elliptic and hyperbolic partial differential operators reduced to the sum of

squares
k

(3) A=Y bi@)o/0a7),
1=0
where by(z) € R for all x = zgig + ... + Tor_1i9r_; in the open domain U C A, satisfying
Conditions 1(D1, D2) in the Cayley-Dickson algebra A,, 1 < k < 2" —1,2 < r < 3. Prac-
tically the coefficient b; can depend only on =z, ...,z remaining z-differentiable in definite
z-representations due to Formulas 1(1 — 3) for each I.

More generally we can consider partial differential operators of the form
(4) A= 1By + ... + ¢ By, where ¢;B; f = c;(B; f), while each

m1+...+mj

4) B;j= > by, (2)0? 0z},

k:m1+...+mj_1+1

is an elliptic partial differential operator of the second order by variables
Ty totmy 415 Tmy+otmy; ¢ € A with Re(c;) > 0 for each 1 < j < [, Re(cj) < 0
for every j > I, with |¢;| =1 for each j = 1,...m, where 1 <7, 1 <[ <m, mg = 0.

We remind, that Dirac had used complexified bi-quaternions to solve Klein-Gordon’s hy-
perbolic partial differential equation with constant coefficients appearing in spin problems.
That is, he had decomposed d’Alembert’s operator 9%/0t> — V2 as the product i*cic over the
complexified bi-quaternion algebra He with the first order differential operator o.

If follow this approach one takes the complexified Cayley-Dickson algebra

(5) (A’r)c - Ar ©® Aria
where i is taken to be commuting with i; for each j = 0,...,2" — 1. Now the algebra (A,)c is
already not the division algebra even for 2 < r < 3, that is two non zero elements with zero
product occur in it. Then each element z = (z1,0) in (A,)c can be written in the 2 x 2 matrix

form (312?) and z = (0, 29) can be written in the form (0_2223), where entries zq, 20 € A, are
Cayley-Dickson numbers, i = (81 B)

Let each coefficient ¢; be written in the polar form

(6) c; = exp(in(;)
with 0 < |y <m j=1,...m, 1 <r 1<k(j) <k(j+1)for each j. Put p =p1 + ... + D,
where p; = 0 for either v; = 0 or k(j) = k(j — 1), while p; =1 for 7; # 0 and k(j) # k(j — 1).
Up to an isomorphism we take the Cayley-Dickson algebra A, with v > r satisfying inequalities
2071 < 2P(m + 1) < 2¥. Further we make the complexification (A,)c of the Cayley-Dickson
algebra A,,.
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Take two non-negative integer numbers 0 < r and v with »r < v € Z. We consider the
quotient algebra over the real field A,/ A, =: A,,. For r = v this algebra is isomorphic with

the real field R. For r < v the algebra A, , is isomorphic with @i:or_l Riyr;. The latter
algebra is produced by generators {ierg : § =27 —1; v = 0,1,...,v — r} and their finite
ordered products, that gives the generators set {iory : k =0,...,2""" — 1}, where generators
satisfying the numbering rule ¢jigs = %,49s for each 1 <'s, 7 = 0,1,...,2° — 1 can be taken
up to an isomorphism of the Cayley-Dickson algebra A,;;. Therefore, the algebra A, , is
isomorphic with the Cayley-Dickson algebra A,_,, since the doubling procedure can be started
from another suitable purely imaginary Cayley-Dickson numbers such as generators [1, 14].
But we consider in A, , its specific generators basis {ior;, : k=0,...,2°7" — 1}.

For each Cayley-Dickson numbers z,y € A, we define the real-valued scalar product

(RS) (z,y) = (z,y)r := Re(x7),
where Z = z* denotes the conjugated number, while Re(y) := (y + y*)/2 denotes the real part
of y.

The real scalar product (.,.), in A, we extend on the algebra A, , as

2v—"—1

(SP) <z >T,v: l‘g = Z xQ’I‘ij’I‘kZ‘Q’I‘ji;rk
J,k=0

foreach z,y € A, ,, v = Z?:OLI Torjlorj, Torj € R foreach j =0,...,2"7"—1. Particularly, one

gets < x,y >0,=< T,y >,. In the case of the complexified algebra (A, ,)c the scalar product

is:

(SPC) < (a,b),(c,d) >rp=< (a,b),(c,d) >= (< a,c>— < bd><a,d>+ <bc>),

for all (a,b) and (c,d) € (A..)c.

We recall the doubling procedure for the Cayley-Dickson algebra A,.; from A,.. Each
Cayley-Dickson number z € A, is written in the form z = £ + nl, where I> = -1, 1 ¢ A,,
&,n € A,.. The addition of such numbers is componentwise. The conjugate of any Cayley-
Dickson number z is given by the formula:

(M1) z* ==& —nl.

The multiplication in A, is defined by the following equation:

(M2) (€4 nl)(y + 1) = (§y — dn) + (6 + 7)1
foreach &, m, v, 0 € A, z:=&8+nle Ay, (i=7+0le A4,

Using Formula (M2) we get: (bigr)(iorid)* = (bigry)(b*i%) = b* = (bPigrg)ike, =
igrg(i2rkb?)* for each k > 1 and b € A,, since i = —i; for each j > 1. Another useful
identity is the following: (isizr;)i3y, = —(isiork)i3-; for each 0 < s < 2" — 1 and k # j with
k> 1and j > 1, since (isigrj)iark = (isi3ry,)izrj. Certainly also the equality (isio)d} + (isi;)ig = 0
holds for each j > 1 and 1 < s < 2" — 1, since i9 = 1. Therefore, Formulas (SP) and (4')
together with the latter identities imply:

2v=r 1

(6) < cBy,y>,= Z ¢ < Byarj, Yarj >rw
=0

for each ¢ € A, and a twice differentiable function y with values in A, ,.

Relative to the complex scalar product given by Equality (SPC) we decompose the operator
A (see (4,4") above) in the form

(7) A= (io)(io1) + Q = —o01 + Q,

where o, 07 and @) are partial differential operators of the first order, each complex number
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a € C is presented as a real 2 x 2 matrix. Particularly, i = (21 B), i* = (1 0) Each subalgebra

g, constructed from two generators i; # i, is associative, consequently, (wiy)(w*i}) = w? and
w((wig)ix) = —w? for each w = wy + wji; with wy, w; € R. Therefore, we can take
mi+...4+m;

(8) Z > ay,(2)(0f Dzari ) [w} iy, and

j=1 k=mi+...4+mj_1+1

mi+...+m;

9) o1f(z Z > ag(2)(Of 0zar ) [Withes]

J=1 k=mi+..4+m;_1+1

on the space of A,-valued (super-)differentiable functions f for r < 2 or real-valued functions
f for 3 < r of the A,, variable, since (iix)* = i*j; = (—1)> = 1 for each k > 1, where w} = ¢;
for all j and ai(x) = by(z) for each k and z, w; € A,, a(z) € R for all k and z, ixry € A,,,
Zork = Tg, 2 = Y Zorklork € Ay, 0f(z)/8z2rk = (df(z)/dz).igrg. For b = 0*f/9z%, and
1 = iy, and w € A, one has the identities: (b(wl))(w*1) = ((wb)l)(w*l) = —w(wb) = —w?b and
(B)w*)Hw = (((bw)))w = —(bw)w = —bw? in the considered here cases. The operator Q is
given by the equality:

m m1+...+mj1 m1+...+mj2

(10) Qf(2)= > > >

Ju.g2=1 ki=mi+...4+m; —1+1 ka=mi+...+mj,—1+1

A, (Z>{(8ak2 (Z)/a'z?rkl)(af/azTM) [wj2i;’"k2]}[w;1i;’"k1]v
since it = ixi in the complexified Cayley-Dickson algebra (A, )c for each k. The latter equality
(10) shows, that the differential operator @) is non-zero, when ay(z) are non-constant coeffi-
cients.

If use {9 = 1 and 9/0z also one can write out d’Alembert’s operator in our notation

(11) 82/82(2) - Z?:l 82/82]2 = (i*@/azo + 218/821 + i28/8zg + Zg@/@Zg)(ia/aZ() + 118/8,21 +
i28/8z2 + 138/823)

We recall, that the Cayley-Dickson algebra A, is power associative, that is zFz! = ¢+
for all natural numbers k& and [. But the complexified Cayley-Dickson algebra (A,)c is not
power associative for r > 3, since the Cayley-Dickson algebra A, is not associative for r > 3.
Therefore, we do not widely use the complexified Cayley-Dickson algebras, but we utilize the
Cayley-Dickson algebras A, over the real field R, when something other will not be specified.

With these decomposition of operators given by Equations (7—9, 11) the differential equation
(1) can be integrated with the help of the non-commutative line integration. We consider at
first the partial differential equation

(12) Tf=g
on an open domain U in A,, where

(13) Y = 3225010 02)[i535(2)],

f and g and ¢;(z ) are A,-valued functions on the domain U satisfying Conditions 1(D1, D2),
where g, 1; € C°(U, A,) for each j, particularly they may be A, (super-)differentiable func-
tions.

3. Line integration over Cayley-Dickson algebras. Take any phrase

(1) plz) = 22, {em, 2™ baem)
corresponding to the function f, where

{Cm7 Zm}Q(m) = {Clymlzml"'Ck,mkzmk}Q(m)’

q(m) is a vector indicating on an order of multiplications in the curled brackets, c;n, € A,
for each j, m = (mq,...,mi), k € N, 0 < m; € Z for each j, 2* = (...((22)2)...)2. We put
for convenience 2° = 1 in the considered phrases. Though the symbol 2° can be retained
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when necessary to specify a branch of the line integral over the Cayley-Dickson algebra A, (see
[22, 23, 24]). Using the shift z — (z —2z) we can consider such series with the center at a point
o0z instead of zero. Then the derivative of the phrase is:

(2) du(z)/dz =

Zm,l,j{clﬂmzml"'Cj—l’mj—lzmjilcj,mj((ij_l_l])zl)cj—i-l,mjﬂij“"'Ck,mkzmk }Q(m)’
where I denotes the unit operator, so that du/dz is the operator valued derivative function,
0<i<m;—1, j=1,.. k. From Equality (2) it follows that

(3) (du(ipz)/dx).1 = (du(z)/dz).i, = Ou(z)/0z, for z = i,z.

If v : [a,b] — A, is a function, then

Vv = supp [y(tj41) — (1))
is called the variation of v on the segment [a, b] C R, where the supremum is taken by all finite
partitions P of the segment [a,b], P = {t) = a < t; < ... <t, = b}, n € N. A continuous
function 7 : [a,b] — A, with the finite variation V’y < oo is called a rectifiable path. It is
convenient to take the unit segment [a,b] = [0, 1] using a suitable reparametrization.

We say that a function v on U is absolutely continuous on U if for each rectifiable path
v :[0,1] — A, for each ¢ > 0 and each 7 € [0,1] a positive number § > 0 exists so that

‘/Tmin(l,T—F(S)I/(,Y) < € and Vmax 07— 5) (7) < €.

We call a function v of bounded variation on U if for each rectifiable path v : [a,b] — U the
variation V2 v(y) < oo is finite. The family of all functions v : U — A, of bounded variation
will be denoted by V(U, A,).

The non-commutative line integral f7 f(2)dv(z) along a rectifiable path v : [0,1] — U C A4,
for a phrase p and a given function v of bounded variation is the limit by partitions P = {0 =
0 <71 < ... < T, = 1} with their diameter 6(P) = sup, |7;11 — 75| tending to zero of integral
sums

[, £(2)dv(z) = lmggpy 0 3, (d(2)/42) oy (1 (7300)) = V(7))
where (d/@(z)/dz).l = pu(z) for all z € U. The notation

f(2) = dg(z)/dz and j(z) = dr(z)/dz
is also used, where g(z) is a super-differentiable function to which the phrase k corresponds.

If f is a continuous function we fix for it a sequence f™(z) of super-differentiable functions
and their phrases p"(2) such that f™(z) converges to f(z) on each compact subset of the domain
U, where n € N. The non-commutative line integral has a continuous extension on the R-linear
space, left and right A, module, of continuous functions C°(U, A,) for a marked function v(z)
of bounded variation and a given rectifiable path ~:

f f(z _hm,Hoof f™(z)dv(z).

This means that the R homogeneous A, additive operator f (2) is defined for the continuous
function f in the sense of distributions:

(fiv7) = [, f(=
for each rectlflable path ’y in U and every function v(z) of bounded variation. Particularly,
v(z) =id(z) = z on U can also be taken.

If v and f are super-differentiable functions such that the derivative dv(z)/dz of v is the
invertible R homogeneous A, additive operator for each z € U, then a super-differentiable
solution of the differential equation

(dg(z)/dz).(dv(z)/dz) = dq((v(2))/d=
onU exists since dz/dv = (dv/dz)~'. Thatis, (dg(z)/dz).dv(z) = (dq(v(z))/dz).dz. Therefore,

f f(z = lims(p) —>OZ (dq(v)/dv)|v=vy(ry)) - [V (V(Tj41)) — v(¥(75))] = f p(y)dy,
where p(v ) ( q(v)/dv).1 (see also Theorems 2.11 and 2.13 in [27]).

A function v : U — A, is called piecewise continuous or differentiable or super-differentiable
on a domain U in the Cayley-Dickson algebra U, if a family of open or canonical closed subsets
U; of U exists so that each restriction v[y, is continuous or differentiable or super-differentiable
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respectively, where U = {J,; U; and U; N Uy, = 0U; N OU}, for each j # k, OU; = cl(U;) \ Int(U;),
cl(U;) denotes the closure of U; in A, and Int(U;) denotes the interior of U; in A,.

If f is a continuous function and v is a function of bounded variation for which the limits
lim, f* = f and v = lim,, v uniformly converge on each compact subset of U and phrases u"
of f™ and €” of V™ are specified, where f™ are super-differentiable functions and v™ are piecewise
super-differentiable functions on U so that lim, V' (v"(v) — v(y)) = 0 for each rectifiable path
v in U, then

[, F(2)dv(z) = lim, [, f(2)dv"(2) = lim, [, 9 W)y = [y p(9)dy,
where p(y) = limn p"(y). This means that under rather general conditions the line integral
of the type f f(2)dv(z) relative to the function v of bounded variation reduces to the usual
non-commutative hne integral f p(y)dy, where n = v(y).

Take the branch of the non-commutative line integral prescribed by the left algorithm (see
§2 in (23, 22|). The real algebra gy, formed from the generators i;, i; and i, is alternative.
Each rectifiable path can be presented as the limit of rectifiable paths consisting of joined
segments parallel to the straight lines ¢;R with respective j. We certainly have (i43,)i, = —i4
for each p > 1 and (i4i0)i9 = %, for each ¢ > 0.

For each j = 0,...,2" — 1 the R- linear projection operator m; : A, — Ri; exists due to
Formulas 1(1 — 3) so that 7;(2) = i;2; = 2;i;:

(P1) Wj(Zi (-%(Z@;) (2" =2) 2+ 3000 a(2i7)}) /2

for each j =

2"—1

(P2) mo(z) = (z+ (2" —2) =2+ > _in(zi;)})/2

where 2 <r € N.

4. Line anti-derivatives over Cayley-Dickson algebras.

Theorem. Let a first order partial differential operator T be given by Equation 2(13)
with real-valued continuous functions ¢¥;(z) € C°(U,A,) for each j such that v;(z) # 0 for
each z € U and each j = 0,...,n, where a domain U satisfies Conditions 1(D1,D2), oz is a
marked point inU, 1 <n<2 2<wv Then a line integral Iy : C°(U, A,) — C1U, A,),
Iy f(2) ==y f f(y)dy on C°(U, A,) exists so that

(1 )TIrf( ) = £(2)
for each z € U; this anti-derivative is R-linear (or H-left-linear when v = 2):

(2) Zrlaf(z) + bg(z)] = aZy f(z) + bIrg(2)
for any real constants a,b € R (or a,b € H for v = 2) and continuous functions f,g €
C°(U, A,). If there is a second anti-derivative Iy o f (2), then Iy f(2) — Iy 2 f(2) belongs to the
kernel ker() of the operator Y.

Proof. Using the multiplication on the marked doubling generator is» from the right we

have
k—

H
S
—_

1(09(2)/02)) ity (2) = 3 (09(2)/02) )iy sy (2),

ij

=0

where 4ji00 =: 4400 for each 0 < ;7 < 2 -1, 2 < . On the other hand,

Z?;& i;(0g(2)/0z)¥;(2) = [Zk 2 (0g(z )/0z;)*i59;(2)]*, since v;(2) is real for each j and 2.

Therefore, it is sufficient to con81der the first- order partial differential operator of the form:
(4) Yg(z) = > 7_,(09/0z;)is;(2)

on the R-linear space C1(U, A,) of all continuously differentiable functions g : U — A, by

real variables zj, ..., z9v_1, where 0 < n < 2¥ — 1. The space of super-differentiable functions is
everywhere dense in C°(U, A,) and the line integral has the continuous extension on C°(U, A,)

.

<.
Il
o
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along any continuous rectifiable path in U. Therefore, we take the space of super-differentiable
functions and then take the continuous extension of Zy on C°(U, A,) such that

liml I’rfl = Z’r hml fl = .,Z:Tf
for a sequence f! of super-differentiable functions uniformly converging to f on compact sub-
domains V' in U, where Zy f! is described below. Each function 9;(z) is continuous and each
function v; (z) is continuously differentiable on U (see also below), consequently, the integral
f fHy)dv;(y) is continuously differentiable by z = (1) (i.e. by each real variable z;) and
thelr sequence by [ uniformly converges on each compact sub-domain V' in U. Therefore, from
YZy f' = f! for each natural number [ € N we get

YZrf = YZy limy f' = limy YZy f* = lim; f! = f,
since the sequence {Zy f!(2)|y : 1} is fundamental in C*(V, A,) for each compact sub-domain
V in U and Iy f(2) € CY(U, A,).

Consider the left algorithm of a calculation of the line integral over the Cayley-Dickson
algebra A, (see §3 and references therein). We shall seek an anti-derivative in the form:

[ sy = Z( [ s,

and use the homotopy theorem in the domain U satisfying conditions 1(D1, D2) so that + is a
continuous rectifiable path joining points gz = v(0) and z = (1) (see [22, 23, 20]). Moreover,
a branch of the anti-derivative operator Zy f(z) can be chosen such that it can be expressed
with the help of a non-commutative line integral.

In view of Theorem 2.11 [27] and §3 we get

O fy)dvi(y))/0zi) = (f(2).[dv;(2)/dz])
(see also the chain rule over the Cayley-Dickson algebra in |22, 23, 20]).

Next we need some identities in the Cayley-Dickson algebra. Each Cayley-Dickson number
has the decomposition: z = 2zyig + ... + 29v_149v_1, Where zg, ..., 2001 € R, z € A,. To establish
the identity

(7) (ay)z" + (az)y” = a2Re(yz")
for any a,y,z € A, it is sufficient to prove it for any three basic generators of the Cayley-
Dickson algebra A, since the real field R is its center, while the multiplication in A, is
distributive (a 4+ y)z = az + yz and ((aa)(By))(vz*) = (afv)((ay)z*) for all a, 3,7 € R and
a,y,z € A,. If a =iy, then (7) is evident, since yz* + zy* = yz* + (yz*)* = 2Re(yz*). If either
y = 1ig, then (ay)z* + (az)y* = az* +az=a

2 Re (z)= a 2 Re (yz*). Analogously for z = ig. For three purely imaginary generators
ip, s, consider the minimal Cayley-Dickson algebra ® = algr(i,,is,ir) over the real field
generated by them. If it is associative, then it is isomorphic with either the complex field C or
the quaternion skew field H, so that (ay)z*+ (az)y* = a(yz*+zy*) = a2Re(yz*). If the algebra
® is isomorphic with the octonion algebra, then we use Formulas 2(M 1, M2) for either a,y € H
and z =1or a,z € H and y = 1. This gives (7) in all cases, since the algebra algg(i,,is) with
two basic generators ¢, and i, is always associative. Particularly, if y = i5 # z = 7, then the
result is zero.

Using (7) we get more generally, that

(8) ((ay)z")b" + ((az)y")b" = (a2Re(yz"))b" = (ab*)2Re(yz"),
consequently,

(9) ((ay)z")b" + ((az)y™)b" + ((by)z")a” + ((b2)y")a” = 4Re(ab") Re(yz")
for any Cayley-Dickson numbers a,b,y, z € A,,.

We shall take unknown functions v;(z) € A, as solutions of the system of linear partial

differential equations by real variables zj:
(10) Ov;(2)/0z; = 1/1(2z) for all 1 < j <n and z € U;
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(11) i (2)0vj(2)/ 0z = ¥;(2)0vk(2)/0z; for all 1 < j < k < n and z € U. Each function
vj(z) can be written as v;(z) = 212;81 v;1(2)i; with real-valued components v;,(z). Practically,
it is sufficient to consider non-zero v;;(z) for [ =1, ...,n. Thus using the generators i, ...., igv_1
the system can be written in the real form. This system has a non-trivial C* solution v;(z)
for each j (see §12.2 [29], particularly, in the class of super-differentiable functions for super-
differentiable ;(z) see also |7, 20]). In System (10, 11) functions 1); are real and coordinates
are real, consequently, a solution {v;(z): j} may be chosen real-valued.

From Identities 3(2,3) and (6,9 — 11) we infer that

12 3 [ / " F)duy(9))/02)i i (2) =

j#k>1

Y Al (2)-(005(2)/020))islizn(2) + [(F(2).(Ova(2)/02))ializs(2)} = 0 and

(13) 00 ) )/0)ili05() = nf (),

since Y7, 4545 = n and n is some fixed natural number for the domain U, f(2).x = f(2)z

for each real number x, (zi;)ij = z for each z € A,, where f is the operator corresponding
to dk(z)/dz, when f is in the z-representation p (see the notation in §3). Using Formulas
(4,5,12,13) we get Formula (1).

From the identity f7 apdz = a f7 pdz for a suitable branch of the line integral given by the
left algorithm and for each non-trivial phrase p and constants a,b € R for v > 3 or a,b € H
for v = 2 (see the rules in [22, 23, 7, 24|) we get Formula (2).

Since Y(Zy f(z) — Zr2f(z)) = 0, the difference (Zy f(z) — Zy 2f(2)) belongs to the kernel
ker(T) = Y1(0), where Y : C'(U, A,) — C°(U, A,).

4.1. Example. If ¢; depends only on z; for each j, there exists a C* differentiable change
of variables ( = ((z) so that 0¢(¢)/0¢; = (0g(z)/0z;);(z) for each differentiable function
g : U — A, by real variables z, ..., zo00o_1 on U, where

(1) (92k/0¢;) = djti(2)
for all j and k, ¢;; = 1, while §;, = 0 for each j # k. We take new functions ;g satisfying the
equation:

(2) j9(i52) = g(2) for each z € U and all j. We also put

(3) my(2) = i3
The multiplication of generators implies that i}(i;2) = 2 for all j = 0,...,2" — 1 and 2z € A,.
Therefore, from Equations (1,2) we deduce that

(4) (dg(2)/dz).i; = (d;g(n;)/dn;).[(dn;/dz).i;] = (d;g(n;)/dn;).1 = (drg () /dn)-[i%i5],
since (dn;/dz).i; = iji; = 1 for each j. Then we take the integral

) v [ swdy=n>" [ atmw)isdn )

since [ 59(n;(v))izdn;(y) = ([, 19(n;(y))dn; (y))i;-

Mention that generally Y(f(z)b) may be not equal to (T f(z))b for a constant b € A, \R and
a function f € CY(U, A,) with v > 2, since the Cayley-Dickson algebra is non-commutative.

This theorem can be generalized in the following manner encompassing wider class of partial
differential operators of the first order over Cayley-Dickson algebras.
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5. Theorem. Suppose that the first order partial differential operator Y is given by the
formula

(1) Tf =2 75-0(0f/02;)65(2),
where ¢j(z) # {0} for each z € U and ¢;(z) € C°(U, A,) for each j = 0,...,n such that
Re(¢;(2)¢5(2)) = 0 for each z € U and each 0 < j # k < n, where a domain U satisfies
Conditions 1(D1,D2), oz is a marked point in U, 1 <n < 2¥, 2 < wv. Suppose also that the
system {po(2), ..., on(2)} is for n = 2¥ — 1, or can be completed by Cayley-Dickson numbers
Ont1(2)s ooy Pav_1(2), such that (o) algr{®;(2), Px(2), d1(2)} is alternative for all 0 < j, k,1 <
2" — 1 and (B) algr{do(2), .. ,¢2v 1(2)} = A, for each z € U. Then a line integral Iy :
C'(U, A) = CH U, A, Ir f(2) = x [, f(y)dy on C°(U, A,) exists so that

(2) TZrf(2) = f(2)
for each z € U; this anti-derivative is R-linear (or H-left-linear when v = 2). If there is a
second anti-derivative Iy of(2), then Iy f(2) — Iy 2f(2) belongs to the kernel ker(Y) of the
operator 1.

Proof. We shall demonstrate that a branch of the anti-derivative operator Zy f(z) can be
chosen such that it can be expressed with the help of a non-commutative line integral from §3.
Using the technique of §4 we can consider the case of purely imaginary ¢,(z) for all z € U and
7 =0,...,n. We seek an anti-derivative operator in the form:

/f )dz = (n+1)~ Z/ 2)dv;(z

For finding unknown functions ¢ and v;, j = 0,...,n we impose the following conditions:

(4) (4(2).10vj(2)/0z;])¢;(2) = f(z) for each j =0,...,n and

(5) (4(2).[0v;(2)/02]) b1 (2) + (4(2).[0vi(2)/025])$5(2) = O for all 0 < j < k < n.

Asin §4 it is sufficient to consider the case of a locally analytic (super-differentiable) function
f using the limit transition. The function f is given on U and it defines the operator f on U,
i.e. its phrase [ is prescribed by the left algorithm for a given phrase p of f (see [22, 23, 7, 24]).
The operator ¢ means that a function g and a phrase k of g exist such that

4(z) =dg(2)/dz, §(z).1 =q(z) for each z € U.

In accordance with the conditions of this theorem the algebra algr(¢;(2), ¢r(2)) is alter-
native for all 0 < j <k <n and z € U. Therefore, due to Condition (5) Equations (4,5) take
the form:

(6) (dg(2)/dz).10v;(2)/02] = f(2)(1/¢j(2)) for each j =0, ...,n and

(7) ((dg(2)/dz).10v;(2)/02]) ¢ (2) + ((dg(2)/dz).[0vk(2)/02]) 95 (2) = O for all 0 < j < k <
n.

Solutions of this system exist (see [?, 20]). To be more concrete we impose additional
relations:

(8) Ovj(2)/0z; = ¢j(z) for all j =0,...,n and z € U,
consequently, the system of partial differential equations (6) becomes:

(9) (dg(2)/dz).9;(2) = f(2)(1/$](2)) for each j =0, ...,n
since  algr{®;(2), pr(2), ¢i(2)} is alternative for all 0 < 4 k! < 2 — 1 and
algr{po(2), ..., pav_1(2)} = A, for each z € U so that each Cayley-Dickson number £ € A, has
the decomposition £ = &ypo(2) + ... + Eav_1¢9v_1(2) with real coefficients &, ..., &1 € R.

Solving the latter system (9) one gets the function g(z) on U. Substituting the known
function g in System (6,7) one gets a C! solution vy(z2),...,v,(2) on U; or a super-differentiable
solution, when ¢;(z) for each j and f(z) are super-differentiable on U. Mention that the
function g depends R-linearly on f, since the system of equations which was considered above
is linear by f and g. Thus the operator ¢ depends R-linearly on f.
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Using Formulas (4,5) and 4(6,9) we deduce that

z

10) 3 10/ alwdy )05 =

i#k20 U0z

Z {[4(2).(9v;(2)/92)1¢1(2) + [4(2).(Ovi(2) /02;)195(2) } = 0 and

(1) Y000 [ al)dv))/025165(2) = D 1a(a)-00,(2)/03)165(2) = (n+ D (2),

since Re(¢;(2)¢;(2)) = 0 for each z € U and each 0 < j # k < n.

The rest of the proof is analogous to that of Theorem 4.

6. Corollary. Let suppositions of Theorem 5 be satisfied so that ¢;(z) = w(z;4;)¥;(2) for
each z € U, where w is an R-linear automorphism w : A, — A, mapping the standard base
of generators {i;} into a base of generators {w(z;i;) : j =0,...,2" — 1}, |w(z;4;)| = 1, where
Y;(2) satisfies conditions of theorem 4 for each j = 0,...,n. Then the first order differential
operator 5(1) has an anti-derivative Iy on C°(U,A,). Two anti-derivatives of Theorems 4 and
5 under these suppositions are related with the help of the automorphism w.

Proof. This follows immediately from Theorem 5. It remains to find a relation between
two anti-derivatives for two different partial differential operators:

(1) Tof = X0 o(0/02)63(2)
and T given by equation 2(13).

For each Cayley-Dickson number z = zgig+...4+ 29010901 € A, its image is w(y; z) = 20No+
21 N1+... 42201 Now_q, consequently, w(y; 2*) = [w(y; 2)|*, where z; € R, N; = N;(y) := w(y; i )
for each j. Particularly, Ny = i, since igi; = i; and w(y;i;) = w(y;iol;) = w(y;io)w(y; ;) for
each j and y. Therefore, w(y;z) = x for each real number x € R, since w(y;1) = 1 and
the mapping w(y;*) is R-linear by the second argument, 1 = 43. Therefore, applying the
automorphism w we deduce that

(2) Tuf(z) = w(z; Ts(2).
where w(z;s(z)) = f(z) for each z € U, that is s(2) = w;'(z; f(2)), wy'(2;%) denotes the
inverse automorphism by the second argument for z € U. Let us take the function f(z) =
1., fozg( )dy, where g(z) is a continuous function. Then Y, f(z) = g(z) for each z € U and
from (2) and 5(1,2) one gets

(3) wyl(z;9(2)) = Twy (21, f 9(y)dy) = TTf w5 (y; 9(y))dy, consequently, applying
T f and w(z; *) one also gets

v, [L9Wdy = w(zr [, wy (v 9(y)dy
for each continuous function g on U

6.1. Remark. If in Theorem 5 drop Conditions (a, 3), then partial differential equations
5(4,5) will be hard to resolve.

To specify the anti-derivative operator Zy in Theorems 4 and 5 more concretely it is possible
to choose a family of rectifiable continuous paths (or C! paths) {y* : 2 € U} such that
7%(0) = 9z and 7*(1) = 2z and lim, ., sup, o 1 [7*(7) — 7¥(7)| = 0.

Another more rigorous procedure is in providing a foliation of a domain U by locally rectifi-
able paths {v*: « € A}, where A is a set. We take for definiteness a canonical closed domain
U in A, satisfying Conditions 1(D1, D2).

A path v :< a,b >— U is called locally rectifiable, if it is rectifiable on each compact
segment [c,e] C< a,b >, where < a,b >= [a,b] :={t e R: a <t <b}or < a,b>=a,b) =
{teR: a<t<blor<ab>=(a,b]:={tceR: a<t<b}or<ab>=(a,b):={te
R: a<t<b}.



152 Hypercomplex Numbers in Geometry and Physics, 2 (16), Vol 8, 2011

A domain U is called foliated by rectifiable paths {y* : a € A} if v :< a4, by >— U for
each a and it satisfies the following three conditions:

(F1) Uper (< @q, b >) = U and

(F2) ¥*(< @a, b >) NP (< ag,bg >) = 0 for each a # 3 € A.
Moreover, if the boundary OU = ¢l(U) \ Int(U) of the domain U is non-void then

(£3) OU = (Uaea, 7*(@a)) U (Ugea, 77 (b9)).
where Ay = {a € A :< ay,bg >= [a0,b5 >}, Ao = {a € A :< a,,bg >=< a,,bs]}. For the
canonical closed subset U we have cl(U) = U = cl(Int(U)), where cl(U) denotes the closure
of U in A, and Int(U) denotes the interior of U in A,. For convenience one can choose C*
foliation, i.e. each v is of class C'. When U is with non-void boundary we choose a foliation
family such that |J,c, 7(@a) = OUi, where a set 9U; is open in the boundary OU and so that
wlgy, would be a sufficient initial condition to characterize a unique branch of an anti-derivative
w = ITf

When 0U # () a marked point gz can be chosen on the boundary QU and each point on the
boundary can be joined by a rectifiable path in U with ¢z. This foliation is justified by the
formula:

[, f(z)dv(z) = [ f(z)dv(z) + [ f(2)dv(z)
for each continuous function f on U and each function v of bounded variation on U, for any
rectifiable paths 4! : [ay,0,] — U and +? : [ag,bs] — U so that a = a; < by = ay < by = b
while 7 : [a,b] — U is given piecewise as y(t) = v!(¢) for each ¢ € [ay,b;] and y(t) = ¥2(t) for
each t € [ap, by]. Thus instead of [° f(2)dv(2), i.e. [ f(2)dv(z) with y(a) = ¢z and y(b) = 2,
we take fv“l[c : f(2)dv(z) for any [c,e] C< an,ba >. If lim, 4, e, fv“hc .
we denote it by fv“ f(2)dv(z) and take instead of the family {fval[c ! f(2)dv(z) : [e,e] C<
aa,bg >}. Therefore, a branch of the anti-derivation operator pfescribed by the family
{([a 225 a)dvi(y)) =« € Ay or {([a  22;9W)dv;(y)) = o € A; [e,e] C< aa,bg >} is
defined up to a function defined on the boundary 0U when it is non-void or by convergence to
a definite limit at infinity along paths, when U is unbounded in certain directions Rn in the
Cayley-Dickson algebra A,, n € A,.

f(2)dv(z) converges

Clearly, boundary conditions are necessary for specifying a concrete solution or a branch
of an anti-derivative, since in the definition of the line integral f7 f(2)dv(z) the operator f is

restricted to the condition f (2).1 = f(z) for each z € U so it is defined up to a function of
2V — 1 independent real variables (see also §3). In accordance with the formulas of §§4 and 5
the anti-derivation operators are defined up to functions of 2¥ — 1 real variables after a suitable
change of variables. For example, > 7 (0g(2)/0z;)i; = 0 for g(2) = nzo + 218} + ... + 24i5, or
> 0(0q(2)/02;)i5 = 0 on the plane 2 — 2, — ... — z, = 0 for q(2) = 25 + 2{i] + ... + 22i%. These
functions can be written in the z-representation due to Formulas 1(1 — 3).

For concrete domains some concrete boundary conditions can be chosen (see also below).
Mention, that a minimal necessary correct boundary conditions may be not on the entire
boundary, but on its part. Otherwise, they may be on some hyper-surface S in U of real
dimension 2 — 1 depending on the domain, for example, for an infinite cylinder C in both
directions along its axis with S being the intersection of C with a hyper-plane perpendicular to
its axis.

Mention that the homotopy theorem for domains satisfying Conditions 1(D1, D2) is accom-
plished for super-differentiable functions on U (see [23, 22|), but for a continuous function f
on U it may certainly be not true. This is caused by several reasons. If a family of locally
analytic functions f™ converges to f uniformly on a compact sub-domain V' in U a radius r
of local convergence of a power series of f™ in a neighborhood of a point x € V may tend to
zero with n tending to the infinity. Phrases p™ in the z-representation corresponding to f"
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may be inconsistent on the intersection V, NV, of open neighborhoods V, and V), of different
points z,y € V, when V, NV, # 0 . Functions f™ or their phrases u" may be with branching
points in the domain U. That is functions f" accomplishing the approximation of f may have
several branches on U and a slit of U by a 2 — 1 dimensional sub-manifold S™ over R may
be necessary to specify branches of f™. But the family S™ with different n may be inconsistent
and S™ may depend of n.

For super-differentiable functions f™ operator valued functions f" are also super-
differentiable. If f is only continuous non super-differentiable function on the domain U,
then the operator valued function f is defined only in the sense of distributions | f v v) =
f f(z ) for any rectifiable path v in U and each function v of bounded variation on U.
Moreover the homotopy theorem may be non true for generalized functions (see below).

7. Particular case. We consider a phrase v which can be presented as

(P3) v = p(u) with a right A,-linear (super)-differentiable phrase p and a projection op-
erator p being an R-linear combination of the projection operators 7;. Particularly, p may be
the identity operator or one of the ;.

For any z-differentiable phrase ¢ and constants a,b € A, we have f Y(2)b)dz =

f ¥(2)dz)b) and f a(2))bdz = f ¥(2)dz))b. Then in view of the homotopy theorem
[23 22] Equatlon 3(2) 1mphes for any such v= ( ) that

1) [ Tz = pl [ )/ de) {301 /d2) )55} =

v

Y

= p((za(8))) — p(u(za(@))) = v(za(B)) — v(za(cx)),
since each 1;(z) is the A,-valued function, where

(2) 24(a) = JZ a(t)dt + dule', ),

(3) a(z) := Zjvzgl ¥;(2),7(0) = a, v(1) = . In particular, if each function 1); is identically
constant, then

9) [, 3,12 /d2).i5 )05 (2)d2] = 46 — ta — 16, (),
where t = . 1.

For non right 4,-linear z-differentiable phrase p Formulas (1 —3) may already be not valid.
Certainly common line integrals of z-differentiable phrases (functions) can be calculated by the
general algorithms (see [23, 22, 24, 27]). A result of the line integration along a rectifiable path
v in the domain U we denote as the composition of two functions

S [ )i 2z = | av(e)/de).de

o[ (/1. 3505 (2)d=) = o [ )/ faz) )

= A(£(0)) = AE(@),

where A and & are two z-differentiable functions on their domains, v(0) = «, y(1) = . Fre-
quently one can use a Cayley-Dickson subalgebra G isomorphic with either the quaternion skew
field H or the octonion algebra O so that (1) — v(0) € G and use the homotopy theorem.
On the other hand, each rectifiable continuous path v in the domain U in the Cayley-Dickson
algebra A, can be presented as a uniform limit of rectifiable continuous paths ™ in U composed
of segments parallel to axes Rig, k =0, ...,2" — 1. Therefore,

/f dz = lim f(2)dz

n—o0
An
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for any continuous function on U (see |23, 22|). The functions A and £ depend on 1 so in more
details we denote them by A = Ay, and £ = &.
Thus the general integral of Equation 2(12) is:

(6)  Ay(Ey(x)) = —¢w(Im &y(x)) +/ 91(2)dz + g, (2'),

where I'm(z) := z — Re(z), Re(z) := (z + z*)/2. The term ¢ (Im(§)) takes into account the
non-commutativity for 2 < v and non-associativity for 3 < v of the Cayley-Dickson algebra A,
since its center is the real field R = Z(A,) for any v > 2. There is the bijective correspondence
between Ay (&) and f which will be specified below.

8. Transformation of the first order partial differential operator over the Cayley-
Dickson algebras.

To simplify the operator T and its particular variant ¢ one can use a change of variables.
We consider this operator in the form:

(1) Tf = 32751 (0F/0z;)m; (),
with either n;(2) = i51;(2) or n;(2) = ¢j(2) € A, for each j (see Theorems 4 and 5 above).
For it we seek the change of variables z = z(z) so that

(2) S5 O/ 02w (2) = i,
where t; € A, is a constant for each [, for n; not being identically zero, while w; is chosen
arbitrarily also z-differentiable so that the resulting matrix €2 will not be degenerate, i.e. its
rows are real-independent as vectors (see below). Certainly (0z;/0z;) € R are real partial
derivatives, since x; and z; are real coordinates. We suppose that the functions 7;(z) are
linearly independent over the real field for each z in the domain U. Using the standard basis
of generators {i; : j =0,...,2" — 1} of the Cayley-Dickson algebra A, and the decompositions
wj = >, wirly and t; = Y, t; i, with real elements w;j and t;; for all j and k we rewrite
System (2) in the matrix form:

(3) (011/02))15=0,..2012 =T,
where Q = (w;x)jk=0,..20-1, T = (tj)jk=o,. 20—1. Suppose that the functions w;(z) are arranged
into the family {w; : j = 0,...,2Y — 1} as above and are such that the matrix (z) is non-
degenerate for all z in the domain U. For example, this is always the case, when |w;(2)| > 0
and Relw;(z)wi(2)*] = 0 for each j # k for each z € U. Here particularly w;(z) = n;(z) can
also be taken for all 7 =0,...,2" — 1 and z € U. Therefore, Equality (3) becomes equivalent to

(4) (0xl/8zj)l,jzo,m72u_1 =TQ L
We take the real matrix T" of the same rank as the real matrix (wjx)jx—o,. 20—1. Thus (4) is
the linear system of partial differential equations of the first order over the real field. It can be
solved by the standard methods [29].

We remind how each linear partial differential equation (3) or (4) can be resolved. Write
it in the form:

(5) X1(x1, ooy Ty w)Ou/0z1 + ... + Xy (21, ooy Ty w)Ou )02y, = R(21, ..y Ty 10)
with u and xq, ..., x, here instead of z; and 2, ..., 2901 in (3) seeking simultaneously suitable
R corresponding to t;x. A function u = u(zy,...,x,) defined and continuous with its partial
derivatives Ou/0zy, ...,0u/0z, in some domain V of variables xy,...,x, in R™ making (5) the
identity is called a solution of this linear equation. If R = 0 identically, then the equation is
called homogeneous. A solution u = const of the homogeneous equation

(6) X1(z1, ..., xp, w)0u/0z1 + ... + Xy (21, ...y Ty, w)Ou /02, = 0
is called trivial. Then one composes the equations:

(7) dzq/ Xy (x) = dzo/ Xo(2) = ... = dx, /X, (),
where © = (x1,...,2,). This system is called the system of ordinary differential equations in
the symmetric form corresponding to the homogeneous linear equation in partial derivatives.
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It is supposed that the coefficients X7, ..., X,, are defined and continuous together with their
first order partial derivatives by x1, ..., z, and that X, ..., X, are not simultaneously zero in a
neighborhood of some point z°. Such point 20 is called non singular. For example when the
function X, is non-zero System (7) can be written as:

(8) Cll'l/diEn :Xl/Xn,...,de‘n_l/dZBn = n—l/Xn-

This system satisfies conditions of the theorem about an existence of integrals of the normal
system. A system of n differential equations

9) dyx/dx = fr(z,y1, ..y Un), K =1,...,n,
is called normal of the n-th order. It is called linear if all functions f;, depend linearly on
Y1, -, Yn. Any family of functions y, ..., y, satisfying (9) in some interval (a,b) is called its so-
lution. A function g(x,yi, ..., y,) different from a constant identically and differentiable in a do-
main D and such that its partial derivatives dg/0yi,...,0/y, are not simultaneously zero in D is
called an integral of System (9) in D if the complete differential dg = (0g/0z)dz+(0g/0y1)dy: +
... +(99/0y,)dy, becomes identically zero, when the differentials dy; are substituted on their
values from (9), that is (0g(z,y)/0z) + (0g/0y1) f1(z,y) + ... + (Og(z,v)/0yn) fu(z,y) = 0 for
each (z,y) € D, where y = (y1, ..., yn). The equality g(z,y) = const is called the first integral
of System (9).

It is supposed that each function fi(z,y) is continuous on D and satisfies the Lipschitz
conditions by variables yi, ..., yn:

(L) |f/€(xvy) - fk(x’ Z)| < Ck|y - Z|
for all (z,y) and (z,2) € D, where C}, are constants. Then System (9) has exactly n indepen-
dent integrals in some neighborhood D° of a marked point (z° y°) in D, when the Jacobian
(g1, -, Gn) /01, ..., Yn) is not zero on DO (see Section 5.3.3 [29]).

In accordance with Theorem 12.1,2 [29] each integral of System (7) is a non-trivial solution
of Equation (6) and vice versa each non-trivial solution of Equation (6) is an integral of (7). If
91(x1, ey )y, Gn1(T1, ..., x,) are independent integrals of (7), then the function

(10) U= (I)(gla ---7gn—1)7
where ® is an arbitrary function continuously differentiable by gy, ..., g,_1, is the solution of
(6). Formula (10) is called the general solution of Equation (6).

To the non-homogeneous Equation (5) the system
is posed. System (11) gives n independent integrals g, ..., g, and the general solution

(12) ®(g1(z1y ooy Ty Uy ooy G (T1, ooy Ty ) = 0
of (5), where ® is any continuously differentiable function by gy, ..., g,. If the latter equation is
possible to resolve relative to u this gives the solution of (5) in the explicit form u = u(xy, ..., z,)
which generally depends on ® and gy, ..., g,. Therefore, Formula (12) for different R and u and
X corresponding to ¢, and x; and w;, respectively can be satisfied in (3) or (4), the variables
x; are used in (12) instead of z; in (3,4), where k =0,...,2" — 1.

Thus after the change of the variables the operator T takes the form:

(13) Tf = 32551 (f /0w )t;
with constants ¢; € A,. Undoubtedly, also the operator T with j =0,...,n, 27! <n <2"—1
instead of 2¥ — 1 can also be reduced to the form Yf = » 7 (0f/0x;)t;, when the rank is
rank(w;x) = n+ 1 in a basis of generators Ny, ..., N,,, where Np,...,Nov_; is a generator basis
of the Cayley-Dickson algebra A,. Particularly, if the rank is rank(w;;) = m < 2" and T has
the unit upper left m x m block and zeros outside it, then ¢; = N; for each 7 =0, ...,m — 1 can
be chosen.

One can mention that direct algorithms of Theorems 4 and 5 may be simpler for finding
the anti-derivative operator Zy, than this preliminary transformation of the partial differential
operator Y to the standard form (13).
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9. Definitions.

Let X and Y be two R linear normed spaces which are also left and right A, modules, where
1 <r. Let Y be complete relative to its norm. We put X®* := X ®g ... ®g X is the k times
ordered tensor product over R of X. By L, x(X®" Y) we denote a family of all continuous k
times R poly-linear and A, additive operators from X®* into Y. Then L,x(X®*Y) is also a
normed R linear and left and right 4, module complete relative to its norm. In particular,
L,1(X,Y) is denoted also by L,(X,Y).

We present X as the direct sum X = Xyig® ... Xor_1i9-_1, where Xj,...,Xor_1 are pairwise
isomorphic real normed spaces. If A € L, (X,Y) and A(zb) = (Az)b or A(bx) = b(Ax) for each
x € Xg and b € A,, then an operator A we call right or left A,-linear respectively.

An R linear space of left (or right) & times A, poly-linear operators is denoted by
Lip(X®5Y) (or L, (X®* Y) respectively).

As usually a support of a function g : S — A, on a topological space S is by the definition
supp(g) = cl{t € S: g(t) # 0}, where the closure is taken in S.

We consider a space of test function D := D(R",Y") consisting of all infinite differentiable
functions f : R — Y on R"™ with compact supports. A sequence of functions f, € D
tends to zero, if all f,, are zero outside some compact subset K in the Euclidean space R",
while on it for each k = 0,1,2, ... the sequence { f,S’“) : n € N} converges to zero uniformly.
Here as usually f*)(¢) denotes the k-th derivative of f, which is a k times R poly-linear
symmetric operator from (R")®* to Y, that is f®(¢).(hy, ..., hx) = fE(1).(ho(1), -+, o) €Y
for each hq,...,h;;, € R™ and every transposition o : {1,....,k} — {1,...,k}, o is an element
of the symmetric group S, t € R". For convenience one puts f© = f. In particular,
FE@).(e)ys - €5,) = OFf(t)/0t;,...0t;, for all 1 < jy, ..., 5 < n, where e; = (0, ...,0,1,0,...,0) €
R™ with 1 on the j-th place.

Such convergence in D defines closed subsets in this space D, their complements by the
definition are open, that gives the topology on D. The space D is R linear and right and left
A, module.

By a generalized function of class D' := [D(R",Y)] is called a continuous R-linear A,-
additive function g : D — A,. The set of all such functionals is denoted by D’. That is,
g is continuous, if for each sequence f, € D, converging to zero, a sequence of numbers
9(fn) =: 19, fu) € A, converges to zero for n tending to the infinity.

A generalized function g is zero on an open subset V in R" if [g, f) = 0 for each f € D
equal to zero outside V. By a support of a generalized function g is called the family, denoted
by supp(g), of all points ¢ € R™ such that in each neighborhood of each point t € supp(g) the
functional g is different from zero. The addition of generalized functions g, h is given by the
formula:

(1) lg+h, f) =19, f) + [ [).

The multiplication g € D’ on an infinite differentiable function w is given by the equality:

(2) [gw, f) = g, wf) either for w : R" — A, and each test function f € D with a real image
f(R") C R, where R is embedded into Y; or w: R*— R and f: R" —» Y.

A generalized function ¢’ prescribed by the equation:

(3) [¢',f) == —[g,[f") is called a derivative ¢’ of a generalized function g, where f' €
D(R",L,(R", Y)). ¢ € [D(R", L,(R",Y))]"

Another space B := B(R",Y’) of test functions consists of all infinite differentiable functions
f + R" — Y such that the limit limp o [t|™fY)(t) = 0 exists for each m = 0,1,2, ...,
j =0,1,2 ... A sequence f, € B is called converging to zero, if the sequence |t|™ féj)(t)
converges to zero uniformly on R\ B(R"™, 0, R) for each m,j = 0,1,2,... and each 0 < R < 400,
where B(Z,z,R) :={y € Z : p(y,z) < R} denotes a ball with center at z of radius R in a
metric space Z with a metric p. The family of all R-linear and .A,-additive functionals on B is
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denoted by B'.

In particular we can take X = A% Y = A% with 1 < a, 3 € Z. Analogously spaces D(U,Y),
(DU, Y)], B(U,Y) and [B(U,Y)| are defined for domains U in R™. For definiteness we write
B(UY)={flv: feBR"Y)}and D(U,Y) = {flv: f€DR"Y)}.

A function g : U — A, is called locally integrable, if it is absolutely integrable on each
bounded A measurable sub-domain V in U, i.e.

Ji19(2)[A(dz) < oo, where X denotes the Lebesgue measure on U.

A generalized function f is called regular if locally integrable functions ;. f*,,f*: U — A,
exist such that

[frw) = [ A3 ki (2w (2);£2(2) o AMd2),
for each test function w € B(U,Y) or w € D(U,Y) correspondingly, where w = (yw, ..., gw),
ww(z) € A, for each z € U and all k, ¢(3) is a vector indicating on an order of the multiplication
in the curled brackets and it may depend on the indices j,l =1,...,a, k=1,...,3.

We supply the space B(R",Y) with the countable family of semi-norms

(4) Pas(f) i= SUpyeqe [(1+ [2])40° ()
inducing its topology, where k = 0,1,2,...; & = (a1, ..., ), 0 < o; € Z. On this space we take
the space B/(R™,Y), of all Y valued continuous generalized functions (functionals) of the form

(5) f = foto+...4 fav_149v_1 and g = goio+...+gav_1i2v_1, where f; and g; € B'(R™,Y), with
restrictions on B(R™, R) being real- or C; = R @ iR~ valued generalized functions fy, ..., fov_1,
G0, -y gov—1 respectively. Let ¢ = ¢oio + ... + ¢ov_1020_1 With ¢y, ..., p2v_1 € B(R™,R), then

6) [f,0) = quj];lo[ fjs ®r)ikij. Let their convolution be defined in accordance with the
formula:

(7) [f % 9,0) = 35 o5 * grs 9)iy )i
for each ¢ € B(R™,Y'). Particularly,

8) (fxg)(z) = f(z —y)xg(y) = f(y) xg9(x — y)
for all ,y € R™ due to (7), since the latter equality is satisfied for each pair f; and g.

10. The decomposition theorem of partial differential operators over the Cayley-
Dickson algebras.

We consider a partial differential operator of order u:

(1) Af(z) =) an()0"f(x),
jol<u
where 9%f = 0l f(x)/0z(°...02%", = x¢ip + ...Tnin, ¥; € R for each j, 1 < n = 2" — 1,
a = (ag,...,an), |a| = ag+...+ay, 0 < a; € Z. By the definition this means that the principal
symbol
(2) Ag:= ) a(z)d”

laf=u

has a so that || = uw and a,(z) € A, is not identically zero on a domain U in A,. As
usually C*(U, A,) denotes the space of k times continuously differentiable functions by all real
variables xg,...,z, on U with values in A,, while the z-differentiability corresponds to the
super-differentiability by the Cayley-Dickson variable zx.

Speaking about locally constant or locally differentiable coefficients we shall undermine
that a domain U is the union of sub-domains U’ satisfying conditions 15(D1,i — vii) and
UiNU* = 0U’ NOU* for each j # k. All coefficients a, are either constant or differentiable of
the same class on each Int(U’) with the continuous extensions on U?. More generally it is up
to a C" or z-differentiable diffeomorphism of U respectively.

If an operator A is of the odd order u = 2s — 1, then an operator E of the even order
u+ 1 = 2s by variables (¢, ) exists so that
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(3) Eg(t,z)|t=0 = Ag(0,z) for any g € C**([c,d] x U, A,), where t € [c,d] CR, ¢ <0 < d,
for example, Fg(t,z) = 0(tAg(t,x))/0t.

Therefore, it remains the case of the operator A of the even order u = 2s. Take z =
20%0 + ... + 2p_1i0_1 € A,, z; € R. Operators depending on a less set z,, ..., 2, of variables
can be considered as restrictions of operators by all variables on spaces of functions constant
by variables z; with s & {l1,...,1,,}.

Theorem. Let A = A, be a partial differential operator of an even order u = 2s with
locally constant or variable (locally) C*' or x-differentiable on U coefficients a,(z) € A, such
that it has the form

(4) Af = cy1(Bunrf) + ... + cur(Burf), where each

(5) Bu,p = Bu,p,O + Qufl,p
is a partial differential operator by variables Tp,, 1. 4my, 1415 Tmy 1 +..4ma, aNd of the order
u, My =0, cyi(x) € A, for each k, its principal part

(6) Bupo = Z|a| s 8p20(2)0%
is elliptic with real coefficients a,oq(z) > 0, either 0 <r <3 and f € C*(U, A,), orr >4 and
f e C*"(U,R). Then three partial differential operators Y* and Y% and Q) of orders s and p with
p < u—1 with locally constant or variable (locally) C* or z-differentiable correspondingly on U
coefficients with values in A, exist and coefficients of the third operator Q may be generalized
functions, when coefficients of A are discontinuous locally constant or C* discontinuous on
the entire U or when s’ < s, r <w, such that

(7) Af = T(T3f) + Q.

Proof. Certainly we have ordQ,_1, < u—1, ord(A—Ay) < u—1. We choose the following
operators:

(8) Tf@) =) > (0 f (@)t} ] and

T |a|<s, ag=0Vg<(my,1+...+My,p—1+1) and g>(muy,1+...+mu,p)

k

(9) Tif(x) =) > (0% f () [wpty,al;

P=L ||<s, ag=0Yg<(mu1+-..+mup_1+1) AN g>(mu1+...4mup)

where w} = ¢, for all p and 92 (z) = —ay24(z) for each p and z, w, € A,, Ypa(z) € Ay
and ¢, ,(x) is purely imaginary for a,s,(z) > 0 for all @ and x, Re(wp,Im(¢,,)) = 0 for
all p and a, Im(z) = (z — 2*)/2, v > r. Here A,, = A,/ A, is the real quotient algebra.
The algebra A,, has the generators ¢or, j = 0,...,2°7" — 1. A natural number v so that
27T —1 > Zﬁzl > a0 (mpzq_l) is sufficient, where (7:;) = m!/(q!(m —q)!) denotes the binomial
coefficient, (m+qq_1) is the number of different solutions of the equation oy + ... + ,,, = ¢ in
non-negative integers a;. We have either 9*™°f € A, for 0 <r <3 or 9*f € R for r > 4.
Therefore, we can take 1, .(x) € iR, where ¢ = q(p,a) > 1, q(p',a') # q(p,a) when
(p,a) # (p', ).

Thus Decomposition (7) is valid due to the following. For b = 9°*# f(z) and 1 = iy, and
w € A, one has the identities:

(10) (b(wl))(w*1) = ((wb)1)(w*l) = —w(wb) = —w?b and

(11) (((BHw*)Nw = (((bw)))w = —(bw)w = —bw? in the considered here cases, since A,
is alternative for » < 3 while R is the center of the Cayley-Dickson algebra (see Formulas
2(M1, M2)).

This decomposition of the operator A, is generally up to a partial differential operator of
order not greater, than (2s — 1):

(12) Qf(z) = Zp ) CupQu-1,p+
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> alzspizs<acst ol Lzo. (57) (fj)](aa+ﬁ_7_€f($))
[(07na(2)) (003 (2)],
where operators T* and T{ are already written in accordance with the general form

(13) T f(z) = Zlalés(ﬁaf(x)>77a(x)§

(14) 11/ (@) = 30191, (07 f (@) ()

The coefficients of ) may be generalized functions, since they are calculated with the
participation of partial derivatives of the coefficients of the operator Y37, but the coefficients
of the operators Y* and Y% may be discontinuous locally constant or C*" discontinuous on the
entire U or s’ < s when for the initial operator A they are such.

When A in (3) is with constant coefficients, then the coefficients w, and 1, , for Y™ and
T can also be chosen constant and ) — Z’;Zl CupQu-1p = 0.

11. Corollary. Let suppositions of Theorem 10 be satisfied. Then a change of variables
locally affine or variable C' or z-differentiable on U correspondingly on U exists so that the
principal part Az of Ay becomes with constant coefficients, when ay 2, > 0 for each p, a and
x.

12. Corollary. If two operators E = Ass and A = Ags_y are related by Equation 10(3),
and As, is presented in accordance with Formulas 10(4,5), then three operators Y, Y571 and
Q of orders s, s — 1 and 2s — 2 exist so that

(1) Agg 1 =TT 4+ Q.

Proof. It remains to verify that ord(Q) < 2s — 2 in the case of Ay, 1, where @ =
{0(tAgs_1)/0t — T°Y5}|i—o. Indeed, the form A(E) corresponding to E is of degree 2s — 1
by z and each addendum of degree 2s in it is of degree not less than 1 by ¢, consequently, the
product of forms A(Y)A(Y5) corresponding to T* and Y¥ is also of degree 2s —1 by = and each
addendum of degree 2s in it is of degree not less than 1 by ¢. But the principal parts of A\(E)
and A(T5)A(T) coincide identically by variables (¢, x), hence ord({E — T*Y5}|;—0) < 25 — 2.
Let a(t,z) and h(t,z) be coefficients from Y% and Y*. Using the identities

a(t,x)0,0"tg(z) = a(t,x)0"g(z) and

h(t, 2)0°0a(t, 2)0"g(x)] = h(t, 2)0°[(Oeal(t, ©)) 0" g(x)]
for any functions g(z) € C*~! and a(t,z) € C*,

ord[(h(t,z)0"), (a(t,z)0")]|i=0 < 25 — 2,
where 0; = 0/0t, |8 < s—1, |v| < s, [A,B] := AB — BA denotes the commutator of two
operators, we reduce (Y*Y5 + Q1)|:=o from Formula 10(7) to the form prescribes by equation
(1).

13. We consider operators of the form:

(1) (Y + BL) f(2) = {20z (07 F (2)na(2)} + f(2)B(2),
with 1,(2) € Ay, @ = (g, ..., a2r—1), 0 < a; € N for each j, || = g + ... + aor_1, B f(2) ==
£(2)8.

0°f(2) = O f(2)/025°...0292 1", 2 < r < v < o0, B(2) € Ay, 20,2001 € R, 2 =
Z()i() + ...+ Zgr_lizr_l.

Proposition. The operator (T* + 3)*(T* + B) is elliptic on the space C**(R?", A,), where
(Y* + B)* denotes the adjoint operator (i.e. with adjoint coefficients).

Proof. In view of Formulas (1) and 4(8) the form corresponding to the principal symbol of
the operator (Y% + 3)*(T* + 3) is with real coefficients, of degree 2k and non-negative definite,
consequently, the operator (T* + 3)*(T* + 3) is elliptic.

14. Example. Let T* be the adjoint operator defined on differentiable A, valued functions
f given by the formula:

n

(1) (C+B)f =D _(0f(2)/02)8;(2)] + f(2)B(2)"

J=0
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Thus we can consider the operator

(2) Zp:= (Y +B)(T + B)".
From Proposition (13) we have that the operator Z5 is elliptic as classified by its principal

symbol with real coefficients. Put = = Zj. In the x coordinates from §8 it has the simpler
form:

(8) (Y+B)(C+8)f =D (0 f/ox))lts’

+2 > (9°f/0w;0ni) Reltiti) +2 3 (0F /0w;)Re(t;0) + {fI8" + D_[F(05"/0z;)]t5},

0<j<k<n

because the coefficients ¢; are already constant. After a change of variables reducing the
corresponding quadratic form to the sum of squares y ejs? we get the formula:

(4) TY°f = Y782 /052)e;.
where s; e R, e =1for1 <j<pande = —-1foreachp<j<m m<2,1<p<m
depending on the signature (p, m — p).

Generally (see Formula 5(1)) we have

(5) A= (Y +B)(YT1+B)f(2) = Bof(2) + Qf (2), where
(6) Bof(2) = 32;[(0£(2)/02;021)$;(2)"165(2) + [£(2) 8 (2)]B(2) and

(1) Qf(2) = 32,l0f(2)/02)(005(2)" 021)ldi(2) + 32;[(0f(2)/02)¢5(2)"18(2) +
>_klf(2)(08(2)/021)| 97 (2),

(8) (Y1 +8Y)f(2) = [22;(0f(2)/02;)¢;(2)] + f(2)B' ().

The latter equations show that coefficients of the operator  may be generalized functions,
when ¢;(z) for some j or §'(z) are locally C° or C° or locally C* functions, while ¢(z) for
each k and (3(z) are locally C° or C° functions on U. We consider this in more details in the
next section.

15. Partial differential operators with generalized coefficients.

Let an operator @) be given by Formula 14(7) on a domain U. Initially it is considered as
a domain in the Cayley-Dickson algebra A,. But in the case when ) and f depend on smaller
number of real coordinates zy, ..., z,_1 we can take the real shadow of U and its sub-domain V
of variables (z, ..., z,—1), where z; are marked for example being zero for all n < k < 2V — 1.
Thus we take a domain V which is a canonical closed subset in the Euclidean space R",
vl <n<2v—1,v>2,

A canonical closed subset P of the Euclidean space X = R" is called a quadrant if it can be
given by the condition P := {z € X : ¢;(z) > 0}, where (g; : j € Ap) are linearly independent
elements of the topologically adjoint space X*. Here Ap C N (with card(Ap) =k < n) and k
is called the index of P. If x € P and exactly j of the ¢;’s satisfy ¢;(x) = 0 then x is called a
corner of index j.

That is P is affine diffeomorphic with P* = [[’_,[aj, b;], where —oco < a; < b; < oo,
[aj,b;] := {x € R: a; <z < b;} denotes the segment in R. This means that there exists
a vector p € R" and a linear invertible mapping C' on R™ so that C'(P) —p = P™. We put
= (B ey by ey b o 5 = @5), 92 = (t1, .oy by ooy by 0 t; = bj). Consider t = (t1,...,t,) € P™.

This permits to define a manifold M with corners. It is a metric separable space modelled
on X = R" and is supposed to be of class C*, 1 < s. Charts on M are denoted (U, u;, P)),
that is, u, : Uy — w(U;) C B is a C*-diffeomorphism for each I, U; is open in M, u; o u; ™" is of
C* class of smoothness from the domain u;(U; N U;) # 0 onto w(U; N Uj), that is, u; ou; * and
U © uj_l are bijective, |J; U; = M.

A point € M is called a corner of index j if there exists a chart (U, u, P) of M with x € U
and u(z) is of index indy(x) = j in w(U) C P. A set of all corners of index j > 1 is called a
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border OM of M, z is called an inner point of M if indy(z) = 0, so OM = Uj>1 07 M , where
M :={x € M :indy(x) = j} (see also [30]). We consider that B

(D1) V is a canonical closed subset in the Euclidean space R", that is V' = cl(Int(V)),
where Int(V') denotes the interior of V' and cl(V') denotes the closure of V.

Particularly, the entire space R™ may also be taken.

Let a manifold W be satisfying the following conditions (i — v).

(). The manifold W is continuous and piecewise C*, where C! denotes the family of [ times
continuously differentiable functions. This means by the definition that W as the manifold is
of class C° N Cp,.. That is W is of class C* on open subsets Wy ; in W and W\ (U, Wy ;) has
a codimension not less than one in W.

(17). W = U;n:o W;, where Wy = U, Wor, W; N Wy, = 0 for each k # j, m = dimgW,
dimRWj =m-—7, Wj+l C 8W]

(#7i). Each W; with j = 0,...,m — 1 is an oriented C*-manifold, W} is open in J;_; Wi. An
orientation of Wj, is consistent with that of OW; for each j = 0,1,...,m — 2. For 5 > 0 the
set W; is allowed to be void or non-void.

(iv). A sequence W of C* orientable manifolds embedded into R", o > 1, exists such that
W* uniformly converges to W on each compact subset in R™ relative to the metric dist.

For two subsets B and E in a metric space X with a metric p we put

(1) dist(B, E) := max{supyc g dist({b}, E), sup..p dist(B, {e})}, where

dist({b}, E) := infecg p(b, e), dist(B,{e}) := infycp p(b,e), b€ B, e € E.

Generally, dimgW = m < n. Let (e¥(x),...,e* (z)) be a basis in the tangent space T, W*
at x € W* consistent with the orientation of W*, k € N.

We suppose that the sequence of orientation frames (e¥(zy), ..., e (zx)) of W* at x; con-
verges to (e1(z), ..., ey () for each = € Wy, where limy, 2, = © € Wy, while e;(z),...,en(x) are
linearly independent vectors in R™.

(v). Let a sequence of Riemann volume elements A, on W* (see §XII1.2 [38]) induce a limit
volume element A\ on W, that is, A(B N W) = limy_,o.(B N W¥) for each compact canonical
closed subset B in R", consequently, A(W \ W) = 0. We shall consider surface integrals of
the second kind, i.e. by the oriented surface W (see (iv)), where each W;, j = 0,...,m — 1 is
oriented (see also §XIII.2.5 [38]).

Suppose that a boundary OU of U satisfies Conditions (i — v) and

(vii) let the orientations of OU* and U* be consistent for each k € N (see Proposition 2
and Definition 3 [38]).

Particularly, the Riemann volume element )\ on OU* is consistent with the Lebesgue mea-
sure on U* induced from R" for each k. This induces the measure A on OU as in (v). This
consideration certainly encompasses the case of a domain U with a C'* boundary 0U as well.

Suppose that Uy,...,U; are domains in R" satisfying conditions (D1, — vii) and such that
U;NU, = 0U; N OUy, for each j # k, U = Ué‘:1 U,. Consider a function g : U — A, such
that each its restriction g|y, is of class C*, but g on the entire domain U may be discontinuous
or not C* where 0 < k < s, 1 < s. If x € 9U; N AU}, for some j # k, z € Int(U),
such that z is of index m > 1 in U (and in Uy also). Then there exists canonical C* local
coordinates (yi, ..., y,) in a neighborhood V, of z in U such that S :=V, No"U; ={y: y €
Ve; y1 =0, ...,y = 0}. Using locally finite coverings of the locally compact topological space
oU; N 90Uy, without loss of generality we suppose that C* functions Py(z), ..., Pn(z) on R™
exist with S = {z: 2z € R"; Pi(2) = 0,...,,P,(2) = 0}. Therefore, on the surface S the
delta-function §( Py, ..., B,,) exists, for m = 1 denoting them P = P; and §(P) respectively (see
§III.1 [6]). It is possible to choose y; = P; for j = 1,...,m. Using generalized functions with
definite supports, for example compact supports, it is possible without loss of generality consider
that yi,...,y, € R are real variables. Let 0(P;) be the characteristic function of the domain



162 Hypercomplex Numbers in Geometry and Physics, 2 (16), Vol 8, 2011

P; :={z: Pj(z) > 0}, (P;) := 1 for P; > 0 and 6(P;) = 0 for P; < 0. Then the generalized
function 6(Pi, ..., P,,) := 0(Py)...0(P,,) can be considered as the direct product of generalized
functions 0(y1),....,0(Ym), 1(Yms1,---, Yn) = 1, since variables y, ..., y, are independent. Then in
the class of generalized functions the following formulas are valid:

(2) 00(P;)/0z, = 0(P;)(0P;/0z) for each k = 1,...,n, consequently,

(3) gradid(Py, . Pu)] = 51 [0(P1)-..0(P,-1)5(Py) (grad(P;))0(Py 1) (P,
where , grad g(z) := (09(2)/0z,...,09(2)/0z,) (see Formulas II1.1.3(1,7,7',9) and II1.1.9(6)
61):

Let for the domain U in the Euclidean space R™ the set of internal surfaces cly[Intg~(U) N
U;2.(0U;NAUy)] in U on which a function g : U — A, or its derivatives may be discontinuous
is presented as the disjoint union of surfaces I';, where each surface IV is the boundary of the
sub-domain

(4) PP :={P;1(2) > 0,..., Pjm,(2) > 0}, 7 = 9P7 = | J2, 0FP7,

m; € N for each j, clx (V') denotes the closure of a subset V' in a topological space X, Intx (V)
denotes the interior of V' in X. By its construction {P? : j} is the covering of U which is the
refinement of the covering {U, : k}, i.e. for each P/ a number k exists so that P/ C Uy and
OP? C Uy and J; P? = U, Uy = U. We put

(5) hj(2(x)) = h(z)|oers =

limy, 1 10,...9;,,00 9(2(2 +¥)) — limy, 40, y, .00 9(2(z — y))
in accordance with the supposition made above that g can have only discontinuous of the first
kind, i.e. the latter two limits exist on each I'V, where x and y are written in coordinates in P7,
z = z(z) denotes the same point in the global coordinates z of the Euclidean space R". We
take new continuous function

(6) 9(2) = (=) — 32, hi(2)0(Psa(2), s Pimy (2)).

Let the partial derivatives and the gradient of the function g' be calculated piecewise one each
Uy. Since ¢! is the continuous function, it is the regular generalized function by the definition,
consequently, its partial derivatives exist as the generalized functions. If gl|Uj e CY(U;, A,),
then dg'(z)/0z, is the continuous function on Uj, i.e. in this case dg'(2z)xu,(2)/0%; is the
regular generalized function on U; for each k, where x¢(z) denotes the characteristic function
of a subset G in A,, xg(z) = 1 for each z € G, while x(z) = 0 for z € A, \ G. Therefore,
gt(z) = Zj gl(z)XUj\Uk<j v, (2), where Uy =0, j, k € N.

On the other hand, the function g(z) is locally continuous on U, consequently, it defines
the regular generalized function on the space D(U, A,) of test functions as

9,0) = [, g(=)w(:)A(dz),
where A is the Lebesgue measure on U induced by the Lebesgue measure on the real shadow
R?* of the Cayley-Dickson algebra A,, w € D(U,A,). Thus partial derivatives of g exist as
generalized functions.

In accordance with Formulas (2, 3,6) we infer that the gradient of the function g(z) on the
domain U is the following:

(7) grad g(2) = grad g'(z) +3_, hj(2)grad (P;1, ..., Pjm,).

Thus Formulas (3,7) permit calculations of coefficients of the partial differential operator
Q) given by Formula 14(7).

16. Line generalized functions.

Let U be a domain satisfying Conditions 1(D1, D2) and 15(D1,i — vii). We embed the
Euclidean space R™ into the Cayley-Dickson algebra A,, 2v71 < n < 2¥ — 1, as the R affine
sub-space putting R™ 3 = = (z1,...,x,) — 185, + ... + xpni;, + 2° € A, where j, # j; for
each k # [, 2° is a marked Cayley-Dickson number, for example, j, = k for each k, 2° = 0.
Moreover, each z; can be written in the z-representation in accordance with Formulas 1(1—3).

We denote by P = P(U) the family of all rectifiable paths 7 : [a,,b,] — U supplied with
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the metric

(1) p(y,w) = v(a) — wlaw)| +infs V2 (v(t)) — w(o(t))
where the infimum is taken by all diffeomorphisms ¢ : [a,,b,] — [a,,b,] so that ¢(a,) = ay,
a=a, <b, =0 (see §3).

Let us introduce a continuous mapping g : B(U, A,) x P(U) x V(U, A,) — Y such that its
values are denoted by [g;w,~;v], where Y is a module over the Cayley-Dickson algebra A,,
we BWUA,), vyeP(U), V(U,A,) denotes the family of all functions on U with values in the
Cayley-Dickson algebra of bounded variation (see §3), v € V(U, A,). For the identity mapping
v(z) = id(z) = z values of this functional will be denoted shortly by [g;w,~]. Suppose that
this mapping g satisfies the following properties (G1 — G5):

(G1) [g;w,v; V] is bi- R homogeneous and .4, additive by a test function w and by a function
of bounded variation v;

(G2) [g;w,v;v] = [g;w, v V] + [g; w, 72 v] for each v,~4! and v* € P(U) such that (t) =
Y(t) for all ¢ € [ay1,b,1] and y(t) = ¥*(t) for any ¢ € [a,z2,b2] and a1 = a, and a2 = b, and
by = b,

(G3) If a rectifiable curve y does not intersect a support of a test function w or a function of
bounded variation v, y([a, b] N (supp(w) N supp(v)) = 0, then [g;w,v;v] = 0, where supp(w) :=
cd{zeU: w(z)# 0}.

Further we put

(G4) [0™lg(2)/02"..02 2 5w, 9] v= (=1)™/[g; 0w (2) /02™...023. % 1, 7]
for each m = (myg,...,mov_1), m; is a non-negative integer 0 < m; € Z for each j, |m| :=
mgo + ... + mov_1. In the case of a super-differentiable function w and a generalized function g
we also put

(G5) [(d*g(2)/dz").(hy, ..., i) w, 7] = (=1)*[g; (d*w(2)/d2¥).(ha, ..., hi), 7]
for any natural number k£ € N and Cayley-Dickson numbers hq, .., hy € A,.

Then g is called the Y valued line generalized function on B(U, A,) x P(U) x V(U, A,).
Analogously it can be defined on D(U, A,) x P(U) x V(U, A,) (see also §9). If Y = A, we call
it simply the line generalized function, while for Y = L, (A", AL) we call it the line generalized
operator valued function, k,! > 1, omitting "on B(U,A,) x P(U) x V(U, A,)" or "line" for
short, when it is specified. Their spaces we denote by L,(B(U, A,) x P(U) x V(U, A,);Y).
Thus if g is a generalized function, then Formula (G5) defines the operator valued generalized
function d*g(z)/dz* with k € N and [ = 1.

Ifgisa Continuous function on U (see §3), then the formula

(G6) [g;w,v;v] = [, 9y v(y)

defines the generahzed functlon. If f (2) is a continuous L,(A,, A,) valued function on U, then
it defines the generalized operator valued function with ¥ = L (A,, A,) such that

(G7) [fsw, v v) = [{f(2)w(2)}dv(2).
Particularly, for v = zd we certalnly have dv(z) = dz.

We consider on L,(B(U, A,) x P(U) x V(U, A,);Y) the strong topology:

(G8) lim; f' = f means that for each marked test function w € B(U, A,) and rectifiable
path v € P(U) and function of bounded variation v € V(U, A,) the limit relative to the norm
in Y exists

limy [ w, 75 v] = [f;w,7;v].

17. Line integration of generalized functions.

Let C(V,A,) denote the R linear space and right and left A, module of all functions
v :V — A, such that y(z) and each its derivative 0*lg(2)/02]"...02" for 1 < |k| < m
is absolutely continuous on V (see §§3 and 16). This definition means that C™"(V, A,) C
cn(V, A,), where C™(V, A,) denotes the family of all m times continuously differentiable
functions on a domain V' either open or canonical closed in R", which may be a a real shadow
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of U as well.

17.1. Lemma. Lety € C%([a,b],A,) NP(U) and w € B(U, A,) and v € C%(U, A,) for
m =0 orv=1id form > 1, where 0 < m € Z, then a line generalized function [g;w,Y|(aq); V]
is continuous for m = 0 or of class C™ by the parameter x € [a,b] for m > 1.

Proof. For absolutely continuous functions (¢) and v (i.e. when m = 0) the conti-
nuity by the parameter = follows from the definition of the line generalized function, since
limaz—0 p(yl[a,z}afy‘[a,z-l-A:c]) =0 and

1imAm—>0 P(V © 7|[a,m]7 vo P)/|[a,ac+Az]> = 0.

Consider now the case m > 1 and v = id. In view of properties 16(G1, G2) for any Az # 0
so that z € (a,b] :={t € R: a <t <b}and z+ Az € (a,b) :={t € R: a <t < b} the
difference quotient satisfies the equalities:

(1) {[ga W, 7|[a,w+Ax]] - [g; w, ’7|[a,x]]}/A$ = [g; CU/A.’E, v ¢|[a,:c]] - [g; W/Ax77’[a,x]]7
where ¢ : [a,x] — [a,z + Az] is a diffeomorphism of [a,z] onto [a,x + Az| with ¢(a) = a.
Therefore, Aw = w(z + Az) —w(z) for z = v(t) and z + Az = v(¢(t)), t € [a,x] in the
considered case. Using Conditions (G1,G3) one can mention that if w = w! on an open
neighborhood V' of v in U, then

(2) [g;w,7] = lg;@",71,
since w —w! =0 on V and v N supp(w — w?) = 0.

From Conditions 16(G1,G4) and Formula (2) we deduce that

(3) limas—o{[g; @, Yae+aa] = [9:0,am]}/ Az

=300 95 (0w (2)/02;), (d; (1) /dt) Y| fa,e],
where z;’ = dv;(t)/dt for z=~(t), t € [a,b], since each partial derivative of the test function
w is again the test function. From the first part of the proof we get that [g;w, ¥|(aq] is of class
C' by the parameter z, since the product (dv;(t)/dt)y(t) of absolutely continuous functions
(dv;(t)/dt) and ~y(¢) is absolutely continuous for each j. Repeating this proof by induction for
k =1,...,m one gets the statement of this lemma for v € C"([a,b], A,) NP(U).

17.2. Lemma. If vy is a rectifiable path, then a line generalized function [g;w,Y|jaq] s of
bounded variation by the parameter x € [a, b].

Proof. Let v € P(U) be a rectifiable path in U, v : [a,b] — U. We can present 7 in the
form

(1) (1) = 25 ()i,
where each function +;(t) is real-valued. Therefore, v;(t) is continuous and of bounded variation
for each j, since v is such. Thus the function w(y(t)) is of bounded variation V’w(vy)) < oo,
since w is infinite differentiable and ~y([a, b]) is compact.

On the other hand, each function f : [a,b] — R of bounded variation can be written as
the difference f = f! — f2 of two monotone non-decreasing functions f! and f? of bounded
variations: f1(t) := VIf and f2(t) = f1(t) — f(t) for each t € [a,b] (see |5, 16]). This means
that f* = g¥ + h* where a function ¢* is continuous monotone and of bounded variation, while
h¥ is a monotone step function, where k¥ = 1,2. When the function f is continuous one gets
f = g¢' — ¢* For a monotone non-decreasing function p one has V'p = p(t) — p(a).

In view of Property 17(G1) we infer that

(2) [g; W 7‘[a,x}] - Z?vzgl[gja W, 7‘[a,x}]ij7
where the function [g;;w, ¥|jaq] by @ is real-valued for any w € B(U, A,) and v € P(U) for all
j=0,..,2" 1.

The metric space P(U) is complete, where U = cl(U). Indeed, let g" be a sequence of
rectifiable paths in U fundamental relative to the metric p given by Formula 16(1). Using
diffeomorphism preserving orientations of segments we can consider without loss of generality
that each path g™ is defined on the unit segment [0,1], a = 0, b = 1. It is lightly to mention
that
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(3) l9(a) = f(a)| + V(g = f) = supyeay |9(t) — f(2)] )
for any two functions of bounded variation, f, g : [a,b] — U. For each ¢ > 0 a natural
number ng = ng(€) exists so that p(g", ¢g™) < €/2 for all n,m > ny. That is ¢™ : [0,1] — [0, 1]
diffeomorphisms exist such that

19" (a) — g™(a))| + V2(g" 0 ¢ — g™ 0 ¢™) < € for all n,m > ng, since ¢™ o (¢™)~1 is also
the diffeomorphism preserving the orientation of the segment. Using induction by € = 1/l with
[ € N one chooses a sequence of diffeomorphisms ¢™ such that for each [ € N a natural number
no = no(l) exists such that

g™ (a) — g™(a))| + VE(g" 0 ¢™ — g™ o ¢™) < 1/1 for all n,m > ny(l), consequently,

SUPsefq gy 197 (0" (1)) — g™ (¢™(1))] < 1/ for all n,m = no(l).
Thus the sequence g" o ¢" is fundamental in C°([a,b],U). The latter metric space is complete
relative to the metric

A(f,9) = by |£(1) — 9],
since from the completeness of the Cayley-Dickson algebra A, considered as the normed space
over the real field the completeness of the closed subset U follows (see also Chapter 8 in [3]).
Therefore, the sequence g™ o ¢" converges to a continuous function f : [a,b] — U. On the other
hand, lim,, ;o p(g™ 0 @™, g™ 0 ¢™) = p(g™ o @™, f) < 1/1 for each n > ny(l), I € N. The function
g"o¢" is of bounded variation, consequently, the function f is also of bounded variation. That
is f € P(U). Thus P(U) is complete.

Take any sequence 7" of C%([a,b],.A,) paths in U converging to 7 relative to the metric

p on P(U) and the latter metric space is complete as it was demonstrated above. In view of

Formula 17.1(3) and Property 16(G3) the sequence [g;w, ¥"|[a)] is fundamental in P(U). On

the other hand, the generalized function g is continuous on B(U, A,) x P(U), consequently, the

sequence [g; w,Y"|a,0]] converges in B(U, A,) x P(U) to [g;w, ¥"|{a,q] for each a <z < b, hence
(95w, V|[a,2)]) = limy[g; w, 7" |a,)] in P(U). By the conditions of this lemma [g; w, V|4,q] € P(U),
since ¥([a,b]) C U. Thus the function [g;w,[(e,2)] by = € [a, 8] is of bounded variation:

Volgs w, Vljaa] < o0

18. Definition. Let f and 7 be two line generalized functions on B(U, A,) x P(U) x
V(U, A,). We define a line functional with values denoted by

[, fdn,w' @ w) = [f;wh, 35 05w, K]l leey = [f3 0", 55 [0, #]](7),
where v € P(U) is a rectifiable path in U, w,w! € B(U, A,) are any test functions. The
functional [ fdn is called the non-commutative line integral over the Cayley-Dickson algebra
A, of line generalized functions f by 7. Quite analogously such integral is defined for line
generalized functions f and n on D(U, A,) x P(U) x V(U, A,).

19. Theorem. Let F and = be two generalized functions on U, F, = € B'(U,A,) or
F, 2e€D'(U, A,), then the the non-commutative line integral over the Cayley-Dickson algebra
A, of line generalized functions f by & exists, where f is induced by F' and £ by Z.

Proof. At first it easy to mention that Definition 18 is justified by Definition 16 and Lemma
17.2, since the function [n; w, k|[ 4] is of bounded variation by the variable x for each rectifiable
path £ € P(U) and any test function w (see Properties 16(G1 — G3)), while the operator f
always exists in the class of generalized line operators, f = dg/dz, (dg(z)/dz).1 = f(z) (see
Property 16(G5)).

Each generalized function f € B(U, A,) can be written in the form:

(1) [f,w) = Z?‘fk;lo[fj,kawk)ija
where each f; is a real valued generalized function, f;, € B'(U,R),w = >, wiix, wr € B(U,R)
is a real valued test function, [f;x,wi) = [fj, wkix), [f,w) = Zj[fj,w)ij, [fj,w) € R for each
j=0,..,2"=1and w € B(U, A,), ig, ..., 1201 is the standard base of generators of the Cayley-
Dickson algebra A,. It is well-known that in the space B'(U,R) of generalized functions the
space B(U,R) of test functions is everywhere dense (see [6] and §9 above). In view of the
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decomposition given by Formula (1) we get that B(U, .A,) is everywhere dense in B'(U, A,).
Thus sequences of test functions F! and Z! exist converging to F' and = correspondingly.

Without loss of generality we can embed U into A, taking its e-enlargement (open neigh-
borhood) in case of necessity. So it is sufficient to treat the case of a domain U in A4,. In view
of the analog of the Stone-Weierstrass theorem (see [22, 23|) in C%(Q, A,) for each compact
canonical closed subset in A, the family of all super-differentiable on ) functions is dense,
consequently, the space H (U, A,) of all super-differentiable functions on U is everywhere dense
in D(U, A,). For each rectifiable path v in the domain U a compact canonical closed domain
Q exists Q C U so that v([a,b]) C Q. Therefore, it is sufficient to consider test functions with
compact supports in ). Thus we take super-differentiable functions F™ and =".

Let 7' be a sequence of rectifiable paths continuously differentiable, 4 € C'([a,b], A,),
converging to 7 in P(U) relative to the metric p.

Then for any super-differentiable functions p and ¢ we have

(2) [, p(2)da(2) = [} (d¢(2)/dz).[(dg(2) /d2)-dr' (1)) |
= [} Er5 N 0C(2)/02) [, (9an(2) /02 dnfh (1)),

since each super-differentiable function is Fréchet differentiable, dvi(t) = ’y;./(t)dt, where
(d¢(z)/dz).1 = p(z) and for the corresponding phrases of them for each z € U. On the
other hand, the functional

(3) [ Sr N 0¢(2) /02) 3255 (an(2) /0z;)drk(t)] s continuous on B(U, A,)* x P(U), ie.
for (,p € B(U, A,) and v € P(U) as well.

For a rectifiable path v in U it is possible to take a sequence of open e neighborhoods
e = Uze,y([%b})é(Av,z,e.), e = ¢(l) = 1/1, Wherg B(A,, z,€) == {y : y € Ays |y — z\' < €}.
Therefore, for each function v of bounded variation on U and each rectifiable path v in U a
sequence of test functions @' with supports contained in I''/! exists such that

limy [,;[(d¢(2)/dz).0"(2)]\(dz) = fvp(z)du(z)
for each super-differentiable test functions p,( € H(U,A,) with (d((z)/dz).1 = p(z) on U,
where A denotes the Lebesgue measure on U induced by the Lebesgue measure on the real
shadow R? of the Cayley-Dickson algebra A,, where H (U, A,) denotes the family of all super-
differentiable functions on the domain U with values in the Cayley-Dickson algebra A,.

Using the latter property and in accordance with Formulas (1 — 3) and 16(G6, G7) we put:

(4) [Gw,9] o= limy[=h w, 9] = limy [ Z(y)w(y)dy and

(5) [fs 0!,y 9] = limy [dG' /dz; W', y; v] = limy [ {(dG'(2)/d2) w' (2) }dv(2)
for any v € V(U, A,), where (dG'/dz).1 = F'(z) on U.

Therefore Z converges to £ and dG!/dz converges to f, where [¢; w, | (K| [a,0]) = (& W, K] [a,01]
for each k € P(U), a < x < b (see Lemma 17.2). Therefore, from Formulas (2—5) and Lemmas
17.1 and 17.2 we infer that

(6) [f7 fdn,w! ® w) = lim[dG' /dz; w*, *; [Zh w, ] (1)

= limy fvl [dG! /dz; wh, *; d[Zh w, *(2)],
where z =~ (t), a < t <b.

19.1. Corollary. If F: U — A, is a continuous function on U and = is a generalized
function on U, then the non-commutative line integral over the Cayley-Dickson algebra A, of
line generalized functions f by &

(1) [, fde, o' © w)
exists, where f is induced by F' and & by =.

Proof. This follows from Theorem 19 and the fact that each continuous function F on U
gives the corresponding regular line operator valued generalized function on the space of test
functions w' in B(U, A,) or D(U, A,):

[Fiut] = [, (F ()} (2)dz.
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In this case one can take the marked function w! = xy-, where V is a compact canonical closed
sub-domain in U, since v([a, b]) is compact for each rectifiable path « in U so that y([a,b]) C V'
for the corresponding compact sub-domain V. This gives F Xv(z) = F(z) for each z € V and
F.xy(z)=0foreach z € U\ V.

19.2. Corollary. If F € B'(U, A,) or F € D'(U, A,) is a generalized function on U and
= is a function of bounded variation on U, then the non-commutative line integral over the
Cayley-Dickson algebra A, of line generalized functions f by &

(1) [f7 fdé, v @ w)
exists, where f is induced by F and & by =.

Proof. In this case we put

&0, 8] = [, w(2)d=(2)
for each test function w and each rectifiable path « in U. It is sufficient to take marked test
function w(z) = 1 for each z € U that gives d[{;1,*] = d=. Thus this corollary follows from
Theorem 19.

19.3. Corollary. If F is a continuous function on U and = is a function of bounded
variation on U, then the non-commutative line integral over the Cayley-Dickson algebra A, of
line generalized functions f by &

(1) [f, fit, ' @)
exists, where f is induced by F and & by =. Moreover, this integral coincides with the non-
commutative line integral from §3 for the unit test functions w(z) = w'(2) =1 for each z € U:

(2) [[, fde, 1 ®1) = [ fde.

Proof. This follows from the combination of two preceding corollaries, since for a rectifiable
path v its image in U is contained in a compact sub-domain V in U, i.e. y([a,b]) C V.

19.4. Convolution formula for solutions of partial differential equations.

Using convolutions of generalized functions a solution of the equation

(C1) (Y*+38)f =g in B(R",Y) or in the space B'(R",Y), is:

(02) f = E’I‘SJrﬂ * g,
where Evs, g denotes a fundamental solution of the equation

(C3) (T° + B)Exs5 =,

(0,9) = ¢(0) (see §9). The fundamental solution of the equation

(C4) AgV = 4§ with Ay = (T* + B)(TT* + (1)

can be written as the convolution
(C5) V =:Va, =Ersyp*Exsyg,.

In view of Formulas 4(7 —9) each generalized function Evsg can also be found from the elliptic
partial differential equation

(C6) Z5¥rs45 = 0 by the formula:

(07) STS'HB = [(Ts + ﬁ)*]\IITS-i-,Ba where

(C8) Zp = (T° + B)(T° + )"
(see §33 [28]).

20. Poly-functionals. Let a; : B(U, A,)* — A, or a, : D(U, A,)* — A, be a continuous
mapping satisfying the following three conditions:

(P1) [ap,w! ® ... ® w*) is R homogeneous

[ap,w! ® .. ® (W) ®...0wr) =[ag,w!' @ .. W ® .. @ W)t = [ayt,w! ® ... @ W)
for each t € R and A, additive

[ap,w!' ®.. QW +r)®...0wk) = [ag,w!' ®.. 8w ®... Wk + [a,w! ®.. K @ ... ® W)
by any A, valued test functions w' and &', when other are marked, [ = 1,...,k, i.e. it is k R
linear and k A, additive, where [a;,,w! ® ... @ w*) denotes a value of a; on given test A, valued

functions w?, ..., w*;
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(P2) [ap,w!' ®...® (WB) ®@...0wk) = ([ap,w!' ®...0w ®...0wk)a)p = [(ara)f,w! ®@...®
W' ® ... ® wk) for all real-valued test functions and a, 8 € A,;

(P3) [ag,w’ M @ ... ® w®) = [a, w! @ ... ® wF) for all real-valued test functions and each
transposition o, i.e. bijective surjective mapping o : {1,....,k} — {1,...,k}.

Then a; will be called the symmetric k£ R linear k£ A, additive continuous functional, 1 <
k € Z. The family of all such symmetric functionals is denoted by B’y (U, A,) or D'y <(U, A,)
correspondingly. A functional satisfying Conditions (P1, P2) is called a continuous k-functional
over A, and their family is denoted by B’ (U, A,) or D'y (U, A,). When a situation is outlined
we may omit for short "continuous" or "k R linear k A, additive".

The sum of two k-functionals over the Cayley-Dickson algebra A, is prescribed by the
equality:

(P4) [ag + b, w! @ ... @ WF) = [ag, w! @ ... @ WF) + [bp,w! @ ... @ W)
for each test functions. Using Formula (P4) each k-functional can be written as

(1) [ag,w! ® ... ® WF) = [agpip, w! @ ... @ WF) + ... + [Ap2r _1ior_ 1, w! @ ... ® WF),
where [ay, ;,w! ® ... ® W*) € R is real for all real-valued test functions w',...,w* and each j;
10,-..,09r_1 denote the standard generators of the Cayley-Dickson algebra A,.

The direct product a; ® b, of two functionals a; and b, for the same space of test functions
is a k + p-functional over A, given by the following three conditions:

(P5) [ag @ by, w! @ ... ® WHP) = [ag, w! @ ... ® WF)[b,, W ® ... @ WFTP)
for any real-valued test functions w!, ..., w**?;

(P6) if [by, "™ ® ... ® WFTP) € R is real for any real-valued test functions, then

[(axN1) ® (b,No),w! ® ... ® Ww*P) = (Jay @ by, w! @ ... ® WFP)N; )N,
for any real-valued test functions w?, ...,w*™ and Cayley-Dickson numbers Ni, Ny € A, ;

(P7) if [ag,w' @ ... ® w*) € R and [b,,w* ! ® ... ® W*P) € R are real for any real-valued
test functions, then

[a; ®@b,,w!' ® .0 (WN)) ® ... W) = [a; @ b,,w! ® ... @ VPN,
for any real-valued test functions w!,...,w**? and each Cayley-Dickson number N; € A, for
eachl=1,...k+p.

Therefore, we can now consider a partial differential operator of order u acting on a gen-
eralized function f € B'(U, A.) or f € D'(U, A,) and with generalized coefficients either
aq € B, (U, A,) or all a, € D'jy(U, A,) correspondingly:

(1) Af(x) =Y (9°f(x)) @ [(aa(2)) @ 121D,

laf<u

where 6°‘f = Ol f(2)/0x5°...0x% | & = woip + . :Unin, x; € R for each j, 1 < n = 2" —1,
a=(ag,...,an), la| =ag+...+a,, 0< a; € Z, [Lw) == [;w( ), A denotes the Lebesgue
measure on U for convenience 1%° means the multlphcatlon on the umt 1 € R. The partial
differential equation

(2) Af = g in terms of generalized functions has a solution f means by the definition that

(3) [Af,w®(“+1)) — [g’w®(u+1))
for each real-valued test function w on U, where w® = w ® ... ® w denotes the k times direct
product of a test functions w.

21. Theorem. Let A = A, be a partial differential operator with generalized over the
Cayley-Dickson algebra A, coefficients of an even order uw = 2s on U such that each a, is
symmetric for |a| = u and A has the form

(4) Af = (Burf)cua + .. + (Buf)cur, where each

(5) Buyp = Bupo + Qufl,p
is a partial differential operator by variables T, 1. 4myp 141 Tmyit..tma, aNd of the order
u, My =0, cyp(x) € A, for each k, its principal part
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(6) Bu,p,Of = Z|a|:s(a2af) ® aP:QQ('x>
is elliptic, i.e. Z\a|:s y**[ay 20, w®**) > 0 for all Yk(1)s-+ - Yh(ma,p) 1 R with k(1) = my1 + ... +

Bitma ;
Mup 1+ Losk(Muyp) = Myt + oo + My, ¥° = yfé“ll)yk?;upg) and [ay 24, w%*) > 0 for each

real test function w, either 0 < r < 3 and f is with values in A, or v > 4 and f is real-valued
on real-valued test functions. Then three partial differential operators Y° and Yi and Q of
orders s and p with p < u — 1 with generalized on U coefficients with values in A, exist such
that

(7) [Af, w®@H)) = [T3(T5f) + Qf, w®® ) for each real-valued test function w on U.

Proof. If ay, is a symmetric functional and [c,,w®®) = [ag,, w®?*)1/2 for each real-valued
test function w, then by Formulas 20(P1, P2) this functional cs has an extension up to a
continuous s-functional over the Cayley-Dickson algebra 4,.. This is sufficient for Formula (7),
where only real-valued test functions w are taken.

Consider a continuous p-functional ¢, over A, p € N. Supply the domain U with the metric
induced from the corresponding Euclidean space or the Cayley-Dickson algebra in which U is
embedded. It is possible to take a sequence of non-negative test functions ;w on U with a
support supp(;w) contained in the ball B(U, z,1/l) with center z and radius 1/l and ;w positive
on some open neighborhood of a marked point z in U so that [, w(z)A(dz) = 1 for each I € N.
If the p-functional ¢, is regular and realized by a continuous A, valued function g on U?, then
limy[c,, w®P) = g(z, ..., 2). Thus the partial differential equation 20(2) for regular functionals
and their derivatives implies the classical partial differential equation 2(1).

Therefore, the statement of this theorem follows from Theorem 10, and §§14, 15 and 20,
since the spaces of test functions are dense in the spaces of generalized functions (see §19).

22. Corollary. If Af = 37, (0°f(2)/02:02;) ® a;ji(z) + 32;(0f(2)/0z5) @ bj(2) @ 1 +
f(z) ®n(z) ® 1 is a second order partial differential operator with generalized coefficients in
B' (U, A,) or D'(U, A,), where each ajy is symmetric, f and A, are as in §20, then three partial
differential operators T+ (3, T1+ (51 and Q of the first order with generalized coefficients with
values in A, for suitable v > r of the same class exist such that

(1) [Af,w®) = [(T+B)(T1+61)f +Qf),w®) for each real-valued test function w on U.

Proof. This follows from Theorem 21 and Corollary 12 and §§2 and 8.

23. Anti-derivatives of first order partial differential operators with generalized
coefficients.

Theorem. Let Y be a first order partial differential operator given by the formula

(1) Tf =3 5-0(0F/02)) ® [i545(2)] or

(2) Tf = S (01 /02) @ 63(2),
where supp(j(z)) = U or supp(¢;(z)) = U for each j respectively, f and 1;(z) or v;(z) are
A,-valued generalized functions in B' (U, A,) or D'(U, A.) on the domain U satisfying Condi-
tions 1(D1,D2), algr{[¢j,w), [dr,w), ¢, w)} is alternative for all 0 < j, k,1 < 2 —1 and
algr{[po,w), ..., [p2v_1,w)} C A, for each real-valued test function w on U. Then its anti-
derwative operator Iy emists such that YIyf = f for each continuous generalized function
f:U— A, and it has an expression through line integrals of generalized functions.

Proof. When an operator with generalized coefficients is given by Formula (1), we shall
take unknown generalized functions v;(z) € A, as solutions of the system of partial differential
equations by real variables zj:

(3) [(Ov(2)/0z;) @ ;(2),w®?) = [1,w®?) for all 1 < j < m;

(4) [r(2) ® (Ov;(2)/02k), w?) = [j(2) @ (Ovk(2)/0z;),w®?) for all 1 < j < k < n and and
real-valued test functions w on U.

If the operator is given by Formula (2) we consider the system of partial differential equa-
tions:
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(5) [((dg(2)/dz).10v;(2)/0z]) @ ¢5(2) + ((dg(2)/dz).[0vi(2)/0z;]) ® ¢5(2),w™?) = 0 for all
0<ji<k<mn

(6) Ov(2)/0z; = ¢;(z) for all j =0,....,n;

(7) [((dg(2)/dz).¢;(2)) ® ¢}(2),w®?) = [f(2) ® 1,w®?) for each j = 0,...,n and every real-
valued test function w.

Certainly the system of differential equations given by Formulas (3,4) or (5 — 7) have
solutions in the spaces of test functions B(U, A,) or D(U, A,), when all functions v¢; or ¢; are
in the same space respectively. Applying §§4 or 5 we find generalized functions v; resolving
these system of partial differential equations correspondingly, when all functions v; or ¢; are
generalized functions, since the spaces of test functions are dense in the spaces of generalized
functions (see §19). Substituting line integrals f q(y)dv;(y) from §§4 and 5 on line integrals
f q(y)dv;(y),w! ® w) from §19 one gets the statement of this theorem, since test functions w?
and w in the hne integrals of generalized functions can also be taken real-valued and the real
field is the center of the Cayley-Dickson algebra A,. Therefore, we infer that

(8) 0L, F W)y (y) 0 @ )/ 02 = [F(2) oy (2) ], © )
for each real-valued test function w and z € U, where 4*(t,) = z, t, €< an,by >, @ € A.
Equality (8), Theorem 19 and Corollaries 19.1-19.3 and Conditions 20(P1— P7) give the formula
for an anti-derivative operator:

) [Trfiw®w) = /f Jdz,w ® w) = (n+ 1) Z{/ 1)y (4), 0 © )

Y lfaa.¢]

for each real-valued test-function w, where o € A, an <t < b,, t = t,, z = y(t), consequently,

(10) [T1 [ f(y)dy, ™) = [f @18 1,0%).

23.1. Note. Certainly, the case of the partial differential operator

(1) Tf = >5-0(0f/02r(s)) © b0 (2),
where 0 < k(0) < k(1) < ... < k(n) < 2Y —1 reduces to the considered in §23 case by a suitable
change of variables z — y so that z;) = y;.

24. Example. We consider a consequence of Formulas 15(2 — 6). If ¢(t) is a differentiable
function on the real field R having simple zeros ¢(t;) = 0 (i.e. zeros of the first order), then

(1) 8(a(t) = ¥, 70t — 1),
where the sum is accomplished by all zeros ¢; of the equation ¢(t) = 0 (see Formula I1.2.6(IV)
[6]). Therefore, if y(7) is a C* path in U intersecting the surface U, N AU, at the marked point
z of index | =I5 ,(x), v(10) =z, 0 < 79 < 1, such that y(7) € U; for each 7 < 19 and (1) € U,
for each 7 > 7y then

(2) dg(r(r))/dr = dg*((r))/dr + b X', 8(P,)dP;(+(r)) /dr.
where 6(t) =0 for t < 0 and 6(t) = 1 for ¢ > 0, ¢*(v(7)) = g(v(7)) — hO(T — 10),

(2'1) h = limmm 9(7(7_)) - limTTTo 9(7( )),

(2.2) dPj(y(7))/dT = >"1_1(0P;(2)/02k)(0vk(T)/dT)| .=y (r) (see Example 1.2.2.2 [6]). Par-
ticularly, if a point z is of index 1, then Formula (2) snnphfles

(3) dg(~y(7))/dT = dg*(v(T ))/dT—{—h(S( )[dP(v(T))/dr|. Particularly, these formulas can be
applied to dv;.

Let a partial differential differential operator @ be given by Formula 14(7) and functions
vy, are found (see Theorems 5 and 21 above). We put in accordance with Formula 15(6)

(4) 11(2) = () = S Prso(D0(Papt(2)s - Prginy (2))
where

(5) Pt (2(2)) = hi(@) o 1=

iy, 10, e b0 Vi(2(2 4 9)) = limy, 1o, 0 Ve(2(2 — 1)),
where the sum is by s and p with U, N oU,, # 0.
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Let a domain W be a canonical closed compact set in the Euclidean space R™*! embedded
into A, and contained in a canonical closed compact domain U so that W ={z € U : z; =
0Vn <j<2"—1}. Thus T from test and generalized functions on W is extended on test and
generalized functions on U. We can put v; =0 for n < j <2Y —1, when n < 2¥ — 1. Then for
the rectifiable path v (see above) we get

n

© -+ / adni) @' )
Va1

k=0

— ) / 4()dvi(y), o' x w)

Hgwh %5 1Y his (2 25 ) D (0P;(2)/020) (99m () /d7) |3 w0, ¥} (1) ],

m=1

where v € {y* : a € A} is taken from the foliation C! family of paths (see §6.1 above and also
Theorem 2.13 [27]), z = Y(t.), t. € [Gasba), [a,t] = [aa,t.], | = l5,(2) denotes an index of a
point z in the intersection of boundaries I's* := 0U; N U, # (), w' and w are real-valued test

functions. Since w' is real-valued, we get f(z).w! = f(2)w'(z) and

(7) 1350 % [ Ptssp(2) 2251 () 301 (0P (2)/02) (99 (7) /A7) | sy w0, ¥} ()

= 2 pla(2)0! (2); [0(7 = Tap) hkssp(2), ) |21 (r);
where 7, ,, corresponds to the intersection point y(7s,) of v with I'*? # (). Here the expression
[q, w)| 22 () := lim;[goK?,wok?) denotes the restriction of the generalized function from U onto
v([a,b]), ! € D(U,.A,) is a sequence of test functions and &?(¢([a,b])) C U for each j € N,
¢ € D([a,b], Ay), N2, supp(’) = ¢([a,b]), lim; &7 0 ¢ =~ in P(U). Therefore, the derivative
of the operator [(n + 1)7* ZZ:O[fvl[a . (y)dvg(y),w! x w) by the parameter 7 € [a,b] for the

real test functions w! and w is the following:

(8) ( 1)_1 ZZ:O[fvl[a,t] q(y)dl/k(y),wl X w)/0T =

[(n + D730 {1 ® ¢'(2)(drp(v(r ))/dT) + Yep (M (2)-hsp(2) + G (2)-hasp(2) +
hgp(2). (de( (T))/d7)|z=1(r) ® (T = 7o), W' B w),
Where dg(z)/dz = ¢(z) on U in the class of generalized operator L,(A,, A,) valued functions,
dg(z)/dz).1 = q(z) on U, hg:p(z) = h(z) is given by Formula (2.1) for the derivative operator
dg(z)/dz = ¢ instead of g on each TP # (), ¢' is given by Formula 15(6) for the function
¢(z) with values in L,(A,, A,) instead of g(z). The terms like ¢'(z).(dv}(y(7))/d7) correspond
to the action of the operator valued generalized function ¢'(z) on the generalized function
(dvi(y(7))/dr) which gives a generalized function.
Using Formulas (6 — 8) for n constant on U and ;(z) or ¢;(z) respectively non-zero for
each z € U and all j =0, ...,n we infer that for a continuous or generalized function f

(9) YZv f(2) = f(z), where

A

(10) /f (n+1)" i/ q(z)dy}(z), a €A a, <t<b,},

]70 ,ya |[aa ,t]

where ¢ = (dg/dz).1 and g is given by the Equation 5(9), since f! = f and hg:p = 0 in the class
of generalized functions f and in the class of continuous functions f, also Ay, = 0 for v, = v/}
on U.

Formulas (9,10) show what sort of boundary conditions is sufficient to specify a unique
solution for a given domain U with sub-domains U,. If U is C! diffeomorphic to the half-space
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H, ={z¢€ A, z2po+...+22v_1p2v_1 > 0}, where p = ppio+...+pov_1iov_1 is a marked Cayley-
Dickson number, pg, ..., p2v_1 € R, and sub-domains Uy are not prescribed, then it is sufficient
to give the boundary condition F|sy = G when a solution is in the class of continuous or
generalized functions with the corresponding f and %; or ¢;. Indeed, if the functions v, along v*
are defined up to constants py, the differentials are the same d(vg + ) (2)|2210(r) = AVk|s=yo(7)
in the anti-derivative operator, when dji|,—ye(r) = 0 for each a € A and 7 € [aq, bal.

The operator Zy may be applied also piecewise on each U,. If a solution F' is locally
continuous on U and continuous on each sub-domain Uy, then boundary conditions F|sy, = G*
for all s =1,...,m may be necessary to specify a solution F'. Without boundary conditions the
anti-derivative operator applied to f gives the general solution Zy f of the differential equation
TF=f.

If each v is continuously differentiable, which is possible, when each function 1, or ¢y is
continuous, and f is continuous on U, then a solution F = {y [ fly)dy : a €A, a, <

Y*laa,r
T < by} is continuously differentiable by each 2y, z € U, z = ’ya(tz[). |

One can also mention that the sequence ,,w(zo,...,2,) = (2rm) ™+D/2Zexp{—(22 +
.+ 22)/(2m)} converges to the delta-function on R"™"! embedded into A,, m € N.
Then the sequence ,,0(z) = [ (2rm)~"/?exp{—t?/(2m)}dt converges to the 6 func-
tion, while each function ,,0(zy) is analytic by 25, since m € N, exp{—t*/(2m)} is
the analytic function with the infinite radius of convergence of its power series, while
limy, 400 [~ (2rm) =2 exp{—t?/(2m)}dt = 0. Then each ,,w(zo, ..., z,) and [[}—¢ m0(2;) can
be written in the z-representation over A, as the analytic function with the help of For-
mulas 1(1 — 3), where n < 2V — 1, z; € R for each j, z = zyig + ... + 29v_1920_1. Thus
im0 mw (20, 0y 20) = 0(20, -5 20) and iy, o0 [[jogmf(25) = [ 0(2), db(z0)/d20 =
(5(20)

25. Boundary conditions.

If U is a domain as in §15, we put B(OU,Y) = {flov : f € B(U,Y)} and D(0U,Y) =
{flov : f € D(U,Y)} when a boundary U is non-void so that the topologically adjoint linear
over R spaces, left and right A, modules, of generalized functions are B'(0U,Y") and D'(0U,Y).

Let us consider a generalized function f € B'(0U,Y) or D'(OU,Y) and a test function
h € B(OU,Y) or D(0U,Y) respectively. One can take g € B(U,Y') or D(U,Y) and a sequence
q™ € B(U,Y) or D(U,Y) with supports non intersecting with the boundary supp(¢™)NoU = ()
such that (¢ — ¢™) tends to zero in B(V,Y) or D(V,Y) for each compact subset V' in the
interior Int(U), when m tends to the infinity, while lim,,(g — ¢™) = h in B(0U,Y") or D(0U,Y)
respectively. Here as usually the interior Int(U) is taken in the corresponding topological space
R” or A,. Each generalized function is a limit of test functions, consequently, a generalized
function £ € B'(U,Y) or D'(U,Y) exists so that
Vise versa if £ € B'(U,Y) or D'(U,Y) is a generalized function on U, then Formula (B1) defines
a generalized function f € B'(0U,Y) or D'(0U,Y), which we consider as the restriction of £
on B(OU,Y) or D(OU,Y") correspondingly. In view of the definition of convergence of test and
generalized functions Formula (B1) defines the unique restriction f for the given generalized
function &.

A subsequent use of decomposition of operators into compositions of first order partial
differential operators and their anti-derivation operators permits to integrate partial differential
equations with locally continuous or generalized coefficients.

The results and definitions of previous sections show that for the differential equation

(1) Af =g,
where a partial differential operator is written in accordance with Formulas 10(1,2). When
OU is a C'-manifold without corner points of index greater than one, the following boundary



S.V. Ludkovsky Line integration and second order partial differential equations... 173

conditions may be used:

(2) f(O)]ov = fo(t)), (DM f(t)/0sF...08%")|ov = fiq(t') for |q] < a—1, where s = (s1, ..., $,,) €
R™ (¢) = (¢1;-+qn), |al = @1 + ... + qn, 0 < g € Z for each k, t € OU is denoted by t', fo, fig
are given functions. Generally these conditions may be excessive, so one uses some of them or
their linear combinations (see (4) below). Frequently, the boundary conditions

(3) fF)|ov = fo(t'), (B f(t)/0vY)|ov = fi(t') for 1 <1 < a—1 are also used, where v denotes
a real variable along a unit external normal to the boundary U at a point ¢ € 0Uy. Using
partial differentiation in local coordinates on OU and (3) one can calculate in principle all other
boundary conditions in (2) almost everywhere on oU.

It is possible to describe as an example a particular class of domains and boundary condi-
tions. Suppose that a domain U; and its boundary 0U; satisfy Conditions (D1,7 — vii) and
91 = gxu, is a regular or generalized function on R™ with its support in U;. Then any function
g on R™ gives the function gxy, =: g2 on R", where Uy = R™ \ U;. Take now new domain U
satisfying Conditions (D1,i — vii) and (D2 — D5):

(D2) U DU, and oU C 8U1;

(D3) if a straight line ¢ containing a point w; (see 15(vi)) intersects OU; at two points y;
and ys, then only one point either y; or y, belongs to OU, where w; € Uy, U — w;, and Uy — w;
are convex; if £ intersects QU; only at one point, then it intersects QU at the same point;

(D4) any straight line & through the point w; either does not intersect OU or intersects the
boundary OU only at one point.

Take now g with supp(g) C U, then supp(gxv,) C Uy. Therefore, any problem (1) on U; can
be considered as the restriction of the problem (1) defined on U, satistying (D1 — D4,i — vii).
Any solution f of (1) on U with the boundary conditions on U gives the solution as the
restriction f|y, on U; with the boundary conditions on 9U.

Henceforward, we suppose that the domain U satisfies Conditions (D1, D4,i — vii), which
are rather mild and natural.

Thus the sufficient boundary conditions are:

(4) (971 f(t19) /O, ..0T) ovy,, = .0 ()
for [8] = [q, where m = |h(1j)], 7] < o, [(I)| = 1, a; # 0, g = 0 for ljx = 0, my+qr+hi = ji,
hi = sign(lgjr), 0 < qp < jr — 1 for k > n — k; Qﬁg’(l)(fl(l)) are known functions on 9Uy,
t0 e OU(yy. In the half-space t,, > 0 only the partial derivatives by ¢,

(5) 07f(t) /0t ~o
are necessary for = |g| < a and ¢ as above.

Depending on coefficients of the operator A and the domain U some boundary conditions
may be dropped, when the corresponding terms vanish.

Conditions in (5) are given on disjoint for different (7) sub-manifolds 0U;) in OU and partial
derivatives are along orthogonal to them coordinates in R", so they are correctly posed.

We recall, that a characteristic surface of a partial differential operator given by Formula
10(1) is a surface defined as a zero of C* differentiable function ¢(z1, ..., z,) = 0 in the Euclidean
space or in the Cayley-Dickson algebra such that at each point z of it the condition is satisfied

(CS) a2, (H(2)(00/ 021 (06 /0, = 0
and at least one of the partial derivatives (0¢/0zr) # 0 is non-zero. Generally a domain U
is worthwhile to choose with its interior Int(U) non-intersecting with a characteristic surface
é(z1, ..., xy) = 0 (see also [32, 37]).

26. Solutions of second order partial differential equations with the help of the
line integration over the Cayley-Dickson algebras.

Mention that the operator (Y + ()(zo, ..., z,) acting on a function depending on variables
20, -+, 2 Only can be written as

(1) (20, s Zn41) (f(2)2n11) |20 =1 = T(20, s 20) £ (2) + f(2)B(2)



174 Hypercomplex Numbers in Geometry and Physics, 2 (16), Vol 8, 2011

n+1 *

= IO (2)2n1) [9)65 ()] oy,
where ¢ (2) = (%), each function ¢;(z) and f(z) may depend on z, ..., z, only, omitting for
short the direct product ® in the case of generalized coefficients in Formula (1) and henceforth.
The operator ¥(zg, ..., 2n+1)(f(2)2n+1) may be reduced to the form satisfying conditions of
Theorems 5 or 23 using a suitable change of variables. This procedure gives an anti-derivative
operator

(1.1) Zy4p = Zy|,,,,=1 such that

(1.2) (¥ + B)Txsnf =
for a continuous function or a generalized function f. Therefore, we shall consider operators of
the form T and their compositions and sums.

We take the partial differential equation with piecewise continuous or generalized coeffi-
cients

(2) A=T7Tf(2) + YTaf(2) =g,
where

(3) Tuf(2) = [X27_0(0f(2)/02;)5(2)"]
for k = 1,2 or without this index k, ¢%(z) = i;95(2) (see §§4, 5 and 23). For solving it we
write the system:

(4) Tif =g1, Tgr =g —Taf.

In accordance with Equation (2) we have:

(5) Tg1 + Tao(T1'01) = g,
where the inverse operator Y ' is the anti-derivation operator Zy, described above in Theorems
4,5 and 23. If T9 # 0 we suppose that either (i) g; or [g;,w) is real-valued or the algebra
algr{g1(2), 9j(2), ¢¥(2)} or algr{[g1,w), [¢],w), [, w)} for all j,k = 0,...,n is associative for
each z € U in the case of functions or for every real-valued test function w in the case of
generalized functions correspondingly. Calculating the expression

(6) Tg1 + To(Tr,91) = (T + g1 = g
we get a new operator (Y + %) = ¥ in accordance with Formulas 4(5,6), 5(6 —8) and 23(3—7)
omitting ® and ®w and [*,w®?) for short in the case of generalized coefficients, where

B2 =3 heo(0v /02)(47)",
when a solution {v;(z) : j} is chosen real, i.e. each function v; is real-valued or a real-valued
generalized function on real-valued test functions (see System 4(10,11) and §23).

Generally without supposition (i) we deduce that

(6.1) Y10+ Yo(Zr,910) = (T + 57) g1 = 7 g’
for each [ =0, ...,n, where 3} = z;‘[zykzo(zj(8V;/6zk))(¢i)*],

(62) Tp oo =g,

(6.3) >0 91001 = g1,
each g1(2) or [g1,,w) is real-valued for each z € U or every real-valued test function w respec-
tively. Solving the system (6.1 — 3) with the help of known anti-derivative operators Zy, one
finds g1, where ¥; =71 + ﬁl?’. Thus an anti-derivative operator J := jT+T2IT1 exists so that

(64) (T + TQITl)jTJrTzITlg =g
In the particular case (i) the equality Jyyr,z,, = Zy is satisfied.

Therefore, in the case of either continuous coefficients of operators and g or generalized
coefficients and g the general solution is:

(7) f =Iy,01 = Ir, T g, where

(8) g1 =Ty

If T5 = 0 the formula simplifies to

9) f=Tx,Iyry.

Examples of boundary conditions and domains permitting to specify a unique solution are
given in §25 above.
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27. Example. Let us consider a function and its phrase satisfying Condition 7(P3).
Therefore, we get

(1) X3 (91) 0 (@) = ~6p (Tm(za (@) + [ 01(2)dz + ¢y, ()
in accordance with Formula 7(6), Where x’' and Im(za (z)) are written in the z and z-
representations respectively using Identities 1(1 — 3). In particular, for T! = o; we have the
coefficients ¢} (2) = i/(ax(2)w;i}-,) for each I = 27k with k € {mi+...4+m;_1+1, ..., mi+...4+m;},
while ¥ (z) = 0 for all others [ for each z. A function a' is given by Formula 7(3) for ¢! instead
of ¥. Let the first order operator ) be written in its standard form:

mi+...4+mj,

(2) Qf= Z >, sk(2)(0f [0zari) (ujiark),

J=1 k=mi+..4mj _1+1

since dgrpw; = wigry, for each w; € A, and k > 1, when 7 > 1, where w; € A, and u; = u;(2) €
A, for each j, sp(z) is the real-valued (super-)differentiable function for each k. If € = z,(y),
then (d¢/dy).[(dy/d§).h] = h for each Cayley-Dickson number h € A,. This implies that these
two R-linear A,-additive operators are related by the equality (dy/d¢).h = (d¢/dy)~'.h. On the
other hand, (dz,(y)/dy).1 = a(y) € A, and y € U C A, in the considered case. The function
2,(y) is defined up to the addendum z,(«), where o € H,, N U, H,, := {2z € A, : Re(z) =
Re(ap)}. We can choose ¢,(y') so that (dz/dy).(1/a) = 1 for each y for which a = a(y) # 0
and inevitably we get (dy/dx).1 =1/a(y).

In the particular case of o, o7 and ) accomplishing the differentiation with the help of the
latter identities we infer that:

mi+...+mj;

B Qi@ =Y Y (dep)/de)ir

J=1 k=mi+...+my; —1+1

H91(y) + (dog, (v)/dy) }.[(dzar () /dy) ™ izes] (s(y) s (y)iork),
where g1 = d(i(y)/dy for a (super-)differentiable function (; such that (d¢i(y)/dy).1 = ¢:1(v'),
’Lﬁ}(z) = zl(ak(z)wﬂ;rk) for each | = 2"k with k£ € {m1 + ...+ m;_1 + 17 ., My =+ ...+ m]'},
while ¢/ (z) = 0 for all others [ for each z. Also i(z) = ii(ar(2)w}is,) for each | = 2"k with
Ee{mi+..+mj_1+1,...,my+...+m;}, while ¢;(z) = 0 for all others [ and for each z. We
introduce the notation:

(4) 0(y) = ul[(dza(y)/dy) iork] (sk(y)u;(y)izry) for I = 27k and k € {mq + ... + mj,_1 +
L,...,mi+...+my}, 6i(y) = 0 for all others [ and for each y;

m1+...+m]-

=— ij Z ai(x) = o(x) and

k:m1+...+mj,1+1

(6) rmi(x) = usp(x)u;(z)igrg] for { =27k with k € {m1 + ... +mj,_1 + 1,...,m1 + ... + m;, },
ki(xz) = 0 for every other | and for each x.
In the general case

2v—1

(1) To(Yi'g)(x) = — Z[(dasf'(x’)/dx)-ij
+H{91(y) + (dog, (v) /dy) }.[(dzar () /dy) ~ i) (355(2)),

where g1 = d¢i(y)/dy for a (super-)differentiable function (; such that (d(;(y)/dy).1 = ¢1(v').
We shall use the notation:
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(8) 6;(y) = i;[(dzaly) /dy) "] (6545 (y)) and for each y and each j;

(9) a(z)="7"(z) and

T

(12)  ((z) = =g, (Im(za(2))) — ¢g,(Im(26(2))) + 5 (I (24(x))) +/ 9(2)dz.

e

For z = « we certainly have z,(a) = zg(a). Suppose that a(z) # 6(z) identically. The
dimension of the Cayley-Dickson algebra A, over the real field is not less, than four. Therefore,
we can choose a path v so that v is orthogonal to § and x at each point on 7, that is v/(¢) L
&' (~(t)) and v/(t) L &'(y(t)) relative to the real-valued scalar product (RS) for each t € [0, 1],
where /() := dvy(t)/dt. Then g1(z9(z)) = g1(v) and ¢p(Im(2.(x))) = ¢p(a’) for each z =
v(t). Therefore, along such path v one has

(13)  91(za()) + g1(a) = ((2) = =&y, (Im(2a(2)) = &g, (@) + Dy () + /x 9(2)dz

for each z = (t). Expressing g;(z) from Equation (11), substituting into 26(4) and integrating

one gets:
x

(14)  f(za(2)) = —s(Im(zar (2))) + / g1(2)dz.

«

Particularly, if the operator A is with constant coefficients, then si(z) = 0 identically for each
k, consequently, # = 0 and xk = 0 identically and g;(2.(x)) = g1() = ¢g, (Im(z,(z))) for each
z, when f has a right linear derivative by z. Arbitrary integration terms in (11,14) can be
specified from the boundary conditions.

Finally, the restriction from the domain in 4, onto the initial domain of real variables in
the real shadow and the extraction of ¥ o f € A, with the help of Formulas 1(1 — 3) gives the
reduction of a solution from A, to A,, where 7} : A, — A, is the R-linear projection operator
defined as the sum of projection operators my + ... +mor_; given by Formulas 3(P1, P2) on Ri;
for j =0,...,2" — 1.

28. Laplace’s operator. When

(1) Ap = A, = Z?:1 0%/023,
is Laplace’s operator, then

(2) TF(2) = S0 (9F(2)/02)i5, 5o that

(3) A, =TT*=-_TT, T = T,
where 2 <n <2"—1, 21, ..., z, € R, in accordance with §2. Consider the fundamental solution
U of the following equation

(4) E¥(21, ..., 2n) = 0(21, ..., 2,) With Z = A,, satisfies the identity:

(5) ¥ = —(TW) % (YW¥) (see the convolution of generalized functions and this formula in
§89, 19.4).

We seek the real fundamental solution ¥ = W, since the Laplace operator is real. The Fourier
transform with the generator i (see §33 [28]) by real variables z1, ..., 2, gives

(6) F(Tn)(x) = —[F(YV,)(2)]? = =[], 2;4) F (V) (2)]?, since

F(YV,)(z) = Z?:1 F(0V,/0z; ij = _i(ijl le;)F(\I/n)(LU),
where x = (21, ..., 2,), 1, ..., 2, € R (see also §2) Thus we get the identity

(7) F(W,)(@) = —(1, ) [F(2,) (@) o

(8) F(¥,)(x) = —(1/(X])_, #3)) for n > 3 is the regular generalized function (functional),
while
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(9) F(¥o)(x) = —P(1/(3]_, 23)) for n = 2.
We recall that the generalized function P(1/(>27 i-173)) on ¢ € D(R? R) is defined as the
regularization:

2

(PAL/(Y_23).¢) = /|<1[¢($) — ¢(0)]|=|*dw + ¢(z)|z|*dz,

j=1 |z|>1
N _ 2 _ 2 .2 R
where x = (z1,23), |z|* = 27 + 23, z1,22 € R.

The inverse Fourier transform (F~'g)(x) = (2m) "(Fg)(—=) of the functions 1/(3°7_, 27)

for n > 3 and P(1/ (25:1 27)) for n = 2 in the class of the generalized functions is known (see
[6] and §89.7 and 11.8 [37]) and gives

(10) (21, 20) = Cu(doi_y 25)' "2 for 3 < n, where C,, = —1/[(n — 2)0,], 0, =
472 JT((n/2) — 1) denotes the surface of the unit sphere in R™, I'(x) denotes Euler’s gamma-
function, while

(11) Wo(21,22) = Cs ln(zj , 23) for n = 2, where Cy = 1/(4).

Thus the technique of convolutions over the Cayley—chkson algebra has permitted to get the
solution of the Laplace operator.

Another method is with the line integration over the Cayley-Dickson algebras. In accordance
with Formula 26(9) we get

\I’n<21, cevy Zn) = —ITITCS.

Laplace’s operator and the delta-function are invariant under any orthogonal transform 7' €
O0,(R) of R"™. Therefore, a fundamental solution ¥,, also is invariant relative to the orthogonal
group O,(R). That is ¥,, depends on |z| and is independent of spherical angles in spherical
system of coordinates. Thus we choose the corresponding branches of the anti-derivative ZyZyd.
The volume element in the Euclidean space R™ can be written as A(dz) = 2" 'dzds, where
x = |z| and ds is the surface element (measure) on the unit sphere S"~!. For each orthogonal
transform its Jacobian is unit.

One can take the family of test functions n. = (271')+/26" exp{—(2% + ... + 22)/(2¢®)} tending
to the delta-function, when ¢ > 0 tends to zero. These functions can be written in the z-
representation due to Formulas 1(1 — 3). On the other hand, for each z-analytic function 7
with real expansion coefficients into a power series each line integral over the Cayley-Dickson
algebra A, restricted on any complex plane R@® MR coincides with the usual complex integral,
where M is a purely imaginary Cayley-Dickson number. Therefore,

LY n(2)d2)y*dy = k+1 [HEFT — 22 (2)dz for k # —1 and

LY n(z)de]dy = [ (n(t) = In(z))n(=)d=.

For the characterlstlc function xpmn04) of the ball B(R",0,z) of radius > 0 with the
center at zero in the Euclidean space R™ embedded into the Cayley-Dickson algebra A, one can
take a sequence of test functions ;w' converging to the regular generalized function x gmn04),
when [ tends to the infinity, consequently, limy [g, w'(2)A(dz) = on2". Integrating twice
with the anti-derivative operator these test functions 7. in accordance with Example 4.1 and
Theorems 19 and 23 and taking the limit with € tending to zero from the right one gets Formulas
(10, 11).

This can also be deduced with the help of the Fourier transform with the generator i:

(12) F(¥,)(z) = F(=IxIxd) = (3, 25) ' F(0) = (7, #5) 7"
Applying the inverse Fourier transform to both sides of Equation (12) we again get Formulas
(10,11).

29. The hyperbolic operators with constant coefficients.

Consider now the hyperbolic operator
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(1) Ag = Lpg = ?:1 82/8332' -2 J=p+1 82/82
where p+qg=mn,1<pand1<gq, (p, q) is the signature of this operator, z1, ..., z, € R. Take
two operators T and Y; with constant A, coefficients so that

(2) T(2) = 52 (0F(2)/02)ity + Xy a(0F(2)/02)[i3i3,] and

(3) T1f(2) = S0, (DF(2)/02)i% + S 1 (OF(2)/02)lirisy ), so that

(4) Lpg =TTy,
where 2 <n <2¥7"—1, r =1 < v, in accordance with Formulas 2(7—9). Then the fundamental
solution W of the partial differential equation

EU(21, ..y 2n) = 0(21, ..., 2,) With = = L, , satisfies the identity:

(5) U = (T*¥) % (T10).

We seek the real fundamental solution ¥ = W, .. since the hyperbolic operator L, , is real.
Using the Fourier transform with the generator i by real variables 2, ..., z,, we infer that

(6) F(Wy0)(x) = [F(T"Wy0) (@)][F(T1W, ) ()]
= [0 %223 +2 7 p %Z2JZ1)F(\I’p,q)($)][_i(Z;):l Tjing+) i TiiafiT) F(Vp) ()], since

F(T0,,)(@) = S0, F(0Wy0/02)in, + D iepir F(0q/07))injiy
= —1(Z§:1 Tjtog + 25 p i1 Titaji) F(Ppg)(2)
and analogously for 1%, where z = (ml, ey )y T1, ..., Ty, € R (see also §2). For the function

(7) P(z) =370, m?—zy p+1 T3 with p > 1 and g > 1 the generalized functions (P(z)+i0)*
and (P(x) —i0)* are defined for any complex number A € C = R @ iR (see Chapter 3 in [6]).
The function P has the cone surface P(zy, ..., 2,) = 0 of zeros, so that for the correct definition
of generalized functions corresponding to P» the generalized functions

(8) (P(x) + ci0)* = limgeeeco(P(z)? + e)M2 exp(iX arg(P(z) + ice))
with either ¢ = —1 or ¢ = 1 were introduced. Therefore, the identity

(9) F(¥pq)(x) = —( 5 1I3 - Z?:p—i—l x?)[F(‘ij,q)(x)]Q or

(10) F(¥) = —1/(P(x) + ci0) follows, where ¢ = —1 or ¢ = 1.

The inverse Fourier transform in the class of the generalized functions is:

(11) F~Y((P(x) + ci0)M) (21, ..., 2n) = exp(—mcqi/2)2P2 2277 2T (X + 1 /2)(Q(21, .., 20) —
€i0) /2 /[T(~ )| D] 2]
for each A € C and n > 3 (see §IV.2.6 [6]), where D = det(g; ) denotes a discriminant of the
quadratic form P(z) = Z?,k=1 9j.xT;xk, while Q(y) = szzl g7*z;z;, is the dual quadratic form
so that Y, ¢"*gr, = (5{ for all j,; 5{ =1 for j =1 and 5{ = 0 for j # [. In the particular
case of n = 2 the inverse Fourier transform is given by the formula:

(12) F7Y((P(z) + ci0) 1) (21, 20) = —47Y|D|7Y2 exp(—meqi/2) In(Q(21, ..., 2,) — ci0).

Making the inverse Fourier transform F~! of the function —1/(P(z) +i0) in this particular
case of A = —1 we get two complex conjugated fundamental solutions

(13) U, 4(21, oy 2n) = —exp(meqi/2)T((n)2) — 1) (P(21, ..., 2) + ci0)1=(/2) /(477/2) for 3 < n
and 1 < pand 1 < g with n = p+ ¢, while

(14) Wy1(21,20) = 47 exp(meqi/2) In(P(z1, 22) + ¢i0) for n = 2, where either ¢ = 1 or
c=—1.

Another approach consists in using the anti-derivative operators. The hyperbolic operator
L,, and the delta-function are invariant under the Lie group O, ,(R) or all linear transforms
of the Euclidean space R™, n = p + ¢, preserving the scalar product (z,y),, = Z§:1 Ty; —

§’+g+1 z;y; invariant. Thus U, , can be written as a composition &(P(x)) of some function &(y)
and of P(z) given by Formula (7). Therefore, we take the corresponding branch of the anti-
derivative in the form ZyZy, § = £(P(z)). Applying the Fourier transform with the generator
i we infer that

(15) F(¥,,)(z) = F(IxZy,d) = (P(z) + ci0) ' F(§) = (P(z) + ¢i0) ™!

Applying the inverse Fourier transform to both sides of Equation (15) one gets Formulas
(13,14).
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Thus the results of §§2-25 over the Cayley-Dickson algebra A, lead to the fundamental
solution of the hyperbolic operator L,,. This means that the approach of §§2-25 over the
Cayley-Dickson algebras leads to the effective solution of any hyperbolic partial differential
equation with constant coefficients. Thus Formulas of §§2, 8 with the known function ¥ = ¥,
from Formulas 28(10,11) and (13, 14) of this section give the fundamental solution of any first
and second order linear partial differential equation with variable z-differentiable A,-valued
coefficients, z € U C A,,.

30. Example. The heat kernel. Each function of the type f(z) = P,(2) exp(—t|z|*) with
a marked positive parameter can be written in the z-representation due to Formulas 1(1 — 3),
where P,(z) denotes the polynomial by z of degree n. Therefore, f(z) in the z-representation
is z-differentiable, consequently, infinite z-differentiable (see [23, 22]) and

lim ™ (2).(h1, ooy ) (1 + [2]F) =
|z| =00
for each 0 < m, k € Z and Cayley-Dickson numbers hq, ..., h,, € A,. Therefore, the space E of
infinite z-differentiable tending to zero at infinity functions together with their derivatives mul-
tiplied on the weight factor (1 + |z|¥) is infinite-dimensional. Thus it is worthwhile to consider
the topologically adjoint space E'; of R-linear A,-additive continuous A,-valued functionals
on E. Elements of E'; are also called the generalized functions. A function or a generalized
function is called finite if its support is a bounded set.
The heat partial differential equation reads as
(1) Ov(2)/020 = a*Av(z) + f(z),
where z = 2080 + ... + Zmlim, 20, s 2m € R, 1 <m < 2Y — 1, 2 < v, where a > 0, f(2) is a real-
valued generalized finite function so that f(z) is zero for zp < 0 (see §16 [37]). We shall seek
the generalized solution &£ of this equation using the technique given above. The generalized
function v = & * f is the solution of (1), where

(2) 0E(2)/020 — a*AE(2) = 6(2),

3) (€+f)z //m T — 2)f(2) Az dim.

As usually ¢ denotes the § generalized function so that

(4) (6 f)(z) = /OIO /m5(x —2)f(2)dz....dz,m = f(2)

for each continuous bounded function f. If f is (super-)differentiable and bounded in each
domain {z:0 < zg < T} for 0 < T < o0, f(z) =0 for zg < 0, then the solution v is also (super-
)differentiable in the domain zy > 0 as it will be seen from the formulas given below. Let us
seek the generalized solution € in the form £(2) = w(z)e*®), where w and u are unknown real-
valued functions to be determined. Calculating derivatives of £ and substituting into Equation
(2) one gets:

(5) " {w'(20) +w(20)0u(2)/ 020} — a”e"Pw(z0) 311, [(Ou(2)/02;)* + 0*u(2)/027] = 8(2),
consequently,

6) (Hw(z)w'(20) = —0u(2)/0z + a*37[(0u(2)/0%) + 0%u(2)/0z] +
e (1/w(2))d(2).
Take now any sequence of continuous non-negative functions 7, with compact supports U,
such that U,1 C U, for each n, with (), U, = {0},

(7) / Nn(2)dzo...dzm = 1
Rm+1
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for all n, tending to ¢ on the space of continuous functions p(z) on Rig & ... ® Ri, with the
converging integral [g,..1 [P(2)[*dzo...dzy, < 00

(8) limy, 00 me+1 p(2)nn(2)dzg...dzm = p(0).

Therefore, we get that on Rig @ ... ® Ri,, \ {0} for zp > 0 the following equation

9) (1 w(zo))w'(20) = —0u(z)/0z + a* Z[(@u(z)/azj)2 + 8%(2)/82?]

j=1

need to be satisfied. The left side of (9) is independent of z — zj, hence the right side is also
independent of z — zy. The partial differential operator

{0u(2) /020 4 a® 377", [(Ou/02;)? + 0%u(2)/027]} acting on u is of the second order. For
each Cayley-Dickson number z € A, the identity 2? = 2z Re(z) — |2|? is satisfied, particularly,
M? = —|M|? for each purely imaginary number M € A,. Therefore, a function u may be only
a polynomial by real variables zq, ..., z,,, of degree not higher than two. On the other hand, the
Laplace operator A and the ¢ function are invariant relative to all elements C' of the orthogonal
group O,,(R) acting on variables z1, ..., z,,. Each O,,(R) invariant real polynomial P of the
second order has the form a(z?+ ...+ 22) + 3, where a and 3 are two constants independent of
21, ey Zm. Thus u as the polynomial of 21, ..., z,, may depend on |z — zy|? = 2% + ... + 22 only.
The latter sum of squares can be written in the z-representation with the help of Formulas
1(1 — 3). This means that £ has the form:

(10) £(2) = w(zo) exp{a(z0)(2? + ... + 22) + B(20)} and Equation (9) simplifies:

(11) (1/w(z0))w'(20) = —[da(z0)/d2o] (21 + ... + 23,) — [dB(20)/do]

+aa(z0){2m + a(z) Z 423}

j=1

We can denote w(z)e®*) by w(z;) again and take without loss of generality that 3 = 0. The
left side of (11) is independent of 21, ..., 2, hence terms with |z — 2|? in (11) are canceling:
a~2(z9)[da(z0)/dz] = 4a®. The latter differential equation gives a(zg) = —1/(co + 4a®z),
where c¢g is the real constant. Substituting this a into (11) one gets:

(12) (1/w(z0))w'(20) = a®a(zp)2m.

Together with Condition (2) this gives Cy = 0 and the heat kernel &:

(13) £(2) = (z0)[2a(r20) 2] ™ exp{—|2 — zo[?/[4a%]}
and the solution

(14) v = € * f,
where 60(zy) = 1 for zy > 0 and 6(z) = 0 for 2y < 0.

If use anti-derivation operators the solution has the form 26(6 —8) supposing that a solution
£ is real-valued on real-valued test functions w, [£,w) € R, where T; =T, YT = —a?A,, (see
§) and Yo = 0/0z. Therefore,

(14) (125 = —ITIT(85/6Z0 - (S)

Making the Fourier transform F' = F,, . by the variables zi,..., 2, with the generator i of
both sides of Equation (14) one gets for suitable branches of the anti-derivatives

(15) a?F(E)(20, %1, ooy ) = [a® D70 2371 (OF (€) /020 — 0(20))-

Solving the latter ordinary differential equation one finds F'(€)(zo, 21, ..., T,,) and making the
inverse Fourier transform by the variables z1, ..., x,, € R one gets Formula (13).

31. Example. Wave operator. In this section the fundamental solution & = &, of the

wave operator is considered:

(1) TIE(t, z) = 6(t, ), where
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(2) [1f = 8%f/0t> — Af denotes the wave (d’Alambert) operator with
(8) Af=) 0°f/0x],
=1

where t > 0, 1, ..., z, € R. We make the change of variables putting t = 2y, x; = 2242 for each
J=1,...,n, 2= 20+ 20s+...+290_2iw_o € Ay, 20, ..., 200_1 € R, 7 = 1. We consider the case
n =3 and v = 4 so that A; 4 is isomorphic with the octonion algebra A; = O. Let us seek &
in the class of the generalized functions in the form £(z) = 6(z2) f(2), where 6 and f are some
generalized functions to be calculated, f may depend only on 2o, 24, ..., 29,42. D’Alambert’s
operator H is invariant relative to any R-linear transformations A from the Lie group Oy ,(R).
Elements of the group O, ,(R) are characterized by the condition A’'GA = G, where G denotes
the square (n + 1) x (n 4+ 1) diagonal matrix G = diag(1, —1, ..., —1), the transposed matrix A
is denoted by A!. This means that the wave operator H is invariant under change of variables
€ = (22,24, .., 2ons2)A for any A € 0y,(R). Making the differentiation of £ one gets the
differential equation: o

(4) [I€ = (0%60/023) f + 2(00/022)(0f | 029) + O] I f = d(2).

The é-function () is also invariant relative to all transformations of the Lie group Oy ,(R),
since dg = g(0) for each continuous function g with [g,.,1 |9(2)[?d22...dz2n 42 < 00. On the other
hand, Equation (4) implies that o

(5) 020/025 = —[2(00/022)(0f /0z2) + O11f — 6(2)]/ £ (2)
for each z € A,,, when f(z) # 0. The left side of Equation (5) may depend only on zj,
consequently, the right side of (5) is independent of zg, ..., 295,42. In view of Formulas 29(2, 3)
with p = 1 and ¢ = n we get the operators 0 = T and o7 = T with ) = 0 up to the enumeration
of the variables. Therefore, one gets the functions ¥, (see Formulas 29(13,14)) over the
Cayley-Dickson algebra A,. But due to the Oy ,(R) invariance of the generalized function £
we infer that it is necessary to take the Oy ,(R) invariant polynomial P(y) = (y3 —>_7_; ¥3;2)-
Thus we put € = 0(2)f(2) with f(z) = u(23 — >0, 23;,,), Where u is some generalized
function. Substituting u instead of f into (5) one gets the simplified differential equation. If
suppose that 90/0z5 = 0 for 2, > 0, then 9?6/923 = 0 and Equation (5) leads to the differential
equation

(7) 4u®).(1,1)(n)n — 40 1(n) = 6(2) /<,
where n = n(2) = 22 — 22 — 22 — 2%, 0(22) = ¢ = const for 25 > 0. Choose any sequence of
z-differentiable functions g,(z) with compact supports converging to the d-function as in §§24
and 30, when n tends to the infinity. Each function g¢,(z)/n(z) has poles of the first order at
points 2y = [22 4 22 + 2212 and 2y = —[22 + 22 + 22]'/2. Making the substitution p = «’.1 in (7)
and Formula 3(10) [20] with the right side Q(2) = gn(2)/n(2) and b(z) = —1/n(z) we obtain
the integral expression for the solution p,, of the differential equation

(8) P'n-1(n) = pa(n)/n = gn(2)/(4cn).
To evaluate the appearing integrals it is possible to use Jordan’s Lemma (see §2 in [24]) over
the octonion algebra isomorphic with A; 4. The evaluation of the integrals (see §3 also) with the
given functions can be reduced to the complex case, when a and x belong to the same complex
plane C,;. Applying Jordan’s lemma one deduces the expression for p, and the limit function
p(n) =& (n)/(2me) + K, where K is a constant, since n € R. Therefore, u(n) = [ p(n)dn. Thus
one infers the fundamental solution

(9) &(2) = 0(1)8(E — |af?)/(27)
and the generalized solution &3 * s of the wave equation

[1f = s, where s = s(z) is a generalized function or particularly a z-differentiable function.
The delta generalized function §(P) of the quadratic form P(z) = 2+ ...+ 22—l —...— a2,

is described in details in §IV.2 [6].
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32. Helmholtz’ operator.

When 3 # 0 with Re(t;3) = 0 for each j (see §8), for example, 8 = By + iz with real 3,
and ; and k > n, then

(1) Ap = A, + |B* is Helmholtz’ operator. The corresponding operator T is given by
Formula 28(2).

For an arbitrary real non-degenerate quadratic form P(z) generalized functions (c? + P +
bi0) with ¢ > 0,b=1o0r b= —1, A € C = R® Ri, are defined as:

(2) (02 + P+ biO))\ = lim0<€_>0(c2 + P+ bEiPl)A,
where P; is a positive definite quadratic form.

Some special functions are useful for such equations. Bessel’s functions are solutions of the
differential equation

(S1) 22d*u/d2* + zdu/dz + (2% — N\?)u = 0,
where A and z are complex. Bessel’s function of the first kind is given by the series:

(S2) Ji(z) = i ™(2/2)*™ ) ImIT(A + m + 1)],

m=0

where z and A € C;. Then

(S3) I\(z) = exp(—7mAi/2)Jy\(iz)
is called Bessel’s function of the imaginary argument. Other needed functions for non-integer
A are:
(54) Nx(2) = [J1(2) cos(mA) — Jx(2)]/ sin(r2),
(85) HY(2) = Jx(2) + A(Z)
(56) HO(2) = Jy(2) — iV (2),

(S7) Kx(2) = m[I_x(2) — A( )]/[2sin(m\)] = 7 exp(ir(X + 1)/2)H{" (iz) /2
with the complex variable z and non-integer complex parameter A. For integer A values of
these functions (S4 — 7) are defined as limits by A € C; \ Z. The functions H® and H® are
also solutions of Bessel’s differential equation (S1) and they are called Hankel’s functions of the

first and the second kind respectively, K)(z) is known as Mcdonald’s function. The functions
I(z) and K,(z) are linearly independent solutions of the differential equation:

(98) 22d*u/dz* + zdu/dz — (2* + N*)u =0
(see about special functions in [18, 31]).

Analogously to §28 using Formulas 19.4(C4 — C7) and 14(3,4) or Theorem 23 for a funda-
mental solution ¥,, of the equation

(3) AO\I/n - (5,
where A is Helmholtz’ operator, we get the identity

(4) F(¥n)(2) = [ = 3Gy 2)][F (¥n)(2)]* or

(5) F(¥n)(x) = 1/[c* — (325, #7) + bi0],
where ¢ > 0, ¢ = |8|. The Fourier transform of the generalized function (¢ + P(z) + bi0)* by
the real variables © = (21, ..., ;) with the generator i is:

(6) Fl(c® + P(x) + bi0)*|(y) =
M (2m) P IK ) [e(Q(y) — bi0)]/[D(=A)DY2(Q(y) — bi0) Y/2+7/9)],
where D = det(g;x) denotes a discriminant of the quadratic form P(z) = > 7 | g;x%;s,
Q(y) = szzl g7Fx;zy, is the dual quadratic form so that >, g™ gy, = 5{, 5{ =1forj=1
and §] = 0 for j # [ (see §IV.8.2 [6]). Mention that D2 = |D|*/? exp(—qri/2) if the canonical
representation of the quadratic form P has g negative terms.
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Another formula is:

(7) Fl(c* + P(x) + bi0)*|(y) =

221 (2m)"/2 exp(—bgmi/2) M A Ky ) [e(Q () 2]/ [T (=N [ DIV2(Qu ()M #+74]

+(bmi/2) HA), o) [e(Q- ()24 [D(=N)[D]Y2(Q () >+ /43,
where j(1) =1, j(—1) =2,

(P}, ) = fP>O Prpdz,...dz,,

(P ¢) = fP<0 P pdx,...dx,.

The functions (P + bi0)* and P} and P» by the complex variable A are regularized as it is
described in [6] with the help of their Laurent series in neighborhoods of singular isolated
points A such that after the regularization only the regular part of the Laurent series remains.
The functions (P + bi0)* with b= 1 or b = —1 have only simple poles at the points A = —n/2,
-(n/2)-1,...,—(n/2) — k,..., where k = 1,2,... is a natural number. Using formula (6) with
A= —1and P(z) = —(2? + ... + 22) one gets the fundamental solution ¥,,, where (F~'g)(z) =
(27)"(Fg)(—z). Particularly, U3(z) = — exp(bei|z|)/(47|z|), Ua(z) = —iH" (c|z])/4 or its
complex conjugate iHé2) (c|z|)/4, where H(gj ) denotes Hankel’s function, j = 1, 2.

33. Klein-Gordon’s operator.

Consider 8 and ¢; as in §8 with Re(t}3) = 0 for each j, ¢ = |3 > 0. Take the operator

(1) Ao = Lypq+ ¢,
where L, , is the hyperbolic operator as in §29. For p = 1 and ¢ = 3 the operator Ay is called
Klein-Gordon’s operator. From Formulas 32(C4 — C7) and 14(3,4) or Theorem 23 we infer
that

(2) F(Wn)(2) = [¢® = (XF_y 25 — X001 )| [F (W) (2)]? or

(3) F(0) (@) = 1/[6* — (S22 — Yooy 22) + biO]

Then Formulas 19.4(6) or 32(7) with A = —1 and P(z) = —2f — ... — 2 + 22 + ... + 23,
n = p + ¢, give the fundamental solution ¥, , of the equation

(4) (Lpg + ) Tpq =9,
where (F'g)(z) = (2m)"(Fg)(—z). There are two R-linearly independent fundamental solu-
tions, so their R-linear combination with real coefficients a; and as such that a; + as = 1 is
also a fundamental solution.

34. Remark. Certainly, more general partial differential equations as 30(1), but with
0w /0z,, 1 > 2, instead of Ov/dzy can be considered. It is worth to mention, that alternative
deductions using Formulas 7(1) and 27(11, 14) can be used instead of 8(1) and 19.4(C1—C7) in
§§30 and 31 providing also u(z) = a(2{+...4-22,)+0 and f(2) = u(23—>_"_, 23;,,) with the help
of the symmetry Lie groups O,,(R) and O;,(R). Indeed, Functions P(z)* satisfy Condition
7(P3) for any real A, where P(z) = 22 + ... + zﬁ — z§+1 — =22 1<p<n< 21,1 <,
since (dP(z2)*/dz).h = P(2)*"1A\2Re(n(2)h), where z € A,, n(z) = 2141 + ... + 2,i, for p = n,
while 7(2) = 2192 + ... + 2piop + 2p113lo(pt1) + .. + Zniiia, for p < n. The function 7(z) can be
written in the z-representation due to Formulas 1(1 — 3).

Formally the case of the hyperbolic operators L, , 4+ ¢* and their fundamental solutions is
obtained from the elliptic operators A,, +c* with ¢ > 0 by the change of variables (zy, ..., z,) —
(@1, <oy Tpy Tpiad, ..y Tpigl), where n = p+ ¢, z; € R and z;i € C = R @ Ri for each j, since
the quadratic forms P may be with complex coefficients and their Fourier transforms can be
considered as in [6]. At the same operators o or Y for these particular operators L, , + ¢?
and A, + ¢® can be written over the complexified algebra (A, )¢ instead of the Cayley-Dickson
algebra A,, 2 <r < v (see §2 above). For this we take in Formula 2(8) i instead of wj so that

(1) of(z) =251 (0f(2)/0z)i; + >0, 1(0f(2)/02;)ii}, consequently,

(2) (c+o)c—0o)f =(Lyy+*)f and

(3) (c+o)(ct o) f=(cta)(cto)f =(Antc)f.
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Let

(4) Ecpg = Lpg+* wherec € R, L,p=A,, 1 <p<n,g=n—p, and let ¥.,, be a
fundamental solution of the equation

(5) Eepq¥epg =0
Then due to Identities (2,3) a fundamental solution £ = £, of the equation

(6) (o + B)E = § can be written in the form:

(7) €810 = (0 + B)*Wepo, where 8 € A,, |B] = ¢, Re(t;3) = 0 for each j, t; = i} for
1 <j <p,t; =1 for p < j < n. Moreover,

(8) Eero = (c—0)¥epy

Therefore, we infer a solution of the equation

(9) (c+B8)f =g in D(R™, A,) or in the space D(R™, A,);:

(10) f = €346 * g. From (2,3) we deduce a fundamental solution V of the equation

(10) AV = (0 + B)(01 + £1)V = § in the convolution form:

(1) V = &Erip * Eoyvps
since

(12) AgV = (0 + B)(01 + B1)(((0 + B) Wemo) * (01 + 51) Peno)

= (((O’ + ﬁ)(a + ﬁl)*‘yc,n,o) * (((0'1 + ﬁl)(O'l + ﬁl)*\I’C,mo)) =d*0=9. Particularly,

Uepg=—Ccro*E cio = ((c—0) Vo) *((c+0)¥.no), that can be lightly verified after the
Fourier transform by real variables with the generator i, since by Formulas (1, 2) the operator o
and its anti-derivative operator Z, correspond to the signature (p, q) and F(oco*g) = —|z|*F(g)
for any g € D(R", A,)}.

Knowing a fundamental solution it is possible to consider then a boundary problem (see
also [13, 37]).

35. Partial differential equations of order higher than two.

The fundamental solution Wym, 3 of the equation

(1) Eam,g¥rmip =0,
where

(2) Boms = (T7 + B)(T™ + 3"
can be obtained using decompositions with the help of operators of the first order Y, + G by
induction, if such decomposition exists (see §§10-14 above). Suppose that this decomposition
is constructed

(3) (Y™ +8) f(2) = (Yo +Bm)[---[(To+B2) [(Tim+LBm) f(2)]]-..], then the fundamental solution
can be written as the iterated convolution

(4) Upmig = [ [[(Tom 4 Bn)*Em] * (Y1 + Br1) Ema]] * -] % [(T1 + 1) &1l
where £; denotes the fundamental solution of the elliptic second order partial differential equa-
tion

(5) A;&; =4, with

(6) Aj = (Y5 + 8;)(T; +6;)"
The fundamental solutions &; were written above in §§2 and 28. Indeed, using Equalities
4(7 —9) by induction we have

(7) 226 (@ b, Ot ) B2 ) )0 ) 01,11 ) 02,05 ) - ) B 1,
= Re(ay, ;. amy,,)---Re(aly a1y,),
where ) denotes the sum by all pairwise transpositions (ki1,0),...,(km,lm), ajr € A,. There-
fore,

(8) Eom,g¥rmip =
[H(Tm"{'ﬂm)(Tm +ﬂm)*‘€m] * [(Tm—l +ﬂm—1)(Tm—l +6m—1)*gm—1]] * ] * [(Tl +ﬂ1)(T1 +ﬁ1)*51]
=[..[0*%d]x..]xd=04.

Vice versa if the fundamental solution Wym,sz is known, then we get the fundamental
solution &5 of the equation

9) (Y™ +B)EF =6 as
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(10) &5 = (Y™ + B)*Wym 5 in accordance with (2,7). Moreover, the equation

(11) Apyif = g with Apyy, = (YT + 61)(T5 + 5a)
in D(R™, A,) or in the space D(R", A,);, where n is a number of real variables, 2 < n < 2%,
has the fundamental solution V,, x:

(12) Visr = Expp * Exkyp,, Where

(13) Expip = (Y1 + B1) " Wrpois
denotes the fundamental solution of the equation

(14) (YT + B1)Exmip, = 0, consequently,

(15) f = Vim+k * g is the solution of Equation (11).

For example, the fourth order partial differential operator

Auf(2) = Y0, 04 () )08 — S0 04 (2) /02!
can be decomposed as the composition of two operators of the second order T? and Y? formally
as o and oy in 2(8,9) with the substitution of 9 f /0zor; on 0% f /023, ; so that in accordance with
Theorem 10 this operator A4 can be presented in the form given by Formulas (2,3, 11).

On the other hand, fundamental solutions of A¥ and L% ~and A} for certain other second
order partial differential operators are known. So combining them with operators of the form
T .Y7™ permits to consider fundamental solutions of many partial differential operators of
order higher than two as well.

Thus knowing fundamental solutions of the corresponding first or second order operators
permits to write fundamental solutions of higher order partial differential operators considered
above with the help of the iterated convolutions in a definite order prescribed by the induction
process.

36. Non-linear partial differential equations.

We consider the differential equation

(1) (Y™ + 68+ f(y)V)y =g,
where Y™+ 3 is a partial differential operator as in Formula 10(13) of order m, f(y) is a A, dif-
ferentiable function, y = y(z) is an unknown function, f(y)Yy := Z?:O[f(y).(ay(z)/azj)]qb;f(z).
Suppose that a fundamental solution Eym, s of Equation 35(9) for the operator (Y™ + () is
known. Find at first a fundamental solution y =V of (1) with g = §. Then

(2) (X" + BV =5 —p.
where 1i(2) = f(y(2))Yy(z). The anti-derivative gives

(3) w(y(2)) =+ [(fW)Yy)dz = [ f(y(z))dy(z) = [ f(y)dy = v [ u(2)dz,
then

@)y =0 [y, pla)do),
where w™! denotes the inverse function. On the other hand,

(5) y=Ermip* (6 — p) = Zymyg(d — ), when Y™ is either of the first order for m =1 or
is expressed as a composition of operators of the first order,

(5.1) Y™+ 3= (Y1 + 6")..(Tp + ™) so that

(52) I’rerg = Z’rm+/3m...z-f1+51,
consequently, (4,5) imply the equation:

(6) Exmis + (6 — ) = Temi(d — 1) = w(x [,

(1) w(Erogs (0= ) =1 [, pla)d
We have the identity

(O(E ) /02,),6) = — (€ + V), 00/02,) — (€  (99/0,)), 6)
with a generalized function W.

Therefore, differentiating (6) by zo,...,z,, we infer that:

(3) {550l 5 * (O0a(2)/02)]5 () }+
(n+ 1)1 0, _o[(dw () /d€).(B(2).(v; () [920)))63 () = YTErmis or

p(x)dzx) or

O‘I[a,,tz]
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©) Y(Ten s A

(n+1)7 320 o l(dw™(€)/dE).(0(2)-(0v;(2) /02))I¢5(2) = Y (T 1),
where

(9.1) [((dg(2)/d2).6;(2)) ® ¢7(2), w??) = [u(2) ® 1,w"?)
for each real-valued test function w and each j, 6(z) = dg(z)/dz, € = ¢ f7 o x)dx (see
also §84, 5, 17, 23 and 26). If T and § are independent of z;, i.e. ¢;(z) =0 is zero 1dentlcally
on U, then O(Zymypp)/0z; = Tym i (0p/0z;) (see also Note 23.1). Otherwise the derivative
O(Zympp)/0z; is given by Formulas 4(6) and 23(8) and 26(1). The function w is known
from (3) after the line integration by the variable y, so Equation (8) is linear by (Ou(z)/0%;),
j=0,...,n. It can be solved as in [20]. Calculating p from (8) or (9) we get the fundamental
solution:

(10) V = Exmyg* (6 — p)
and the (particular) solution of (1) is:

(11) y =V xg.

When [Exmg,w) is real for each real-valued test function w or Yf = (9f/0z0)¢o(z) with
a real-valued function ¢g(z) and the inverse relative to the convolution generalized function is
known Exm 5 such that

(12) Exm g% Exmip =,
then Equation (8) simplifies: )

(13) Tu(z) + (0 + 17 30 o Ermap * [[(dw™(§)/dE).(0(2).(0vi(2)/021))]¢i(2)] =
Z?ZO[EELW * (0&xm 13/02;)|#5(2), consequently,

(14) Tu(z) + v(p) = b(z), )
where v(p) = (n+1)7 3200 Exmg * [[(dw™'(€)/dE).(0(2)-(Ov;(2)/021))] 9k (2)] and b(z) =
Sfﬁurﬁ % <T5Tm+g).

If equation (1) iSAsolved, then it provides a solution of more general equation:

(15) (X + 5+ (0 €) (0 = g
finding ¢ from the equation (Y)*~¢ = y, where (T)* denotes the k-th power of the operator
T.

If ¢;(2) = i;9;(z) for each j, then functions {v;(z) : j} can be chosen real-valued or real-
valued generalized functions on real valued test functions (see System 4(10,11) and §23). In

such case the equality R

> kol (dw™ () /dE).(0(2).(0v;(2)/0z)) | 65(2)

S ol (€) /). (u(2) (B (2),/020)i itabu )]
is satisfied. For YTf = (90f/0z0)po(z) with a real-valued function ¢y(z) these equations
simplify, since 0.h = p(z)h for each h € R and z € U and (n + 1)} > k=0 Sgrlnw *
([(dw="(€)/d€).(0(2).(0w;(2)/021)) |6} (2)] = Exm g * [(dw (&) /dE).pu(2)].

Thus the results of this paper over the Cayley-Dickson algebras enrich the technique of
integration of partial differential equations in comparison with the complex field.

It is planned to present in the next paper solutions of some types of non-linear partial dif-
ferential equations with the help of non-linear mappings and non-commutative line integration
over the Cayley-Dickson algebras.
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MHTETPUPOBAHUE BJI0OJIb IIYTEN 1
JANOOEPEHIINAJIBHBIE YPABHEHNA B YACTHDBIX
ITPOMN3BO/HBIX BTOPOI'O IIOPA/JIKA HAJI AJITEBPAMN
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N3syuaercss uHTErpupoBaHUe BIONL myTell ob6odbmenubix dyukuuit. Uccmenyrores aud-
depeHnaIbHbIe YPABHEHUS B YAaCTHBIX MPOM3BOJIHBIX BTOPOTO MOPsiJIKA C KyCOYHO He-
NPEPBIBHBIMU U ODOOIIEHHBIMU TepeMEeHHbIMU Kodddunmentamu nas ajaredpamu Koau-
Hukcona. BeiBenenbl GopMysibl Jjid UX UHTErpUpOBaHusA. st 9TO eI UCIOIb3yeTcs
HEKOMMYTATUBHOE WHTETPUPOBAHUE BIOJb myTeil. /latoTcs npumepsl pemrennit nuddepen-
[UAJIHHBIX YPABHEHUI B 9aCTHBIX TPOU3BO/IHBIX.

Kuarouesbie cioBa: anredbpa Kanu-/lukcona, nuddepeniimanbioe ypaBHEeHNE B YACTHBIX
[IPOU3BOAHBIX, HTETPUPOBAHKE BIOJb IIyTH, 0000IIEeHHAST (DYHKIIHA.



