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PHYSICAL FINSLER COORDINATES IN SPACETIME

Howard E. Brandt
U.S. Army Research Laboratory, Adelphi, USA

howard.e.brandt.civ@mail.mil

In Finsler geometry a Finsler coordinate is a coordinate in the tangent space manifold of
a given base manifold. As such it has been given various definitions in the relativity and
field theory literature and often even remains undefined physically. Physically meaningful
coordinates of a point in the tangent bundle of spacetime are the spacetime and four-
velocity coordinates of the measuring device. It is here emphasized that the four-velocity
of the measuring device need not be the same as the four-velocity of the measured object,
either classically or quantum mechanically. The four-velocity of a measured particle
excitation of a Finslerian quantum field in the tangent space manifold of spacetime is not
a suitable physical Finsler coordinate. The role of the Finsler coordinate is elaborated in
a detailed example involving a Finslerian quantum field and associated microcausality.
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1 Introduction
For the last thirty yeas I have been exploring possible physical implications of a possible physical
upper bound on the curvature of worldlines in spacetime. Equivalently, it can be argued that
there is a physical upper bound on the proper acceleration a0 of any physical object relative to
the vacuum and that it is of the order of one Planck length per squared Planck time [1], [2]. If, as
one normally expects, the universal gravitational constant has the same value at submicroscopic
distances as at macroscopic distances, then the maximal proper acceleration a0 is of the order
of 1052 m/s2. (If this is not the case, as in currently popular theories of a running gravitational
coupling constant or extra dimensions, then the maximal proper acceleration a0 would be much
less because what enters in its evaluation is the gravitational constant near the Planck scale
[2].) In a long series of papers, it was argued that the universal upper limit on attainable proper
acceleration relative to the vacuum imposes restrictions on the differential geometric structure
of the tangent bundle of spacetime [2]-[7]. One is lead naturally to a Finslerian structure for
spacetime in which the spacetime metric depends not only on the spacetime coordinates, but
also on the four-velocity coordinates of the tangent space manifold. Various features of the
differential geometry of the tangent bundle of spacetime were obtained, including the bundle
metric, connection, curvature, and geodesics [2]-[7]. In a personal communication, Anadi Das
pointed out to me in 1991 that the differential geometric structure which I had obtained had a
form very similar to that appearing in the mathematical work of Kentaro Yano and Evan Tom
Davies on the tangent bundles of Finsler and Riemannian manifolds [6], [9], [10]. Exploiting this
work of Yano and Davies, I undertook a series of investigations concerning possible differential
geometric structures of a Finsler spacetime. The Levi-Civita bundle connection coefficients
and the Riemann curvature scalar were determined [8]. An almost complex structure was
constructed on the bundle, and conditions were given that the tangent bundle be Kaehler
and/or complex [11], [12]. The inclusion of bundle torsion was addressed [13], [14]. Possible
physical implications were investigated for the differential geometric structure of spacetime and
gravitation [4]-[6], [15]-[17]. Much of this work was summarized in 1995 at the Joint Summer
Research Conference on Finsler Geometry organized by David Bao, Shing-Shen Chern, and
Zhongmin Shen [15]. On that occasion, Chern requested that all of the speakers include in
their papers a list of open problems. One of the problems posed by me (Problem 5) was to
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construct classical and quantum field theories defined covariantly on a Finslerian spacetime
tangent bundle, and this problem motivated most of my subsequent work on Finslerian fields
[16]-[28].

2 Physical finsler coordinates
Throughout all of my earlier work, the question arose as to the physical interpretation of the
tangent space Finlser coordinate, namely the four-velocity. It is the four velocity of what? The
four-velocity appears implicitly in all possible Finslerian fields [5]. For example, the metric of
the tangent bundle of spacetime adapted to the affine connection is

GMN(x, v) =

[
gμν (x, v) 0
0 gμν(x,v)

]

, (1)

in which the spacetime and four-velocity coordinates are designated by:
{
xM
}
≡ {xμ, ρ0v

μ} , {M = 0, 2, ..., 7; μ = 0, 1, 2, 3}, (2)

where vμ = dxμ/ds, ρ0 = c2/a0 is a constant of the order of the Planck length, and c is
the canonical speed of light in vacuum [5]. Evidently the metric field gμν(x, v) depends on
the spacetime point xμ at which the field is measured or else acts on some object, and xμ

would also be the spacetime coordinate of the measuring device. It follows that vμ would be
the four-velocity of the measuring device. Analogously, for example, the bundle connection
also depends, through the metric on both xμ and vμ, and the geodesic equation yields the
spacetime and four-velocity coordinates of an object such as the measuring device acted on
by the gravitational field [5]. Also, for example, the Laplace Beltrami operator for the bundle
depends on the spacetime coordinate of the measuring device and its four-velocity [16]. The
four-velocity of the measuring device will be referred to in the following as the physical Finlser
coordinate, it being the tangent space coordinate in the Finslerian tangent bundle of spacetime.
As an explicit example of the possible role of physical Finsler coordinates, in the remainder of
this paper I review its role in an analysis of microcausality in quantum field theory.

3 Example
In the following example, for simplicity, the role of the four-velocity Finsler coordinate is
considered in a scalar quantum field theory in the spacetime tangent bundle restricted by
the limiting proper acceleration [16]-[28]. For simplicity, a Minkowski spacetime in the base
manifold is assumed. Of course, Minkowski spacetime is a very special case of a more general
Finslerian spacetime, but understanding this simple case may facilitate future analyses involving
a more general Finslerian spacetime The quantum field is Finslerian in the sense that it
depends not only on the spacetime coordinates of the device measuring particle excitations of
the quantum field, but also on the four-velocity of the measuring device.
Canonical quantum field theory in Minkowski spacetime suffers from the divergences oc-

curring at very small distances and/or very high energies. This long standing issue is also
manifested in the singular delta function appearing in the microcausality relation involving the
commutator of the quantum field at two points separated in spacetime. It has been argued
in earlier work that an implication of a physical upper bound on allowed proper acceleration
relative to the vacuum is that the canonical microcausality relation is modified to include de-
pendence of the field on the four-velocity of the device measuring the field, so that the delta
function is replaced by a function concentrated near the Planck scale of spatial separation be-
tween the two devices measuring the field, or within a much larger separation when the relative
speed of the two measuring devices is near the canonical speed of light [20], [21]. A consequence
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is that the causal boundary, canonically defined by the light cone, is warped at these scales so
that the timelike region extends into the canonical spacelike region. The speed of the associated
causal connectivity can exceed the canonical measured speed of light. The condition for this
warp-speed causal connectivity to occur optimally with instantaneous transmission is when the
spatial component of relative four-velocity of the two measuring devices is orthogonal to their
spatial separation, and for spatial separations near the Planck scale. When the relative speed
of the measuring devices is very large, the range for warp-speed causal connectivity may extend
well beyond the Planck scale; however if the wavelength in the frame of the moving measuring
device is much less than the range, the field is extremely reduced, and any warp-speed causal
connectivity is exponentially suppressed.
The limiting proper acceleration a0 determines the structure of the metric on the tangent

bundle of spacetime [5]. Among the many differential geometric invariants determined by the
bundle metric is the Laplace-Beltrami operator [16], [20]:

L = G−1/2
∂

∂xM

(

G1/2GMN
∂

∂xN

)

. (3)

This is the invariant generalization of the wave operator, or d’Alembertian, of standard field
theory. A simple invariant field equation for a scalar field φ(x, v) is then given by [16]

Lφ(x, v) = 0. (4)

Again, as for any Finslerian field, xμ denotes the location in spacetime where the field is
measured, or equivalently, the location of a particle excitation of the quantum field or the
location of the device measuring this excitation, and vμ, the Finsler coordinates, denote the
location in four-velocity space of the measuring device. It is important to stress that vμ is not
the four velocity of the particle excitation, and also that xμ and vμ are classical commuting
variables since they are the coordinates of a measuring device, which is classical. For a flat
Minkowski spacetime, the wave equation, Eq. (4), reduces to [18]:

(
∂2

∂xμ∂xμ
+ ρ−20

∂2

∂vμ∂vμ

)

φ(x, v) = 0, (5)

for the Lorentz-invariant field φ(x, v), where ρ0 is of the order of the Planck length. For
this case, it was argued in earlier work that a scalar quantum field satisfying Eq. (4) is given
by [16], [27]

φ(x, v) = 2
∫

d3p

(2π~)3/2(2p0N)1/2

[
e−ipx/~e−ρ0pv/~θ(ρ0pv/~)a(p)

+ eipx/~eρ0pv/~θ(−ρ0pv/~)a†(p)
]
,

(6)

where ~ is Planck’s constant divided by 2π, p denotes the four-momentum pμ = {p0, p1, p2, p3} of
a particle excitation of the field, a†(p) and a(p) are particle creation and annihilation operators
satisfying the commutation relations,

[a(p), a†(p′)] = δ3(p− p′), [a(p), a(p′)] = 0, [a†(p), a†(p′)] = 0, (7)

δ3(p) is the three-dimensional Dirac delta function, and θ (z) is the Heaviside function,

θ (z) =






1, z > 0
1
2
, z = 0
0, z < 0

. (8)

Also in Eq. (6), N is a normalization factor. For vanishing ρ0, or equivalently, infinite a0,
Eq. (6) reduces to a standard relativistic free scalar quantum field.



Howard E. Brandt Physical Finsler coordinates in spacetime 81

Next, it can be shown that the Pauli-Jordan function, expressing microcausality through
the field commutator at two points (x, v) and (x′, v′) in the tangent bundle, generalized for the
upper bound on proper acceleration, is given by [20, 21, 28]

[φ(x, v), φ(x′, v′)] =
mc}
π2N

[

θ

(
ρ0mcv

0

}

)

θ

(

−
ρ0mcv

0′

}

)

− θ

(
ρ0mcv

0′

}

)

θ

(

−
ρ0mcv

0′

}

)]

×
K1

(
(mc/})

[
− (x− x′ − iρ0(v − v′))

2]1/2
)

[
− (x− x′ − iρ0(v − v′))

2]1/2 , (9)

where m is the mass of a particle excitation of the quantum field, θ(z) is the Heaviside function
defined by Eq. (8), and K1(z) is the modified Bessel function of the third kind of order one.
Equation (9) is divergent for

[x− x′ − iρ0(v − v
′)]
2
= 0. (10)

Equation (10) determines the causal boundary separating the future from the past and the
spacelike region and describes a warping of the standard light cone near the origin in a region
of the order of the Planck length, and at much larger distances for large relative four-velocities.
The warped region is timelike, whereas without the warping, that region would be spacelike
(outside the standard light cone). For vanishing ρ0, and also for equal four-velocities, v = v′,
Eq. (10) reduces to the standard light cone. Also, it can be argued that other bosonic and
fermionic fields may also be expected to satisfy the same wave equation, and the same causal
boundary, Eq. (10), will apply. Particle excitations of the field can be expected to propagate
along the causal boundary. It is to be noted that the relative Finsler coordinates (v− v′) warp
the causal boundary corresponding to the standard light cone.
Taking the real and imaginary parts of Eq. (10), one obtains the following two equations

defining the causal boundary:
(x− x′)2 = (ρ0(v − v

′))2 (11)

and
ρ0(v − v

′) ∙ (x− x′) = 0. (12)

Rewriting Eqs. (11) and (12) in explicit component form, they become:

(Δx0)2 =
∣
∣
∣
−→
Δx
∣
∣
∣
2

+ ρ20(Δv
0)2 − ρ20(

−→
Δv)2, (13)

and
ρ0Δv

0Δx0 = ρ0
−→
Δv ∙

−→
Δx, (14)

where Δx0 ≡ x0′ − x0,
−→
Δx ≡ −→x ′ − −→x , Δv0 ≡ v0′ − v, and

−→
Δv = −→v ′ − −→v . Next multiplying

Eq. (13) by (Δx0)2 and substituting Eq. (14), one obtains

(Δx0)4 −

(∣
∣
∣
−→
Δx
∣
∣
∣
2

− ρ20(
−→
Δv)2

)

(Δx0)2 − ρ0
∣
∣
∣
−→
Δv ∙

−→
Δx
∣
∣
∣
2

= 0. (15)

Equation (15) has the solution:

Δx0 = ±

(∣
∣
∣
−→
Δx
∣
∣
∣
2

− ρ20(
−→
Δv)2

)1/2
×

×






1

2
±
1

2




1 +






2ρ0
−→
Δv ∙

−→
Δx

∣
∣
∣
−→
Δx
∣
∣
∣
2

− ρ20(
−→
Δv)2






2




1/2






1/2

. (16)
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Next dividing both sides of Eq. (16) by ρ0
∣
∣
∣
−→
Δv
∣
∣
∣, and choosing the positive sign inside the bracket

in order that Δx0 be real, one obtains

T = ±

{
1

2

(
X2 − 1

)
+
1

2

[
X4 + 2 (cos 2θ)X2 + 1

]1/2
}1/2

, (17)

in which the normalized temporal separation T is defined by

T =
Δx0

ρ0

∣
∣
∣
−→
Δv
∣
∣
∣
, (18)

and the normalized spatial separation X is

X =

∣
∣
∣
−→
Δx
∣
∣
∣

ρ0

∣
∣
∣
−→
Δv
∣
∣
∣
. (19)

Also in Eq. (17), the angle θ between the spatial separation
−→
Δx and the relative spatial com-

ponent
−→
Δv of four-velocity is

θ = cos−1

∣
∣
∣
−→
Δv ∙

−→
Δx
∣
∣
∣

∣
∣
∣
−→
Δv
∣
∣
∣
∣
∣
∣
−→
Δx
∣
∣
∣
. (20)

Also, Eq. (14) becomes

V =
X

T
cos θ, (21)

where the normalized relative time component four-velocity is defined by

V =
ρ0Δv

0

ρ0

∣
∣
∣
−→
Δv
∣
∣
∣
. (22)

For T , X, and V , the scale is here set by the relative spatial component of four-velocity
∣
∣
∣
−→
Δv
∣
∣
∣

together with the factor ρ0 of the order of the Planck length. Substituting Eq. (17) in Eq. (21),
one obtains

V = ±X cos θ

{
1

2

(
X2 − 1

)
+
1

2

[
X4 + 2 (cos 2θ)X2 + 1

]1/2
}−1/2

. (23)

According to Eq. (17), near θ = π/2, for X2 < 1, or equivalently within the sphere∣
∣
∣
−→
Δx
∣
∣
∣
2

≤ ρ20(
−→
Δv)2, the temporal interval Δx0 is near vanishing, and near instantaneous causal

connectivity occurs between spacelike-separated points. This is consistent with the possible ex-
istence of extended excitations such as strings. The standard light cone, X = T , is effectively

warped in this region. The biggest effect is infinitesimally near θ = π/2 and for
∣
∣
∣
−→
Δx
∣
∣
∣ ≤ ρ0

−→
Δv,

for which
−→
Δx/Δt is infinite. For vanishing θ, the standard light cone is not warped. Thus

the warped light cone and associated causal boundary are anisotropic. Also, for X � 1, or

equivalently for
∣
∣
∣
−→
Δx
∣
∣
∣ � ρ0

−→
Δv, the warped light cone effectively becomes the standard light

cone and becomes asymptotically isotropic and not warped.
When the measuring device detects a field excitation, the speed of the device is at the causal

boundary, Eqs. (11) and (12), determined by the φ-field excitations. The measuring device at
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the origin is here taken to be at rest, and d−→x ′/dt is defined to be the velocity of the moving
device relative to the one at rest. The velocities of the two devices can be interchanged because
only the magnitude of the relative velocity enters. We proceed to derive the velocity of the
moving measuring device. First, according to Eq. (22), one has

Δv0 =
∣
∣
∣
−→
Δv
∣
∣
∣V. (24)

It is important to note that, in accord with special relativity, the moving measuring device has

time component of four-velocity v0′ = γ′ ≡

(

1−

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣

2
)−1/2

and spatial component of four-

velocity −→v ′ = γ′
d−→x ′

cdt
. The device at rest has time component v0 = 1 and spatial component

−→v = 0. Therefore
∣
∣
∣
−→
Δv
∣
∣
∣ = γ′

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣, and Eq. (24) becomes

γ′ − 1 = γ′
∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣V, (25)

or solving for γ′, then,

γ′ =
1

1−

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣V
, (26)

or equivalently, (

1−

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣

2
)−1/2

=

(

1−

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣V

)−1
. (27)

Solving Eq. (27), one obtains for the speed

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣ of the measuring device in units of c :

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣ =

2V

1 + V 2
. (28)

We proceed to obtain an expression for the actual range R =
∣
∣
∣
−→
Δx
∣
∣
∣ /ρ0 between the two measur-

ing devices, expressed in units of ρ0 (of the order of the Planck length). According to Eq. (19),
one has ∣

∣
∣
−→
Δx
∣
∣
∣ = ρ0

∣
∣
∣
−→
Δv
∣
∣
∣X, (29)

and it then follows that the range is given by

R =

∣
∣
∣
−→
Δx
∣
∣
∣

ρ0
= γ

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣X =

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣

(

1−

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣

2
)1/2X. (30)

It is to be noted that the range R approaches infinity as the speed of the moving detector

∣
∣
∣
∣
d−→x ′

dt

∣
∣
∣
∣

approaches c, the canonical speed of light. Of course, extremely high energies are required to
accelerate a detector to such high speed. For θ = .4999π and very small X, one calculates, for
example, R ∼ 104.
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The speed in units of c, namely,
∣
∣
∣
−→
dx′/cdt

∣
∣
∣, of the moving measuring device is determined

by Eqs. (28) and (23). This gives the speed at which the moving measuring device must move
for it to be at the causal boundary and detect a particle excitation. It can be shown that near
standard light speed for the device is required in the region, θ = π/2, 0 < X < 1, in which
warp-speed connectivity occurs.
The speed of the causal connectivity between the two measurements is here defined by

W =
∣
∣
∣
−→
Δx
∣
∣
∣ /Δx0 and is called the warp speed. It then follows from Eq. (17) that

W =

∣
∣
∣
−→
Δx
∣
∣
∣

Δx0
=
X

T
=

X
{
1
2
(X2 − 1) + 1

2
[X4 + 2 (cos 2θ)X2 + 1]1/2

}1/2 . (31)

The warp speed W is the speed of causal connectivity expressed in units of the standard speed
of light. For θ infinitesimally near π/2, and X ≤ 1, the warp speed approaches infinity. For
θ = .4999π and very small X, one calculates, for example, W = 2000. Thus warp-speed causal
connectivity occurs near the Planck scale of spatial separation between the devices measuring
the field, or at much larger separations when the relative speed of the two measuring devices
is near the standard speed of light. However, it is argued below that the field is exponentially
attenuated for wave lengths of the field excitation less than the spatial separation of the two
points where the field is measured. For larger wave lengths, such connectivity is no surprise,
since the location of the particle excitation is only definable up to a wavelength.
For particle excitations of negligible rest mass, according to Eq. (6) and [19], the field

strength φ as a function wavelength λ of the excited particle is proportional to

φ ∼ e−ρ0|pv|/~ = exp

{

−
ρ0

λ
γ′(1−

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣ cos θ

′)

}

, (32)

in which θ′ is the angle between the wave vector of the excited field and the velocity of the
device measuring the field. (It is significant to note in passing that the field has an automatic
spectral cutoff beyond the Planck mass [22], [23].) Proceeding to evaluate Eq. (32), according
to Eq. (19), one first has ∣

∣
∣
−→
Δx
∣
∣
∣ = ρ0

∣
∣
∣
−→
Δv
∣
∣
∣X, (33)

or equivalently, ∣
∣
∣
−→
Δx
∣
∣
∣

ρ0 X
= γ′

∣
∣
∣
∣
d−→x ′

cdt

∣
∣
∣
∣ , (34)

and therefore solving for γ′, one obtains

γ′ =




1 +





∣
∣
∣
−→
Δx
∣
∣
∣

ρ0 X





2





1/2

. (35)

Thus for θ′ = π/2, Eq. (32) becomes

φ ∼ exp
(
−
ρ0

λ
γ
)
= exp





−
ρ0

λ




1 +





∣
∣
∣
−→
Δx
∣
∣
∣

ρ0 X





2





1/2




 . (36)
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For
∣
∣
∣
−→
Δx
∣
∣
∣� ρ0 and X < 1, Eq. (36) reduces to

φ ∼ exp



−





∣
∣
∣
−→
Δx
∣
∣
∣

λ



 1
X



 . (37)

One notes that for particle wavelength λ �
∣
∣
∣
−→
Δx
∣
∣
∣, the field strength is greatly attenuated.

As an example of the field attenuation, for X = 0.001 and θ = 0.4999π, one obtains∣
∣
∣
−→
Δx
∣
∣
∣

ρ0
=7.1× 107 ≈ γ. Also, the corresponding speed of the measuring device is near the

canonical speed of light,

∣
∣
∣
∣
d−→x ′

dt

∣
∣
∣
∣ ∼ c, and the field is

φ ∼ exp



−





∣
∣
∣
−→
Δx
∣
∣
∣

λ



 1
X



 = exp

[

−
7.1× 107ρ0

λ

]

. (38)

The corresponding warp speed W = 3, 183.

4 Conclusion
It has been argued that the appropriate Finsler coordinates for Finslerian fields such as the
spacetime metric and any field defined over the spacetime tangent bundle are given by the
four-velocity tangent space coordinates in the tangent space manifold of the tangent bundle of
spacetime. The four-velocity here is that of a device measuring the field or any object acted
on by the field. An example has been given of the role of physical Finsler coordinates in the
analysis of microcausality in quantum field theory. The Finlser coordinate is the four-velocity
of the measuring device measuring particle excitations of the quantum field. An implication
of a physical upper bound on allowed proper acceleration relative to the vacuum is that near
the Planck scale of spatial separation between the two devices measuring the field, or at much
larger separations when the relative speed of the two measuring devices is near the canonical
speed of light, the standard causal boundary, canonically defined by the light cone, is warped,
so that the timelike region extends into the canonical spacelike region. The speed of the asso-
ciated causal connectivity can exceed the canonical measured speed of light by many orders
of magnitude. The condition for this warp-speed causal connectivity to occur optimally with
instantaneous transmission is when the spatial component of the relative four-velocity of the
two measuring devices is orthogonal to their spatial separation, and for spatial separations
near the Planck scale. The range for warp-speed causal connectivity may extend well beyond
the Planck scale when the relative speed of the measuring devices is very large, however for
practical cases in which the wavelength is much less than the range, the field is extremely
attenuated. Analogous behavior may also be expected not only for a scalar field but also for
other bosonic and fermionic fields. It is also significant to note that the modified quantum field
is Lorentz invariant, and causal connectivity backward in time remains impossible. A proper
understanding of the appropriate physical Finsler coordinates is an essential ingredient in all
of this analysis.
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ФИЗИЧЕСКИЕ ФИНСЛЕРОВЫ КООРДИНАТЫ В
ПРОСТРАНСТВЕ-ВРЕМЕНИ

Говард Брандт
Исследовательская лаборатория армии США, Адельфи, США

howard.e.brandt.civ@mail.mil

В финслеровой геометрии финслерова координата – это координата в касательном
пространстве данного базисного многообразия. Как таковую ее пытались определить
много раз в литературе, посвященной теории относительности и теории поля, часто
она даже остается неопределенной в физическом смысле. Физически значимые
координаты точки в касательном расслоении пространства-времени – это коор-
динаты пространства-времени и 4-скорости измерительного прибора. Здесь акцент
делается на том, что 4-скорость измерительного прибора – это не то же самое,
что 4-скорость измеряемого объекта, классического или квантовомеханического.
4-скорость измеряемого возбуждения частицы финслерова квантового поля в
касательном пространственном многообразии не является подходящей физической
финслеровой координатой. Роль финслеровой координаты подробно рассматривается
на детальном примере, касающемся финслерова квантового поля и сопутствующей
микропричинности.

Ключевые слова: финслерова геометрия, финслеровы поля, квантовая теория
поля, микропричинность, максимальное релятивистски равноускоренное движение,
пространственно-временное касательное расслоение, относительность, световой конус,
причинная область.


