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1 Introduction
It is well-known, that differential equations have many-sided applications in different sciences
including physics, mechanics, other natural sciences, techniques, economics, etc. The differen-
tial equations also are very important for mathematics [7, 13, 34, 15, 29, 37]. Predominantly
differential equations are considered over fields such as real, complex, or with non-archimedean
norms. Recently they are also begun to be studied over Clifford algebras [9, 10, 11].
Such algebras have a long history, because quaternions were first introduced by W.R. Hamil-

ton in 1843. He had planned to use them for problems of mechanics and mathematics [12, 33].
Their generalization known as the octonion algebra was introduced by J.T. Graves and A.
Cayley in 1843-45. Then Dickson had investigated more general algebras known now as the
Cayley-Dickson algebras [1, 2, 14].
The Cayley-Dickson algebras, particularly, octonions and quaternions are widely used in

physics, but mainly algebraically. Already Maxwell had utilized quaternions to derive his equa-
tions of electrodynamics, but then he had rewritten them in real coordinates.
In the 50-th of the 20-th century Yang and Mills had used them in quantum field theory,

but theory of functions over octonions and quaternions in their times was not sufficiently
developed to satisfy their needs. Discussing that situation they have formulated the problem
of developing analysis over octonions and quaternions [8]. This is natural, because quantum
fields are frequently non-abelian [35]. Dirac had used complexified quaternions to solve the
Klein-Gordon hyperbolic differential equation with constant coefficients.
This work continues previous articles of the author. In those articles (super)-differentiable

functions of Cayley-Dickson variables and their non-commutative line integrals were investi-
gated [22, 23, 21, 25, 26]. In the papers [24, 20] differential equations and their systems over
octonions and quaternions were studied.
The Cayley-Dickson algebras Ar have the even generator i0 = 1 and the purely imaginary

odd generators i1, ..., i2r−1, 2 ≤ r, i2k = −1 and i0ik = ik and ikil = −ilik for each 1 ≤ k 6= l.
For 3 ≤ r the multiplication of these generators is generally non-associative, so they form not
a group, but a non-commutative quasi-group with the property of alternativity ik(ikil) = (i2k)il
and (ilik)ik = il(i

2
k) instead of associativity. Ordinary super-analysis operates with graded

algebras over Abelian groups. Therefore, super-analysis over the Cayley-Dickson algebras is
in some respect more complicated than usual super-analysis, for example, over the Grassman
algebras.
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The aim of this paper is in developing of Dirac’s approach on partial differential equations
with variable piecewise continuous or generalized coefficients.
The technique presented there is developed here below for solutions of partial differential

equations of the second order of arbitrary signatures and with variable coefficients which may
also be piecewise continuous or generalized functions. Moreover, signatures may change piece-
wise in a domain. Formulas for integrations of such equations are deduced. For this purpose
a non-commutative line integration of generalized functions is developed. Examples of partial
differential equations are given. Moreover the approach of §§2-25 over the Cayley-Dickson al-
gebras Av gives the fundamental solution of any first and second order linear partial differential
equation with variable z-differentiable Av-valued coefficients, z ∈ U ⊂ Av, where U is a domain
in Av satisfying some mild convexity conditions described below. These results can be used
for solutions of concrete partial differential equations or their systems of different orders with
piecewise continuous or generalized coefficients, for example, of Helmholtz’ or Klein-Gordon’s
types, which are important in optics of composite materials or quantum field theory. Finally
solutions of some types of non-linear partial differential equations over Cayley-Dickson algebras
are studied.
Main results of this paper are obtained for the first time.

2 Partial differential equations of the second order.

1. Remarks and notations. For a subset U in either the quaternion skew field H = A2 or in
the octonion algebra O=A3 or the Cayley-Dickson algebra Ar, r ≥ 4, we put πs,p,t(U) := {u :
z ∈ U, z =

∑
v∈bwvv, u = wss + wpp} for each s 6= p ∈ b, where t :=

∑
v∈b\{s,p}wvv ∈ Ar,s,p :=

{z ∈ Ar : z =
∑
v∈bwvv, ws = wp = 0, wv ∈ R ∀v ∈ b}, where b := {i0, i1, ..., i2r−1} is the

family of standard generators of the algebra Ar so that i2j = −1, for each j ≥ 1, ijik = −ikij
for each j 6= k ≥ 1, i0 = 1. Geometrically the domain πs,p,t(U) means the projection on the
complex plane Cs,p of the intersection U with the plane π̃s,p,t 3 t, Cs,p := {as + bp : a, b ∈ R},
since sp∗ ∈ b̂ := b \ {1}. Recall that in §§2.5-7 [22] for each continuous function f : U → Ar it
was defined the operator f̂ by each variable z ∈ Ar. If a function f is z-differentiable by the
Cayley-Dickson variable z ∈ U ⊂ Ar, 2 ≤ r, then f̂(z) = dg(z)/dz, where (dg(z)/dz).1 = f(z).
A Hausdorff topological space X is said to be n-connected for n ≥ 0 if each continuous map

f : Sk → X from the k-dimensional real unit sphere into X has a continuous extension over
Rk+1 for each k ≤ n (see also [36]). A 1-connected space is also said to be simply connected.
It is supposed further, that a domain U in Amr has the property that
(D1) each projection pj(U) =: Uj is (2r − 1)-connected;
(D2) πs,p,t(Uj) is simply connected in C for each k = 0, 1, ..., 2r−1, s = i2k, p = i2k+1,

t ∈ Ar,s,p and u ∈ Cs,p, for which there exists z = u+ t ∈ Uj,
where ej = (0, ..., 0, 1, 0, ..., 0) ∈ Amr is the vector with 1 on the j-th place, pj(z) =

jz for each
z ∈ Amr , z =

∑m
j=1

jzej, jz ∈ Ar for each j = 1, ...,m, m ∈ N := {1, 2, 3, ...}. Frequently
we take m = 1. Henceforward, we consider a domain U satisfying Conditions (D1, D2) if any
other is not outlined.
The family of all Ar locally analytic functions f(x) on U with values in Ar is denoted by

H(U,Ar). It is supposed that a locally analytic function f(x) is written in the x-representation
ν(x), also denoted by ν = νf . The latter is equivalent to the super-differentiability of f (see
[23, 22, 24]). Each such f is supposed to be specified by its phrase ν.
For each super-differentiable function f(x) its non-commutative line integral

∫
γ
f(x)dx in

U is defined along a rectifiable path γ in U . It is the integral of a differential form f̂(x).dx,
where
(I1) f̂(x) = dg(x)/dx,
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(I2) [dg(x)/dx)].1 = f(x) for each x ∈ U .
A branch of the non-commutative line integral can be specified with the help of either the

left or right algorithm (see [23, 22, 24]). We take further for definiteness the left algorithm if
something another will not described. For f ∈ H(U,Ar) and a rectifiable path γ : [a, b] → Ar
the integral

∫
γ
f(x)dx depends only on an initial α = γ(a) and final β = γ(b) points due to

the non-commutative analog of the homotopy theorem in U , where a < b ∈ R. When initial
and final points or a path are not marked we denote the operation of the non-commutative line
integration in the domain U simply by

∫
f(x)dx analogously to the indefinite integral.

To rewrite a function from real variables zj in the z-representation the following identities
are used:
(1) zj = (−zij + ij(2r − 2)−1{−z +

∑2r−1
k=1 ik(zi

∗
k)})/2

for each j = 1, 2, ..., 2r − 1,

(2) z0 = (z + (2
r − 2)−1{−z +

2r−1∑

k=1

ik(zi
∗
k)})/2,

where 2 ≤ r ∈ N, z is a Cayley-Dickson number decomposed as
(3) z = z0i0 + ...+ z2r−1i2r−1 ∈ Ar, zj ∈ R for each j, i∗k = ĩk = −ik for each k > 0, i0 = 1,

since ik(i0i∗k) = i0 = 1, ik(iji∗k) = −ik(i
∗
kij) = −(iki

∗
k)ij = −ij for each k ≥ 1 and j ≥ 1 with

k 6= j (shortly k 6= j ≥ 1), ik(iki∗k) = ik for each k ≥ 0.
As usually C0(U,Av) denotes the R-linear space of all continuous Av-valued functions

f : U → Av. More generally Cn(U,Av) denotes the R-linear space of all n times continuously
differentiable by real variables z0, ..., z2v−1 functions f : U → Av, where n ∈ N. Certainly,
Cn(U,Av) can be supplied with the structure of left- and right-module over the Cayley-Dickson
algebra Av using point-wise multiplication of functions f(z) on Cayley-Dickson numbers from
the left and the right.
2. Factorization and integration of equations.
We consider the second order partial differential equation:
(1) Af = g, where

A =
k∑

l,m=1

al,m∂
2/∂τl∂τm +

k∑

l=1

αl∂/∂τl

is a partial differential operator of the second order. Let us suppose that the quadratic form

a(τ) :=
∑

l,m

al,mτlτm

is non-degenerate and is not always negative, because otherwise we can consider −A. Moreover,
let a matrix of coefficients be real and symmetric al,m(τ) = am,l(τ) ∈ R, αl, τl ∈ R for each
l,m = 1, ..., k. Then we reduce this form a(τ) by an invertible R linear operator C = C(τ) to
the sum of squares. This means, that

(2) A =
k∑

l=1

bl∂
2/∂s2l +

k∑

l=1

βl∂/∂sl,

where ∂sj/∂τl = Cl,j(τ), C = (Cl,j), with real-valued functions bl and βl for each l. Here

blδj,l =
∑

p,m

ap,mCp,jCm,l and

βj =
∑
ap,m(∂Cp,j/∂τm) +

k∑

v=1

αvCv,j
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for all j, l = 1, ..., k. In the case when coefficients of A are constant, using a multiplier of the
type exp(

∑
l εlsl) it is possible to reduce this equation to the case so that if bl 6= 0, then βl = 0

(see §3, Chapter 4 in [34]). Therefore, one can as usually simplify the operator with the help
of such change of coordinates and consider that only β1 may be non-zero if b1 = 0.
Thus one can choose an invertible real matrix (ch,m)h,m=1,...,k corresponding to C = C(τ)

so that bl ≤ 0 for p + 1 ≤ l ≤ k and bl ≥ 0 for 0 < l ≤ p, where 0 < p ≤ k, q := k − p.
When q = 0 and βl = 0 for each l the operator is elliptic, for q = 0 and β1 6= 0 the operator
is parabolic, for 0 < p < k and βl = 0 for each l the operator is hyperbolic. Sometimes the
matrix C can be chosen constant on a domain, where the signature (p, q) of the quadratic form
a(τ) is constant. We suppose that the sums

∑p
l=1 b

2
l (x) > 0 and

∑k
l=p+1 b

2
l (x) > 0 are positive

λ-almost everywhere on a domain U , where λ is the measure induced by the Lebesgue measure
on the real shadow of the Cayley-Dickson algebra. Generally the natural number k− p = q(x)
may either be constant or change while crossing the surface {x ∈ U :

∑k
l=1 b

2
l (x) = 0}, when

the domain U satisfies Conditions 1(D1, D2).
We consider elliptic and hyperbolic partial differential operators reduced to the sum of

squares

(3) A = [
k∑

l=0

bl(x)∂
2/∂x2l ],

where bl(x) ∈ R for all x = x0i0 + ... + x2r−1i2r−1 in the open domain U ⊂ Ar satisfying
Conditions 1(D1, D2) in the Cayley-Dickson algebra Ar, 1 ≤ k ≤ 2r − 1, 2 ≤ r ≤ 3. Prac-
tically the coefficient bl can depend only on x0, ..., xk remaining z-differentiable in definite
z-representations due to Formulas 1(1− 3) for each l.
More generally we can consider partial differential operators of the form
(4) A = c1B1 + ...+ cmBm, where cjBjf = cj(Bjf), while each

(4′) Bj =

m1+...+mj∑

k=m1+...+mj−1+1

bk(x)∂
2/∂x2k

is an elliptic partial differential operator of the second order by variables
xm1+...+mj−1+1,...,xm1+...+mj ; cj ∈ Ar with Re(cj) ≥ 0 for each 1 ≤ j ≤ l, Re(cj) < 0
for every j > l, with |cj| = 1 for each j = 1, ...m, where 1 ≤ r, 1 ≤ l < m, m0 = 0.
We remind, that Dirac had used complexified bi-quaternions to solve Klein-Gordon’s hy-

perbolic partial differential equation with constant coefficients appearing in spin problems.
That is, he had decomposed d’Alembert’s operator ∂2/∂t2 −∇2 as the product i∗σiσ over the
complexified bi-quaternion algebra HC with the first order differential operator σ.
If follow this approach one takes the complexified Cayley-Dickson algebra
(5) (Ar)C = Ar ⊕Ari,

where i is taken to be commuting with ij for each j = 0, ..., 2r − 1. Now the algebra (Ar)C is
already not the division algebra even for 2 ≤ r ≤ 3, that is two non zero elements with zero
product occur in it. Then each element z = (z1, 0) in (Ar)C can be written in the 2× 2 matrix
form

(
z1 0
0 z1

)
and z = (0, z2) can be written in the form

(
0 z2
−z2 0

)
, where entries z1, z2 ∈ Ar are

Cayley-Dickson numbers, i =
(
0 1
−1 0

)
.

Let each coefficient cj be written in the polar form
(6) cj = exp(iκ(j)γj)

with 0 ≤ |γj| ≤ π, j = 1, ...,m, 1 ≤ r, 1 ≤ κ(j) ≤ κ(j + 1) for each j. Put p = p1 + ... + pm,
where pj = 0 for either γj = 0 or κ(j) = κ(j − 1), while pj = 1 for γj 6= 0 and κ(j) 6= κ(j − 1).
Up to an isomorphism we take the Cayley-Dickson algebra Av with v ≥ r satisfying inequalities
2v−1 < 2p(m + 1) ≤ 2v. Further we make the complexification (Av)C of the Cayley-Dickson
algebra Av.
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Take two non-negative integer numbers 0 ≤ r and v with r ≤ v ∈ Z. We consider the
quotient algebra over the real field Av/Ar =: Ar,v. For r = v this algebra is isomorphic with
the real field R. For r < v the algebra Ar,v is isomorphic with

⊕2v−r−1
k=0 Ri2rk. The latter

algebra is produced by generators {i2rβ : β = 2γ − 1; γ = 0, 1, ..., v − r} and their finite
ordered products, that gives the generators set {i2rk : k = 0, ..., 2v−r − 1}, where generators
satisfying the numbering rule iji2s = ij+2s for each 1 ≤ s, j = 0, 1, ..., 2s − 1 can be taken
up to an isomorphism of the Cayley-Dickson algebra As+1. Therefore, the algebra Ar,v is
isomorphic with the Cayley-Dickson algebra Av−r, since the doubling procedure can be started
from another suitable purely imaginary Cayley-Dickson numbers such as generators [1, 14].
But we consider in Ar,v its specific generators basis {i2rk : k = 0, ..., 2v−r − 1}.
For each Cayley-Dickson numbers x, y ∈ Ar we define the real-valued scalar product
(RS) (x, y) = (x, y)r := Re(xỹ),

where z̃ = z∗ denotes the conjugated number, while Re(y) := (y + y∗)/2 denotes the real part
of y.
The real scalar product (., .)r in Ar we extend on the algebra Ar,v as

(SP ) < x, y >r,v= xỹ =
2v−r−1∑

j,k=0

x2rjy2rki2rji
∗
2rk

for each x, y ∈ Ar,v, x =
∑2v−r−1

j=0 x2rji2rj, x2rj ∈ R for each j = 0, ..., 2v−r−1. Particularly, one
gets < x, y >0,v=< x, y >v. In the case of the complexified algebra (Ar,v)C the scalar product
is:

(SPC) < (a, b), (c, d) >r,v=< (a, b), (c, d) >= (< a, c > − < b, d >,< a, d > + < b, c >),

for all (a, b) and (c, d) ∈ (Ar,v)C.
We recall the doubling procedure for the Cayley-Dickson algebra Ar+1 from Ar. Each

Cayley-Dickson number z ∈ Ar+1 is written in the form z = ξ + ηl, where l2 = −1, l /∈ Ar,
ξ, η ∈ Ar. The addition of such numbers is componentwise. The conjugate of any Cayley-
Dickson number z is given by the formula:
(M1) z∗ := ξ∗ − ηl.

The multiplication in Ar+1 is defined by the following equation:
(M2) (ξ + ηl)(γ + δl) = (ξγ − δ̃η) + (δξ + ηγ̃)l

for each ξ, η, γ, δ ∈ Ar, z := ξ + ηl ∈ Ar+1, ζ := γ + δl ∈ Ar+1.
Using Formula (M2) we get: (bi2rk)(i2rkb)∗ = (bi2rk)(b∗i∗2rk) = b2 = (b2i2rk)i

∗
2rk =

i2rk(i2rkb
2)∗ for each k ≥ 1 and b ∈ Ar, since i∗j = −ij for each j ≥ 1. Another useful

identity is the following: (isi2rj)i∗2rk = −(isi2rk)i
∗
2rj for each 0 ≤ s ≤ 2r − 1 and k 6= j with

k ≥ 1 and j ≥ 1, since (isi2rj)i2rk = (isi∗2rk)i2rj. Certainly also the equality (isi0)i
∗
j+(isij)i

∗
0 = 0

holds for each j ≥ 1 and 1 ≤ s ≤ 2r − 1, since i0 = 1. Therefore, Formulas (SP ) and (4′)
together with the latter identities imply:

(6) < cBy, y >v=
2v−r−1∑

j=0

c < By2rj, y2rj >r,v

for each c ∈ Ar and a twice differentiable function y with values in Ar,v.
Relative to the complex scalar product given by Equality (SPC) we decompose the operator

A (see (4, 4′) above) in the form
(7) A = (iσ)(iσ1) +Q = −σσ1 +Q,

where σ, σ1 and Q are partial differential operators of the first order, each complex number
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α ∈ C is presented as a real 2×2 matrix. Particularly, i =
(
0 1
−1 0

)
, i∗ =

(
0 −1
1 0

)
. Each subalgebra

gj,k constructed from two generators ij 6= ik is associative, consequently, (wik)(w∗i∗k) = w
2 and

w((wik)ik) = −w2 for each w = w0 + wjij with w0, wj ∈ R. Therefore, we can take

(8) σf(z) =
m∑

j=1

m1+...+mj∑

k=m1+...+mj−1+1

ak(z)(∂f/∂z2rk)[w
∗
j i
∗
2rk] and

(9) σ1f(z) =
m∑

j=1

m1+...+mj∑

k=m1+...+mj−1+1

ak(z)(∂f/∂z2rk)[wji
∗
2rk]

on the space of Ar-valued (super-)differentiable functions f for r ≤ 2 or real-valued functions
f for 3 ≤ r of the Ar,v variable, since (iik)2 = i2i2k = (−1)

2 = 1 for each k ≥ 1, where w2j = cj
for all j and a2k(x) = bk(x) for each k and x, wj ∈ Ar, ak(x) ∈ R for all k and x, i2rk ∈ Ar,v,
z2rk = xk, z =

∑
k z2rki2rk ∈ Ar,v, ∂f(z)/∂z2rk = (df(z)/dz).i2rk. For b = ∂2f/∂z22rk and

l = i2rk and w ∈ Ar one has the identities: (b(wl))(w∗l) = ((wb)l)(w∗l) = −w(wb) = −w2b and
(((bl)w∗)l)w = (((bw)l)l)w = −(bw)w = −bw2 in the considered here cases. The operator Q is
given by the equality:

(10) Qf(z) =
m∑

j1,j2=1

m1+...+mj1∑

k1=m1+...+mj1−1+1

m1+...+mj2∑

k2=m1+...+mj2−1+1

ak1(z){(∂ak2(z)/∂z2rk1)(∂f/∂z2rk2)[wj2i
∗
2rk2
]}[w∗j1i

∗
2rk1
],

since iik = iki in the complexified Cayley-Dickson algebra (Av)C for each k. The latter equality
(10) shows, that the differential operator Q is non-zero, when ak(z) are non-constant coeffi-
cients.
If use i0 = 1 and ∂/∂z0 also one can write out d’Alembert’s operator in our notation
(11) ∂2/∂z20 −

∑3
j=1 ∂

2/∂z2j = (i
∗∂/∂z0 + i1∂/∂z1 + i2∂/∂z2 + i3∂/∂z3)(i∂/∂z0 + i1∂/∂z1 +

i2∂/∂z2 + i3∂/∂z3).
We recall, that the Cayley-Dickson algebra Ar is power associative, that is zkzl = zk+l

for all natural numbers k and l. But the complexified Cayley-Dickson algebra (Ar)C is not
power associative for r ≥ 3, since the Cayley-Dickson algebra Ar is not associative for r ≥ 3.
Therefore, we do not widely use the complexified Cayley-Dickson algebras, but we utilize the
Cayley-Dickson algebras Av over the real field R, when something other will not be specified.
With these decomposition of operators given by Equations (7−9, 11) the differential equation

(1) can be integrated with the help of the non-commutative line integration. We consider at
first the partial differential equation
(12) Υf = g

on an open domain U in Av, where
(13) Υf =

∑2v−1
j=0 (∂f/∂zj)[i

∗
jψj(z)],

f and g and ψj(z) are Av-valued functions on the domain U satisfying Conditions 1(D1, D2),
where g, ψj ∈ C0(U,Av) for each j, particularly they may be Av (super-)differentiable func-
tions.
3. Line integration over Cayley-Dickson algebras. Take any phrase
(1) μ(z) =

∑
m{cm, z

m}q(m)
corresponding to the function f , where
{cm, zm}q(m) = {c1,m1z

m1 ...ck,mkz
mk}q(m),

q(m) is a vector indicating on an order of multiplications in the curled brackets, cj,mj ∈ Av
for each j, m = (m1, ...,mk), k ∈ N, 0 ≤ mj ∈ Z for each j, zk = (...((zz)z)...)z. We put
for convenience z0 = 1 in the considered phrases. Though the symbol z0 can be retained
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when necessary to specify a branch of the line integral over the Cayley-Dickson algebra Ar (see
[22, 23, 24]). Using the shift z 7→ (z− 0z) we can consider such series with the center at a point
0z instead of zero. Then the derivative of the phrase is:
(2) dμ(z)/dz =∑

m,l,j{c1,m1z
m1 ...cj−1,mj−1z

mj−1cj,mj((z
mj−l−1I)zl)cj+1,mj+1z

mj+1 ...ck,mkz
mk}q(m),

where I denotes the unit operator, so that dμ/dz is the operator valued derivative function,
0 ≤ l ≤ mj − 1, j = 1, ..., k. From Equality (2) it follows that
(3) (dμ(ipx)/dx).1 = (dμ(z)/dz).ip = ∂μ(z)/∂zp for z = ipx.
If γ : [a, b]→ Ar is a function, then
V b
a γ := supP |γ(tj+1)− γ(tj)|

is called the variation of γ on the segment [a, b] ⊂ R, where the supremum is taken by all finite
partitions P of the segment [a, b], P = {t0 = a < t1 < ... < tn = b}, n ∈ N. A continuous
function γ : [a, b] → Ar with the finite variation V b

a γ < ∞ is called a rectifiable path. It is
convenient to take the unit segment [a, b] = [0, 1] using a suitable reparametrization.
We say that a function ν on U is absolutely continuous on U if for each rectifiable path

γ : [0, 1] → Av for each ε > 0 and each τ ∈ [0, 1] a positive number δ > 0 exists so that
V
min(1,τ+δ)
τ ν(γ) < ε and V τ

max(0,τ−δ)ν(γ) < ε.
We call a function ν of bounded variation on U if for each rectifiable path γ : [a, b]→ U the

variation V b
a ν(γ) < ∞ is finite. The family of all functions ν : U → Av of bounded variation

will be denoted by V(U,Av).
The non-commutative line integral

∫
γ
f(z)dν(z) along a rectifiable path γ : [0, 1]→ U ⊂ Av

for a phrase μ and a given function ν of bounded variation is the limit by partitions P = {0 =
τ0 < τ1 < ... < τn = 1} with their diameter δ(P ) = supj |τj+1 − τj| tending to zero of integral
sums∫

γ
f(z)dν(z) := limδ(P )→0

∑
j(dκ(z)/dz)|z=γ(τj).[ν(γ(τj+1))− ν(γ(τj))],

where (dκ(z)/dz).1 = μ(z) for all z ∈ U . The notation
f̂(z) = dg(z)/dz and μ̂(z) = dκ(z)/dz

is also used, where g(z) is a super-differentiable function to which the phrase κ corresponds.
If f is a continuous function we fix for it a sequence fn(z) of super-differentiable functions

and their phrases μn(z) such that fn(z) converges to f(z) on each compact subset of the domain
U , where n ∈ N. The non-commutative line integral has a continuous extension on the R-linear
space, left and right Av module, of continuous functions C0(U,Av) for a marked function ν(z)
of bounded variation and a given rectifiable path γ:∫

γ
f(z)dν(z) := limn→∞

∫
γ
fn(z)dν(z).

This means that the R homogeneous Av additive operator f̂(z) is defined for the continuous
function f in the sense of distributions:
(f̂ ; ν, γ) :=

∫
γ
f(z)dν(z)

for each rectifiable path γ in U and every function ν(z) of bounded variation. Particularly,
ν(z) = id(z) = z on U can also be taken.
If ν and f are super-differentiable functions such that the derivative dν(z)/dz of ν is the

invertible R homogeneous Av additive operator for each z ∈ U , then a super-differentiable
solution of the differential equation
(dg(z)/dz).(dν(z)/dz) = dq((ν(z))/dz

on U exists, since dz/dν = (dν/dz)−1. That is, (dg(z)/dz).dν(z) = (dq(ν(z))/dz).dz. Therefore,∫
γ
f(z)dν(z) = limδ(P )→0

∑
j(dq(ν)/dν)|ν=ν(γ(τj)).[ν(γ(τj+1))− ν(γ(τj))] =

∫
ν(γ)

p(y)dy,
where p(ν) = (dq(ν)/dν).1 (see also Theorems 2.11 and 2.13 in [27]).
A function ν : U → Av is called piecewise continuous or differentiable or super-differentiable

on a domain U in the Cayley-Dickson algebra U , if a family of open or canonical closed subsets
Uj of U exists so that each restriction ν|Uj is continuous or differentiable or super-differentiable
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respectively, where U =
⋃
j Uj and Uj ∩Uk = ∂Uj ∩∂Uk for each j 6= k, ∂Uj := cl(Uj)\Int(Uj),

cl(Uj) denotes the closure of Uj in Av and Int(Uj) denotes the interior of Uj in Av.
If f is a continuous function and ν is a function of bounded variation for which the limits

limn f
n = f and ν = limn νn uniformly converge on each compact subset of U and phrases μn

of fn and εn of νn are specified, where fn are super-differentiable functions and νn are piecewise
super-differentiable functions on U so that limn V 10 (ν

n(γ)− ν(γ)) = 0 for each rectifiable path
γ in U , then∫

γ
f(z)dν(z) = limn

∫
γ
fn(z)dνn(z) = limn

∫
νn(γ)

pn(y)dy =
∫
ν(γ)

p(y)dy,
where p(y) = limn pn(y). This means that under rather general conditions the line integral
of the type

∫
γ
f(z)dν(z) relative to the function ν of bounded variation reduces to the usual

non-commutative line integral
∫
η
p(y)dy, where η = ν(γ).

Take the branch of the non-commutative line integral prescribed by the left algorithm (see
§2 in [23, 22]). The real algebra gk,l,s formed from the generators ij, ik and is is alternative.
Each rectifiable path can be presented as the limit of rectifiable paths consisting of joined
segments parallel to the straight lines ijR with respective j. We certainly have (iqip)ip = −iq
for each p ≥ 1 and (iqi0)i0 = iq for each q ≥ 0.
For each j = 0, ..., 2r − 1 the R- linear projection operator πj : Ar → Rij exists due to

Formulas 1(1− 3) so that πj(z) = ijzj = zjij:
(P1) πj(z) = (−ij(zij)− (2r − 2)−1{−z +

∑2r−1
k=1 ik(zi

∗
k)})/2

for each j = 1, 2, ..., 2r − 1,

(P2) π0(z) = (z + (2
r − 2)−1{−z +

2r−1∑

k=1

ik(zi
∗
k)})/2,

where 2 ≤ r ∈ N.
4. Line anti-derivatives over Cayley-Dickson algebras.
Theorem. Let a first order partial differential operator Υ be given by Equation 2(13)

with real-valued continuous functions ψj(z) ∈ C0(U,Av) for each j such that ψj(z) 6= 0 for
each z ∈ U and each j = 0, ..., n, where a domain U satisfies Conditions 1(D1, D2), 0z is a
marked point in U , 1 < n < 2v, 2 ≤ v. Then a line integral IΥ : C0(U,Av) → C1(U,Av),
IΥf(z) := Υ

∫ z
0z
f(y)dy on C0(U,Av) exists so that

(1) ΥIΥf(z) = f(z)
for each z ∈ U ; this anti-derivative is R-linear (or H-left-linear when v = 2):
(2) IΥ[af(z) + bg(z)] = aIΥf(z) + bIΥg(z)

for any real constants a, b ∈ R (or a, b ∈ H for v = 2) and continuous functions f, g ∈
C0(U,Av). If there is a second anti-derivative IΥ,2f(z), then IΥf(z)− IΥ,2f(z) belongs to the
kernel ker(Υ) of the operator Υ.
Proof. Using the multiplication on the marked doubling generator i2v from the right we

have

(3) [
k−1∑

j=0

ij(∂g(z)/∂zj)]i2vψj(z) =
k−1∑

j=0

(∂g(z)/∂zj)ij+2vψj(z),

where iji2v =: ij+2v for each 0 ≤ j ≤ 2v − 1, 2 ≤ v. On the other hand,
∑k−1

j=0 ij(∂g(z)/∂zj)ψj(z) = [
∑k−1

j=0(∂g(z)/∂zj)
∗i∗jψj(z)]

∗, since ψj(z) is real for each j and z.
Therefore, it is sufficient to consider the first-order partial differential operator of the form:
(4) Υg(z) =

∑n
j=1(∂g/∂zj)i

∗
jψj(z)

on the R-linear space C1(U,Av) of all continuously differentiable functions g : U → Av by
real variables z0, ..., z2v−1, where 0 < n ≤ 2v − 1. The space of super-differentiable functions is
everywhere dense in C0(U,Av) and the line integral has the continuous extension on C0(U,Av)
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along any continuous rectifiable path in U . Therefore, we take the space of super-differentiable
functions and then take the continuous extension of IΥ on C0(U,Av) such that
liml IΥf l = IΥ liml f l = IΥf

for a sequence f l of super-differentiable functions uniformly converging to f on compact sub-
domains V in U , where IΥf l is described below. Each function ψj(z) is continuous and each
function νj(z) is continuously differentiable on U (see also below), consequently, the integral∫
γ
f l(y)dνj(y) is continuously differentiable by z = γ(1) (i.e. by each real variable zk) and

their sequence by l uniformly converges on each compact sub-domain V in U . Therefore, from
ΥIΥf l = f l for each natural number l ∈ N we get
ΥIΥf = ΥIΥ liml f l = limlΥIΥf l = liml f l = f ,

since the sequence {IΥf l(z)|V : l} is fundamental in C1(V,Av) for each compact sub-domain
V in U and IΥf(z) ∈ C1(U,Av).
Consider the left algorithm of a calculation of the line integral over the Cayley-Dickson

algebra Av (see §3 and references therein). We shall seek an anti-derivative in the form:

(5) Υ

∫ z

0z

f(y)dy := n−1
n∑

j=1

(

∫ z

0z

f(y)dνj(y))ij

and use the homotopy theorem in the domain U satisfying conditions 1(D1, D2) so that γ is a
continuous rectifiable path joining points 0z = γ(0) and z = γ(1) (see [22, 23, 20]). Moreover,
a branch of the anti-derivative operator IΥf(z) can be chosen such that it can be expressed
with the help of a non-commutative line integral.
In view of Theorem 2.11 [27] and §3 we get
(6) (∂(

∫ z
0z
f(y)dνj(y))/∂zk) = (f̂(z).[dνj(z)/dzk])

(see also the chain rule over the Cayley-Dickson algebra in [22, 23, 20]).
Next we need some identities in the Cayley-Dickson algebra. Each Cayley-Dickson number

has the decomposition: z = z0i0+ ...+ z2v−1i2v−1, where z0, ..., z2v−1 ∈ R, z ∈ Av. To establish
the identity
(7) (ay)z∗ + (az)y∗ = a2Re(yz∗)

for any a, y, z ∈ Av it is sufficient to prove it for any three basic generators of the Cayley-
Dickson algebra Av, since the real field R is its center, while the multiplication in Av is
distributive (a + y)z = az + yz and ((αa)(βy))(γz∗) = (αβγ)((ay)z∗) for all α, β, γ ∈ R and
a, y, z ∈ Av. If a = i0, then (7) is evident, since yz∗ + zy∗ = yz∗ + (yz∗)∗ = 2Re(yz∗). If either
y = i0, then (ay)z∗ + (az)y∗ = az∗ + az = a
2 Re (z)= a 2 Re (yz∗). Analogously for z = i0. For three purely imaginary generators

ip, is, ik consider the minimal Cayley-Dickson algebra Φ = algR(ip, is, ik) over the real field
generated by them. If it is associative, then it is isomorphic with either the complex field C or
the quaternion skew field H, so that (ay)z∗+(az)y∗ = a(yz∗+zy∗) = a2Re(yz∗). If the algebra
Φ is isomorphic with the octonion algebra, then we use Formulas 2(M1,M2) for either a, y ∈ H
and z = l or a, z ∈ H and y = l. This gives (7) in all cases, since the algebra algR(ip, is) with
two basic generators ip and is is always associative. Particularly, if y = is 6= z = ik, then the
result is zero.
Using (7) we get more generally, that
(8) ((ay)z∗)b∗ + ((az)y∗)b∗ = (a2Re(yz∗))b∗ = (ab∗)2Re(yz∗),

consequently,
(9) ((ay)z∗)b∗ + ((az)y∗)b∗ + ((by)z∗)a∗ + ((bz)y∗)a∗ = 4Re(ab∗)Re(yz∗)

for any Cayley-Dickson numbers a, b, y, z ∈ Av.
We shall take unknown functions νj(z) ∈ Av as solutions of the system of linear partial

differential equations by real variables zk:
(10) ∂νj(z)/∂zj = 1/ψj(z) for all 1 ≤ j ≤ n and z ∈ U ;
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(11) ψk(z)∂νj(z)/∂zk = ψj(z)∂νk(z)/∂zj for all 1 ≤ j < k ≤ n and z ∈ U . Each function
νj(z) can be written as νj(z) =

∑2v−1
l=0 νj,l(z)il with real-valued components νj,l(z). Practically,

it is sufficient to consider non-zero νj,l(z) for l = 1, ..., n. Thus using the generators i0, ...., i2v−1
the system can be written in the real form. This system has a non-trivial C1 solution νj(z)
for each j (see §12.2 [29], particularly, in the class of super-differentiable functions for super-
differentiable ψj(z) see also [?, 20]). In System (10, 11) functions ψj are real and coordinates
are real, consequently, a solution {νj(z) : j} may be chosen real-valued.
From Identities 3(2, 3) and (6, 9− 11) we infer that

(12)
∑

j 6=k≥1

[(∂(

∫ z

0z

f(y)dνj(y))/∂zk)ij]i
∗
kψk(z) =

∑

1≤j<k≤n

{[(f̂(z).(∂νj(z)/∂zk))ij]i
∗
kψk(z) + [(f̂(z).(∂νk(z)/∂zj))ik]i

∗
jψj(z)} = 0 and

(13)
n∑

j=1

[(∂(

∫ z

0z

f(y)dνj(y))/∂zj)ij]i
∗
jψj(z) = nf(z),

since
∑n

j=1 iji
∗
j = n and n is some fixed natural number for the domain U , f̂(z).x = f(z)x

for each real number x, (zij)i∗j = z for each z ∈ Av, where f̂ is the operator corresponding
to dκ(z)/dz, when f is in the z-representation μ (see the notation in §3). Using Formulas
(4, 5, 12, 13) we get Formula (1).
From the identity

∫
γ
aμdz = a

∫
γ
μdz for a suitable branch of the line integral given by the

left algorithm and for each non-trivial phrase μ and constants a, b ∈ R for v ≥ 3 or a, b ∈ H
for v = 2 (see the rules in [22, 23, ?, 24]) we get Formula (2).
Since Υ(IΥf(z) − IΥ,2f(z)) = 0, the difference (IΥf(z) − IΥ,2f(z)) belongs to the kernel

ker(Υ) = Υ−1(0), where Υ : C1(U,Av)→ C0(U,Av).
4.1. Example. If ψj depends only on zj for each j, there exists a C1 differentiable change

of variables ζ = ζ(z) so that ∂g(ζ)/∂ζj = (∂g(z)/∂zj)ψj(z) for each differentiable function
g : U → Av by real variables z0, ..., z2v−1 on U , where
(1) (∂zk/∂ζj) = δj,kψk(z)

for all j and k, δj,j = 1, while δj,k = 0 for each j 6= k. We take new functions jg satisfying the
equation:
(2) jg(i

∗
jz) = g(z) for each z ∈ U and all j. We also put

(3) ηj(z) = i
∗
jz.

The multiplication of generators implies that i∗j(ijz) = z for all j = 0, ..., 2v − 1 and z ∈ Av.
Therefore, from Equations (1, 2) we deduce that
(4) (dg(z)/dz).ij = (djg(ηj)/dηj).[(dηj/dz).ij] = (djg(ηj)/dηj).1 = (dkg(ηk)/dηk).[i

∗
kij],

since (dηj/dz).ij = i∗j ij = 1 for each j. Then we take the integral

(5) Υ

∫ z

0z

g(y)dy := n−1
n∑

j=1

∫ z

0z
jg(ηj(y))ijdηj(y),

since
∫ z
0z j

g(ηj(y))ijdηj(y) = (
∫ z
0z j

g(ηj(y))dηj(y))ij.

Mention that generally Υ(f(z)b) may be not equal to (Υf(z))b for a constant b ∈ Av\R and
a function f ∈ C1(U,Av) with v ≥ 2, since the Cayley-Dickson algebra is non-commutative.
This theorem can be generalized in the following manner encompassing wider class of partial

differential operators of the first order over Cayley-Dickson algebras.
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5. Theorem. Suppose that the first order partial differential operator Υ is given by the
formula
(1) Υf =

∑n
j=0(∂f/∂zj)φ

∗
j(z),

where φj(z) 6= {0} for each z ∈ U and φj(z) ∈ C0(U,Av) for each j = 0, ..., n such that
Re(φj(z)φ

∗
k(z)) = 0 for each z ∈ U and each 0 ≤ j 6= k ≤ n, where a domain U satisfies

Conditions 1(D1, D2), 0z is a marked point in U , 1 < n < 2v, 2 ≤ v. Suppose also that the
system {φ0(z), ..., φn(z)} is for n = 2v − 1, or can be completed by Cayley-Dickson numbers
φn+1(z), ..., φ2v−1(z), such that (α) algR{φj(z), φk(z), φl(z)} is alternative for all 0 ≤ j, k, l ≤
2v − 1 and (β) algR{φ0(z), ..., φ2v−1(z)} = Av for each z ∈ U . Then a line integral IΥ :
C0(U,Av)→ C1(U,Av), IΥf(z) := Υ

∫ z
0z
f(y)dy on C0(U,Av) exists so that

(2) ΥIΥf(z) = f(z)
for each z ∈ U ; this anti-derivative is R-linear (or H-left-linear when v = 2). If there is a
second anti-derivative IΥ,2f(z), then IΥf(z) − IΥ,2f(z) belongs to the kernel ker(Υ) of the
operator Υ.
Proof. We shall demonstrate that a branch of the anti-derivative operator IΥf(z) can be

chosen such that it can be expressed with the help of a non-commutative line integral from §3.
Using the technique of §4 we can consider the case of purely imaginary φj(z) for all z ∈ U and
j = 0, ..., n. We seek an anti-derivative operator in the form:

(3) Υ

∫
f(z)dz = (n+ 1)−1

n∑

j=0

∫ z

0z

q(z)dνj(z).

For finding unknown functions q and νj, j = 0, ..., n we impose the following conditions:
(4) (q̂(z).[∂νj(z)/∂zj])φ

∗
j(z) = f(z) for each j = 0, ..., n and

(5) (q̂(z).[∂νj(z)/∂zk])φ
∗
k(z) + (q̂(z).[∂νk(z)/∂zj])φ

∗
j(z) = 0 for all 0 ≤ j < k ≤ n.

As in §4 it is sufficient to consider the case of a locally analytic (super-differentiable) function
f using the limit transition. The function f is given on U and it defines the operator f̂ on U ,
i.e. its phrase μ̂ is prescribed by the left algorithm for a given phrase μ of f (see [22, 23, ?, 24]).
The operator q̂ means that a function g and a phrase κ of g exist such that

q̂(z) = dg(z)/dz, q̂(z).1 = q(z) for each z ∈ U .
In accordance with the conditions of this theorem the algebra algR(φj(z), φk(z)) is alter-

native for all 0 ≤ j ≤ k ≤ n and z ∈ U . Therefore, due to Condition (β) Equations (4, 5) take
the form:
(6) (dg(z)/dz).[∂νj(z)/∂zj] = f(z)(1/φ

∗
j(z)) for each j = 0, ..., n and

(7) ((dg(z)/dz).[∂νj(z)/∂zk])φ
∗
k(z) + ((dg(z)/dz).[∂νk(z)/∂zj])φ

∗
j(z) = 0 for all 0 ≤ j < k ≤

n.
Solutions of this system exist (see [?, 20]). To be more concrete we impose additional

relations:
(8) ∂νj(z)/∂zj = φj(z) for all j = 0, ...., n and z ∈ U ,

consequently, the system of partial differential equations (6) becomes:
(9) (dg(z)/dz).φj(z) = f(z)(1/φ

∗
j(z)) for each j = 0, ..., n,

since algR{φj(z), φk(z), φl(z)} is alternative for all 0 ≤ j, k, l ≤ 2v − 1 and
algR{φ0(z), ..., φ2v−1(z)} = Av for each z ∈ U so that each Cayley-Dickson number ξ ∈ Av has
the decomposition ξ = ξ0φ0(z) + ...+ ξ2v−1φ2v−1(z) with real coefficients ξ0, ..., ξ2v−1 ∈ R.
Solving the latter system (9) one gets the function g(z) on U . Substituting the known

function g in System (6, 7) one gets a C1 solution ν0(z),...,νn(z) on U ; or a super-differentiable
solution, when φj(z) for each j and f(z) are super-differentiable on U . Mention that the
function g depends R-linearly on f , since the system of equations which was considered above
is linear by f and g. Thus the operator q̂ depends R-linearly on f .
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Using Formulas (4, 5) and 4(6, 9) we deduce that

(10)
∑

j 6=k≥0

[∂(

∫ z

0z

q(y)dνj(y))/∂zk]φ
∗
k(z) =

∑

0≤j<k≤n

{[q̂(z).(∂νj(z)/∂zk)]φ
∗
k(z) + [q̂(z).(∂νk(z)/∂zj)]φ

∗
j(z)} = 0 and

(11)
n∑

j=0

[∂(

∫ z

0z

q(y)dνj(y))/∂zj]φ
∗
j(z) =

n∑

j=0

[q̂(z).(∂νj(z)/∂zj)]φ
∗
j(z) = (n+ 1)f(z),

since Re(φj(z)φ∗k(z)) = 0 for each z ∈ U and each 0 ≤ j 6= k ≤ n.
The rest of the proof is analogous to that of Theorem 4.
6. Corollary. Let suppositions of Theorem 5 be satisfied so that φj(z) = ω(z; ij)ψj(z) for

each z ∈ U , where ω is an R-linear automorphism ω : Av → Av mapping the standard base
of generators {ij} into a base of generators {ω(z; ij) : j = 0, ..., 2v − 1}, |ω(z; ij)| = 1, where
ψj(z) satisfies conditions of theorem 4 for each j = 0, ..., n. Then the first order differential
operator 5(1) has an anti-derivative IΥ on C0(U,Av). Two anti-derivatives of Theorems 4 and
5 under these suppositions are related with the help of the automorphism ω.
Proof. This follows immediately from Theorem 5. It remains to find a relation between

two anti-derivatives for two different partial differential operators:
(1) Υωf =

∑n
j=0(∂f/∂zj)φ

∗
j(z)

and Υ given by equation 2(13).
For each Cayley-Dickson number z = z0i0+...+z2v−1i2v−1 ∈ Av its image is ω(y; z) = z0N0+

z1N1+...+z2v−1N2v−1, consequently, ω(y; z∗) = [ω(y; z)]∗, where zj ∈ R, Nj = Nj(y) := ω(y; ij)
for each j. Particularly, N0 = i0, since i0ij = ij and ω(y; ij) = ω(y; i0ij) = ω(y; i0)ω(y; ij) for
each j and y. Therefore, ω(y; x) = x for each real number x ∈ R, since ω(y; 1) = 1 and
the mapping ω(y; ∗) is R-linear by the second argument, 1 = i0. Therefore, applying the
automorphism ω we deduce that
(2) Υωf(z) = ω(z; Υs(z)),

where ω(z; s(z)) = f(z) for each z ∈ U , that is s(z) = ω−12 (z; f(z)), ω−12 (z; ∗) denotes the
inverse automorphism by the second argument for z ∈ U . Let us take the function f(z) =
Υω

∫ z
0z
g(y)dy, where g(z) is a continuous function. Then Υωf(z) = g(z) for each z ∈ U and

from (2) and 5(1, 2) one gets
(3) ω−12 (z; g(z)) = Υω

−1
2 (z; Υω

∫ z
0z
g(y)dy) = ΥΥ

∫ z
0z
ω−12 (y; g(y))dy, consequently, applying

Υ

∫
and ω(z; ∗) one also gets
(4) Υω

∫ z
0z
g(y)dy = ω(z; Υ

∫ z
0z
ω−12 (y; g(y))dy

for each continuous function g on U .
6.1. Remark. If in Theorem 5 drop Conditions (α, β), then partial differential equations

5(4, 5) will be hard to resolve.
To specify the anti-derivative operator IΥ in Theorems 4 and 5 more concretely it is possible

to choose a family of rectifiable continuous paths (or C1 paths) {γz : z ∈ U} such that
γz(0) = 0z and γz(1) = z and limz→y supτ∈[0,1] |γ

z(τ)− γy(τ)| = 0.
Another more rigorous procedure is in providing a foliation of a domain U by locally rectifi-

able paths {γα : α ∈ Λ}, where Λ is a set. We take for definiteness a canonical closed domain
U in Av satisfying Conditions 1(D1, D2).
A path γ :< a, b >→ U is called locally rectifiable, if it is rectifiable on each compact

segment [c, e] ⊂< a, b >, where < a, b >= [a, b] := {t ∈ R : a ≤ t ≤ b} or < a, b >= [a, b) :=
{t ∈ R : a ≤ t < b} or < a, b >= (a, b] := {t ∈ R : a < t ≤ b} or < a, b >= (a, b) := {t ∈
R : a < t < b}.
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A domain U is called foliated by rectifiable paths {γα : α ∈ Λ} if γ :< aα, bα >→ U for
each α and it satisfies the following three conditions:
(F1)

⋃
α∈Λ γ

α(< aα, bα >) = U and
(F2) γα(< aα, bα >) ∩ γβ(< aβ, bβ >) = ∅ for each α 6= β ∈ Λ.

Moreover, if the boundary ∂U = cl(U) \ Int(U) of the domain U is non-void then
(F3) ∂U = (

⋃
α∈Λ1

γα(aα)) ∪ (
⋃
β∈Λ2

γβ(bβ)),
where Λ1 = {α ∈ Λ :< aα, bβ >= [aα, bβ >}, Λ2 = {α ∈ Λ :< aα, bβ >=< aα, bβ]}. For the
canonical closed subset U we have cl(U) = U = cl(Int(U)), where cl(U) denotes the closure
of U in Av and Int(U) denotes the interior of U in Av. For convenience one can choose C1

foliation, i.e. each γα is of class C1. When U is with non-void boundary we choose a foliation
family such that

⋃
α∈Λ γ(aα) = ∂U1, where a set ∂U1 is open in the boundary ∂U and so that

w|∂U1 would be a sufficient initial condition to characterize a unique branch of an anti-derivative
w = IΥf .
When ∂U 6= ∅ a marked point 0z can be chosen on the boundary ∂U and each point on the

boundary can be joined by a rectifiable path in U with 0z. This foliation is justified by the
formula:∫

γ
f(z)dν(z) =

∫
γ1
f(z)dν(z) +

∫
γ2
f(z)dν(z)

for each continuous function f on U and each function ν of bounded variation on U , for any
rectifiable paths γ1 : [a1, b1] → U and γ2 : [a2, b2] → U so that a = a1 < b1 = a2 < b2 = b
while γ : [a, b] → U is given piecewise as γ(t) = γ1(t) for each t ∈ [a1, b1] and γ(t) = γ2(t) for
each t ∈ [a2, b2]. Thus instead of

∫ z
0z
f(z)dν(z), i.e.

∫
γ
f(z)dν(z) with γ(a) = 0z and γ(b) = z,

we take
∫
γα|[c,e]

f(z)dν(z) for any [c, e] ⊂< aα, bα >. If limc→aα,e→bα
∫
γα|[c,e]

f(z)dν(z) converges

we denote it by
∫
γα
f(z)dν(z) and take instead of the family {

∫
γα|[c,e]

f(z)dν(z) : [c, e] ⊂<

aα, bβ >}. Therefore, a branch of the anti-derivation operator prescribed by the family
{(
∫
γα

∑
j q(y)dνj(y)) : α ∈ Λ} or {(

∫
γα|[c,e]

∑
j q(y)dνj(y)) : α ∈ Λ; [c, e] ⊂< aα, bβ >} is

defined up to a function defined on the boundary ∂U when it is non-void or by convergence to
a definite limit at infinity along paths, when U is unbounded in certain directions Rη in the
Cayley-Dickson algebra Av, η ∈ Av.
Clearly, boundary conditions are necessary for specifying a concrete solution or a branch

of an anti-derivative, since in the definition of the line integral
∫
γ
f(z)dν(z) the operator f̂ is

restricted to the condition f̂(z).1 = f(z) for each z ∈ U so it is defined up to a function of
2v − 1 independent real variables (see also §3). In accordance with the formulas of §§4 and 5
the anti-derivation operators are defined up to functions of 2v−1 real variables after a suitable
change of variables. For example,

∑n
j=0(∂g(z)/∂zj)i

∗
j = 0 for g(z) = nz0 + z1i

∗
1 + ...+ zni

∗
n, or∑n

j=0(∂q(z)/∂zj)i
∗
j = 0 on the plane z0− z1− ...− zn = 0 for q(z) = z

2
0 + z

2
1i
∗
1+ ...+ z

2
ni
∗
n. These

functions can be written in the z-representation due to Formulas 1(1− 3).
For concrete domains some concrete boundary conditions can be chosen (see also below).

Mention, that a minimal necessary correct boundary conditions may be not on the entire
boundary, but on its part. Otherwise, they may be on some hyper-surface S in U of real
dimension 2v − 1 depending on the domain, for example, for an infinite cylinder C in both
directions along its axis with S being the intersection of C with a hyper-plane perpendicular to
its axis.
Mention that the homotopy theorem for domains satisfying Conditions 1(D1, D2) is accom-

plished for super-differentiable functions on U (see [23, 22]), but for a continuous function f
on U it may certainly be not true. This is caused by several reasons. If a family of locally
analytic functions fn converges to f uniformly on a compact sub-domain V in U a radius rnx
of local convergence of a power series of fn in a neighborhood of a point x ∈ V may tend to
zero with n tending to the infinity. Phrases μn in the z-representation corresponding to fn
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may be inconsistent on the intersection Vx ∩ Vy of open neighborhoods Vx and Vy of different
points x, y ∈ V , when Vx ∩ Vy 6= ∅ . Functions fn or their phrases μn may be with branching
points in the domain U . That is functions fn accomplishing the approximation of f may have
several branches on U and a slit of U by a 2v − 1 dimensional sub-manifold Sn over R may
be necessary to specify branches of fn. But the family Sn with different n may be inconsistent
and Sn may depend of n.
For super-differentiable functions fn operator valued functions f̂n are also super-

differentiable. If f is only continuous non super-differentiable function on the domain U ,
then the operator valued function f̂ is defined only in the sense of distributions [f̂ , γ; ν) =∫
γ
f(z)dν(z) for any rectifiable path γ in U and each function ν of bounded variation on U .

Moreover, the homotopy theorem may be non true for generalized functions (see below).
7. Particular case. We consider a phrase ν which can be presented as
(P3) ν = ρ(μ) with a right Av-linear (super)-differentiable phrase μ and a projection op-

erator ρ being an R-linear combination of the projection operators πj. Particularly, ρ may be
the identity operator or one of the πj.
For any z-differentiable phrase ψ and constants a, b ∈ Av we have

∫
γ
a(ψ(z)b)dz =

a((
∫
γ
ψ(z)dz)b) and

∫
γ
(aψ(z))bdz = (a(

∫
γ
ψ(z)dz))b. Then in view of the homotopy theorem

[23, 22] Equation 3(2) implies for any such ν = ρ(μ) that

(1)

∫

γ

Υ(ν(z))dz = ρ(

∫

γ

[dμ(z)/dz].{
∑

j

[(dz/dz).ij](i
∗
jψj(z)dz)}) =

ρ(

∫

γ

[dμ(z)/dz].
∑

j

{ij(i
∗
jψj(z))dz}) = ρ(

∫

γ

[dμ(z)/dz].[a(z)dz])

= ρ(μ(za(β)))− ρ(μ(za(α))) = ν(za(β))− ν(za(α)),

since each ψj(z) is the Av-valued function, where
(2) za(x) =

∫ x
α
a(t)dt+ φa(x

′, α′),
(3) a(z) :=

∑2v−1
j=0 ψj(z) , γ(0) = α, γ(1) = β. In particular, if each function ψj is identically

constant, then
(4)
∫
γ

∑
j[(dz/dz).ij][(i

∗
jψj(z)dz] = tβ − tα− tφ1(β

′, α′),
where t =

∑
j ψj.

For non right Av-linear z-differentiable phrase μ Formulas (1−3) may already be not valid.
Certainly common line integrals of z-differentiable phrases (functions) can be calculated by the
general algorithms (see [23, 22, 24, 27]). A result of the line integration along a rectifiable path
γ in the domain U we denote as the composition of two functions

(5)
∑

j

∫

γ

[(dμ(z)/dz).ij][i
∗
jψj(z)]dz0 =

∫

γ

(dν(ξ)/dξ).dξ

= λ(ξ(β))− λ(ξ(α)),

where λ and ξ are two z-differentiable functions on their domains, γ(0) = α, γ(1) = β. Fre-
quently one can use a Cayley-Dickson subalgebra G isomorphic with either the quaternion skew
field H or the octonion algebra O so that γ(1) − γ(0) ∈ G and use the homotopy theorem.
On the other hand, each rectifiable continuous path γ in the domain U in the Cayley-Dickson
algebra Av can be presented as a uniform limit of rectifiable continuous paths γn in U composed
of segments parallel to axes Rik, k = 0, ..., 2v − 1. Therefore,

∫

γ

f(z)dz = lim
n→∞

∫

γn
f(z)dz
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for any continuous function on U (see [23, 22]). The functions λ and ξ depend on ψ so in more
details we denote them by λ = λψ and ξ = ξψ.
Thus the general integral of Equation 2(12) is:

(6) λψ(ξψ(x)) = −φλ′(Im ξψ(x)) +

∫ x

α

g1(z)dz + φg1(x
′),

where Im(z) := z − Re(z), Re(z) := (z + z∗)/2. The term φλ′(Im(ξ)) takes into account the
non-commutativity for 2 ≤ v and non-associativity for 3 ≤ v of the Cayley-Dickson algebra Av,
since its center is the real field R = Z(Av) for any v ≥ 2. There is the bijective correspondence
between λψ(ξψ) and f which will be specified below.
8. Transformation of the first order partial differential operator over the Cayley-

Dickson algebras.
To simplify the operator Υ and its particular variant σ one can use a change of variables.

We consider this operator in the form:
(1) Υf =

∑2v−1
j=0 (∂f/∂zj)ηj(z),

with either ηj(z) = i∗jψj(z) or ηj(z) = φ∗j(z) ∈ Av for each j (see Theorems 4 and 5 above).
For it we seek the change of variables x = x(z) so that
(2)
∑2v−1

j=0 (∂xl/∂zj)ωj(z) = tl,
where tl ∈ Av is a constant for each l, for ηj not being identically zero, while ωj is chosen
arbitrarily also z-differentiable so that the resulting matrix Ω will not be degenerate, i.e. its
rows are real-independent as vectors (see below). Certainly (∂xl/∂zj) ∈ R are real partial
derivatives, since xl and zj are real coordinates. We suppose that the functions ηj(z) are
linearly independent over the real field for each z in the domain U . Using the standard basis
of generators {ij : j = 0, ..., 2v − 1} of the Cayley-Dickson algebra Av and the decompositions
ωj =

∑
k ωj,kik and tj =

∑
k tj,kik with real elements ωj,k and tj,k for all j and k we rewrite

System (2) in the matrix form:
(3) (∂xl/∂zj)l,j=0,...,2v−1Ω = T ,

where Ω = (ωj,k)j,k=0,...,2v−1, T = (tj,k)j,k=0,...,2v−1. Suppose that the functions ωj(z) are arranged
into the family {ωj : j = 0, ..., 2v − 1} as above and are such that the matrix Ω(z) is non-
degenerate for all z in the domain U . For example, this is always the case, when |ωj(z)| > 0
and Re[ωj(z)ωk(z)∗] = 0 for each j 6= k for each z ∈ U . Here particularly ωj(z) = ηj(z) can
also be taken for all j = 0, ..., 2v − 1 and z ∈ U . Therefore, Equality (3) becomes equivalent to
(4) (∂xl/∂zj)l,j=0,...,2v−1 = TΩ

−1.
We take the real matrix T of the same rank as the real matrix (ωj,k)j,k=0,...,2v−1. Thus (4) is
the linear system of partial differential equations of the first order over the real field. It can be
solved by the standard methods [29].
We remind how each linear partial differential equation (3) or (4) can be resolved. Write

it in the form:
(5) X1(x1, ..., xn, u)∂u/∂x1 + ...+Xn(x1, ..., xn, u)∂u/∂xn = R(x1, ..., xn, u)

with u and x1, ..., xn here instead of xl and z0, ..., z2v−1 in (3) seeking simultaneously suitable
R corresponding to tl,k. A function u = u(x1, ..., xn) defined and continuous with its partial
derivatives ∂u/∂x1, ...,∂u/∂xn in some domain V of variables x1, ..., xn in Rn making (5) the
identity is called a solution of this linear equation. If R = 0 identically, then the equation is
called homogeneous. A solution u = const of the homogeneous equation
(6) X1(x1, ..., xn, u)∂u/∂x1 + ...+Xn(x1, ..., xn, u)∂u/∂xn = 0

is called trivial. Then one composes the equations:
(7) dx1/X1(x) = dx2/X2(x) = ... = dxn/Xn(x),

where x = (x1, ..., xn). This system is called the system of ordinary differential equations in
the symmetric form corresponding to the homogeneous linear equation in partial derivatives.
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It is supposed that the coefficients X1, ..., Xn are defined and continuous together with their
first order partial derivatives by x1, ..., xn and that X1, ..., Xn are not simultaneously zero in a
neighborhood of some point x0. Such point x0 is called non singular. For example when the
function Xn is non-zero System (7) can be written as:
(8) dx1/dxn = X1/Xn,...,dxn−1/dxn = Xn−1/Xn.

This system satisfies conditions of the theorem about an existence of integrals of the normal
system. A system of n differential equations
(9) dyk/dx = fk(x, y1, ..., yn), k = 1, ..., n,

is called normal of the n-th order. It is called linear if all functions fk depend linearly on
y1, ..., yn. Any family of functions y1, ..., yn satisfying (9) in some interval (a, b) is called its so-
lution. A function g(x, y1, ..., yn) different from a constant identically and differentiable in a do-
mainD and such that its partial derivatives ∂g/∂y1,...,∂/∂yn are not simultaneously zero in D is
called an integral of System (9) inD if the complete differential dg = (∂g/∂x)dx+(∂g/∂y1)dy1+
... + (∂g/∂yn)dyn becomes identically zero, when the differentials dyk are substituted on their
values from (9), that is (∂g(x, y)/∂x) + (∂g/∂y1)f1(x, y) + ... + (∂g(x, y)/∂yn)fn(x, y) = 0 for
each (x, y) ∈ D, where y = (y1, ..., yn). The equality g(x, y) = const is called the first integral
of System (9).
It is supposed that each function fk(x, y) is continuous on D and satisfies the Lipschitz

conditions by variables y1, ..., yn:
(L) |fk(x, y)− fk(x, z)| ≤ Ck|y − z|

for all (x, y) and (x, z) ∈ D, where Ck are constants. Then System (9) has exactly n indepen-
dent integrals in some neighborhood D0 of a marked point (x0, y0) in D, when the Jacobian
∂(g1, ..., gn)/∂(y1, ..., yn) is not zero on D0 (see Section 5.3.3 [29]).
In accordance with Theorem 12.1,2 [29] each integral of System (7) is a non-trivial solution

of Equation (6) and vice versa each non-trivial solution of Equation (6) is an integral of (7). If
g1(x1, ..., xn),...,gn−1(x1, ..., xn) are independent integrals of (7), then the function
(10) u = Φ(g1, ..., gn−1),

where Φ is an arbitrary function continuously differentiable by g1, ..., gn−1, is the solution of
(6). Formula (10) is called the general solution of Equation (6).
To the non-homogeneous Equation (5) the system
(11) dx1/X1 = ... = dxn/Xn = du/R

is posed. System (11) gives n independent integrals g1, ..., gn and the general solution
(12) Φ(g1(x1, ..., xn, u), ..., gn(x1, ..., xn, u)) = 0

of (5), where Φ is any continuously differentiable function by g1, ..., gn. If the latter equation is
possible to resolve relative to u this gives the solution of (5) in the explicit form u = u(x1, ..., xn)
which generally depends on Φ and g1, ..., gn. Therefore, Formula (12) for different R and u and
Xj corresponding to tl,k and xl and ωj,k respectively can be satisfied in (3) or (4), the variables
xj are used in (12) instead of zj in (3, 4), where k = 0, ..., 2v − 1.
Thus after the change of the variables the operator Υ takes the form:
(13) Υf =

∑2v−1
j=0 (∂f/∂xj)tj

with constants tj ∈ Av. Undoubtedly, also the operator Υ with j = 0, ..., n, 2v−1 ≤ n ≤ 2v − 1
instead of 2v − 1 can also be reduced to the form Υf =

∑n
j=0(∂f/∂xj)tj , when the rank is

rank(ωj,k) = n + 1 in a basis of generators N0, ..., Nn, where N0,...,N2v−1 is a generator basis
of the Cayley-Dickson algebra Av. Particularly, if the rank is rank(ωj,k) = m ≤ 2v and T has
the unit upper left m×m block and zeros outside it, then tj = Nj for each j = 0, ...,m− 1 can
be chosen.
One can mention that direct algorithms of Theorems 4 and 5 may be simpler for finding

the anti-derivative operator IΥ, than this preliminary transformation of the partial differential
operator Υ to the standard form (13).
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9. Definitions.
Let X and Y be two R linear normed spaces which are also left and right Ar modules, where

1 ≤ r. Let Y be complete relative to its norm. We put X⊗k := X ⊗R ... ⊗R X is the k times
ordered tensor product over R of X. By Lq,k(X⊗k, Y ) we denote a family of all continuous k
times R poly-linear and Ar additive operators from X⊗k into Y . Then Lq,k(X⊗k, Y ) is also a
normed R linear and left and right Ar module complete relative to its norm. In particular,
Lq,1(X,Y ) is denoted also by Lq(X,Y ).
We present X as the direct sum X = X0i0⊕ ...⊕X2r−1i2r−1, where X0,...,X2r−1 are pairwise

isomorphic real normed spaces. If A ∈ Lq(X,Y ) and A(xb) = (Ax)b or A(bx) = b(Ax) for each
x ∈ X0 and b ∈ Ar, then an operator A we call right or left Ar-linear respectively.
An R linear space of left (or right) k times Ar poly-linear operators is denoted by

Ll,k(X
⊗k, Y ) (or Lr,k(X⊗k, Y ) respectively).

As usually a support of a function g : S → Ar on a topological space S is by the definition
supp(g) = cl{t ∈ S : g(t) 6= 0}, where the closure is taken in S.
We consider a space of test function D := D(Rn, Y ) consisting of all infinite differentiable

functions f : Rn → Y on Rn with compact supports. A sequence of functions fn ∈ D
tends to zero, if all fn are zero outside some compact subset K in the Euclidean space Rn,
while on it for each k = 0, 1, 2, ... the sequence {f (k)n : n ∈ N} converges to zero uniformly.
Here as usually f (k)(t) denotes the k-th derivative of f , which is a k times R poly-linear
symmetric operator from (Rn)⊗k to Y , that is f (k)(t).(h1, ..., hk) = f (k)(t).(hσ(1), ..., hσ(k)) ∈ Y
for each h1, ..., hk ∈ Rn and every transposition σ : {1, ..., k} → {1, ..., k}, σ is an element
of the symmetric group Sk, t ∈ Rn. For convenience one puts f (0) = f . In particular,
f (k)(t).(ej1 , ..., ejk) = ∂

kf(t)/∂tj1 ...∂tjk for all 1 ≤ j1, ..., jk ≤ n, where ej = (0, ..., 0, 1, 0, ..., 0) ∈
Rn with 1 on the j-th place.
Such convergence in D defines closed subsets in this space D, their complements by the

definition are open, that gives the topology on D. The space D is R linear and right and left
Ar module.
By a generalized function of class D′ := [D(Rn, Y )]′ is called a continuous R-linear Ar-

additive function g : D → Ar. The set of all such functionals is denoted by D′. That is,
g is continuous, if for each sequence fn ∈ D, converging to zero, a sequence of numbers
g(fn) =: [g, fn) ∈ Ar converges to zero for n tending to the infinity.
A generalized function g is zero on an open subset V in Rn, if [g, f) = 0 for each f ∈ D

equal to zero outside V . By a support of a generalized function g is called the family, denoted
by supp(g), of all points t ∈ Rn such that in each neighborhood of each point t ∈ supp(g) the
functional g is different from zero. The addition of generalized functions g, h is given by the
formula:
(1) [g + h, f) := [g, f) + [h, f).
The multiplication g ∈ D′ on an infinite differentiable function w is given by the equality:
(2) [gw, f) = [g, wf) either for w : Rn → Ar and each test function f ∈ D with a real image

f(Rn) ⊂ R, where R is embedded into Y ; or w : Rn → R and f : Rn → Y .
A generalized function g′ prescribed by the equation:
(3) [g′, f) := −[g, f ′) is called a derivative g′ of a generalized function g, where f ′ ∈

D(Rn, Lq(R
n, Y )), g′ ∈ [D(Rn, Lq(R

n, Y ))]′.
Another space B := B(Rn, Y ) of test functions consists of all infinite differentiable functions

f : Rn → Y such that the limit lim|t|→+∞ |t|mf (j)(t) = 0 exists for each m = 0, 1, 2, ...,

j = 0, 1, 2, .... A sequence fn ∈ B is called converging to zero, if the sequence |t|mf
(j)
n (t)

converges to zero uniformly onRn\B(Rn, 0, R) for eachm, j = 0, 1, 2, ... and each 0 < R < +∞,
where B(Z, z,R) := {y ∈ Z : ρ(y, z) ≤ R} denotes a ball with center at z of radius R in a
metric space Z with a metric ρ. The family of all R-linear and Ar-additive functionals on B is
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denoted by B′.
In particular we can take X = Aαr , Y = A

β
r with 1 ≤ α, β ∈ Z. Analogously spaces D(U, Y ),

[D(U, Y )]′, B(U, Y ) and [B(U, Y )]′ are defined for domains U in Rn. For definiteness we write
B(U, Y ) = {f |U : f ∈ B(Rn, Y )} and D(U, Y ) = {f |U : f ∈ D(Rn, Y )}.
A function g : U → Av is called locally integrable, if it is absolutely integrable on each

bounded λ measurable sub-domain V in U , i.e.∫
V
|g(z)|λ(dz) <∞, where λ denotes the Lebesgue measure on U .

A generalized function f is called regular if locally integrable functions j,kf 1, lf 2 : U → Av
exist such that
[f, ω) =

∫
U
{
∑

j,k,l j,kf
1(z)kω(z)jf

2(z)}q(3)λ(dz),
for each test function ω ∈ B(U, Y ) or ω ∈ D(U, Y ) correspondingly, where ω = (1ω, ..., βω),
kω(z) ∈ Av for each z ∈ U and all k, q(3) is a vector indicating on an order of the multiplication
in the curled brackets and it may depend on the indices j, l = 1, ..., α, k = 1, ..., β.
We supply the space B(Rn, Y ) with the countable family of semi-norms
(4) pα,k(f) := supx∈Rn |(1 + |x|)

k∂αf(x)|
inducing its topology, where k = 0, 1, 2, ...; α = (α1, ..., αn), 0 ≤ αj ∈ Z. On this space we take
the space B′(Rn, Y )l of all Y valued continuous generalized functions (functionals) of the form
(5) f = f0i0+...+f2v−1i2v−1 and g = g0i0+...+g2v−1i2v−1, where fj and gj ∈ B′(Rn, Y ), with

restrictions on B(Rn,R) being real- or Ci = R⊕ iR- valued generalized functions f0, ..., f2v−1,
g0, ..., g2v−1 respectively. Let φ = φ0i0 + ...+ φ2v−1i2v−1 with φ0, ..., φ2v−1 ∈ B(Rn,R), then
(6) [f, φ) =

∑2v−1
k,j=0[fj, φk)ikij. Let their convolution be defined in accordance with the

formula:
(7) [f ∗ g, φ) =

∑2v−1
j,k=0([fj ∗ gk, φ)ij)ik

for each φ ∈ B(Rn, Y ). Particularly,
(8) (f ∗ g)(x) = f(x− y) ∗ g(y) = f(y) ∗ g(x− y)

for all x, y ∈ Rn due to (7), since the latter equality is satisfied for each pair fj and gk.
10. The decomposition theorem of partial differential operators over the Cayley-

Dickson algebras.
We consider a partial differential operator of order u:

(1) Af(x) =
∑

|α|≤u

aα(x)∂
αf(x),

where ∂αf = ∂|α|f(x)/∂xα00 ...∂x
αn
n , x = x0i0 + ...xnin, xj ∈ R for each j, 1 ≤ n = 2r − 1,

α = (α0, ..., αn), |α| = α0+ ...+αn, 0 ≤ αj ∈ Z. By the definition this means that the principal
symbol

(2) A0 :=
∑

|α|=u

aα(x)∂
α

has α so that |α| = u and aα(x) ∈ Ar is not identically zero on a domain U in Ar. As
usually Ck(U,Ar) denotes the space of k times continuously differentiable functions by all real
variables x0, ..., xn on U with values in Ar, while the x-differentiability corresponds to the
super-differentiability by the Cayley-Dickson variable x.
Speaking about locally constant or locally differentiable coefficients we shall undermine

that a domain U is the union of sub-domains U j satisfying conditions 15(D1, i − vii) and
U j ∩Uk = ∂U j ∩ ∂Uk for each j 6= k. All coefficients aα are either constant or differentiable of
the same class on each Int(U j) with the continuous extensions on U j . More generally it is up
to a Cu or x-differentiable diffeomorphism of U respectively.
If an operator A is of the odd order u = 2s − 1, then an operator E of the even order

u+ 1 = 2s by variables (t, x) exists so that
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(3) Eg(t, x)|t=0 = Ag(0, x) for any g ∈ Cu+1([c, d]×U,Ar), where t ∈ [c, d] ⊂ R, c ≤ 0 < d,
for example, Eg(t, x) = ∂(tAg(t, x))/∂t.
Therefore, it remains the case of the operator A of the even order u = 2s. Take z =

z0i0 + ... + z2v−1i2v−1 ∈ Av, zj ∈ R. Operators depending on a less set zl1 , ..., zln of variables
can be considered as restrictions of operators by all variables on spaces of functions constant
by variables zs with s /∈ {l1, ..., ln}.
Theorem. Let A = Au be a partial differential operator of an even order u = 2s with

locally constant or variable (locally) Cs′ or x-differentiable on U coefficients aα(x) ∈ Ar such
that it has the form
(4) Af = cu,1(Bu,1f) + ...+ cu,k(Bu,kf), where each
(5) Bu,p = Bu,p,0 +Qu−1,p

is a partial differential operator by variables xmu,1+...+mu,p−1+1,...,xmu,1+...+mu,p and of the order
u, mu,0 = 0, cu,k(x) ∈ Ar for each k, its principal part
(6) Bu,p,0 =

∑
|α|=s ap,2α(x)∂

2α

is elliptic with real coefficients ap,2α(x) ≥ 0, either 0 ≤ r ≤ 3 and f ∈ Cu(U,Ar), or r ≥ 4 and
f ∈ Cu(U,R). Then three partial differential operators Υs and Υs1 and Q of orders s and p with
p ≤ u−1 with locally constant or variable (locally) Cs′ or x-differentiable correspondingly on U
coefficients with values in Av exist and coefficients of the third operator Q may be generalized
functions, when coefficients of A are discontinuous locally constant or Cs′ discontinuous on
the entire U or when s′ < s, r ≤ v, such that
(7) Af = Υs(Υs1f) +Qf .
Proof. Certainly we have ordQu−1,p ≤ u−1, ord(A−A0) ≤ u−1. We choose the following

operators:

(8) Υsf(x) =
k∑

p=1

∑

|α|≤s, αq=0∀q<(mu,1+...+mu,p−1+1) and q>(mu,1+...+mu,p)

(∂αf(x))[w∗pψp,α] and

(9) Υs1f(x) =
k∑

p=1

∑

|α|≤s, αq=0∀q<(mu,1+...+mu,p−1+1) and q>(mu,1+...+mu,p)

(∂αf(x))[wpψ
∗
p,α],

where w2p = cu,p for all p and ψ2p,α(x) = −ap,2α(x) for each p and x, wp ∈ Ar, ψp,α(x) ∈ Ar,v
and ψp,α(x) is purely imaginary for ap,2α(x) > 0 for all α and x, Re(wpIm(ψp,α)) = 0 for
all p and α, Im(x) = (x − x∗)/2, v > r. Here Ar,v = Av/Ar is the real quotient algebra.
The algebra Ar,v has the generators ij2r , j = 0, ..., 2v−r − 1. A natural number v so that
2v−r−1 ≥

∑k
p=1

∑u
q=0

(
mp+q−1

q

)
is sufficient, where

(
m
q

)
= m!/(q!(m−q)!) denotes the binomial

coefficient,
(
m+q−1

q

)
is the number of different solutions of the equation α1 + ... + αm = q in

non-negative integers αj. We have either ∂α+βf ∈ Ar for 0 ≤ r ≤ 3 or ∂α+βf ∈ R for r ≥ 4.
Therefore, we can take ψp,α(x) ∈ i2rqR, where q = q(p, α) ≥ 1, q(p1, α1) 6= q(p, α) when
(p, α) 6= (p1, α1).
Thus Decomposition (7) is valid due to the following. For b = ∂α+βf(z) and l = i2rp and

w ∈ Ar one has the identities:
(10) (b(wl))(w∗l) = ((wb)l)(w∗l) = −w(wb) = −w2b and
(11) (((bl)w∗)l)w = (((bw)l)l)w = −(bw)w = −bw2 in the considered here cases, since Ar

is alternative for r ≤ 3 while R is the center of the Cayley-Dickson algebra (see Formulas
2(M1,M2)).
This decomposition of the operator A2s is generally up to a partial differential operator of

order not greater, than (2s− 1):
(12) Qf(x) =

∑k
p=1 cu,pQu−1,p+
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∑
|α|≤s,|β|≤s;γ≤α,ε≤β,|γ+ε|>0[

∏2v−1
j=0

(
αj
γj

)(
βj
εj

)
](∂α+β−γ−εf(x))

[(∂γηα(x))((∂
εη1β(x)],

where operators Υs and Υs1 are already written in accordance with the general form
(13) Υsf(x) =

∑
|α|≤s(∂

αf(x))ηα(x);
(14) Υs1f(x) =

∑
|β|≤s(∂

βf(x))η1β(x).
The coefficients of Q may be generalized functions, since they are calculated with the

participation of partial derivatives of the coefficients of the operator Υs1, but the coefficients
of the operators Υs and Υs1 may be discontinuous locally constant or C

s′ discontinuous on the
entire U or s′ < s when for the initial operator A they are such.
When A in (3) is with constant coefficients, then the coefficients wp and ψp,α for Υm and

Υm1 can also be chosen constant and Q−
∑k

p=1 cu,pQu−1,p = 0.
11. Corollary. Let suppositions of Theorem 10 be satisfied. Then a change of variables

locally affine or variable C1 or x-differentiable on U correspondingly on U exists so that the
principal part A2,0 of A2 becomes with constant coefficients, when ap,2α > 0 for each p, α and
x.
12. Corollary. If two operators E = A2s and A = A2s−1 are related by Equation 10(3),

and A2s is presented in accordance with Formulas 10(4, 5), then three operators Υs, Υs−1 and
Q of orders s, s− 1 and 2s− 2 exist so that
(1) A2s−1 = Υ

sΥs−1 +Q.
Proof. It remains to verify that ord(Q) ≤ 2s − 2 in the case of A2s−1, where Q =

{∂(tA2s−1)/∂t − ΥsΥs1}|t=0. Indeed, the form λ(E) corresponding to E is of degree 2s − 1
by x and each addendum of degree 2s in it is of degree not less than 1 by t, consequently, the
product of forms λ(Υs)λ(Υs1) corresponding to Υ

s and Υs1 is also of degree 2s−1 by x and each
addendum of degree 2s in it is of degree not less than 1 by t. But the principal parts of λ(E)
and λ(Υs)λ(Υs1) coincide identically by variables (t, x), hence ord({E − Υ

sΥs1}|t=0) ≤ 2s − 2.
Let a(t, x) and h(t, x) be coefficients from Υs1 and Υ

s. Using the identities
a(t, x)∂t∂

γtg(x) = a(t, x)∂γg(x) and
h(t, x)∂β∂t[a(t, x)∂

γg(x)] = h(t, x)∂β[(∂ta(t, x))∂
γg(x)]

for any functions g(x) ∈ C2s−1 and a(t, x) ∈ Cs,
ord[(h(t, x)∂β), (a(t, x)∂γ)]|t=0 ≤ 2s− 2,

where ∂t = ∂/∂t, |β| ≤ s − 1, |γ| ≤ s, [A,B] := AB − BA denotes the commutator of two
operators, we reduce (ΥsΥs1 + Q1)|t=0 from Formula 10(7) to the form prescribes by equation
(1).
13. We consider operators of the form:
(1) (Υk + βIr)f(z) := {

∑
0<|α|≤k(∂

αf(z)ηα(z)}+ f(z)β(z),
with ηα(z) ∈ Av, α = (α0, ..., α2r−1), 0 ≤ αj ∈ N for each j, |α| = α0 + ... + α2r−1, βIrf(z) :=
f(z)β,

∂αf(z) := ∂|α|f(z)/∂zα00 ...∂z
α2r−1
2r−1 , 2 ≤ r ≤ v < ∞, β(z) ∈ Av, z0, ..., z2r−1 ∈ R, z =

z0i0 + ...+ z2r−1i2r−1.
Proposition. The operator (Υk + β)∗(Υk + β) is elliptic on the space C2k(R2

r
,Av), where

(Υk + β)∗ denotes the adjoint operator (i.e. with adjoint coefficients).
Proof. In view of Formulas (1) and 4(8) the form corresponding to the principal symbol of

the operator (Υk+β)∗(Υk+β) is with real coefficients, of degree 2k and non-negative definite,
consequently, the operator (Υk + β)∗(Υk + β) is elliptic.
14. Example. Let Υ∗ be the adjoint operator defined on differentiable Av valued functions

f given by the formula:

(1) (Υ + β)∗f = [
n∑

j=0

(∂f(z)/∂zj)φj(z)] + f(z)β(z)
∗.



160 Hypercomplex Numbers in Geometry and Physics, 2 (16), Vol 8, 2011

Thus we can consider the operator
(2) Ξβ := (Υ + β)(Υ + β)

∗.
From Proposition (13) we have that the operator Ξβ is elliptic as classified by its principal
symbol with real coefficients. Put Ξ = Ξ0. In the x coordinates from §8 it has the simpler
form:

(3) (Υ + β)(Υ + β)∗f =
n∑

j=0

(∂2f/∂x2j)|tj|
2

+2
∑

0≤j<k≤n

(∂2f/∂xj∂xk)Re(tjt
∗
k) + 2

n∑

j=0

(∂f/∂xj)Re(t
∗
jβ) + {f |β|

2 +
n∑

j=0

[f(∂β∗/∂xj)]tj},

because the coefficients tj are already constant. After a change of variables reducing the
corresponding quadratic form to the sum of squares

∑
j εjs

2
j we get the formula:

(4) ΥΥ∗f =
∑m

j=1(∂
2f/∂s2j)εj,

where sj ∈ R, εj = 1 for 1 ≤ j ≤ p and εj = −1 for each p < j ≤ m, m ≤ 2v, 1 ≤ p ≤ m
depending on the signature (p,m− p).
Generally (see Formula 5(1)) we have
(5) A = (Υ + β)(Υ1 + β

1)f(z) = B0f(z) +Qf(z), where
(6) B0f(z) =

∑
j,k[(∂

2f(z)/∂zj∂zk)φ
1
j(z)

∗]φ∗k(z) + [f(z)β
1(z)]β(z) and

(7) Qf(z) =
∑

j,k[(∂f(z)/∂zj)(∂φ
1
j(z)

∗/∂zk)]φ
∗
k(z) +

∑
j[(∂f(z)/∂zj)φ

1
j(z)

∗]β(z) +∑
k[f(z)(∂β

1(z)/∂zk)]φ
∗
k(z),

(8) (Υ1 + β
1)f(z) = [

∑
j(∂f(z)/∂zj)φ

1
j(z)

∗] + f(z)β1(z).
The latter equations show that coefficients of the operator Q may be generalized functions,

when φ1j(z) for some j or β
1(z) are locally C0 or C0 or locally C1 functions, while φk(z) for

each k and β(z) are locally C0 or C0 functions on U . We consider this in more details in the
next section.
15. Partial differential operators with generalized coefficients.
Let an operator Q be given by Formula 14(7) on a domain U . Initially it is considered as

a domain in the Cayley-Dickson algebra Av. But in the case when Q and f depend on smaller
number of real coordinates z0, ..., zn−1 we can take the real shadow of U and its sub-domain V
of variables (z0, ..., zn−1), where zk are marked for example being zero for all n ≤ k ≤ 2v − 1.
Thus we take a domain V which is a canonical closed subset in the Euclidean space Rn,
2v−1 ≤ n ≤ 2v − 1, v ≥ 2.

A canonical closed subset P of the Euclidean space X = Rn is called a quadrant if it can be
given by the condition P := {x ∈ X : qj(x) ≥ 0}, where (qj : j ∈ ΛP ) are linearly independent
elements of the topologically adjoint space X∗. Here ΛP ⊂ N (with card(ΛP ) = k ≤ n) and k
is called the index of P . If x ∈ P and exactly j of the qi’s satisfy qi(x) = 0 then x is called a
corner of index j.
That is P is affine diffeomorphic with P n =

∏n
j=1[aj, bj], where −∞ ≤ aj < bj ≤ ∞,

[aj, bj] := {x ∈ R : aj ≤ x ≤ bj} denotes the segment in R. This means that there exists
a vector p ∈ Rn and a linear invertible mapping C on Rn so that C(P ) − p = P n. We put
tj,1 := (t1, ..., tj, ..., tn : tj = aj), tj,2 := (t1, ..., tj, ..., tn : tj = bj). Consider t = (t1, ..., tn) ∈ P n.
This permits to define a manifold M with corners. It is a metric separable space modelled

on X = Rn and is supposed to be of class Cs, 1 ≤ s. Charts on M are denoted (Ul, ul, Pl),
that is, ul : Ul → ul(Ul) ⊂ Pl is a Cs-diffeomorphism for each l, Ul is open in M , ul ◦ uj−1 is of
Cs class of smoothness from the domain uj(Ul ∩ Uj) 6= ∅ onto ul(Ul ∩ Uj), that is, uj ◦ u

−1
l and

ul ◦ u
−1
j are bijective,

⋃
j Uj =M .

A point x ∈M is called a corner of index j if there exists a chart (U, u, P ) of M with x ∈ U
and u(x) is of index indM(x) = j in u(U) ⊂ P . A set of all corners of index j ≥ 1 is called a
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border ∂M of M , x is called an inner point of M if indM(x) = 0, so ∂M =
⋃
j≥1 ∂

jM , where
∂jM := {x ∈M : indM(x) = j} (see also [30]). We consider that
(D1) V is a canonical closed subset in the Euclidean space Rn, that is V = cl(Int(V )),

where Int(V ) denotes the interior of V and cl(V ) denotes the closure of V .
Particularly, the entire space Rn may also be taken.
Let a manifold W be satisfying the following conditions (i− v).
(i). The manifold W is continuous and piecewise Cα, where C l denotes the family of l times

continuously differentiable functions. This means by the definition that W as the manifold is
of class C0 ∩ Cα

loc. That is W is of class Cα on open subsets W0,j in W and W \ (
⋃
jW0,j) has

a codimension not less than one in W .
(ii). W =

⋃m
j=0Wj, where W0 =

⋃
kW0,k, Wj ∩ Wk = ∅ for each k 6= j, m = dimRW ,

dimRWj = m− j, Wj+1 ⊂ ∂Wj.
(iii). Each Wj with j = 0, ...,m− 1 is an oriented Cα-manifold, Wj is open in

⋃m
k=jWk. An

orientation of Wj+1 is consistent with that of ∂Wj for each j = 0, 1, ...,m − 2. For j > 0 the
set Wj is allowed to be void or non-void.
(iv). A sequence W k of Cα orientable manifolds embedded into Rn, α ≥ 1, exists such that

W k uniformly converges to W on each compact subset in Rn relative to the metric dist.
For two subsets B and E in a metric space X with a metric ρ we put
(1) dist(B,E) := max{supb∈B dist({b}, E), supe∈E dist(B, {e})}, where
dist({b}, E) := infe∈E ρ(b, e), dist(B, {e}) := infb∈B ρ(b, e), b ∈ B, e ∈ E.
Generally, dimRW = m ≤ n. Let (ek1(x), ..., e

k
m(x)) be a basis in the tangent space TxW

k

at x ∈ W k consistent with the orientation of W k, k ∈ N.
We suppose that the sequence of orientation frames (ek1(xk), ..., e

k
m(xk)) of W

k at xk con-
verges to (e1(x), ..., em(x)) for each x ∈ W0, where limk xk = x ∈ W0, while e1(x),...,em(x) are
linearly independent vectors in Rn.
(v). Let a sequence of Riemann volume elements λk on W k (see §XIII.2 [38]) induce a limit

volume element λ on W , that is, λ(B ∩W ) = limk→∞(B ∩W k) for each compact canonical
closed subset B in Rn, consequently, λ(W \W0) = 0. We shall consider surface integrals of
the second kind, i.e. by the oriented surface W (see (iv)), where each Wj, j = 0, ...,m − 1 is
oriented (see also §XIII.2.5 [38]).
Suppose that a boundary ∂U of U satisfies Conditions (i− v) and
(vii) let the orientations of ∂Uk and Uk be consistent for each k ∈ N (see Proposition 2

and Definition 3 [38]).
Particularly, the Riemann volume element λk on ∂Uk is consistent with the Lebesgue mea-

sure on Uk induced from Rn for each k. This induces the measure λ on ∂U as in (v). This
consideration certainly encompasses the case of a domain U with a Cα boundary ∂U as well.
Suppose that U1,...,Ul are domains in Rn satisfying conditions (D1, i − vii) and such that

Uj ∩ Uk = ∂Uj ∩ ∂Uk for each j 6= k, U =
⋃l
j=1 Uj. Consider a function g : U → Av such

that each its restriction g|Uj is of class C
s, but g on the entire domain U may be discontinuous

or not Ck, where 0 ≤ k ≤ s, 1 ≤ s. If x ∈ ∂Uj ∩ ∂Uk for some j 6= k, x ∈ Int(U),
such that x is of index m ≥ 1 in Uj (and in Uk also). Then there exists canonical Cα local
coordinates (y1, ..., yn) in a neighborhood Vx of x in U such that S := Vx ∩ ∂mUj = {y : y ∈
Vx; y1 = 0, ..., ym = 0}. Using locally finite coverings of the locally compact topological space
∂Uj ∩ ∂Uk without loss of generality we suppose that Cα functions P1(z), ..., Pm(z) on Rn

exist with S = {z : z ∈ Rn; P1(z) = 0, ..., Pm(z) = 0}. Therefore, on the surface S the
delta-function δ(P1, ..., Pm) exists, for m = 1 denoting them P = P1 and δ(P ) respectively (see
§III.1 [6]). It is possible to choose yj = Pj for j = 1, ...,m. Using generalized functions with
definite supports, for example compact supports, it is possible without loss of generality consider
that y1, ..., yn ∈ R are real variables. Let θ(Pj) be the characteristic function of the domain
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Pj := {z : Pj(z) ≥ 0}, θ(Pj) := 1 for Pj ≥ 0 and θ(Pj) = 0 for Pj < 0. Then the generalized
function θ(P1, ..., Pm) := θ(P1)...θ(Pm) can be considered as the direct product of generalized
functions θ(y1),...,θ(ym), 1(ym+1, ..., yn) ≡ 1, since variables y1, ..., yn are independent. Then in
the class of generalized functions the following formulas are valid:
(2) ∂θ(Pj)/∂zk = δ(Pj)(∂Pj/∂zk) for each k = 1, ..., n, consequently,
(3) grad[θ(P1, ..., Pm)] =

∑m
j=1[θ(P1)...θ(Pj−1)δ(Pj)(grad(Pj))θ(Pj+1)...θ(Pm)],

where , grad g(z) := (∂g(z)/∂z1, ..., ∂g(z)/∂zn) (see Formulas III.1.3(1, 7, 7′, 9) and III.1.9(6)
[6]).
Let for the domain U in the Euclidean space Rn the set of internal surfaces clU [IntRn(U)∩⋃

j 6=k(∂Uj ∩∂Uk)] in U on which a function g : U → Av or its derivatives may be discontinuous
is presented as the disjoint union of surfaces Γj, where each surface Γj is the boundary of the
sub-domain
(4) Pj := {Pj,1(z) ≥ 0, ..., Pj,mj(z) ≥ 0}, Γ

j = ∂Pj =
⋃mj
k=1 ∂

kPj,
mj ∈ N for each j, clX(V ) denotes the closure of a subset V in a topological space X, IntX(V )
denotes the interior of V in X. By its construction {Pj : j} is the covering of U which is the
refinement of the covering {Uk : k}, i.e. for each Pj a number k exists so that Pj ⊂ Uk and
∂Pj ⊂ ∂Uk and

⋃
j P

j =
⋃
k Uk = U . We put

(5) hj(z(x)) = h(x)|x∈Γj :=
limyj,1↓0,...,yj,n↓0 g(z(x+ y))− limyj,1↓0,...,yj,n↓0 g(z(x− y))

in accordance with the supposition made above that g can have only discontinuous of the first
kind, i.e. the latter two limits exist on each Γj, where x and y are written in coordinates in Pj,
z = z(x) denotes the same point in the global coordinates z of the Euclidean space Rn. We
take new continuous function
(6) g1(z) = g(z)−

∑
j hj(z)θ(Pj,1(z), ..., Pj,mj(z)).

Let the partial derivatives and the gradient of the function g1 be calculated piecewise one each
Uk. Since g1 is the continuous function, it is the regular generalized function by the definition,
consequently, its partial derivatives exist as the generalized functions. If g1|Uj ∈ C

1(Uj ,Av),
then ∂g1(z)/∂zk is the continuous function on Uj, i.e. in this case ∂g1(z)χUj(z)/∂zk is the
regular generalized function on Uj for each k, where χG(z) denotes the characteristic function
of a subset G in Av, χG(z) = 1 for each z ∈ G, while χ(z) = 0 for z ∈ Av \ G. Therefore,
g1(z) =

∑
j g
1(z)χUj\

⋃
k<j Uk

(z), where U0 = ∅, j, k ∈ N.
On the other hand, the function g(z) is locally continuous on U , consequently, it defines

the regular generalized function on the space D(U,Av) of test functions as
[g, ω) :=

∫
U
g(z)ω(z)λ(dz),

where λ is the Lebesgue measure on U induced by the Lebesgue measure on the real shadow
R2

v
of the Cayley-Dickson algebra Av, ω ∈ D(U,Av). Thus partial derivatives of g exist as

generalized functions.
In accordance with Formulas (2, 3, 6) we infer that the gradient of the function g(z) on the

domain U is the following:
(7) grad g(z) = grad g1(z) +

∑
j hj(z)grad θ(Pj,1, ..., Pj,mj).

Thus Formulas (3, 7) permit calculations of coefficients of the partial differential operator
Q given by Formula 14(7).
16. Line generalized functions.
Let U be a domain satisfying Conditions 1(D1, D2) and 15(D1, i − vii). We embed the

Euclidean space Rn into the Cayley-Dickson algebra Av, 2v−1 ≤ n ≤ 2v − 1, as the R affine
sub-space putting Rn 3 x = (x1, ..., xn) 7→ x1ij1 + ... + xnijn + x

0 ∈ Av, where jk 6= jl for
each k 6= l, x0 is a marked Cayley-Dickson number, for example, jk = k for each k, x0 = 0.
Moreover, each zj can be written in the z-representation in accordance with Formulas 1(1−3).
We denote by P = P(U) the family of all rectifiable paths γ : [aγ, bγ] → U supplied with
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the metric
(1) ρ(γ, ω) := |γ(a)− ω(aω)|+ infφ V b

a (γ(t))− ω(φ(t))
where the infimum is taken by all diffeomorphisms φ : [aγ, bγ] → [aω, bω] so that φ(aγ) = aω,
a = aγ < bγ = b (see §3).
Let us introduce a continuous mapping g : B(U,Av)×P(U)× V(U,Av)→ Y such that its

values are denoted by [g;ω, γ; ν], where Y is a module over the Cayley-Dickson algebra Av,
ω ∈ B(U,Av), γ ∈ P(U), V(U,Av) denotes the family of all functions on U with values in the
Cayley-Dickson algebra of bounded variation (see §3), ν ∈ V(U,Av). For the identity mapping
ν(z) = id(z) = z values of this functional will be denoted shortly by [g;ω, γ]. Suppose that
this mapping g satisfies the following properties (G1−G5):
(G1) [g;ω, γ; ν] is bi- R homogeneous and Av additive by a test function ω and by a function

of bounded variation ν;
(G2) [g;ω, γ; ν] = [g;ω, γ1; ν] + [g;ω, γ2; ν] for each γ, γ1 and γ2 ∈ P(U) such that γ(t) =

γ1(t) for all t ∈ [aγ1 , bγ1 ] and γ(t) = γ2(t) for any t ∈ [aγ2 , bγ2 ] and aγ1 = aγ and aγ2 = bγ1 and
bγ = bγ2 .
(G3) If a rectifiable curve γ does not intersect a support of a test function ω or a function of

bounded variation ν, γ([a, b]∩ (supp(ω)∩ supp(ν)) = ∅, then [g;ω, γ; ν] = 0, where supp(ω) :=
cl{z ∈ U : ω(z) 6= 0}.
Further we put
(G4) [∂|m|g(z)/∂zm00 ...∂z

m2v−1
2v−1 ;ω, γ] := (−1)

|m|[g; ∂|m|ω(z)/∂zm00 ...∂z
m2v−1
2v−1 , γ]

for each m = (m0, ...,m2v−1), mj is a non-negative integer 0 ≤ mj ∈ Z for each j, |m| :=
m0 + ... +m2v−1. In the case of a super-differentiable function ω and a generalized function g
we also put
(G5) [(dkg(z)/dzk).(h1, ..., hk);ω, γ] := (−1)k[g; (dkω(z)/dzk).(h1, ..., hk), γ]

for any natural number k ∈ N and Cayley-Dickson numbers h1, .., hk ∈ Av.
Then g is called the Y valued line generalized function on B(U,Av) × P(U) × V(U,Av).

Analogously it can be defined on D(U,Av)×P(U)×V(U,Av) (see also §9). If Y = Av we call
it simply the line generalized function, while for Y = Lq(Akv ,A

l
v) we call it the line generalized

operator valued function, k, l ≥ 1, omitting "on B(U,Av) × P(U) × V(U,Av)" or "line" for
short, when it is specified. Their spaces we denote by Lq(B(U,Av) × P(U) × V(U,Av);Y ).
Thus if g is a generalized function, then Formula (G5) defines the operator valued generalized
function dkg(z)/dzk with k ∈ N and l = 1.
If g is a continuous function on U (see §3), then the formula
(G6) [g;ω, γ; ν] =

∫
γ
g(y)ω(y)dν(y)

defines the generalized function. If f̂(z) is a continuous Lq(Av,Av) valued function on U , then
it defines the generalized operator valued function with Y = Lq(Av,Av) such that
(G7) [f̂ ;ω, γ; ν] =

∫
γ
{f̂(z).ω(z)}dν(z).

Particularly, for ν = id we certainly have dν(z) = dz.
We consider on Lq(B(U,Av)×P(U)× V(U,Av);Y ) the strong topology:
(G8) liml f

l = f means that for each marked test function ω ∈ B(U,Av) and rectifiable
path γ ∈ P(U) and function of bounded variation ν ∈ V(U,Av) the limit relative to the norm
in Y exists
liml[f

l;ω, γ; ν] = [f ;ω, γ; ν].
17. Line integration of generalized functions.
Let Cm

ab(V,Av) denote the R linear space and right and left Av module of all functions
γ : V → Av such that γ(z) and each its derivative ∂|k|g(z)/∂z

m1
1 ...∂zmnn for 1 ≤ |k| ≤ m

is absolutely continuous on V (see §§3 and 16). This definition means that Cm+1(V,Av) ⊂
Cm
ab(V,Av), where C

m(V,Av) denotes the family of all m times continuously differentiable
functions on a domain V either open or canonical closed in Rn, which may be a a real shadow
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of U as well.
17.1. Lemma. Let γ ∈ Cm

ab([a, b],Av) ∩ P(U) and ω ∈ B(U,Av) and ν ∈ C
0
ab(U,Av) for

m = 0 or ν = id for m ≥ 1, where 0 ≤ m ∈ Z, then a line generalized function [g;ω, γ|[a,x]; ν]
is continuous for m = 0 or of class Cm by the parameter x ∈ [a, b] for m ≥ 1.
Proof. For absolutely continuous functions γ(t) and ν (i.e. when m = 0) the conti-

nuity by the parameter x follows from the definition of the line generalized function, since
limΔx→0 ρ(γ|[a,x], γ|[a,x+Δx]) = 0 and
limΔx→0 ρ(ν ◦ γ|[a,x], ν ◦ γ|[a,x+Δx]) = 0.
Consider now the case m ≥ 1 and ν = id. In view of properties 16(G1, G2) for any Δx 6= 0

so that x ∈ (a, b] := {t ∈ R : a < t ≤ b} and x + Δx ∈ (a, b) := {t ∈ R : a < t < b} the
difference quotient satisfies the equalities:
(1) {[g;ω, γ|[a,x+Δx]]− [g;ω, γ|[a,x]]}/Δx = [g;ω/Δx, γ ◦ φ|[a,x]]− [g;ω/Δx, γ|[a,x]],

where φ : [a, x] → [a, x + Δx] is a diffeomorphism of [a, x] onto [a, x + Δx] with φ(a) = a.
Therefore, Δω := ω(z + Δz) − ω(z) for z = γ(t) and z + Δz = γ(φ(t)), t ∈ [a, x] in the
considered case. Using Conditions (G1, G3) one can mention that if ω = ω1 on an open
neighborhood V of γ in U , then
(2) [g;ω, γ] = [g;ω1, γ],

since ω − ω1 = 0 on V and γ ∩ supp(ω − ω1) = 0.
From Conditions 16(G1, G4) and Formula (2) we deduce that
(3) limΔx→0{[g;ω, γ|[a,x+Δx]]− [g;ω, γ|[a,x]]}/Δx

=
∑2v−1

j=0 [g; (∂ω(z)/∂zj), (dγj(t)/dt)γ|[a,x]],
where zj ′ = dγj(t)/dt for z = γ(t), t ∈ [a, b], since each partial derivative of the test function
ω is again the test function. From the first part of the proof we get that [g;ω, γ|[a,x]] is of class
C1 by the parameter x, since the product (dγj(t)/dt)γ(t) of absolutely continuous functions
(dγj(t)/dt) and γ(t) is absolutely continuous for each j. Repeating this proof by induction for
k = 1, ...,m one gets the statement of this lemma for γ ∈ Cm

ab([a, b],Av) ∩P(U).
17.2. Lemma. If γ is a rectifiable path, then a line generalized function [g;ω, γ|[a,x]] is of

bounded variation by the parameter x ∈ [a, b].
Proof. Let γ ∈ P(U) be a rectifiable path in U , γ : [a, b] → U . We can present γ in the

form
(1) γ(t) =

∑2v−1
j=0 γj(t)ij,

where each function γj(t) is real-valued. Therefore, γj(t) is continuous and of bounded variation
for each j, since γ is such. Thus the function ω(γ(t)) is of bounded variation V b

a ω(γ)) < ∞,
since ω is infinite differentiable and γ([a, b]) is compact.
On the other hand, each function f : [a, b] → R of bounded variation can be written as

the difference f = f 1 − f 2 of two monotone non-decreasing functions f 1 and f 2 of bounded
variations: f 1(t) := V t

af and f
2(t) = f 1(t) − f(t) for each t ∈ [a, b] (see [5, 16]). This means

that fk = gk+hk, where a function gk is continuous monotone and of bounded variation, while
hk is a monotone step function, where k = 1, 2. When the function f is continuous one gets
f = g1 − g2. For a monotone non-decreasing function p one has V t

ap = p(t)− p(a).
In view of Property 17(G1) we infer that
(2) [g;ω, γ|[a,x]] =

∑2v−1
j=0 [gj;ω, γ|[a,x]]ij,

where the function [gj;ω, γ|[a,x]] by x is real-valued for any ω ∈ B(U,Av) and γ ∈ P(U) for all
j = 0, ..., 2v − 1.
The metric space P(Ū) is complete, where Ū = cl(U). Indeed, let gn be a sequence of

rectifiable paths in Ū fundamental relative to the metric ρ given by Formula 16(1). Using
diffeomorphism preserving orientations of segments we can consider without loss of generality
that each path gn is defined on the unit segment [0, 1], a = 0, b = 1. It is lightly to mention
that
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(3) |g(a)− f(a))|+ V b
a (g − f) ≥ supt∈[a,b] |g(t)− f(t)|

for any two functions of bounded variation, f, g : [a, b] → Ū . For each ε > 0 a natural
number n0 = n0(ε) exists so that ρ(gn, gm) < ε/2 for all n,m ≥ n0. That is φn : [0, 1] → [0, 1]
diffeomorphisms exist such that
|gn(a) − gm(a))| + V b

a (g
n ◦ φn − gm ◦ φm) < ε for all n,m ≥ n0, since φm ◦ (φn)−1 is also

the diffeomorphism preserving the orientation of the segment. Using induction by ε = 1/l with
l ∈ N one chooses a sequence of diffeomorphisms φn such that for each l ∈ N a natural number
n0 = n0(l) exists such that
|gn(a)− gm(a))|+ V b

a (g
n ◦ φn − gm ◦ φm) < 1/l for all n,m ≥ n0(l), consequently,

supt∈[a,b] |g
n(φn(t))− gm(φm(t))| < 1/l for all n,m ≥ n0(l).

Thus the sequence gn ◦ φn is fundamental in C0([a, b], Ū). The latter metric space is complete
relative to the metric

d(f, g) := supt∈[a,b] |f(t)− g(t)|,
since from the completeness of the Cayley-Dickson algebra Av considered as the normed space
over the real field the completeness of the closed subset Ū follows (see also Chapter 8 in [3]).
Therefore, the sequence gn ◦φn converges to a continuous function f : [a, b]→ Ū . On the other
hand, limm→∞ ρ(gn ◦φn, gm ◦φm) = ρ(gn ◦φn, f) ≤ 1/l for each n > n0(l), l ∈ N. The function
gn ◦φn is of bounded variation, consequently, the function f is also of bounded variation. That
is f ∈ P(Ū). Thus P(Ū) is complete.
Take any sequence γn of C2ab([a, b],Av) paths in U converging to γ relative to the metric

ρ on P(Ū) and the latter metric space is complete as it was demonstrated above. In view of
Formula 17.1(3) and Property 16(G3) the sequence [g;ω, γn|[a,x]] is fundamental in P(Ū). On
the other hand, the generalized function g is continuous on B(U,Ar)×P(Ū), consequently, the
sequence [g;ω, γn|[a,x]] converges in B(U,Ar)×P(Ū) to [g;ω, γn|[a,x]] for each a < x ≤ b, hence
[g;ω, γ|[a,x]] = limn[g;ω, γn|[a,x]] in P(Ū). By the conditions of this lemma [g;ω, γ|[a,x]] ∈ P(U),
since γ([a, b]) ⊂ U . Thus the function [g;ω, γ|[a,x]] by x ∈ [a, b] is of bounded variation:

V b
a [g;ω, γ|[a,x]] <∞.
18. Definition. Let f and η be two line generalized functions on B(U,Av) × P(U) ×

V(U,Av). We define a line functional with values denoted by
[
∫
γ
fdη, ω1 ⊗ ω) := [f̂ ;ω1, γ; [η;ω, κ]]|κ=γ = [f̂ ;ω1, ∗; [η;ω, ∗]](γ),

where γ ∈ P(U) is a rectifiable path in U , ω, ω1 ∈ B(U,Av) are any test functions. The
functional

∫
γ
fdη is called the non-commutative line integral over the Cayley-Dickson algebra

Av of line generalized functions f by η. Quite analogously such integral is defined for line
generalized functions f and η on D(U,Av)×P(U)× V(U,Av).
19. Theorem. Let F and Ξ be two generalized functions on U , F, Ξ ∈ B′(U,Av) or

F, Ξ ∈ D′(U,Av), then the the non-commutative line integral over the Cayley-Dickson algebra
Av of line generalized functions f by ξ exists, where f is induced by F and ξ by Ξ.
Proof. At first it easy to mention that Definition 18 is justified by Definition 16 and Lemma

17.2, since the function [η;ω, κ|[a,x]] is of bounded variation by the variable x for each rectifiable
path κ ∈ P(U) and any test function ω (see Properties 16(G1 − G3)), while the operator f̂
always exists in the class of generalized line operators, f̂ = dg/dz, (dg(z)/dz).1 = f(z) (see
Property 16(G5)).
Each generalized function f ∈ B(U,Av) can be written in the form:
(1) [f, ω) =

∑2v−1
j,k=0[fj,k, ωk)ij,

where each fj,k is a real valued generalized function, fj,k ∈ B′(U,R), ω =
∑

k ωkik, ωk ∈ B(U,R)
is a real valued test function, [fj,k, ωk) = [fj, ωkik), [f, ω) =

∑
j[fj, ω)ij, [fj, ω) ∈ R for each

j = 0, ..., 2v − 1 and ω ∈ B(U,Av), i0, ..., i2v−1 is the standard base of generators of the Cayley-
Dickson algebra Av. It is well-known that in the space B′(U,R) of generalized functions the
space B(U,R) of test functions is everywhere dense (see [6] and §9 above). In view of the



166 Hypercomplex Numbers in Geometry and Physics, 2 (16), Vol 8, 2011

decomposition given by Formula (1) we get that B(U,Av) is everywhere dense in B′(U,Av).
Thus sequences of test functions F l and Ξl exist converging to F and Ξ correspondingly.
Without loss of generality we can embed U into Av taking its ε-enlargement (open neigh-

borhood) in case of necessity. So it is sufficient to treat the case of a domain U in Av. In view
of the analog of the Stone-Weierstrass theorem (see [22, 23]) in C0(Q,Av) for each compact
canonical closed subset in Av the family of all super-differentiable on Q functions is dense,
consequently, the space H(U,Av) of all super-differentiable functions on U is everywhere dense
in D(U,Av). For each rectifiable path γ in the domain U a compact canonical closed domain
Q exists Q ⊂ U so that γ([a, b]) ⊂ Q. Therefore, it is sufficient to consider test functions with
compact supports in Q. Thus we take super-differentiable functions F n and Ξn.
Let γl be a sequence of rectifiable paths continuously differentiable, γl ∈ C1([a, b],Av),

converging to γ in P(U) relative to the metric ρ.
Then for any super-differentiable functions p and q we have
(2)
∫
γl
p(z)dq(z) =

∫ b
a
(dζ(z)/dz).[(dq(z)/dz).dγl(t)]|z=γl(t)

=
∫ b
a

∑2v−1
k=0 (∂ζ(z)/∂zk)[

∑2v−1
j=0 (∂qk(z)/∂zj)dγ

l
j(t)],

since each super-differentiable function is Fréchet differentiable, dγlj(t) = γlj
′
(t)dt, where

(dζ(z)/dz).1 = p(z) and for the corresponding phrases of them for each z ∈ U . On the
other hand, the functional
(3)

∫ b
a

∑2v−1
k=0 (∂ζ(z)/∂zk)[

∑2v−1
j=0 (∂qk(z)/∂zj)dγ

l
j(t)] is continuous on B(U,Av)

2 ×P(U), i.e.
for ζ, p ∈ B(U,Av) and γ ∈ P(U) as well.
For a rectifiable path γ in U it is possible to take a sequence of open ε neighborhoods

Γε :=
⋃
z∈γ([a,b]) B̆(Av, z, ε), ε = ε(l) = 1/l, where B̆(Av, z, ε) := {y : y ∈ Av; |y − z| < ε}.

Therefore, for each function ν of bounded variation on U and each rectifiable path γ in U a
sequence of test functions θl with supports contained in Γ1/l exists such that
liml

∫
U
[(dζ(z)/dz).θl(z)]λ(dz) =

∫
γ
p(z)dν(z)

for each super-differentiable test functions p, ζ ∈ H(U,Av) with (dζ(z)/dz).1 = p(z) on U ,
where λ denotes the Lebesgue measure on U induced by the Lebesgue measure on the real
shadow R2

v
of the Cayley-Dickson algebra Av, where H(U,Av) denotes the family of all super-

differentiable functions on the domain U with values in the Cayley-Dickson algebra Av.
Using the latter property and in accordance with Formulas (1− 3) and 16(G6, G7) we put:
(4) [ξ;ω, γ] := liml[Ξ

l;ω, γ] = liml
∫
γ
Ξl(y)ω(y)dy and

(5) [f̂ ;ω1, γ; ν] = liml[dG
l/dz;ω1, γ; ν] = liml

∫
γ
{(dGl(z)/dz).ω1(z)}dν(z)

for any ν ∈ V(U,Av), where (dGl/dz).1 = F l(z) on U .
Therefore Ξl converges to ξ and dGl/dz converges to f̂ , where [ξ;ω, ∗](κ|[a,x]) = [ξ;ω, κ|[a,x]]

for each κ ∈ P(U), a < x ≤ b (see Lemma 17.2). Therefore, from Formulas (2−5) and Lemmas
17.1 and 17.2 we infer that
(6) [

∫
γ
fdη, ω1 ⊗ ω) = liml[dGl/dz;ω1, ∗; [Ξl;ω, ∗]](γl)

= liml
∫
γl
[dGl/dz;ω1, ∗; d[Ξl;ω, ∗](z)],

where z = γl(t), a ≤ t ≤ b.
19.1. Corollary. If F : U → Av is a continuous function on U and Ξ is a generalized

function on U , then the non-commutative line integral over the Cayley-Dickson algebra Av of
line generalized functions f by ξ
(1) [

∫
γ
fdξ, ω1 ⊗ ω)

exists, where f is induced by F and ξ by Ξ.
Proof. This follows from Theorem 19 and the fact that each continuous function F on U

gives the corresponding regular line operator valued generalized function on the space of test
functions ω1 in B(U,Av) or D(U,Av):
[F̂ ;ω1, γ] =

∫
γ
(F̂ (z).ω1(z))dz.
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In this case one can take the marked function ω1 = χV , where V is a compact canonical closed
sub-domain in U , since γ([a, b]) is compact for each rectifiable path γ in U so that γ([a, b]) ⊂ V
for the corresponding compact sub-domain V . This gives F̂ .χV (z) = F (z) for each z ∈ V and
F̂ .χV (z) = 0 for each z ∈ U \ V .
19.2. Corollary. If F ∈ B′(U,Av) or F ∈ D′(U,Av) is a generalized function on U and

Ξ is a function of bounded variation on U , then the non-commutative line integral over the
Cayley-Dickson algebra Av of line generalized functions f by ξ
(1) [

∫
γ
fdξ, ω1 ⊗ ω)

exists, where f is induced by F and ξ by Ξ.
Proof. In this case we put
[ξ;ω, κ] :=

∫
κ
ω(z)dΞ(z)

for each test function ω and each rectifiable path κ in U . It is sufficient to take marked test
function ω(z) = 1 for each z ∈ U that gives d[ξ; 1, ∗] = dΞ. Thus this corollary follows from
Theorem 19.
19.3. Corollary. If F is a continuous function on U and Ξ is a function of bounded

variation on U , then the non-commutative line integral over the Cayley-Dickson algebra Av of
line generalized functions f by ξ
(1) [

∫
γ
fdξ, ω1 ⊗ ω)

exists, where f is induced by F and ξ by Ξ. Moreover, this integral coincides with the non-
commutative line integral from §3 for the unit test functions ω(z) = ω1(z) = 1 for each z ∈ U :
(2) [

∫
γ
fdξ, 1⊗ 1) =

∫
γ
fdξ.

Proof. This follows from the combination of two preceding corollaries, since for a rectifiable
path γ its image in U is contained in a compact sub-domain V in U , i.e. γ([a, b]) ⊂ V .
19.4. Convolution formula for solutions of partial differential equations.
Using convolutions of generalized functions a solution of the equation
(C1) (Υs + β)f = g in B(Rn, Y ) or in the space B′(Rn, Y )l is:
(C2) f = EΥs+β ∗ g,

where EΥs+β denotes a fundamental solution of the equation
(C3) (Υs + β)EΥ+β = δ,

(δ, φ) = φ(0) (see §9). The fundamental solution of the equation
(C4) A0V = δ with A0 = (Υs + β)(Υ

s1
1 + β1)

can be written as the convolution

(C5) V =: VA0 = EΥs+β ∗ EΥs11 +β1 .

In view of Formulas 4(7−9) each generalized function EΥs+β can also be found from the elliptic
partial differential equation
(C6) ΞβΨΥs+β = δ by the formula:
(C7) EΥs+β = [(Υs + β)∗]ΨΥs+β, where
(C8) Ξβ := (Υ

s + β)(Υs + β)∗

(see §33 [28]).
20. Poly-functionals. Let ak : B(U,Ar)k → Ar or ak : D(U,Ar)k → Ar be a continuous

mapping satisfying the following three conditions:
(P1) [ak, ω

1 ⊗ ...⊗ ωk) is R homogeneous
[ak, ω

1 ⊗ ...⊗ (ωlt)⊗ ...⊗ ωk) = [ak, ω1 ⊗ ...⊗ ωl ⊗ ...⊗ ωk)t = [akt, ω1 ⊗ ...⊗ ωk)
for each t ∈ R and Ar additive
[ak, ω

1⊗ ...⊗ (ωl+ κl)⊗ ...⊗ωk) = [ak, ω1⊗ ...⊗ωl⊗ ...⊗ωk) + [ak, ω1⊗ ...⊗ κl⊗ ...⊗ωk)
by any Ar valued test functions ωl and κl, when other are marked, l = 1, ..., k, i.e. it is k R
linear and k Ar additive, where [ak, ω1⊗ ...⊗ωk) denotes a value of ak on given test Ar valued
functions ω1, ..., ωk;
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(P2) [akα, ω
1⊗ ...⊗ (ωlβ)⊗ ...⊗ωk) = ([ak, ω1⊗ ...⊗ωl⊗ ...⊗ωk)α)β = [(akα)β, ω1⊗ ...⊗

ωl ⊗ ...⊗ ωk) for all real-valued test functions and α, β ∈ Ar;
(P3) [ak, ω

σ(1) ⊗ ...⊗ ωσ(k)) = [ak, ω1 ⊗ ...⊗ ωk) for all real-valued test functions and each
transposition σ, i.e. bijective surjective mapping σ : {1, ..., k} → {1, ..., k}.
Then ak will be called the symmetric k R linear k Ar additive continuous functional, 1 ≤

k ∈ Z. The family of all such symmetric functionals is denoted by B′k,s(U,Av) or D′k,s(U,Ar)
correspondingly. A functional satisfying Conditions (P1, P2) is called a continuous k-functional
over Ar and their family is denoted by B′k(U,Ar) or D′k(U,Ar). When a situation is outlined
we may omit for short "continuous" or "k R linear k Av additive".
The sum of two k-functionals over the Cayley-Dickson algebra Ar is prescribed by the

equality:
(P4) [ak + bk, ω

1 ⊗ ...⊗ ωk) = [ak, ω1 ⊗ ...⊗ ωk) + [bk, ω1 ⊗ ...⊗ ωk)
for each test functions. Using Formula (P4) each k-functional can be written as
(1) [ak, ω

1 ⊗ ...⊗ ωk) = [ak,0i0, ω1 ⊗ ...⊗ ωk) + ...+ [ak,2r−1i2r−1, ω1 ⊗ ...⊗ ωk),
where [ak,j, ω1 ⊗ ... ⊗ ωk) ∈ R is real for all real-valued test functions ω1, ..., ωk and each j;
i0,...,i2r−1 denote the standard generators of the Cayley-Dickson algebra Ar.
The direct product ak⊗bp of two functionals ak and bp for the same space of test functions

is a k + p-functional over Ar given by the following three conditions:
(P5) [ak ⊗ bp, ω1 ⊗ ...⊗ ωk+p) = [ak, ω1 ⊗ ...⊗ ωk)[bp, ωk+1 ⊗ ...⊗ ωk+p)

for any real-valued test functions ω1, ..., ωk+p;
(P6) if [bp, ωk+1 ⊗ ...⊗ ωk+p) ∈ R is real for any real-valued test functions, then
[(akN1)⊗ (bpN2), ω1 ⊗ ...⊗ ωk+p) = ([ak ⊗ bp, ω1 ⊗ ...⊗ ωk+p)N1)N2

for any real-valued test functions ω1, ..., ωk+p and Cayley-Dickson numbers N1, N2 ∈ Ar;
(P7) if [ak, ω1 ⊗ ... ⊗ ωk) ∈ R and [bp, ωk+1 ⊗ ... ⊗ ωk+p) ∈ R are real for any real-valued

test functions, then
[ak ⊗ bp, ω1 ⊗ ...⊗ (ωlN1)⊗ ...⊗ ωk+p) = [ak ⊗ bp, ω1 ⊗ ...⊗ ωk+p)N1

for any real-valued test functions ω1, ..., ωk+p and each Cayley-Dickson number N1 ∈ Ar for
each l = 1, ..., k + p.
Therefore, we can now consider a partial differential operator of order u acting on a gen-

eralized function f ∈ B′(U,Ar) or f ∈ D′(U,Ar) and with generalized coefficients either
aα ∈ B′|α|(U,Ar) or all aα ∈ D

′
|α|(U,Ar) correspondingly:

(1) Af(x) =
∑

|α|≤u

(∂αf(x))⊗ [(aα(x))⊗ 1
⊗(u−|α|)],

where ∂αf = ∂|α|f(x)/∂xα00 ...∂x
αn
n , x = x0i0 + ...xnin, xj ∈ R for each j, 1 ≤ n = 2r − 1,

α = (α0, ..., αn), |α| = α0+ ...+αn, 0 ≤ αj ∈ Z, [1, ω) :=
∫
U
ω(y)λ(dy), λ denotes the Lebesgue

measure on U , for convenience 1⊗0 means the multiplication on the unit 1 ∈ R. The partial
differential equation
(2) Af = g in terms of generalized functions has a solution f means by the definition that
(3) [Af, ω⊗(u+1)) = [g, ω⊗(u+1))

for each real-valued test function ω on U , where ω⊗k = ω ⊗ ... ⊗ ω denotes the k times direct
product of a test functions ω.
21. Theorem. Let A = Au be a partial differential operator with generalized over the

Cayley-Dickson algebra Ar coefficients of an even order u = 2s on U such that each aα is
symmetric for |α| = u and A has the form
(4) Af = (Bu,1f)cu,1 + ...+ (Bu,kf)cu,k, where each
(5) Bu,p = Bu,p,0 +Qu−1,p

is a partial differential operator by variables xmu,1+...+mu,p−1+1,...,xmu,1+...+mu,p and of the order
u, mu,0 = 0, cu,k(x) ∈ Ar for each k, its principal part
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(6) Bu,p,0f =
∑
|α|=s(∂

2αf)⊗ ap,2α(x)
is elliptic, i.e.

∑
|α|=s y

2α[ap,2α, ω
⊗2s) ≥ 0 for all yk(1),...,yk(mu,p) in R with k(1) = mu,1 + ... +

mu,p−1 + 1,...,k(mu,p) = mu,1 + ... +mu,p, yβ := y
βk1
k(1)...y

βk(mu,p)

k(mu,p)
and [ap,2α, ω⊗2s) ≥ 0 for each

real test function ω, either 0 ≤ r ≤ 3 and f is with values in Ar, or r ≥ 4 and f is real-valued
on real-valued test functions. Then three partial differential operators Υs and Υs1 and Q of
orders s and p with p ≤ u − 1 with generalized on U coefficients with values in Av exist such
that
(7) [Af, ω⊗(u+1)) = [Υs(Υs1f) +Qf, ω

⊗(u+1)) for each real-valued test function ω on U .
Proof. If a2s is a symmetric functional and [cs, ω⊗s) = [a2s, ω⊗2s)1/2 for each real-valued

test function ω, then by Formulas 20(P1, P2) this functional cs has an extension up to a
continuous s-functional over the Cayley-Dickson algebra Ar. This is sufficient for Formula (7),
where only real-valued test functions ω are taken.
Consider a continuous p-functional cp over Av, p ∈ N. Supply the domain U with the metric

induced from the corresponding Euclidean space or the Cayley-Dickson algebra in which U is
embedded. It is possible to take a sequence of non-negative test functions lω on U with a
support supp(lω) contained in the ball B(U, z, 1/l) with center z and radius 1/l and lω positive
on some open neighborhood of a marked point z in U so that

∫
U lω(z)λ(dz) = 1 for each l ∈ N.

If the p-functional cp is regular and realized by a continuous Av valued function g on Up, then
liml[cp, ω

⊗p) = g(z, ..., z). Thus the partial differential equation 20(2) for regular functionals
and their derivatives implies the classical partial differential equation 2(1).
Therefore, the statement of this theorem follows from Theorem 10, and §§14, 15 and 20,

since the spaces of test functions are dense in the spaces of generalized functions (see §19).
22. Corollary. If Af =

∑
j,k(∂

2f(z)/∂zk∂zj) ⊗ aj,k(z) +
∑

j(∂f(z)/∂zj) ⊗ bj(z) ⊗ 1 +
f(z) ⊗ η(z) ⊗ 1 is a second order partial differential operator with generalized coefficients in
B′(U,Ar) or D′(U,Ar), where each aj,k is symmetric, f and Ar are as in §20, then three partial
differential operators Υ+ β, Υ1+ β1 and Q of the first order with generalized coefficients with
values in Av for suitable v ≥ r of the same class exist such that
(1) [Af, ω⊗3) = [(Υ+ β)((Υ1 + β1)f +Qf), ω

⊗3) for each real-valued test function ω on U .
Proof. This follows from Theorem 21 and Corollary 12 and §§2 and 8.
23. Anti-derivatives of first order partial differential operators with generalized

coefficients.
Theorem. Let Υ be a first order partial differential operator given by the formula
(1) Υf =

∑n
j=0(∂f/∂zj)⊗ [i

∗
jψj(z)] or

(2) Υf =
∑n

j=0(∂f/∂zj)⊗ φ
∗
j(z),

where supp(ψj(z)) = U or supp(φj(z)) = U for each j respectively, f and ψj(z) or ψj(z) are
Av-valued generalized functions in B′(U,Ar) or D′(U,Ar) on the domain U satisfying Condi-
tions 1(D1, D2), algR{[φj, ω), [φk, ω), [φl, ω)} is alternative for all 0 ≤ j, k, l ≤ 2v − 1 and
algR{[φ0, ω), ..., [φ2v−1, ω)} ⊂ Av for each real-valued test function ω on U . Then its anti-
derivative operator IΥ exists such that ΥIΥf = f for each continuous generalized function
f : U → Av and it has an expression through line integrals of generalized functions.
Proof. When an operator with generalized coefficients is given by Formula (1), we shall

take unknown generalized functions νj(z) ∈ Av as solutions of the system of partial differential
equations by real variables zk:
(3) [(∂νj(z)/∂zj)⊗ ψj(z), ω⊗2) = [1, ω⊗2) for all 1 ≤ j ≤ n;
(4) [ψk(z)⊗ (∂νj(z)/∂zk), ω⊗2) = [ψj(z)⊗ (∂νk(z)/∂zj), ω⊗2) for all 1 ≤ j < k ≤ n and and

real-valued test functions ω on U .
If the operator is given by Formula (2) we consider the system of partial differential equa-

tions:
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(5) [((dg(z)/dz).[∂νj(z)/∂zk]) ⊗ φ∗k(z) + ((dg(z)/dz).[∂νk(z)/∂zj]) ⊗ φ
∗
j(z), ω

⊗2) = 0 for all
0 ≤ j < k ≤ n;
(6) ∂νj(z)/∂zj = φj(z) for all j = 0, ...., n;
(7) [((dg(z)/dz).φj(z)) ⊗ φ∗j(z), ω

⊗2) = [f(z) ⊗ 1, ω⊗2) for each j = 0, ..., n and every real-
valued test function ω.
Certainly the system of differential equations given by Formulas (3, 4) or (5 − 7) have

solutions in the spaces of test functions B(U,Ar) or D(U,Ar), when all functions ψj or φj are
in the same space respectively. Applying §§4 or 5 we find generalized functions νj resolving
these system of partial differential equations correspondingly, when all functions ψj or φj are
generalized functions, since the spaces of test functions are dense in the spaces of generalized
functions (see §19). Substituting line integrals

∫
γ
q(y)dνj(y) from §§4 and 5 on line integrals

[
∫
γ
q(y)dνj(y), ω

1⊗ ω) from §19 one gets the statement of this theorem, since test functions ω1

and ω in the line integrals of generalized functions can also be taken real-valued and the real
field is the center of the Cayley-Dickson algebra Av. Therefore, we infer that
(8) ∂[

∫
γα|<aα,tz ]

f(y)dνj(y), ω ⊗ ω)/∂zk = [f̂(z).[dνj(z)/dzk], ω ⊗ ω)

for each real-valued test function ω and z ∈ U , where γα(tz) = z, tz ∈< aα, bα >, α ∈ Λ.
Equality (8), Theorem 19 and Corollaries 19.1-19.3 and Conditions 20(P1−P7) give the formula
for an anti-derivative operator:

(9) [IΥf, ω ⊗ ω) = [Υ

∫
f(z)dz, ω ⊗ ω) = (n+ 1)−1

n∑

j=0

{[
∫

γα|[aα,t]

q(y)dνj(y), ω ⊗ ω)

for each real-valued test-function ω, where α ∈ Λ, aα ≤ t ≤ bα, t = tz, z = γ(t), consequently,
(10) [ΥΥ

∫
f(y)dy, ω⊗3) = [f ⊗ 1⊗ 1, ω⊗3).

23.1. Note. Certainly, the case of the partial differential operator
(1) Υf =

∑n
j=0(∂f/∂zk(j))⊗ φ

∗
k(j)(z),

where 0 ≤ k(0) < k(1) < ... < k(n) ≤ 2v− 1 reduces to the considered in §23 case by a suitable
change of variables z 7→ y so that zk(j) = yj.
24. Example. We consider a consequence of Formulas 15(2− 6). If q(t) is a differentiable

function on the real field R having simple zeros q(tj) = 0 (i.e. zeros of the first order), then
(1) δ(q(t)) =

∑
j
1

q(tj)
δ(t− tj),

where the sum is accomplished by all zeros tj of the equation q(t) = 0 (see Formula II.2.6(IV )
[6]). Therefore, if γ(τ) is a C1 path in U intersecting the surface ∂Us∩∂Up at the marked point
x of index l = ls,p(x), γ(τ0) = x, 0 < τ0 < 1, such that γ(τ) ∈ Us for each τ < τ0 and γ(τ) ∈ Up
for each τ > τ0 then
(2) dg(γ(τ))/dτ = dg1(γ(τ))/dτ + h

∑l
j=1 δ(Pj)dPj(γ(τ))/dτ ,

where θ(t) = 0 for t < 0 and θ(t) = 1 for t ≥ 0, g1(γ(τ)) = g(γ(τ))− hθ(τ − τ0),
(2.1) h = limτ↓τ0 g(γ(τ))− limτ↑τ0 g(γ(τ)),
(2.2) dPj(γ(τ))/dτ =

∑n
k=1(∂Pj(z)/∂zk)(∂γk(τ)/dτ)|z=γ(τ) (see Example I.2.2.2 [6]). Par-

ticularly, if a point x is of index 1, then Formula (2) simplifies:
(3) dg(γ(τ))/dτ = dg1(γ(τ))/dτ + hδ(P )[dP (γ(τ))/dτ ]. Particularly, these formulas can be

applied to dνj.
Let a partial differential differential operator Q be given by Formula 14(7) and functions

νk are found (see Theorems 5 and 21 above). We put in accordance with Formula 15(6)
(4) ν1k(z) = νk(z)−

∑
s,p hk;s,p(z)θ(Ps,p;1(z), ..., Ps,p;mj(z)),

where
(5) hk;s,p(z(x)) = hk(x)|x∈Γs,p :=
limy1;s,p↓0,...,yn;s,p↓0 νk(z(x+ y))− limy1;s,p↓0,...,yn;s,p↓0 νk(z(x− y)),

where the sum is by s and p with ∂Us ∩ ∂Up 6= ∅.
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Let a domain W be a canonical closed compact set in the Euclidean space Rn+1 embedded
into Av and contained in a canonical closed compact domain U so that W = {z ∈ U : zj =
0 ∀n < j ≤ 2v − 1}. Thus Υ from test and generalized functions on W is extended on test and
generalized functions on U . We can put νj = 0 for n < j ≤ 2v − 1, when n < 2v − 1. Then for
the rectifiable path γ (see above) we get

(6) (n+ 1)−1
n∑

k=0

[

∫

γ|[a,t]

q(y)dνk(y), ω
1 × ω)

= (n+ 1)−1
n∑

k=0

{[
∫

γ

q(y)dν1k(y), ω
1 × ω)

+[q̂;ω1, ∗; [
∑

s,p

hk;s,p(z)
l∑

j=1

δ(Pj)
n∑

m=1

(∂Pj(z)/∂zm)(∂γm(τ)/dτ)|z=γ(τ);ω, ∗]](γ)},

where γ ∈ {γα : α ∈ Λ} is taken from the foliation C1 family of paths (see §6.1 above and also
Theorem 2.13 [27]), z = γ(tz), tz ∈ [aα, bα], [a, t] = [aα, tz], l = ls,p(z) denotes an index of a
point z in the intersection of boundaries Γs,p := ∂Us ∩ ∂Up 6= ∅, ω1 and ω are real-valued test
functions. Since ω1 is real-valued, we get f̂(z).ω1 = f(z)ω1(z) and
(7) [q̂;ω1, ∗; [

∑
s,p hk;s,p(z)

∑l
j=1 δ(Pj)

∑n
m=1(∂Pj(z)/∂zm)(∂γm(τ)/dτ)|z=γ(τ);ω, ∗]](γ)

=
∑

s,p[q(z)ω
1(z); [θ(τ − τs,p)hk;s,p(z), ω))|z=γ(τ),

where τs,p corresponds to the intersection point γ(τs,p) of γ with Γs,p 6= ∅. Here the expression
[q, ω)|z=γ(τ) := limj[q◦κj, ω◦κj) denotes the restriction of the generalized function from U onto
γ([a, b]), κj ∈ D(U,Av) is a sequence of test functions and κj(φ([a, b])) ⊂ U for each j ∈ N,
φ ∈ D([a, b],Av),

⋂∞
j=1 supp(κ

j) = φ([a, b]), limj κj ◦ φ = γ in P(U). Therefore, the derivative
of the operator [(n + 1)−1

∑n
k=0[

∫
γ|[a,t]

q(y)dνk(y), ω
1 × ω) by the parameter τ ∈ [a, b] for the

real test functions ω1 and ω is the following:
(8) ∂(n+ 1)−1

∑n
k=0[

∫
γ|[a,t]

q(y)dνk(y), ω
1 × ω)/∂τ =

[(n + 1)−1
∑n

k=0{1 ⊗ q̂1(z).(dν1k(γ(τ))/dτ) +
∑

s,p(h
g′

s,p(z).hk;s,p(z) + q̂1(z).hk;s,p(z) +

hg
′

s,p(z).(dν
1
k(γ(τ))/dτ))|z=γ(τ))⊗ δ(τ − τs,p), ω

1 ⊗ ω),
where dg(z)/dz = q̂(z) on U in the class of generalized operator Lq(Av,Av) valued functions,
(dg(z)/dz).1 = q(z) on U , hg

′

s,p(z) = h(z) is given by Formula (2.1) for the derivative operator
dg(z)/dz = g′ instead of g on each Γs,p 6= ∅, q̂1 is given by Formula 15(6) for the function
q̂(z) with values in Lq(Av,Av) instead of g(z). The terms like q̂1(z).(dν1k(γ(τ))/dτ) correspond
to the action of the operator valued generalized function q̂1(z) on the generalized function
(dν1k(γ(τ))/dτ) which gives a generalized function.
Using Formulas (6 − 8) for n constant on U and ψj(z) or φj(z) respectively non-zero for

each z ∈ U and all j = 0, ..., n we infer that for a continuous or generalized function f
(9) ΥIΥf(z) = f(z), where

(10) Υ

∫
f(z)dz := {(n+ 1)−1

n∑

j=0

∫

γα|[aα,t]

q(z)dν1j (z), α ∈ Λ, aα ≤ t ≤ bα},

where q = (dg/dz).1 and g is given by the Equation 5(9), since f 1 = f and hg
′

s,p = 0 in the class
of generalized functions f and in the class of continuous functions f , also hk;s,p = 0 for νk = ν1k
on U .
Formulas (9, 10) show what sort of boundary conditions is sufficient to specify a unique

solution for a given domain U with sub-domains Us. If U is C1 diffeomorphic to the half-space
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Hp := {z ∈ Av : z0p0+...+z2v−1p2v−1 ≥ 0}, where p = p0i0+...+p2v−1i2v−1 is a marked Cayley-
Dickson number, p0, ..., p2v−1 ∈ R, and sub-domains Us are not prescribed, then it is sufficient
to give the boundary condition F |∂U = G when a solution is in the class of continuous or
generalized functions with the corresponding f and ψj or φj. Indeed, if the functions νk along γα

are defined up to constants μk, the differentials are the same d(νk+μk)(z)|z=γα(τ) = dνk|z=γα(τ)
in the anti-derivative operator, when dμk|z=γα(τ) = 0 for each α ∈ Λ and τ ∈ [aα, bα].
The operator IΥ may be applied also piecewise on each Us. If a solution F is locally

continuous on U and continuous on each sub-domain Us, then boundary conditions F |∂Us = G
s

for all s = 1, ...,m may be necessary to specify a solution F . Without boundary conditions the
anti-derivative operator applied to f gives the general solution IΥf of the differential equation
ΥF = f .
If each νk is continuously differentiable, which is possible, when each function ψk or φk is

continuous, and f is continuous on U , then a solution F = {Υ
∫
γα|[aα,τ ]

f(y)dy : α ∈ Λ, aα ≤

τ ≤ bα} is continuously differentiable by each zk, z ∈ U , z = γα(tz).
One can also mention that the sequence mω(z0, ..., zn) = (2πm)−(n+1)/2 exp{−(z20 +

... + z2n)/(2m)} converges to the delta-function on Rn+1 embedded into Av, m ∈ N.
Then the sequence mθ(z0) =

∫ z0
−m(2πm)

−1/2 exp{−t2/(2m)}dt converges to the θ func-
tion, while each function mθ(z0) is analytic by z0, since m ∈ N, exp{−t2/(2m)} is
the analytic function with the infinite radius of convergence of its power series, while
limm→+∞

∫ −m
−∞ (2πm)

−1/2 exp{−t2/(2m)}dt = 0. Then each mω(z0, ..., zn) and
∏n

j=0 mθ(zj) can
be written in the z-representation over Av as the analytic function with the help of For-
mulas 1(1 − 3), where n ≤ 2v − 1, zj ∈ R for each j, z = z0i0 + ... + z2v−1i2v−1. Thus
limm→∞ mω(z0, ..., zn) = δ(z0, ..., zn) and limm→∞

∏n
j=0 mθ(zj) =

∏n
j=0 θ(zj), dθ(z0)/dz0 =

δ(z0).
25. Boundary conditions.
If U is a domain as in §15, we put B(∂U, Y ) = {f |∂U : f ∈ B(U, Y )} and D(∂U, Y ) =

{f |∂U : f ∈ D(U, Y )} when a boundary ∂U is non-void so that the topologically adjoint linear
over R spaces, left and right Ar modules, of generalized functions are B′(∂U, Y ) and D′(∂U, Y ).
Let us consider a generalized function f ∈ B′(∂U, Y ) or D′(∂U, Y ) and a test function

h ∈ B(∂U, Y ) or D(∂U, Y ) respectively. One can take g ∈ B(U, Y ) or D(U, Y ) and a sequence
qm ∈ B(U, Y ) or D(U, Y ) with supports non intersecting with the boundary supp(qm)∩∂U = ∅
such that (g − qm) tends to zero in B(V, Y ) or D(V, Y ) for each compact subset V in the
interior Int(U), when m tends to the infinity, while limm(g− qm) = h in B(∂U, Y ) or D(∂U, Y )
respectively. Here as usually the interior Int(U) is taken in the corresponding topological space
Rn or Ar. Each generalized function is a limit of test functions, consequently, a generalized
function ξ ∈ B′(U, Y ) or D′(U, Y ) exists so that
(B1) limm[ξ, (g − qm)) = [f, h).

Vise versa if ξ ∈ B′(U, Y ) or D′(U, Y ) is a generalized function on U , then Formula (B1) defines
a generalized function f ∈ B′(∂U, Y ) or D′(∂U, Y ), which we consider as the restriction of ξ
on B(∂U, Y ) or D(∂U, Y ) correspondingly. In view of the definition of convergence of test and
generalized functions Formula (B1) defines the unique restriction f for the given generalized
function ξ.
A subsequent use of decomposition of operators into compositions of first order partial

differential operators and their anti-derivation operators permits to integrate partial differential
equations with locally continuous or generalized coefficients.
The results and definitions of previous sections show that for the differential equation
(1) Af = g,

where a partial differential operator is written in accordance with Formulas 10(1, 2). When
∂U is a C1-manifold without corner points of index greater than one, the following boundary
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conditions may be used:
(2) f(t)|∂U = f0(t′), (∂|q|f(t)/∂s

q1
1 ...∂s

qn
n )|∂U = f(q)(t

′) for |q| ≤ α−1, where s = (s1, ..., sn) ∈
Rn, (q) = (q1, ..., qn), |q| = q1 + ...+ qn, 0 ≤ qk ∈ Z for each k, t ∈ ∂U is denoted by t′, f0, f(q)
are given functions. Generally these conditions may be excessive, so one uses some of them or
their linear combinations (see (4) below). Frequently, the boundary conditions
(3) f(t)|∂U = f0(t′), (∂lf(t)/∂ν l)|∂U = fl(t′) for 1 ≤ l ≤ α−1 are also used, where ν denotes

a real variable along a unit external normal to the boundary ∂U at a point t′ ∈ ∂U0. Using
partial differentiation in local coordinates on ∂U and (3) one can calculate in principle all other
boundary conditions in (2) almost everywhere on ∂U .
It is possible to describe as an example a particular class of domains and boundary condi-

tions. Suppose that a domain U1 and its boundary ∂U1 satisfy Conditions (D1, i − vii) and
g1 = gχU1 is a regular or generalized function on R

n with its support in U1. Then any function
g on Rn gives the function gχU2 =: g2 on R

n, where U2 = Rn \ U1. Take now new domain U
satisfying Conditions (D1, i− vii) and (D2−D5):
(D2) U ⊃ U1 and ∂U ⊂ ∂U1;
(D3) if a straight line ξ containing a point w1 (see 15(vi)) intersects ∂U1 at two points y1

and y2, then only one point either y1 or y2 belongs to ∂U , where w1 ∈ U1, U −w1 and U1 −w1
are convex; if ξ intersects ∂U1 only at one point, then it intersects ∂U at the same point;
(D4) any straight line ξ through the point w1 either does not intersect ∂U or intersects the

boundary ∂U only at one point.
Take now g with supp(g) ⊂ U , then supp(gχU1) ⊂ U1. Therefore, any problem (1) on U1 can

be considered as the restriction of the problem (1) defined on U , satisfying (D1−D4, i− vii).
Any solution f of (1) on U with the boundary conditions on ∂U gives the solution as the
restriction f |U1 on U1 with the boundary conditions on ∂U .
Henceforward, we suppose that the domain U satisfies Conditions (D1, D4, i− vii), which

are rather mild and natural.
Thus the sufficient boundary conditions are:
(4) (∂|β|f(t(lj))/∂τβ1γ(1)...∂τ

βm
γ(m))|∂U(lj) = φβ,(lj)(t

(lj))

for |β| = |q|, wherem = |h(lj)|, |j| ≤ α, |(lj)| ≥ 1, aj 6= 0, qk = 0 for lkjk = 0, mk+qk+hk = jk,
hk = sign(lkjk), 0 ≤ qk ≤ jk − 1 for k > n − κ; φβ,(l)(t(l)) are known functions on ∂U(l),
t(l) ∈ ∂U(l). In the half-space tn ≥ 0 only the partial derivatives by tn
(5) ∂βf(t)/∂tβn|tn=0

are necessary for β = |q| < α and q as above.
Depending on coefficients of the operator A and the domain U some boundary conditions

may be dropped, when the corresponding terms vanish.
Conditions in (5) are given on disjoint for different (l) sub-manifolds ∂U(l) in ∂U and partial

derivatives are along orthogonal to them coordinates in Rn, so they are correctly posed.
We recall, that a characteristic surface of a partial differential operator given by Formula

10(1) is a surface defined as a zero of Cu differentiable function φ(x1, ..., xn) = 0 in the Euclidean
space or in the Cayley-Dickson algebra such that at each point x of it the condition is satisfied
(CS)

∑
|j|=u aj(t(x))(∂φ/∂x1)

j1 ...(∂φ/∂xn)
jn = 0

and at least one of the partial derivatives (∂φ/∂xk) 6= 0 is non-zero. Generally a domain U
is worthwhile to choose with its interior Int(U) non-intersecting with a characteristic surface
φ(x1, ..., xn) = 0 (see also [32, 37]).
26. Solutions of second order partial differential equations with the help of the

line integration over the Cayley-Dickson algebras.
Mention that the operator (Υ + β)(z0, ..., zn) acting on a function depending on variables

z0, ..., zn only can be written as
(1) Ψ(z0, ..., zn+1)(f(z)zn+1)|zn+1=1 = Υ(z0, ..., zn)f(z) + f(z)β(z)
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= [
∑n+1

j=0 (∂(f(z)zn+1)/∂zj)φ
∗
j(z)]|zn+1=1,

where φ∗n+1(z) = β(z), each function φj(z) and f(z) may depend on z0, ..., zn only, omitting for
short the direct product ⊗ in the case of generalized coefficients in Formula (1) and henceforth.
The operator Ψ(z0, ..., zn+1)(f(z)zn+1) may be reduced to the form satisfying conditions of
Theorems 5 or 23 using a suitable change of variables. This procedure gives an anti-derivative
operator
(1.1) IΥ+β = IΨ|zn+1=1 such that
(1.2) (Υ + β)IΥ+βf = f

for a continuous function or a generalized function f . Therefore, we shall consider operators of
the form Υ and their compositions and sums.
We take the partial differential equation with piecewise continuous or generalized coeffi-

cients
(2) A = ΥΥ1f(z) + Υ2f(z) = g,

where
(3) Υkf(z) = [

∑n
j=0(∂f(z)/∂zj)φ

k
j (z)

∗]

for k = 1, 2 or without this index k, φkj (z) = ijψ
k
j (z) (see §§4, 5 and 23). For solving it we

write the system:
(4) Υ1f = g1, Υg1 = g −Υ2f .
In accordance with Equation (2) we have:
(5) Υg1 +Υ2(Υ

−1
1 g1) = g,

where the inverse operator Υ−11 is the anti-derivation operator IΥ1 described above in Theorems
4, 5 and 23. If Υ2 6= 0 we suppose that either (i) g1 or [g1, ω) is real-valued or the algebra
algR{g1(z), φ1j(z), φ

2
k(z)} or algR{[g1, ω), [φ

1
j , ω), [φ

2
k, ω)} for all j, k = 0, ..., n is associative for

each z ∈ U in the case of functions or for every real-valued test function ω in the case of
generalized functions correspondingly. Calculating the expression
(6) Υg1 +Υ2(IΥ1g1) = (Υ + β

3)g1 = g
we get a new operator (Υ+β3) = Ψ in accordance with Formulas 4(5, 6), 5(6−8) and 23(3−7)
omitting ⊗ and ⊗ω and [∗, ω⊗3) for short in the case of generalized coefficients, where

β3 =
∑n

j,k=0(∂ν
1
j /∂zk)(φ

2
k)
∗,

when a solution {νj(z) : j} is chosen real, i.e. each function νj is real-valued or a real-valued
generalized function on real-valued test functions (see System 4(10, 11) and §23).
Generally without supposition (i) we deduce that
(6.1) Υg1,l +Υ2(IΥ1g1,l) = (Υ + β

3
l )g1,l = i

∗
l g
l

for each l = 0, ..., n, where β3l = i
∗
l [
∑n

j,k=0(ij(∂ν
1
j /∂zk))(φ

2
k)
∗],

(6.2)
∑n

l=0 g
l = g,

(6.3)
∑n

l=0 g1,lil = g1,
each g1,l(z) or [g1,l, ω) is real-valued for each z ∈ U or every real-valued test function ω respec-
tively. Solving the system (6.1 − 3) with the help of known anti-derivative operators IΨl one
finds g1, where Ψl = Υ+ β3l . Thus an anti-derivative operator J := JΥ+Υ2IΥ1 exists so that
(6.4) (Υ + Υ2IΥ1)JΥ+Υ2IΥ1g = g.

In the particular case (i) the equality JΥ+Υ2IΥ1 = IΨ is satisfied.
Therefore, in the case of either continuous coefficients of operators and g or generalized

coefficients and g the general solution is:
(7) f = IΥ1g1 = IΥ1J g, where
(8) g1 = J g.
If Υ2 = 0 the formula simplifies to
(9) f = IΥ1IΥg.
Examples of boundary conditions and domains permitting to specify a unique solution are

given in §25 above.
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27. Example. Let us consider a function and its phrase satisfying Condition 7(P3).
Therefore, we get
(1) Υ−11 (g1)(za1(x)) = −φf ′(Im(za1(x))) +

∫ x
α
g1(z)dz + φg1(x

′)
in accordance with Formula 7(6), where x′ and Im(za1(x)) are written in the x and z-
representations respectively using Identities 1(1 − 3). In particular, for Υ1 = σ1 we have the
coefficients ψ1l (z) = il(ak(z)wji

∗
2rk) for each l = 2

rk with k ∈ {m1+...+mj−1+1, ...,m1+...+mj},
while ψ1l (z) = 0 for all others l for each z. A function a

1 is given by Formula 7(3) for ψ1 instead
of ψ. Let the first order operator Q be written in its standard form:

(2) Qf =
m∑

j=1

m1+...+mj1∑

k=m1+...+mj1−1+1

sk(z)(∂f/∂z2rk)(uji2rk),

since i2rkwj = w∗j i2rk for each wj ∈ Ar and k ≥ 1, when r ≥ 1, where wj ∈ Ar and uj = uj(z) ∈
Av for each j, sk(z) is the real-valued (super-)differentiable function for each k. If ξ = za(y),
then (dξ/dy).[(dy/dξ).h] = h for each Cayley-Dickson number h ∈ Av. This implies that these
twoR-linearAv-additive operators are related by the equality (dy/dξ).h = (dξ/dy)−1.h. On the
other hand, (dza(y)/dy).1 = a(y) ∈ Av and y ∈ U ⊂ Av in the considered case. The function
za(y) is defined up to the addendum za(α), where α ∈ Hα0 ∩ U , Hα0 := {z ∈ Av : Re(z) =
Re(α0)}. We can choose φa(y′) so that (dx/dy).(1/a) = 1 for each y for which a = a(y) 6= 0
and inevitably we get (dy/dx).1 = 1/a(y).
In the particular case of σ, σ1 and Q accomplishing the differentiation with the help of the

latter identities we infer that:

(3) Q(σ−11 g1)(x) = −
m∑

j=1

m1+...+mj1∑

k=m1+...+mj1−1+1

[(dφf ′(x
′)/dx).i2rk

+{ĝ1(y) + (dφg1(y
′)/dy)}.[(dza1(y)/dy)

−1.i2rk](sk(y)uj(y)i2rk),

where ĝ1 = dζ1(y)/dy for a (super-)differentiable function ζ1 such that (dζ1(y)/dy).1 = g1(y
′),

ψ1l (z) = il(ak(z)wji
∗
2rk) for each l = 2

rk with k ∈ {m1 + ... + mj−1 + 1, ...,m1 + ... + mj},
while ψ1l (z) = 0 for all others l for each z. Also ψl(z) = il(ak(z)w

∗
j i
∗
2rk) for each l = 2

rk with
k ∈ {m1 + ...+mj−1 + 1, ...,m1 + ...+mj}, while ψl(z) = 0 for all others l and for each z. We
introduce the notation:
(4) θl(y) = il[(dza(y)/dy)

−1.i2rk](sk(y)uj(y)i2rk) for l = 2rk and k ∈ {m1 + ... +mj1−1 +
1, ...,m1 + ...+mj1}, θl(y) = 0 for all others l and for each y;

(5) a(x) = −
m∑

j=1

wj

m1+...+mj∑

k=m1+...+mj−1+1

ak(x) = σ(x) and

(6) κl(x) = il[sk(x)uj(x)i2rk] for l = 2rk with k ∈ {m1 + ... +mj1−1 + 1, ...,m1 + ... +mj1},
κl(x) = 0 for every other l and for each x.
In the general case

(7) Υ2(Υ
−1
1 g1)(x) = −

2v−1∑

j=0

[(dφf ′(x
′)/dx).ij

+{ĝ1(y) + (dφg1(y
′)/dy)}.[(dza1(y)/dy)

−1.ij](i
∗
jψj(x)),

where ĝ1 = dζ1(y)/dy for a (super-)differentiable function ζ1 such that (dζ1(y)/dy).1 = g1(y
′).

We shall use the notation:
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(8) θj(y) = ij[(dza(y)/dy)
−1.ij](i

∗
jψj(y)) and for each y and each j;

(9) a(x) = Υ(x) and

(10) κj(x) = ij[i
∗
jψj(x)] for each x and j. Substituting (7) into 26(5) we deduce that:

(11) g1(za(x)) + g1(zθ(x)) = ζ(x), where

(12) ζ(x) = −φg1(Im(za(x)))− φg1(Im(zθ(x))) + φf ′(Im(zκ(x))) +
∫ x

α

g(z)dz.

For x = α we certainly have za(α) = zθ(α). Suppose that a(x) 6= θ(x) identically. The
dimension of the Cayley-Dickson algebra Av over the real field is not less, than four. Therefore,
we can choose a path γ so that γ is orthogonal to θ and κ at each point on γ, that is γ′(t) ⊥
θ′(γ(t)) and γ′(t) ⊥ κ′(γ(t)) relative to the real-valued scalar product (RS) for each t ∈ [0, 1],
where γ′(t) := dγ(t)/dt. Then g1(zθ(x)) = g1(α) and φf ′(Im(zκ(x))) = φf ′(α

′) for each x =
γ(t). Therefore, along such path γ one has

(13) g1(za(x)) + g1(α) = ζ(x) = −φg1(Im(za(x))− φg1(α
′) + φf ′(α

′) +

∫ x

α

g(z)dz

for each x = γ(t). Expressing g1(z) from Equation (11), substituting into 26(4) and integrating
one gets:

(14) f(za1(x)) = −φf (Im(za1(x))) +
∫ x

α

g1(z)dz.

Particularly, if the operator A is with constant coefficients, then sk(x) = 0 identically for each
k, consequently, θ = 0 and κ = 0 identically and g1(za(x)) = g1(α) = φg1(Im(za(x))) for each
x, when f has a right linear derivative by z. Arbitrary integration terms in (11, 14) can be
specified from the boundary conditions.
Finally, the restriction from the domain in Av onto the initial domain of real variables in

the real shadow and the extraction of πvr ◦ f ∈ Ar with the help of Formulas 1(1− 3) gives the
reduction of a solution from Av to Ar, where πvr : Av → Ar is the R-linear projection operator
defined as the sum of projection operators π0+ ...+ π2r−1 given by Formulas 3(P1, P2) on Rij
for j = 0, ..., 2r − 1.
28. Laplace’s operator. When
(1) A0 = Δn =

∑n
j=1 ∂

2/∂z2j ,
is Laplace’s operator, then
(2) Υf(z) =

∑n
j=1(∂f(z)/∂zj)i

∗
j , so that

(3) Δn = ΥΥ
∗ = −ΥΥ, Υ1 = −Υ,

where 2 ≤ n ≤ 2r− 1, z1, ..., zn ∈ R, in accordance with §2. Consider the fundamental solution
Ψ of the following equation
(4) ΞΨ(z1, ..., zn) = δ(z1, ..., zn) with Ξ = Δn satisfies the identity:
(5) Ψ = −(ΥΨ) ∗ (ΥΨ) (see the convolution of generalized functions and this formula in

§§9, 19.4).
We seek the real fundamental solution Ψ = Ψn, since the Laplace operator is real. The Fourier
transform with the generator i (see §33 [28]) by real variables z1, ..., zn gives
(6) F (Ψn)(x) = −[F (ΥΨn)(x)]2 = −[−i(

∑n
j=1 xji

∗
j)F (Ψn)(x)]

2, since
F (ΥΨn)(x) =

∑n
j=1 F (∂Ψn/∂zj)i

∗
j = −i(

∑n
j=1 xji

∗
j)F (Ψn)(x),

where x = (x1, ..., xn), x1, ..., xn ∈ R (see also §2). Thus we get the identity
(7) F (Ψn)(x) = −(

∑n
j=1 x

2
j)[F (Ψn)(x)]

2 or
(8) F (Ψn)(x) = −(1/(

∑n
j=1 x

2
j)) for n ≥ 3 is the regular generalized function (functional),

while
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(9) F (Ψ2)(x) = −P(1/(
∑2

j=1 x
2
j)) for n = 2.

We recall that the generalized function P(1/(
∑2

j=1 x
2
j)) on φ ∈ D(R

2,R) is defined as the
regularization:

(P(1/(
2∑

j=1

x2j)), φ) =

∫

|x|<1
[φ(x)− φ(0)]|x|−2dx+

∫

|x|>1
φ(x)|x|−2dx,

where x = (x1, x2), |x|2 = x21 + x
2
2, x1, x2 ∈ R.

The inverse Fourier transform (F−1g)(x) = (2π)−n(Fg)(−x) of the functions 1/(
∑n

j=1 z
2
j )

for n ≥ 3 and P(1/(
∑2

j=1 z
2
j )) for n = 2 in the class of the generalized functions is known (see

[6] and §§9.7 and 11.8 [37]) and gives
(10) Ψn(z1, ..., zn) = Cn(

∑n
j=1 z

2
j )
1−n/2 for 3 ≤ n, where Cn = −1/[(n − 2)σn], σn =

4πn/2/Γ((n/2)− 1) denotes the surface of the unit sphere in Rn, Γ(x) denotes Euler’s gamma-
function, while
(11) Ψ2(z1, z2) = C2 ln(

∑2
j=1 z

2
j ) for n = 2, where C2 = 1/(4π).

Thus the technique of convolutions over the Cayley-Dickson algebra has permitted to get the
solution of the Laplace operator.
Another method is with the line integration over the Cayley-Dickson algebras. In accordance

with Formula 26(9) we get
Ψn(z1, ..., zn) = −IΥIΥδ.
Laplace’s operator and the delta-function are invariant under any orthogonal transform T ∈

On(R) of Rn. Therefore, a fundamental solution Ψn also is invariant relative to the orthogonal
group On(R). That is Ψn depends on |z| and is independent of spherical angles in spherical
system of coordinates. Thus we choose the corresponding branches of the anti-derivative IΥIΥδ.
The volume element in the Euclidean space Rn can be written as λ(dz) = xn−1dxds, where
x = |z| and ds is the surface element (measure) on the unit sphere Sn−1. For each orthogonal
transform its Jacobian is unit.
One can take the family of test functions ηε = 1

(2π)n/2εn
exp{−(z21 + ... + z

2
n)/(2ε

2)} tending
to the delta-function, when ε > 0 tends to zero. These functions can be written in the z-
representation due to Formulas 1(1 − 3). On the other hand, for each z-analytic function η
with real expansion coefficients into a power series each line integral over the Cayley-Dickson
algebra Av restricted on any complex plane R⊕MR coincides with the usual complex integral,
where M is a purely imaginary Cayley-Dickson number. Therefore,∫ t

a
[
∫ y
a
η(z)dz]ykdy = 1

k+1

∫ t
a
(tk+1 − zk+1)η(z)dz for k 6= −1 and

∫ t
a
[
∫ y
a
η(z)dz] 1

y
dy =

∫ t
a
(ln(t)− ln(z))η(z)dz.

For the characteristic function χB(Rn,0,x) of the ball B(Rn, 0, x) of radius x > 0 with the
center at zero in the Euclidean space Rn embedded into the Cayley-Dickson algebra Av one can
take a sequence of test functions lω1 converging to the regular generalized function χB(Rn,0,x),
when l tends to the infinity, consequently, liml

∫
Rn l

ω1(z)λ(dz) = σnx
n. Integrating twice

with the anti-derivative operator these test functions ηε in accordance with Example 4.1 and
Theorems 19 and 23 and taking the limit with ε tending to zero from the right one gets Formulas
(10, 11).
This can also be deduced with the help of the Fourier transform with the generator i:
(12) F (Ψn)(x) = F (−IΥIΥδ) = (

∑n
j=1 x

2
j)
−1F (δ) = (

∑n
j=1 x

2
j)
−1.

Applying the inverse Fourier transform to both sides of Equation (12) we again get Formulas
(10, 11).
29. The hyperbolic operators with constant coefficients.
Consider now the hyperbolic operator
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(1) A0 = Lp,q =
∑p

j=1 ∂
2/∂z2j −

∑n
j=p+1 ∂

2/∂z2j ,
where p + q = n, 1 ≤ p and 1 ≤ q, (p, q) is the signature of this operator, z1, ..., zn ∈ R. Take
two operators Υ and Υ1 with constant Av coefficients so that
(2) Υf(z) =

∑p
j=1(∂f(z)/∂zj)i

∗
2j +

∑n
j=p+1(∂f(z)/∂zj)[i

∗
1i
∗
2j] and

(3) Υ1f(z) =
∑p

j=1(∂f(z)/∂zj)i
∗
2j +

∑n
j=p+1(∂f(z)/∂zj)[i1i

∗
2j], so that

(4) Lp,q = ΥΥ1,
where 2 ≤ n ≤ 2v−r−1, r = 1 < v, in accordance with Formulas 2(7−9). Then the fundamental
solution Ψ of the partial differential equation
ΞΨ(z1, ..., zn) = δ(z1, ..., zn) with Ξ = Lp,q satisfies the identity:
(5) Ψ = (Υ∗Ψ) ∗ (Υ∗1Ψ).

We seek the real fundamental solution Ψ = Ψp,q, since the hyperbolic operator Lp,q is real.
Using the Fourier transform with the generator i by real variables z1, ..., zn we infer that
(6) F (Ψp,q)(x) = [F (Υ

∗Ψp,q)(x)][F (Υ
∗
1Ψp,q)(x)]

= [−i(
∑p

j=1 xji2j+
∑n

j=p+1 xji2ji1)F (Ψp,q)(x)][−i(
∑p

j=1 xji2j+
∑n

j=p+1 xji2ji
∗
1)F (Ψp,q)(x)], since

F (Υ∗Ψp,q)(x) =
∑p

j=1 F (∂Ψp,q/∂zj)i2j +
∑n

j=p+1 F (∂Ψp,q/∂zj)i2ji1
= −i(

∑p
j=1 xji2j +

∑n
j=p+1 xji2ji1)F (Ψp,q)(x)

and analogously for Υ∗1, where x = (x1, ..., xn), x1, ..., xn ∈ R (see also §2). For the function
(7) P (x) =

∑p
j=1 x

2
j−
∑n

j=p+1 x
2
j with p ≥ 1 and q ≥ 1 the generalized functions (P (x)+i0)

λ

and (P (x)− i0)λ are defined for any complex number λ ∈ C = R⊕ iR (see Chapter 3 in [6]).
The function P λ has the cone surface P (z1, ..., zn) = 0 of zeros, so that for the correct definition
of generalized functions corresponding to P λ the generalized functions
(8) (P (x) + ci0)λ = lim0<cε,ε→0(P (x)

2 + ε2)λ/2 exp(iλ arg(P (x) + icε))
with either c = −1 or c = 1 were introduced. Therefore, the identity
(9) F (Ψp,q)(x) = −(

∑p
j=1 x

2
j −

∑n
j=p+1 x

2
j)[F (Ψp,q)(x)]

2 or
(10) F (Ψ) = −1/(P (x) + ci0) follows, where c = −1 or c = 1.
The inverse Fourier transform in the class of the generalized functions is:
(11) F−1((P (x) + ci0)λ)(z1, ..., zn) = exp(−πcqi/2)22λ+n22λ+nπn/2Γ(λ+ n/2)(Q(z1, ..., zn)−

ci0)−λ−n/2)/[Γ(−λ)|D|1/2]
for each λ ∈ C and n ≥ 3 (see §IV.2.6 [6]), where D = det(gj,k) denotes a discriminant of the
quadratic form P (x) =

∑n
j,k=1 gj,kxjxk, while Q(y) =

∑n
j,k=1 g

j,kxjxk is the dual quadratic form

so that
∑n

k=1 g
j,kgk,l = δjl for all j, l; δ

j
l = 1 for j = l and δjl = 0 for j 6= l. In the particular

case of n = 2 the inverse Fourier transform is given by the formula:
(12) F−1((P (x) + ci0)−1)(z1, z2) = −4−1|D|−1/2 exp(−πcqi/2) ln(Q(z1, ..., zn)− ci0).
Making the inverse Fourier transform F−1 of the function −1/(P (x)+ i0) in this particular

case of λ = −1 we get two complex conjugated fundamental solutions
(13) Ψp,q(z1, ..., zn) = − exp(πcqi/2)Γ((n/2)−1)(P (z1, ..., zn)+ ci0)1−(n/2)/(4πn/2) for 3 ≤ n

and 1 ≤ p and 1 ≤ q with n = p+ q, while
(14) Ψ1,1(z1, z2) = 4

−1 exp(πcqi/2) ln(P (z1, z2) + ci0) for n = 2, where either c = 1 or
c = −1.
Another approach consists in using the anti-derivative operators. The hyperbolic operator

Lp,q and the delta-function are invariant under the Lie group Op,q(R) or all linear transforms
of the Euclidean space Rn, n = p + q, preserving the scalar product (x, y)p,q =

∑p
j=1 xjyj −∑p+q

j=p+1 xjyj invariant. Thus Ψp,q can be written as a composition ξ(P (x)) of some function ξ(y)
and of P (x) given by Formula (7). Therefore, we take the corresponding branch of the anti-
derivative in the form IΥIΥ1δ = ξ(P (x)). Applying the Fourier transform with the generator
i we infer that
(15) F (Ψp,q)(x) = F (IΥIΥ1δ) = (P (x) + ci0)

−1F (δ) = (P (x) + ci0)−1.
Applying the inverse Fourier transform to both sides of Equation (15) one gets Formulas
(13, 14).
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Thus the results of §§2-25 over the Cayley-Dickson algebra Av lead to the fundamental
solution of the hyperbolic operator Lp,q. This means that the approach of §§2-25 over the
Cayley-Dickson algebras leads to the effective solution of any hyperbolic partial differential
equation with constant coefficients. Thus Formulas of §§2, 8 with the known function Ψ = Ψn
from Formulas 28(10, 11) and (13, 14) of this section give the fundamental solution of any first
and second order linear partial differential equation with variable z-differentiable Av-valued
coefficients, z ∈ U ⊂ Av.
30. Example. The heat kernel. Each function of the type f(z) = Pn(z) exp(−t|z|2) with

a marked positive parameter can be written in the z-representation due to Formulas 1(1− 3),
where Pn(z) denotes the polynomial by z of degree n. Therefore, f(z) in the z-representation
is z-differentiable, consequently, infinite z-differentiable (see [23, 22]) and

lim
|z|→∞

f (m)(z).(h1, ..., hm)(1 + |z|
k) = 0

for each 0 ≤ m, k ∈ Z and Cayley-Dickson numbers h1, ..., hm ∈ Av. Therefore, the space E of
infinite z-differentiable tending to zero at infinity functions together with their derivatives mul-
tiplied on the weight factor (1 + |z|k) is infinite-dimensional. Thus it is worthwhile to consider
the topologically adjoint space E′q of R-linear Av-additive continuous Av-valued functionals
on E. Elements of E′q are also called the generalized functions. A function or a generalized
function is called finite if its support is a bounded set.
The heat partial differential equation reads as
(1) ∂v(z)/∂z0 = a

2Δv(z) + f(z),
where z = z0i0 + ...+ zmim, z0, ..., zm ∈ R, 1 ≤ m ≤ 2v − 1, 2 ≤ v, where a > 0, f(z) is a real-
valued generalized finite function so that f(z) is zero for z0 < 0 (see §16 [37]). We shall seek
the generalized solution E of this equation using the technique given above. The generalized
function v = E ∗ f is the solution of (1), where
(2) ∂E(z)/∂z0 − a2ΔE(z) = δ(z),

(3) (E ∗ f)(x) =
∫ x0

0

∫

Rm
E(x− z)f(z)dz0....dzm.

As usually δ denotes the δ generalized function so that

(4) (δ ∗ f)(x) =
∫ x0

0

∫

Rm
δ(x− z)f(z)dz0....dzm = f(x)

for each continuous bounded function f . If f is (super-)differentiable and bounded in each
domain {z : 0 ≤ z0 ≤ T} for 0 < T <∞, f(z) = 0 for z0 < 0, then the solution v is also (super-
)differentiable in the domain z0 > 0 as it will be seen from the formulas given below. Let us
seek the generalized solution E in the form E(z) = w(z0)eu(z), where w and u are unknown real-
valued functions to be determined. Calculating derivatives of E and substituting into Equation
(2) one gets:
(5) eu(z){w′(z0) + w(z0)∂u(z)/∂z0} − a2eu(z)w(z0)

∑m
j=1[(∂u(z)/∂zj)

2 + ∂2u(z)/∂z2j ] = δ(z),
consequently,
(6) (1/w(z0))w

′(z0) = −∂u(z)/∂z0 + a2
∑m

j=1[(∂u(z)/∂zj)
2 + ∂2u(z)/∂z2j ] +

e−u(z)(1/w(z0))δ(z).
Take now any sequence of continuous non-negative functions ηn with compact supports Un
such that Un+1 ⊂ Un for each n, with

⋂
n Un = {0},

(7)

∫

Rm+1
ηn(z)dz0...dzm = 1
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for all n, tending to δ on the space of continuous functions p(z) on Ri0 ⊕ ... ⊕Rim with the
converging integral

∫
Rm+1

|p(z)|2dz0...dzm <∞:
(8) limn→∞

∫
Rm+1

p(z)ηn(z)dz0...dzm = p(0).

Therefore, we get that on Ri0 ⊕ ...⊕Rim \ {0} for z0 > 0 the following equation

(9) (1/w(z0))w
′(z0) = −∂u(z)/∂z0 + a

2

m∑

j=1

[(∂u(z)/∂zj)
2 + ∂2u(z)/∂z2j ]

need to be satisfied. The left side of (9) is independent of z − z0, hence the right side is also
independent of z − z0. The partial differential operator
{∂u(z)/∂z0 + a2

∑m
j=1[(∂u/∂zj)

2 + ∂2u(z)/∂z2j ]} acting on u is of the second order. For
each Cayley-Dickson number z ∈ Ar the identity z2 = 2z Re(z)− |z|2 is satisfied, particularly,
M2 = −|M |2 for each purely imaginary number M ∈ Ar. Therefore, a function u may be only
a polynomial by real variables z1, ..., zm of degree not higher than two. On the other hand, the
Laplace operator Δ and the δ function are invariant relative to all elements C of the orthogonal
group Om(R) acting on variables z1, ..., zm. Each Om(R) invariant real polynomial P of the
second order has the form α(z21+ ...+ z

2
m)+β, where α and β are two constants independent of

z1, ..., zm. Thus u as the polynomial of z1, ..., zm may depend on |z − z0|2 = z21 + ... + z
2
m only.

The latter sum of squares can be written in the z-representation with the help of Formulas
1(1− 3). This means that E has the form:
(10) E(z) = w(z0) exp{α(z0)(z21 + ...+ z

2
m) + β(z0)} and Equation (9) simplifies:

(11) (1/w(z0))w
′(z0) = −[dα(z0)/dz0](z21 + ...+ z

2
m)− [dβ(z0)/dz0]

+a2α(z0){2m+ α(z0)
m∑

j=1

4z2j }.

We can denote w(z0)eβ(z0) by w(z0) again and take without loss of generality that β = 0. The
left side of (11) is independent of z1, ..., zm, hence terms with |z − z0|2 in (11) are canceling:
α−2(z0)[dα(z0)/dz0] = 4a

2. The latter differential equation gives α(z0) = −1/(c0 + 4a2z0),
where c0 is the real constant. Substituting this α into (11) one gets:
(12) (1/w(z0))w

′(z0) = a
2α(z0)2m.

Together with Condition (2) this gives C0 = 0 and the heat kernel E :
(13) E(z) = θ(z0)[2a(πz0)1/2]−m exp{−|z − z0|2/[4a2z0]}

and the solution
(14) v = E ∗ f ,

where θ(z0) = 1 for z0 ≥ 0 and θ(z0) = 0 for z0 < 0.
If use anti-derivation operators the solution has the form 26(6−8) supposing that a solution

E is real-valued on real-valued test functions ω, [E , ω) ∈ R, where Υ1 = Υ, ΥΥ = −a2Δm (see
§) and Υ2 = ∂/∂z0. Therefore,
(14) a2E = −IΥIΥ(∂E/∂z0 − δ).

Making the Fourier transform F = Fz1,...,zm by the variables z1, ..., zm with the generator i of
both sides of Equation (14) one gets for suitable branches of the anti-derivatives
(15) a2F (E)(z0, x1, ..., xm) = [a2

∑m
j=1 x

2
j ]
−1(∂F (E)/∂z0 − δ(z0)).

Solving the latter ordinary differential equation one finds F (E)(z0, x1, ..., xm) and making the
inverse Fourier transform by the variables x1, ..., xm ∈ R one gets Formula (13).
31. Example. Wave operator. In this section the fundamental solution E = En of the

wave operator is considered:
(1)
∐
E(t, x) = δ(t, x), where
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(2)
∐
f = ∂2f/∂t2 −Δf denotes the wave (d’Alambert) operator with

(3) Δf =
n∑

j=1

∂2f/∂x2j ,

where t ≥ 0, x1, ..., xn ∈ R. We make the change of variables putting t = z2, xj = z2j+2 for each
j = 1, ..., n, z = z0i0+z2i2+...+z2v−2i2v−2 ∈ A1,v, z0, ..., z2v−1 ∈ R, r = 1. We consider the case
n = 3 and v = 4 so that A1,4 is isomorphic with the octonion algebra A3 = O. Let us seek E
in the class of the generalized functions in the form E(z) = θ(z2)f(z), where θ and f are some
generalized functions to be calculated, f may depend only on z2, z4, ..., z2n+2. D’Alambert’s
operator

∐
is invariant relative to any R-linear transformations A from the Lie group O1,n(R).

Elements of the group O1,n(R) are characterized by the condition AtGA = G, where G denotes
the square (n+ 1)× (n+ 1) diagonal matrix G = diag(1,−1, ...,−1), the transposed matrix A
is denoted by At. This means that the wave operator

∐
is invariant under change of variables

ξ = (z2, z4, ..., z2n+2)A for any A ∈ O1,n(R). Making the differentiation of E one gets the
differential equation:
(4)
∐
E = (∂2θ/∂z22)f + 2(∂θ/∂z2)(∂f/∂z2) + θ

∐
f = δ(z).

The δ-function δ(z) is also invariant relative to all transformations of the Lie group O1,n(R),
since δg = g(0) for each continuous function g with

∫
Rn+1

|g(z)|2dz2...dz2n+2 <∞. On the other
hand, Equation (4) implies that
(5) ∂2θ/∂z22 = −[2(∂θ/∂z2)(∂f/∂z2) + θ

∐
f − δ(z)]/f(z)

for each z ∈ Ar,v, when f(z) 6= 0. The left side of Equation (5) may depend only on z2,
consequently, the right side of (5) is independent of z4, ..., z2n+2. In view of Formulas 29(2, 3)
with p = 1 and q = n we get the operators σ = Υ and σ1 = Υ1 withQ = 0 up to the enumeration
of the variables. Therefore, one gets the functions Ψ1,n (see Formulas 29(13, 14)) over the
Cayley-Dickson algebra Av. But due to the O1,n(R) invariance of the generalized function E
we infer that it is necessary to take the O1,n(R) invariant polynomial P (y) = (y22−

∑n
j=1 y

2
2j+2).

Thus we put E = θ(z2)f(z) with f(z) = u(z22 −
∑n

j=1 z
2
2j+2), where u is some generalized

function. Substituting u instead of f into (5) one gets the simplified differential equation. If
suppose that ∂θ/∂z2 = 0 for z2 > 0, then ∂2θ/∂z22 = 0 and Equation (5) leads to the differential
equation
(7) 4u(2).(1, 1)(η)η − 4u′.1(η) = δ(z)/c,

where η = η(z) = z22 − z
2
4 − z

2
6 − z

2
8 , θ(z2) = c = const for z2 > 0. Choose any sequence of

z-differentiable functions gn(z) with compact supports converging to the δ-function as in §§24
and 30, when n tends to the infinity. Each function gn(z)/η(z) has poles of the first order at
points z2 = [z24 + z

2
6 + z

2
8 ]
1/2 and z2 = −[z24 + z

2
6 + z

2
8 ]
1/2. Making the substitution p = u′.1 in (7)

and Formula 3(10) [20] with the right side Q(z) = gn(z)/η(z) and b(z) = −1/η(z) we obtain
the integral expression for the solution pn of the differential equation
(8) p′n.1(η)− pn(η)/η = gn(z)/(4cη).

To evaluate the appearing integrals it is possible to use Jordan’s Lemma (see §2 in [24]) over
the octonion algebra isomorphic with A1,4. The evaluation of the integrals (see §3 also) with the
given functions can be reduced to the complex case, when α and x belong to the same complex
plane CM . Applying Jordan’s lemma one deduces the expression for pn and the limit function
p(η) = δ′(η)/(2πc)+K, where K is a constant, since η ∈ R. Therefore, u(η) =

∫
p(η)dη. Thus

one infers the fundamental solution
(9) E3(z) = θ(t)δ(t2 − |x|2)/(2π)

and the generalized solution E3 ∗ s of the wave equation∐
f = s, where s = s(z) is a generalized function or particularly a z-differentiable function.

The delta generalized function δ(P ) of the quadratic form P (x) = x21+ ...+x
2
p−x

2
p+1− ...−x

2
p+q

is described in details in §IV.2 [6].
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32. Helmholtz’ operator.
When β 6= 0 with Re(t∗jβ) = 0 for each j (see §8), for example, β = β0 + ikβ1 with real β0

and β1 and k > n, then
(1) A0 = Δn + |β|2 is Helmholtz’ operator. The corresponding operator Υ is given by

Formula 28(2).
For an arbitrary real non-degenerate quadratic form P (x) generalized functions (c2 + P +

bi0)λ with c > 0, b = 1 or b = −1, λ ∈ C = R⊕Ri, are defined as:
(2) (c2 + P + bi0)λ = lim0<ε→0(c

2 + P + bεiP1)
λ,

where P1 is a positive definite quadratic form.
Some special functions are useful for such equations. Bessel’s functions are solutions of the

differential equation
(S1) z2d2u/dz2 + zdu/dz + (z2 − λ2)u = 0,

where λ and z are complex. Bessel’s function of the first kind is given by the series:

(S2) Jλ(z) =
∞∑

m=0

(−1)m(z/2)2m+λ/[m!Γ(λ+m+ 1)],

where z and λ ∈ Ci. Then
(S3) Iλ(z) = exp(−πλi/2)Jλ(iz)

is called Bessel’s function of the imaginary argument. Other needed functions for non-integer
λ are:
(S4) Nλ(z) = [Jλ(z) cos(πλ)− J−λ(z)]/ sin(πz),
(S5) H(1)(z) = Jλ(z) + iNλ(z),
(S6) H(2)(z) = Jλ(z)− iNλ(z),

(S7) Kλ(z) = π[I−λ(z)− Iλ(z)]/[2 sin(πλ)] = π exp(iπ(λ+ 1)/2)H
(1)
λ (iz)/2

with the complex variable z and non-integer complex parameter λ. For integer λ values of
these functions (S4− 7) are defined as limits by λ ∈ Ci \ Z. The functions H(1) and H(2) are
also solutions of Bessel’s differential equation (S1) and they are called Hankel’s functions of the
first and the second kind respectively, Kλ(z) is known as Mcdonald’s function. The functions
Iλ(z) and Kλ(z) are linearly independent solutions of the differential equation:
(S8) z2d2u/dz2 + zdu/dz − (z2 + λ2)u = 0

(see about special functions in [18, 31]).
Analogously to §28 using Formulas 19.4(C4−C7) and 14(3, 4) or Theorem 23 for a funda-

mental solution Ψn of the equation
(3) A0Ψn = δ,

where A0 is Helmholtz’ operator, we get the identity
(4) F (Ψn)(x) = [c

2 − (
∑n

j=1 x
2
j)][F (Ψn)(x)]

2 or

(5) F (Ψn)(x) = 1/[c
2 − (

∑n
j=1 x

2
j) + bi0],

where c > 0, c = |β|. The Fourier transform of the generalized function (c2 + P (x) + bi0)λ by
the real variables x = (x1, ..., xn) with the generator i is:
(6) F [(c2 + P (x) + bi0)λ](y) =

2λ+1(2π)n/2cλ+(n/2)Kλ+(n/2)[c(Q(y)− bi0)]/[Γ(−λ)D1/2(Q(y)− bi0)(λ/2+n/4)],
where D = det(gj,k) denotes a discriminant of the quadratic form P (x) =

∑n
j,k=1 gj,kxjxk,

Q(y) =
∑n

j,k=1 g
j,kxjxk is the dual quadratic form so that

∑n
k=1 g

j,kgk,l = δjl , δ
j
l = 1 for j = l

and δjl = 0 for j 6= l (see §IV.8.2 [6]). Mention that D
1/2 = |D|1/2 exp(−qπi/2) if the canonical

representation of the quadratic form P has q negative terms.
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Another formula is:
(7) F [(c2 + P (x) + bi0)λ](y) =

2λ+1(2π)n/2 exp(−bqπi/2)cλ+(n/2){Kλ+(n/2)[c(Q+(y))
1/2]/[Γ(−λ)|D|1/2(Q+(y))λ/2+n/4]

+(bπi/2)H
(j(b))
−λ−(n/2)[c(Q−(y))

λ/2+n/4]/[Γ(−λ)|D|1/2(Q−(y))λ/2+n/4]},
where j(1) = 1, j(−1) = 2,
(P λ
+, φ) =

∫
P>0

P λφdx1...dxn,

(P λ
−, φ) =

∫
P<0

P λφdx1...dxn.
The functions (P + bi0)λ and P λ

+ and P
λ
− by the complex variable λ are regularized as it is

described in [6] with the help of their Laurent series in neighborhoods of singular isolated
points λ such that after the regularization only the regular part of the Laurent series remains.
The functions (P + bi0)λ with b = 1 or b = −1 have only simple poles at the points λ = −n/2,
-(n/2)-1,...,−(n/2) − k,..., where k = 1, 2, ... is a natural number. Using formula (6) with
λ = −1 and P (x) = −(x21+ ...+ x

2
n) one gets the fundamental solution Ψn, where (F

−1g)(x) =

(2π)−n(Fg)(−x). Particularly, Ψ3(x) = − exp(bci|x|)/(4π|x|), Ψ2(x) = −iH
(1)
0 (c|x|)/4 or its

complex conjugate iH(2)0 (c|x|)/4, where H
(j)
0 denotes Hankel’s function, j = 1, 2.

33. Klein-Gordon’s operator.
Consider β and tj as in §8 with Re(t∗jβ) = 0 for each j, c = |β| > 0. Take the operator
(1) A0 = Lp,q + c

2,
where Lp,q is the hyperbolic operator as in §29. For p = 1 and q = 3 the operator A0 is called
Klein-Gordon’s operator. From Formulas 32(C4 − C7) and 14(3, 4) or Theorem 23 we infer
that
(2) F (Ψn)(x) = [c

2 − (
∑p

j=1 x
2
j −

∑n
j=p+1 x

2
j)][F (Ψn)(x)]

2 or
(3) F (Ψn)(x) = 1/[c

2 − (
∑p

j=1 x
2
j −

∑n
j=p+1 x

2
j) + bi0].

Then Formulas 19.4(6) or 32(7) with λ = −1 and P (x) = −x21 − ... − x2p + x
2
p+1 + ... + x

2
n,

n = p+ q, give the fundamental solution Ψp,q of the equation
(4) (Lp,q + c

2)Ψp,q = δ,
where (F−1g)(x) = (2π)−n(Fg)(−x). There are two R-linearly independent fundamental solu-
tions, so their R-linear combination with real coefficients α1 and α2 such that α1 + α2 = 1 is
also a fundamental solution.
34. Remark. Certainly, more general partial differential equations as 30(1), but with

∂lv/∂zl0, l ≥ 2, instead of ∂v/∂z0 can be considered. It is worth to mention, that alternative
deductions using Formulas 7(1) and 27(11, 14) can be used instead of 8(1) and 19.4(C1−C7) in
§§30 and 31 providing also u(z) = α(z21+...+z

2
m)+β and f(z) = u(z

2
2−
∑n

j=1 z
2
2j+2) with the help

of the symmetry Lie groups Om(R) and O1,n(R). Indeed, Functions P (x)λ satisfy Condition
7(P3) for any real λ, where P (z) = z21 + ...+ z

2
p − z

2
p+1 − ...− z

2
n, 1 ≤ p ≤ n ≤ 2v−1 − 1, 1 ≤ v,

since (dP (z)λ/dz).h = P (z)λ−1λ2Re(η(z)h), where z ∈ Av, η(z) = z1i1 + ... + znin for p = n,
while η(z) = z1i2 + ...+ zpi2p + zp+1i∗1i2(p+1) + ...+ zni

∗
1i2n for p < n. The function η(z) can be

written in the z-representation due to Formulas 1(1− 3).
Formally the case of the hyperbolic operators Lp,q + c2 and their fundamental solutions is

obtained from the elliptic operators Δn+c2 with c ≥ 0 by the change of variables (x1, ..., xn) 7→
(x1, ..., xp, xp+1i, ..., xp+qi), where n = p + q, xj ∈ R and xji ∈ C = R ⊕ Ri for each j, since
the quadratic forms P may be with complex coefficients and their Fourier transforms can be
considered as in [6]. At the same operators σ or Υ for these particular operators Lp,q + c2

and Δn+ c2 can be written over the complexified algebra (Ar)C instead of the Cayley-Dickson
algebra Av, 2 ≤ r < v (see §2 above). For this we take in Formula 2(8) i instead of w∗j so that
(1) σf(z) =

∑p
j=1(∂f(z)/∂zj)i

∗
j +

∑n
j=p+1(∂f(z)/∂zj)ii

∗
j , consequently,

(2) (c+ σ)(c− σ)f = (Lp,q + c2)f and
(3) (c+ σ)(c+ σ)∗f = (c+ σ)∗(c+ σ)f = (Δn + c

2)f .
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Let
(4) Ξc,p,q = Lp,q + c

2, where c ∈ R, Ln,0 = Δn, 1 ≤ p ≤ n, q = n − p, and let Ψc,p,q be a
fundamental solution of the equation
(5) Ξc,p,qΨc,p,q = δ.

Then due to Identities (2, 3) a fundamental solution E = Eβ+σ of the equation
(6) (σ + β)E = δ can be written in the form:
(7) Eβ+σ = (σ + β)∗Ψc,n,0, where β ∈ Ar, |β| = c, Re(t∗jβ) = 0 for each j, tj = i∗j for

1 ≤ j ≤ p, tj = ii∗j for p < j ≤ n. Moreover,
(8) Ec+σ = (c− σ)Ψc,p,q.
Therefore, we infer a solution of the equation
(9) (σ + β)f = g in D(Rm,Ar) or in the space D(Rm,Ar)∗l :
(10) f = Eβ+σ ∗ g. From (2, 3) we deduce a fundamental solution V of the equation
(10) A0V = (σ + β)(σ1 + β1)V = δ in the convolution form:
(11) V = Eσ+β ∗ Eσ1+β1 ,

since
(12) A0V = (σ + β)(σ1 + β1)(((σ + β)∗Ψc,n,0) ∗ ((σ1 + β1)∗Ψc,n,0)
= (((σ + β)(σ + β1)

∗Ψc,n,0) ∗ (((σ1 + β1)(σ1 + β1)∗Ψc,n,0)) = δ ∗ δ = δ. Particularly,
Ψc,p,q = −Ec+σ ∗E−c+σ = ((c−σ)Ψc,n,0)∗ ((c+σ)Ψc,n,0), that can be lightly verified after the

Fourier transform by real variables with the generator i, since by Formulas (1, 2) the operator σ
and its anti-derivative operator Iσ correspond to the signature (p, q) and F (σσ∗g) = −|z|2F (g)
for any g ∈ D(Rn,Av)∗l .
Knowing a fundamental solution it is possible to consider then a boundary problem (see

also [13, 37]).
35. Partial differential equations of order higher than two.
The fundamental solution ΨΥm+β of the equation
(1) Ξ2m,βΨΥm+β = δ,

where
(2) Ξ2m,β = (Υ

m + β)(Υm + β)∗

can be obtained using decompositions with the help of operators of the first order Υk + βk by
induction, if such decomposition exists (see §§10-14 above). Suppose that this decomposition
is constructed
(3) (Υm+β)f(z) = (Υm+βm)[...[(Υ2+β2)[(Υm+βm)f(z)]]...], then the fundamental solution

can be written as the iterated convolution
(4) ΨΥm+β = [...[[(Υm + βm)

∗Em] ∗ [(Υm−1 + βm−1)∗Em−1]] ∗ ...] ∗ [(Υ1 + β1)∗E1],
where Ej denotes the fundamental solution of the elliptic second order partial differential equa-
tion
(5) AjEj = δ, with
(6) Aj = (Υj + βj)(Υj + βj)

∗.
The fundamental solutions Ej were written above in §§2 and 28. Indeed, using Equalities
4(7− 9) by induction we have
(7)
∑

s(...(a
∗
m,km

a∗m−1,km−1)a
∗
m−2,km−2)...)a

∗
1,k1
)a1,l1)a2,l2)...)am,lm

= Re(a∗m,kmam,lm)...Re(a
∗
1,k1

a1,l1),
where

∑
s denotes the sum by all pairwise transpositions (k1, l1),...,(km, lm), aj,k ∈ Av. There-

fore,
(8) Ξ2m,βΨΥm+β =

[...[[(Υm+βm)(Υm+βm)
∗Em]∗ [(Υm−1+βm−1)(Υm−1+βm−1)∗Em−1]]∗ ...]∗ [(Υ1+β1)(Υ1+β1)∗E1]

= [...[δ ∗ δ] ∗ ...] ∗ δ = δ.
Vice versa if the fundamental solution ΨΥm+β is known, then we get the fundamental

solution Emβ of the equation
(9) (Υm + β)Emβ = δ as
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(10) Emβ = (Υ
m + β)∗ΨΥm+β in accordance with (2, 7). Moreover, the equation

(11) Am+kf = g with Am+k = (Υm1 + β1)(Υ
k
2 + β2)

in D(Rn,Av) or in the space D(Rn,Av)∗l , where n is a number of real variables, 2 ≤ n ≤ 2v,
has the fundamental solution Vm+k:
(12) Vm+k = EΥm1 +β1 ∗ EΥk2+β2 , where
(13) EΥm1 +β1 = (Υ

m
1 + β1)

∗ΨΥm1 +β1
denotes the fundamental solution of the equation
(14) (Υm1 + β1)EΥm1 +β1 = δ, consequently,
(15) f = Vm+k ∗ g is the solution of Equation (11).
For example, the fourth order partial differential operator
A4f(z) =

∑p
j=1 ∂

4f(z)/∂z4j −
∑n

j=p+1 ∂
4f(z)/∂z4j

can be decomposed as the composition of two operators of the second order Υ2 and Υ21 formally
as σ and σ1 in 2(8, 9) with the substitution of ∂f/∂z2rj on ∂2f/∂z22rj so that in accordance with
Theorem 10 this operator A4 can be presented in the form given by Formulas (2, 3, 11).
On the other hand, fundamental solutions of Δkn and L

k
p,q and A

k
2 for certain other second

order partial differential operators are known. So combining them with operators of the form
Υm11 ...Υmkk permits to consider fundamental solutions of many partial differential operators of
order higher than two as well.
Thus knowing fundamental solutions of the corresponding first or second order operators

permits to write fundamental solutions of higher order partial differential operators considered
above with the help of the iterated convolutions in a definite order prescribed by the induction
process.
36. Non-linear partial differential equations.
We consider the differential equation
(1) (Υm + β + f̂(y)Υ)y = g,

where Υm+β is a partial differential operator as in Formula 10(13) of order m, f(y) is a Av dif-
ferentiable function, y = y(z) is an unknown function, f̂(y)Υy :=

∑n
j=0[f̂(y).(∂y(z)/∂zj)]φ

∗
j(z).

Suppose that a fundamental solution EΥm+β of Equation 35(9) for the operator (Υm + β) is
known. Find at first a fundamental solution y = V of (1) with g = δ. Then
(2) (Υm + β)V = δ − μ,

where μ(z) = f̂(y(z))Υy(z). The anti-derivative gives
(3) w(y(z)) = Υ

∫
(f̂(y)Υy)dz =

∫
f(y(x))dy(x) =

∫
f(y)dy = Υ

∫
μ(z)dz,

then
(4) y = w−1(Υ

∫
γα|[a,tz ]

μ(x)dx),

where w−1 denotes the inverse function. On the other hand,
(5) y = EΥm+β ∗ (δ − μ) = IΥm+β(δ − μ), when Υm is either of the first order for m = 1 or

is expressed as a composition of operators of the first order,
(5.1) Υm + β = (Υ1 + β

1)...(Υm + β
m) so that

(5.2) IΥm+β = IΥm+βm ...IΥ1+β1 ,
consequently, (4, 5) imply the equation:
(6) EΥm+β ∗ (δ − μ) = IΥm+β(δ − μ) = w−1(Υ

∫
γα|[a,tz ]

μ(x)dx) or

(7) w(EΥm+β ∗ (δ − μ)) = Υ
∫
γα|[a,tz ]

μ(x)dx.
We have the identity
(∂(E ∗Ψ)/∂zp), φ) = −((E ∗Ψ), ∂φ/∂zp) = ((E ∗ (∂Ψ/∂zp)), φ)

with a generalized function Ψ.
Therefore, differentiating (6) by z0,...,zn, we infer that:
(8) {

∑n
j=0[EΥm+β ∗ (∂μ(z)/∂zj)]φ

∗
j(z)}+

(n+ 1)−1
∑n

j,k=0[(dw
−1(ξ)/dξ).(θ̂(z).(∂νj(z)/∂zk))]φ

∗
k(z) = ΥEΥm+β or
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(9) Υ(IΥm+βμ)+
(n+ 1)−1

∑n
j,k=0[(dw

−1(ξ)/dξ).(θ̂(z).(∂νj(z)/∂zk))]φ
∗
k(z) = Υ(IΥm+βδ),

where
(9.1) [((dg(z)/dz).φj(z))⊗ φ∗j(z), ω

⊗2) = [μ(z)⊗ 1, ω⊗2)

for each real-valued test function ω and each j, θ̂(z) = dg(z)/dz, ξ = Υ

∫
γα|[a,tz ]

μ(x)dx (see

also §§4, 5, 17, 23 and 26). If Υ and β are independent of zj, i.e. φj(z) = 0 is zero identically
on U , then ∂(IΥm+βμ)/∂zj = IΥm+β(∂μ/∂zj) (see also Note 23.1). Otherwise the derivative
∂(IΥm+βμ)/∂zj is given by Formulas 4(6) and 23(8) and 26(1). The function w is known
from (3) after the line integration by the variable y, so Equation (8) is linear by (∂μ(z)/∂zj),
j = 0, ..., n. It can be solved as in [20]. Calculating μ from (8) or (9) we get the fundamental
solution:
(10) V = EΥm+β ∗ (δ − μ)

and the (particular) solution of (1) is:
(11) y = V ∗ g.
When [EΥm+β, ω) is real for each real-valued test function ω or Υf = (∂f/∂z0)φ0(z) with

a real-valued function φ0(z) and the inverse relative to the convolution generalized function is
known E−1Υm+β such that
(12) E−1Υm+β ∗ EΥm+β = δ,

then Equation (8) simplifies:
(13) Υμ(z) + (n + 1)−1

∑n
j,k=0 E

−1
Υm+β ∗ [[(dw

−1(ξ)/dξ).(θ̂(z).(∂νj(z)/∂zk))]φ
∗
k(z)] =∑n

j=0[E
−1
Υm+β ∗ (∂EΥm+β/∂zj)]φ

∗
j(z), consequently,

(14) Υμ(z) + ν(μ) = b(z),
where ν(μ) := (n + 1)−1

∑n
j,k=0 E

−1
Υm+β ∗ [[(dw

−1(ξ)/dξ).(θ̂(z).(∂νj(z)/∂zk))]φ
∗
k(z)] and b(z) =

E−1Υm+β ∗ (ΥEΥm+β).
If equation (1) is solved, then it provides a solution of more general equation:
(15) (Υm + β + f̂((Υ)k−1ξ)(Υ)k)ξ = g

finding ξ from the equation (Υ)k−1ξ = y, where (Υ)k denotes the k-th power of the operator
Υ.
If φj(z) = ijψj(z) for each j, then functions {νj(z) : j} can be chosen real-valued or real-

valued generalized functions on real valued test functions (see System 4(10, 11) and §23). In
such case the equality∑n

j,k=0[(dw
−1(ξ)/dξ).(θ̂(z).(∂νj(z)/∂zk))]φ

∗
k(z)

=
∑n

j,k=0[(dw
−1(ξ)/dξ).(μ(z)(∂νj(z)/∂zk)ij)]i

∗
kψk(z)]

is satisfied. For Υf = (∂f/∂z0)φ0(z) with a real-valued function φ0(z) these equations
simplify, since θ̂.h = μ(z)h for each h ∈ R and z ∈ U and (n + 1)−1

∑n
j,k=0 E

−1
Υm+β ∗

[[(dw−1(ξ)/dξ).(θ̂(z).(∂νj(z)/∂zk))]φ
∗
k(z)] = E

−1
Υm+β ∗ [(dw

−1(ξ)/dξ).μ(z)].
Thus the results of this paper over the Cayley-Dickson algebras enrich the technique of

integration of partial differential equations in comparison with the complex field.
It is planned to present in the next paper solutions of some types of non-linear partial dif-

ferential equations with the help of non-linear mappings and non-commutative line integration
over the Cayley-Dickson algebras.
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ИНТЕГРИРОВАНИЕ ВДОЛЬ ПУТЕЙ И
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В ЧАСТНЫХ

ПРОИЗВОДНЫХ ВТОРОГО ПОРЯДКА НАД АЛГЕБРАМИ
КЭЛИ-ДИКСОНА

С.В. Людковский
Московский государственный технический университет МИРЭА, Москва, Россия

sludkowski@mail.ru

Изучается интегрирование вдоль путей обобщенных функций. Исследуются диф-
ференциальные уравнения в частных производных второго порядка с кусочно не-
прерывными и обобщенными переменными коэффициентами над алгебрами Кэли-
Диксона. Выведены формулы для их интегрирования. Для этой цели используется
некоммутативное интегрирование вдоль путей. Даются примеры решений дифферен-
циальных уравнений в частных производных.

Ключевые слова: алгебра Кэли-Диксона, дифференциальное уравнение в частных
производных, интегрирование вдоль пути, обобщенная функция.


