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Multidimensional noncommutative Laplace transforms over octonions are studied. Theo-
rems about direct and inverse transforms and other properties of the Laplace transforms
over the Cayley-Dickson algebras are proved. Applications to partial differential equations
including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial
differential equations of higher order with real and complex coefficients and with variable
coefficients with or without boundary conditions are considered.
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1 Introduction.

The Laplace transform over the complex field is already classical and plays very important
role in mathematics including complex analysis and differential equations [29, 12, 23|. The
classical Laplace transform is used frequently for ordinary differential equations and also for
partial differential equations sufficiently simple to be resolved, for example, of two variables.
But it meets substantial difficulties or does not work for general partial differential equations
even with constant coefficients especially for that of hyperbolic type.

To overcome these drawbacks of the classical Laplace transform in the present paper more
general noncommutative multiparameter transforms over Cayley-Dickson algebras are inves-
tigated. In the preceding paper a noncommutative analog of the classical Laplace transform
over the Cayley-Dickson algebras was defined and investigated [18]. This paper is devoted to
its generalizations for several real parameters and also variables in the Cayley-Dickson alge-
bras. For this the preceding results of the author on holomorphic, that is (super)differentiable
functions, and meromorphic functions of the Cayley-Dickson numbers are used [17, 16]. The
super-differentiability of functions of Cayley-Dickson variables is stronger than the Fréchet’s
differentiability. In those works also a noncommutative line integration was investigated.

We remind that quaternions and operations over them had been first defined and investi-
gated by W.R. Hamilton in 1843 [8]. Several years later on Cayley and Dickson had introduced
generalizations of quaternions known now as the Cayley-Dickson algebras |2, 9, 11, 25]. These
algebras, especially quaternions and octonions, have found applications in physics. They were
used by Maxwell, Yang and Mills while derivation of their equations, which they then have
rewritten in the real form because of the insufficient development of mathematical analysis over
such algebras in their time [4, 7, 13]. This is important, because noncommutative gauge fields
are widely used in theoretical physics [27].

Each Cayley-Dickson algebra A, over the real field R has 2" generators {ig, i1, ..., 2r 1}
such that ig = 1, z? = —1for each j =1,2,...,2"—1, 1ji) = —iyt; for every 1 < k # j <2"—1,
where r > 1. The algebra A, is formed from the preceding algebra A, with the help of the
so-called doubling procedure by generator iy-. In particular, A; = C coincides with the field of
complex numbers, A, = H is the skew field of quaternions, A3 is the algebra of octonions, A4
is the algebra of sedenions. This means that a sequence of embeddings ... — A, — A1 — ...
exists.

Generators of the Cayley-Dickson algebras have a natural physical meaning as generating
operators of fermions. The skew field of quaternions is associative, and the algebra of octonions
is alternative. The Cayley-Dickson algebra A, is power associative, that is, z"™™ = z"z™
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for each n,m € N and z € A,. It is non-associative and non-alternative for each » > 4. A
conjugation z* = Z of Cayley-Dickson numbers z € A, is associated with the norm |z|? = 22* =
z*z. The octonion algebra has the multiplicative norm and is the division algebra. Cayley-
Dickson algebras A, with » > 4 are not division algebras and have not multiplicative norms.
The conjugate of any Cayley-Dickson number z is given by the formula:

(M1) z* == ¢&* —nl.
The multiplication in A, is defined by the following equation:

(M2) (§+m)(y +01) = (&y — on) + (66 + 7)1
foreach &, m, 7,0 € A, 2=+l e Ay, (i =7+l e A4

At the beginning of this article a multiparameter noncommutative transform is defined.
Then new types of the direct and inverse noncommutative multiparameter transforms over
the general Cayley-Dickson algebras are investigated, particularly, also over the quater-
nion skew field and the algebra of octonions. The transforms are considered in A, spher-
ical and A, Cartesian coordinates. At the same time specific features of the noncommu-
tative multiparameter transforms are elucidated, for example, related with the fact that
in the Cayley-Dickson algebra A, there are 2"—1 imaginary generators {iq,...,i9r_1} apart
from one in the field of complex numbers such that the imaginary space in A, has the di-
mension 2"—1. Theorems about properties of images and originals in conjunction with the
operations of linear combinations, differentiation, integration, shift and homothety are proved.
An extension of the noncommutative multiparameter transforms for generalized functions is
given. Formulas for noncommutative transforms of products and convolutions of functions are
deduced.

Thus this solves the problem of non-commutative mathematical analysis to develop the
multiparameter Laplace transform over the Cayley-Dickson algebras. Moreover, an application
of the noncommutative integral transforms for solutions of partial differential equations is
described. It can serve as an effective means (tool) to solve partial differential equations with
real or complex coefficients with or without boundary conditions and their systems of different
types. An algorithm is described which permits to write fundamental solutions and functions of
Green’s type. A moving boundary problem and partial differential equations with discontinuous
coefficients are also studied with the use of the noncommutative transform.

Moreover, a decomposition theorem of linear partial differential operators over the Cayley-
Dickson algebras is proved. A relation between fundamental solutions of an initial and compo-
nent operators is demonstrated. In conjunction with a line integration over the Cayley-Dickson
algebras and the decomposition theorem of partial differential operators it permits to solve par-
tial differential equations linear with constant and variable coefficients and non-linear as well
as boundary problems (see also [19]). Certainly, this approach effectively encompasses systems
of partial differential equations, because each function f with values in the Cayley-Dickson
algebra is the sum of functions f;i;, where each function f; is real-valued.

All results of this paper are obtained for the first time.

2 Multidimensional noncommutative integral transforms.

1. Definitions. Transforms in A, Cartesian coordinates.

Denote by A, the Cayley-Dickson algebra, 0 < r, which may be, in particular, H = A, the
quaternion skew field or O = A3 the octonion algebra. For unification of the notation we put
Ao =R, A, = C. A function f: R" — A, we call a function-original, where 2 < r, n € N, if
it fulfills the following conditions (1 — 5).

(1). The function f(t) is almost everywhere continuous on R" relative to the Lebesgue
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measure A, on R™.

(2). On each finite interval in R each function g;(¢;) = f(t1,...,t,) by t; with marked all
other variables may have only a finite number of points of discontinuity of the first kind, where
t = (t1,...,tn) € R", t; € R, j = 1,...,n. Recall that a point vy € R is called a point of
discontinuity of the first type, if there exist finite left and right limits limy, u, u<u, 9(u) =:
g(ug — 0) € A, and limy, g usu, 9(u) =: g(ug +0) € A,.

(3). Every partial function g¢;(t;)=f(t1, ..., t,) satisfies the Holder condition: |g;(t; + h;) —
gi(t;)] < Aj|hj|* for each |h;| < &, where 0 < o; <1, A; = const > 0, §;>0 are constants for a
givent = (ty,...,t,) € R", j = 1,...,n, everywhere on R™ may be besides points of discontinuity
of the first type.

(4). The function f(t) increases not faster, than the exponential function, that is there
exist constants C, = const > 0, v = (v1,...,0,), a_1,a1 € R, where v; € {—1,1} for every
7 =1,...,n, such that

lf(t)] < C,exp((qu,t)) for each t € R™ with tju; > 0 for each j = 1,...,n, ¢ =
(V1Gyy s ..., Unay, ); Where

(5) (z,y) := >_i_, z;y; denotes the standard scalar product in R™.

Certainly for a bounded original f it is possible to take a _; = a; = 0.

Each Cayley-Dickson number p € A, we write in the form

(6) p= Z?;_Olpjij, where {ig, i1, ..., i9r_1} is the standard basis of generators of A, so that
10 = 1, 232 = —1 and ig?; = i; = 1;i0 for each j > 0, i;4,, = —i)2; for each j > 0 and k > 0 with
k # j, p; € R for each j.

If there exists an integral

(1) F*(p) = F*(5;0) = fyn ()P0 <,
then F™(p) is called the noncommutative multiparameter (Laplace) transform at a point p € A,
of the function-original f(t), where ( — (o = (141 + ... + (or—192r—1 € A, is the parameter of an
initial phase, (; € R for each j =0,1,...,2" =1, ( € A,, n =2" — 1, dt = \,(dt),

(8) < p,t) =po(ts + ... +tor1)+ Z?;_ll p;t;i;, we also put

(8.1) u(p,t;¢) =< p,t) + (.
For vectors v, w € R™ we shall consider a partial ordering

(9) v < w if and only if v; < w; for each j = 1,...,n and a k exists so that vy < wy,
1<k <n.

2. Transforms in A, spherical coordinates.
Now we consider also the non-linear function u = u(p, ¢; ) taking into account non commuta-
tivity of the Cayley-Dickson algebra A,.. Put

(1) u(p,t) = u(p,t; ) := posy + M(p,t) + (o, where

(2) M(p,t) = M(p,t;¢) = (p1s1 + 1) [il cos(pasy + (2) + dgsin(pasa + (o) cos(psss + C3) + ...
+ igr_g SiIl(pQSQ + CQ)...Sin(pQT_QSQT_Q + Cgr_g) COS(p2r_182r_1 + Cgr_l) + igr_l sin(p282 + CQ)
Sin(p2r_282r_2 -+ C2r_2) Sin(pgr_182r_1 + <2T_1)]
for the general Cayley-Dickson algebra with 2 < r < oo,

(2.1) s;:=sj(n;t) :=t;j+..+t, foreach j =1,....,n,n=2"—1,s0 that s =t1 +... + t,,
Sp, = t,. More generally, let

(3) u(p,t) = u(p,t;¢) = pos1 + w(p,t) + (o, where w(p,t) is a locally analytic function,
Re(w(p,t))=0 for each p € A, and t € R* 7!, Re(2) := (2+2)/2, Z = z* denotes the conjugated
number for z € A,. Then the more general non-commutative multiparameter transform over
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A, is defined by the formula:
(4) F(p; ) := [qn (1) exp(—u(p, t; ())dt

for each Cayley—chkson numbers p € A, whenever this integral exists as the principal value
of either Riemann or Lebesgue integral, n = 2" — 1. This non-commutative multiparameter
transform is in 4, spherical coordinates, when u(p, t; ) is given by Formulas (1, 2).

At the same time the components p; of the number p and ; for ¢ in u(p,t; () we write in
the p- and (-representations respectively such that

(5) h; = (—hz'j 4 (2 —2)7! {—h + S22 (hay) }) /2 for each j = 1,2,..,2" — 1,

(6) ho = (h+(27”—2) { h+ S22 i (i) }) /2
where 2 < r € N, h = hoig + ... + hor 1391 € A,, h; € R for each j, i} = i = —iy, for each
k>0,iy=1, h € A.. Denote F"(p;() in more details by F(f,u;p; ().

Henceforth, the functions wu(p,t;¢) given by 1(8,8.1) or (1,2,2.1) are used, if an-
other form (3) is not specified. If for wu(p,t;¢) concrete formulas are not mentioned,
it will be undermined, that the function wu(p,t;¢) is given in A, spherical coordinates
by Expressions (1,2,2.1). If in Formulas 1(7) or (4) the integral is not by all, but
only by tay,....,tjx variables, where 1 < k < n, 1 < j(1) < ... < jk) < n,
then we denote a noncommutative transform by Fk’tj(l)’ i) (p; ¢) or Frtiw i) (£, u;p; ¢). If
j(1) = 1,...,5(k) = k, then we denote it shortly by F¥(p;() or F*(f,u;p;¢). Henceforth, we
take ¢, = 0 and ¢, = 0 and p,,, = 0 for each 1 < m ¢ {j(1),...,5(k)} if something other is not
specified.

3. Remark. The spherical A, coordinates appear naturally from the following consideration
of iterated exponents:

(1) exp(ir(prs1 + C1) exp(—iz(p2s2 + G2) exp(—i1(psss + (3))))
= exp (71 (p151 + (1) exp(—(p232 + (2) (i3 cos(psss + (3) — 12 sin(psss + Cs))))
= exp(i1(p1s1 + ¢1)(cos(pasa + (o) — sin(pasa + (o) (i3 cos(psss + (3) — i2sin(pssz + (3))))
= eXp (p181 +C1)<21 COS(p282+C2)+i2 Sin(p282+<2) COS(p383+C3)+i3 Sin(p282+C2) SiIl(pgSg—i‘Cg))) .

Consider i9r the generator of the doubling procedure of the Cayley-Dickson algebra A, from
the Cayley-Dickson algebra A,, such that i;iy, = i9r; for each j =0, ...,2"—1. We denote now
the function M(p,t; () from Definition 2 over A, in more details by .M.

Then by induction we write:

(2) exp( r1M (p, t; C)): exp{ rM((i1p1 +. A dgr_1por—1), (L1 ooy tar—g, (tar—1 4 527));

(i1C1 + .. + 99r—1Cor—1) €xp(—ior41(parSar + Cor) exp(— M ((t1p2r41 + ... + Gor_1por+1-1),
(tors1, ooy borer—1); (81Cor g1 + oo+ Gar—1Care1-1))) |,

where t = (t1,...,tn), n =n(r +1) = 2" — 1, s; = s;(n(r + 1);t) for each j = 1,...,n(r + 1),
since sy, (n(r+1);t) = tm + ... +tyr1) = Sm(n(r);t) + sor(n(r+1);t) for each m = 1, w28 —1.

An image function can be written in the form

n 21

(3) F (p7 C) . Z] =0 ZJF ( C)a
where a function f is decomposed in the form

(3.1) f(t) = er 01 ijfi(t), f; : R" = R for each j = 0,1,...,2" — 1, F?(p; () denotes the
image of the function-original f;.

If an automorphism of the Cayley-Dickson algebra A, is taken and instead of the standard
generators {ig, ..., ior_1} new generators { Ny, ..., Nor_1 } are used, this provides also M (p,t;() =



S.V. Ludkovsky Multidimensional Laplace transforms over Cayley-Dickson algebras... 123

My (p,t; () relative to new basic generators, where 2 < r € N. In this more general case
we denote by NF"(p;{) an image for an original f(¢), or in more details we denote it by
NF"(f,u; 5 Q).

Formulas 1(7) and 2(4) define the right multiparameter transform. Symmetrically is defined
a left multiparameter transform. They are related by conjugation and up to a sign of basic
generators. For real valued originals they certainly coincide. Henceforward, only the right
multiparameter transform is investigated.

Particularly, if p = (po,p1,0,...,0) and ¢ = (¢1,0,...,0), then the multiparameter non-
commutative Laplace transforms 1(7) and 2(4) reduce to the complex case, with parameters
ay, a_1. Thus, the given above definitions over quaternions, octonions and general Cayley-
Dickson algebras are justified.

4. Theorem. If an original f(t) satisfies Conditions 1(1 — 4) and a1<a_y, then its image
Fr(f,u;p; Q) is A.-holomorphic (that is locally analytic) by p in the domain {z € A, : a3 <
Re(z) < a_1}, as well as by ¢ € A,, where 1<reN, 2"1<n<2" — 1, the function u(p,t;() is
given by 1(8,8.1) or 2(1,2, 2.1).

Proof. At first consider the characteristic functions xy, (t), where xy () = 1 for each ¢t € U,
while xy(t) =0 for every t € R*\ U, U, ;== {t € R" : v;t; > 0Vj = 1,...,n} is the domain in
the Euclidean space R" for any v from §1. Therefore,

(1) F2(050) = X jour,oom)onsimei—1,1y] Ju, £(t) exp(— (p’t'C))dt
since A, (U, N U,) = 0 for each v # w. Each integral [;, f(t)exp(—u(p,t;())dt is absolutely

convergent for each p € A, with the real part a; < Re(p ) < a_1, since it is majorized by the
converging integral

‘fU exp (p,t; C))dt‘ S f()oo"'fooo Cv eXp{_v1<w_av1)y1_~-~_Un(w_avn)yn_<0}

dys...dyn = Cpe™ [T} vi(w — ay,) 7",
where w = Re(p), since |e*| = exp(Re(z)) for each z € A, in view of Corollary 3.3 [16]. While
an integral, produced from the integral (1) differentiating by p converges also uniformly:

3)|Jy, £(8) (P exp(—u(p,t:0))/0p) b
S R e Cv‘(ho(vlyl + ootV Yn), P (V1Y + o VYR, ey P 1 (Vn—1Yn—1 + V), hnvnyn){
exp{—v1(w — ay, )y1 — ... — V(W — ay, )yn — Co}dys...dy,
< hICye S T, (10— a,) 2
for each h € A,, since each z € A, can be written in the form z = |z|exp(M), where |2]* =
22 €[0,00) CR, M € A,, Re(M) := (M + M)/2 =0 in accordance with Proposition 3.2 [16].
In view of Equations 2(5,6):

0 (Jgn F(t) exp(—u(p, t;¢))dt) /0p = 0 and
(fRn t) exp(—u(p, t; C))dt) /0C = 0, while

‘fU ) [0 exp(—u(p, t; c))/ag].hdt) < JR] [ [ Cyexp{—v1 (w—ay, )y — .. — v (w—
avn Yn — CO}dyl dyn |h|C’veic0 H;'lzl 'Uj (w - avj)il
for each h € A,. In view of convergence of integrals given above (1—6) the multiparameter non-
commutative transform F(p; ) is (super)differentiable by p and ¢, moreover, 9F;(p; () /0p = 0
and OF(p;¢)/0¢ = 0 in the considered (p,()-representation. In accordance with [17, 16] a
function g(p) is locally analytic by p in an open domain U in the Cayley-Dickson algebra A,,
2 < r, if and only if it is (super)differentiable by p, in another words A,-holomorphic. Thus,
FM(p; ) is A,-holomorphic by p € A, with a; < Re(p) < a_; and ¢ € A, due to Theorem 2.6
[18].
4.1. Corollary. Let suppositions of Theorem /J be satisfied. Then the image F™(f,u;p;()
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with u = u(p, t;C) given by 2(1,2) has the following periodicity properties:

(1) F*(f,u;p; ¢ + Bi;) = F*(f,w;p; Q) for each j=1,...,n and B € 2rZ;

(2) F*(f,u;p'5 ¢t = (1) F(f,u;p* C?) for each j = 1,...,n — 1 so that ¢§ = (¢ and
le = — ]2, j1+1 =7+ ]2+1, ¢l = (2 for each s # j and s # j + 1, while eitherpjl- = —p? and
pi = p? for each | # j with k = 2 or p' = p® and f(t) is an even function with k = 2 by the
s; = (t; + ... + t,) variable or an odd function by s; = (t; + ... + t,) with k = 1;

(3) F"(f,u;p; ¢ + min) = —F"(f, u; p; ).

Proof. In accordance with Theorem 4 the image F"(f,u;p;() exists for each p € Wy :=
{z €A, : a1 < Re(z) < a_1} and ( € A,, where 1<r. Then from the 27 periodicity of sine
and cosine functions the first statement follows. From sin(—¢) = —sin(¢), cos(¢) = cos(—¢),
sin(m+¢) = —sin(¢), cos(¢ + m) = —cos(¢) we get that cos(p;s; + () = cos(—p;s; + (),
sin(p;s; + ¢j) cos(pjs18j41 + Gjry) = (—sin(—p;s; + (7)) (— cos(pjr18;41 + (y)) and sin(p;s; +
¢j)sin(pjr18i41 + G y) = (—sin(—=pjs; + ) (—sin(pjr15541 + (7)) for each t € R™. On the
other hand, either p} = —p? and p; = pi for each | # j > 1 with k = 2 or p! = p? and
f(t1, oy Sjm1 + 85, =85 — Sjt1,tjs1s s tn) = (=1)*f(t1, ..., 8j-1 — 8,8 — Sj+1,tj+1,-.., L) IS an
even with k = 2 or odd with x = 1 function by the s; = (¢; + ... +t,) variable for each
t=(t1,....,tn,) € R", where t; = s; — sj1q for j =1,...,n, sp41 = Sp1(n;t) = 0. From this and
Formulas 2(1,2,4) the second and the third statements of this corollary follow.

5. Remark. For a subset U in A, we put 75, +(U) :={u: 2z € U,z =) o, WV, U= ws+wpp}
for each s # p € b, where t := Zveb\{s’p} wyV € A sp={2E€A 2= pwV, ws =w, =0,
w, € RYv € b}, where b := {ig, 41, ...,92-_1 } is the family of standard generators of the Cayley-
Dickson algebra A,. That is, geometrically m,+(U) means the projection on the complex
plane Cs, of the intersection U with the plane 7spr 3 t, Csp := {as + bp : a,b € R}, since
sp* € b := b\ {1}. Recall that in §§2.5-7 [16] for each continuous function f : U — A,
it was defined the operator f by each variable z € A,.. For the non-commutative integral
transformations consider, for example, the left algorithm of calculations of integrals.

A Hausdorff topological space X is said to be n-connected for n > 0 if each continuous map
f : S* — X from the k-dimensional real unit sphere into X has a continuous extension over
R**1 for each k < n (see also [28]). A 1-connected space is also said to be simply connected.

It is supposed further, that a domain U in A, has the property that U is (2" — 1)-connected;
Tsp+(U) is simply connected in C for each k = 0,1,...,2"7 s = d9s, p = dogy1, t € A,5p and
u € Csp, for which there exists z =u+te U.

6. Theorem. If a function f(t) is an original (see Definition 1), such that NE"(p;() is its
image multiparameter non-commutative transform, where the functions f and F' are written
in the forms given by 3(3, 3.1), f(R™) C A, over the Cayley-Dickson algebra A,, where
1<reN, 2 1<n<or—1.

Then at each point t, where f(t) satisfies the Hélder condition the equality is accomplished:

M fw= { [mNn)* / Zj ( ( [(%Nl)‘l [

exp{u(a + p, t; C)}> ) dp}zr (F) N NEHa+p; Q) u, t;C),

~F(a+p; ()

where cither u(p,t;¢) =< p,t) + ¢ or u(p,:¢) = pos1 + Mu(p,£;C) + o (see §§1 and 2), the
integrals are taken along the straight lines p(1;) = N;7; € A,, 7, € R for each j = 1,...,n;
a; < Re(p) = a < a_y and this integral is understood in the sense of the principal value,
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Proof. In Integral (1) an integrand n(p)dp certainly corresponds to the iterated integral as
(...(n(p)d[p1N1))...)d[pn Ny|, where p = p1 N1 + ... + pu Ny, 1, ..., pn € R. Using Decomposition
3(3.1) of a function f it is sufficient to consider the inverse transformation of the real valued
function f;, which we denote for simplicity by f. We put

NEy (€)== - fi(t) exp(—u(p,t; ¢))dt.

If n is a holomorphic function of the Cayley-Dickson variable, then locally in a simply connected
domain U in each ball B(A,, zo, R) with the center at zy of radius R > 0 contained in the interior
Int(U) of the domain U there is accomplished the equality

(8 [f;o n(a + C)dC} /8z) 1=mnla+2),

where the integral depends only on an initial zy and a final z points of a rectifiable path in
B(A,,z,R), a € R (see also Theorem 2.14 [18]). Therefore, along the straight line N;R the

restriction of the antiderivative has the form [, 06; n(a + N;7;)dr;, since

(2) J2 N nla+Q)dC = [y ila+ Nym).Nydr;,
where dn(a + 2)/00 = (On(a + 2)/0z).N; for the (super)differentiable by z € U function 7(z),
when z=0Nj, 6 € R. For the chosen branch of the line integral specified by the left algorithm
this antiderivative is unique up to a constant from A, with the given z-representation v of
the function n [16, 17, 18]. On the other hand, for analytic functions with real expansion
coefficients in their power series non-commutative integrals specified by left or right algorithms
along straight lines coincide with usual Riemann integrals by the corresponding variables. The
functions sin(z), cos(z) and e* participating in the multiparameter non-commutative transform
are analytic with real expansion coefficients in their series by powers of z € A,.

Using Formula 4(1) we reduce the consideration to xy, () f(t) instead of f(t). By symmetry
properties of such domains and integrals and utilizing change of variables it is sufficient to
consider U, with v = (1,...,1). In this case [, for the direct multiparameter non-commutative
transform 1(7) and 2(4) reduces to [;* ... [;~. Therefore, we consider in this proof below the
domain U ; only. Using Formulas 3(3,3.1) and 2(1,2,2.1) we mention that any real algebra
with generators Ny = 1, Ny and N; with 1 < k # j is isomorphic with the quaternion skew field
H, since Re(N;Ni) = 0 and |N;| =1, |[N;y| =1 and |N;Ni| = 1. Then exp(a + MS)exp(y +
Mw) = exp((a + ) + M(8 + w)) for each real numbers «, 3,7, and a purely imaginary
Cayley-Dickson number M.

The octonion algebra O is alternative, while the real field R is the center of the Cayley-
Dickson algebra A,. We consider the integral

(3) (t) = [N 50| (- ([@rN) SN0 v (a4pi Q) expfulatp, O} ) ) dp
for each positive value of the parameter 0 < b < oo. With the help of generators of the Cayley-

Dickson algebra A, and the Fubini Theorem for real valued components of the function the
integral can be written in the form:

o o[t [ ([t o )

f(r) exp{—un(a+p,t;{)} exp{un(a+p,T; C)}> ) dp,

since the integral [, f(7)exp{—un(a +p,7;¢)}dr for any marked 0 < § < (a_; —a1)/3 is

.....

uniformly converging relative to p in the domain a; +§ < Re(p) < a_; — ¢ in A, (see also
Proposition 2.18 [18]).
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If take marked ¢, for each k # j and S = N; for some j > 1 in Lemma 2.17 18| considering
the variable ¢;, then with a suitable (R-linear) automorphism v of the Cayley-Dickson algebra
A, an expression for v(M(p,t; ()) simplifies like in the complex case with Cx := RGRK for a
purely imaginary Cayley-Dickson number K, |[K| = 1, instead of C := R®Ri;, where v(z) = z
for each real number x € R. But each equality a = § in A, is equivalent to v(a) = v(0).
Then

(5) Re[(N;jNg)(N;N;)*| = Re(NyN}) = 64, for each ¢, .

If 89 = > o<i<nizj AN, Ni = > o<i<niz; BN with j > 1 and real numbers oy, 5 € R for
each [, then

(6) Re [(N;S7)(N;NY)*] = Re [S/(N7)*] = 37, cufB.
The latter identity can be applied to either S*=Mp,1(pry1Ne1 + ... +
PnlNn, (tr1s s tn); Gt Nir + o+ GuNy) and N* 0 = My (peyaNep + 0 +

PN, (Tet1, - T0); Cert Nigt + -+ 6N, or 8% = (prgatirs + CGer1) Nosr + o + (Patn + )N,
and N* = (pp17rr1 + Cor1) Nigr + oo + (PuTn + Co) Ny, where

(7) Miy1(Prr1Nis1 + oo+ Doy (brg1s - ) Gt Vi1 + oo + GNR) = (Prs151541 +
Cht1) [Nit1 €08(Prt25a 1 + Cerz) + oo + Nosin(pri2sa st + Goa)-o SI(PosSn—k ki1 + Ca)l,

(8) Sjkt1 = Sjpr1(n;t) = tpyj + ...+t = Spy(nst) for each j = 1,..,n — 15 Sp_ppr1 =
Snfk,kJrl(n; t) =tn.

We take the limit of g,(t) when b tends to the infinity. Evidently, six(n;7) — s;(n;7) =
sk(j —1;7) =7+ ... + 7j_1 for each 1 < k < j < n. By our convention si(n;7) = s1(n; 1) for
k < 1, while sg(n;7) =0 for k > n. Put

(9) un,j(Po+piN; + ... + PuNn, (T4, o, Tn); Co + GNj 4 . + G Nn) = Co + posi,; + M;(p;N; +
.. +pnNn; (Tj, ...,Tn); CO —+ Cij + ...+ CnNn)
for uy given by 2(1,2,2.1), where M; is prescribed by (7), sk ; = sk ;(n;7);

(10) Un,j(po —i—ijj—i-...—l—pnNn, (Tj, ...,Tn); Co—i-Cij—i-...—FCnNn) = C() +p031’j+zzzj(pk7'k+
G ) Ni
for u = uy given by 1(8,8.1). For j > 1 the parameter (, for u = uy given by 1(8,8.1) or
2(1,2,2.1) can be taken equal to zero.

When ti,...,¢;_1,tj41,...,t, and pi,...,Dj—1,Dj+1, ..., Pn variables are marked, we take the
parameter

¢ = PiNj+ oo + PaNoy (Tiy ooy Tn); Co + GNG + oo + 6N i= (Co + GN; + oo + 6N +
(@4 po)sj+1 + pj+18j+1Nj41 + ... + ppsp Ny, for u(p, 7; ¢) given by Formulas 2(1,2,2.1) or

= (piNj+ oo+ 0N, (T ooy ™) Co + GNj + oo+ GulNL) = (G 4+ GNj + oo + G N) +
(@+po)sjt1+Pj+1Tji41 Njr1 + ... + pu7 N, for u(p, 7; () described in 1(8,8.1). Then the integral
operator
limy o0 [(27N;) 7 [0 dT; f ..(dp;jN;) (see also Formula (4) above) applied to the func-
tlon fta, o tjm1, Ty ey Tn) exp{ un,j(a + po + piNj + ... + puNp, (t], e tn);Co + GN; + .+

n)}exp{uN’](a +po+piN; + ... + DNy, (T4, s T0); (0 + GNj + ... + (. N,) b with the pa-
rameter ¢’ instead of ¢ treated by Theorems 2.19 and 3.15 [18| gives the inversion formula
corresponding to the real variable t; for f(¢) and to the Cayley-Dickson variable poNo + p;N;
restricted on the complex plane Cy,; = R @ RN}, since d(7; + ¢) = d7; for each (real) constant
c. After integrations with j = 1, ..., k with the help of Formulas (6 — 10) and 3(1,2) we get the

following;:
Ny oo Nk+1oo
(2w N,) / d’Tn/ (2rNgs1)~ / di+1/
Npoo NkJrlm

F(E1, ooy by Tt 15 oo T) €Xp{ =t 1 ((@ + po + Prep1 Nis1 + oo + PaNR), (B, s )

(11) hm gb( ) = Re
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(Co 4 Cor1Nks1 + - + GuNo)) fexp{un ps1((@ + po + Prr1Nis1 + o + PuNy),

(Tk-i-l» ceey Tn); (Co + Ck+1Nl~c+1 + ...+ gnNn))}> > dp

Moreover, Re(f,) = f, for each ¢ and in (11) the function f = f, stands for some marked ¢ in
accordance with Decompositions 3(3,3.1) and the beginning of this proof.

Mention, that the algebra algr(N;, Ni, N;) over the real field with three generators N;, Ny
and N is alternative. The product NN, of two generators is also the corresponding generator
(—1)¢®D N, with the definite number m = m(k,1) and the sign multiplier (—1)5*  where
¢(k,1) € {0,1}. On the other hand, Ny, [N;(N;( N, Ni))] = Ni, (Ni, N;). We use decompositions
(7—10) and take ks = [ due to Formula (11), where Re stands on the right side of the equality,
since Re(N,N;) = 0 and Re[N;(N;(NN;))] = 0 for each k # 1. Thus the repeated application
of this procedure by j = 1,2, ...,n leads to Formula (1) of this theorem.

6.1. Corollary. If the conditions of Theorem 6 are satisfied, then

1) £(t) = (2m)" / Fr(a +p;¢) explua + p, ) }dp..dpn

n

= (F") 7 ~ENa+p;C),u,t5C).

Proof. Each algebra algr(N;, Ni, N;) is alternative. Therefore, in accordance with §6 and
Formulas 1(8,8.1) and 2(1 — 4) for each non-commutative integral given by the left algorithm
we get

(2) Nt /_leb[f(T) exp{—un(a+ p, t;{)} exp{un(a + p,7; {) }d(p; N;)
2 N; [Nj (/_N]b [Nufi(7) exp{—un(a + p,t;¢)}exp{un(a + p, T; C)}dpj>]

=/ [f(7) exp{—un(a + p,t; {)}exp{un(a + p,7; {) }dp;

—b
for each j = 1,...,n, since the real field is the center of the Cayley-Dickson algebra A,, while
the functions sin and cos are analytic with real expansion coefficients. Thus

(3) gu(t) = 2m) " fy™ dr [, ] (o ([ S5 dr S| £ exp{-un(a+ b, 1:Q))
exp{uy(a + p,T; C)}) ) dp;...dp,,

hence taking the limit with b tending to the infinity implies, that the non-commutative iterated
(multiple) integral in Formula 6(1) reduces to the principal value of the usual integral by real
variables (71, ...,7,) and (p1, ..., pn) 6.1(1).

7. Theorem. An original f(t) with f(R™) C A, over the Cayley-Dickson algebra A, with
1 <r € N is completely defined by its image NE(p;C) up to values at points of discontinuity,
where the function u(p,t; () is given by 1(8,8.1) or 2(1,2, 2.1).

Proof. Due to Corollary 6.1 the value f(t) at each point ¢ of continuity of f(¢) has
the expression throughout nF!(p;() prescribed by Formula 6.1(1). Moreover, values of the
original at points of discontinuity do not influence on the image NF(p;(), since on each
bounded interval in R by each variable ¢; a number of points of discontinuity is finite and by
our supposition above the original function f(t) is A,-almost everywhere on R™ continuous.

8. Theorem. Suppose that a function yNF!'(p;() is analytic by the variable p € A, in a domain
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W:={pe€A :a; <Relp) <a_i}, where2 <reN, 21 <n<2"—1, f(R") C A,, either
u(p,t;¢) =< p,t) + ¢ or u(p,t;¢) := pos1 + M(p,t;C) + (o (see §§1 and 2). Let NE(p;() be
written in the form NFE™(p;¢) = yF™(p;¢)+ ~E™(p;(), where nF™(p;() is holomorphic
by p in the domain a; < Re(p). Let also nE™ (p;¢) be holomorphic by p in the domain
Re(p) < a_1. Moreover, for each a > a; and b < a_; there exist constants C, > 0, C, > 0 and
€, > 0 and €, > 0 such that

(1) | NF20(; Q)| Caexp(—culp]) for cach p € A, with Re(p) = a,

(2) ’ NE™(p; g)‘g Cyexp(—ep|p|) for each p € A, with Re(p) < b, the integral

(3) _N]’\}:OOO ivz\l;ooo NEME(w + p; O dp converges absolutely for k = 0 and k = 1 and each
ap<w<a_i.

Then NE™w + p;() is the image of the function

(4) N N
en W [ ](...([(2@—1N1/N

ft) =
= (F") N NF} (w + p;€), u, ;).

Proof. For the function xF™!(p;() we consider the substitution of the variable p = —g,
—a_; < Re(g). Thus the proof reduces to the consideration of NF™(w + p;().

An integration by dp in the iterated integral (4) is treated as in §6. Take marked values
of variables p1,...,pj—1,Pj+1, ..., Pn and t1, ..., t;_1,tj41, ..., t,, Where s = sg(n;7) for each k =
1,...,n (see §6 also). For a given parameter ¢/ := ({o + (;N; + ... + (V) + (w + po)sji1 +
Pj+18j41Nj41+ ..+ Pusn Ny, for u(p, 7; ) prescribed by Formulas 2(1,2,2.1) or ¢/ := ({o+¢;N;+
e+ GN) + (W4 po)sjr + Pi+1Tis1 Niw1 + . + puT N, for u(p, t; ¢) given by 1(8,8.1) instead
of ¢ and any non-zero Cayley-Dickson number 3 € A, we have lim, _,.[37;+ (7] /[B7; 4+ (] = 1.

For any locally z-analytic function g(z) in a domain U satisfying conditions of §5 the
homotopy theorem for a non-commutative line integral over A,, 2 < r, is satisfied (see |17, 16]).
In particular if U contains the straight line w + RN; and the path v;(t;) := ¢/ + ;N;, then
fivsz:ooog(z)dz = f%_ g(w + z)dz, when g(z) — 0 while |z| tends to the infinity, since |¢/] is a
finite number (see Lemma 2.23 in [18]). We apply this to the integrand in Formula (4), since

NEF! (w4 p; €) is locally analytic by p in accordance with Theorem 4 and Conditions (1,2) are
satisfied.

Then the integral operator |:<27TN]')_1

~NF(w + p; ¢) exp{u(w + p, t; C)}> ) dp

- ]Qjoo] on the j-th step with the help of Theorems

2.22 and 3.16 [18] gives the inversion formula corresponding to the real parameter t; for f(¢)
and to the Cayley-Dickson variable pyNy + p;N; which is restricted on the complex plane
Cy, = R®RN; (see also Formulas 6(4, 11) above). Therefore, an application of this procedure
by j =1,2,...,n as in §6 implies Formula (4) of this theorem.

Thus there exist originals f* and f! for functions yF™%(p;¢) and N F™ (p;¢) with a choice
of w € R in the common domain a; < Re(p) < a_y. Then f = f° + f! is the original for
NEM(p; () due to the distributivity of the multiplication in the Cayley-Dickson algebra A,
leading to the additivity of the considered integral operator in Formula (4).

8.1. Corollary. Let the conditions of Theorem 8 be satisfied, then

n

1) £(t) = (2m)" / NE™(w + p; ¢) explu(w + p, ;) }dpr...dp,

= (F") N NF}(w+ p; ), u, t5C).
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Proof. In accordance with §§6 and 6.1 each non-commutative integral given by the left
algorithm reduces to the principal value of the usual integral by the corresponding real variable:

(2) (2m) ' N, /_J\:OO NEy (w + p; Q) exp{u(w + p, t; () }(p; N;)

=)t [ NEw -+ pi¢) exp{utw + 5.6},
for each j = 1,...,n. Thus Formula 8(4) with the non-commutative iterated (multiple) integral
reduces to Formula 8.1(1) with the principal value of the usual integral by real variables

(p17 7pn)
9. Note. In Theorem 8 Conditions (1,2) can be replaced on
(1) titt oo SB[ E (B = 0,

where Crny == {z € A, : |2] = R(n),a1 < Re(z) < a_,} is a sequence of intersections of
spheres with a domain W, where R(n) < R(n + 1) for each n, lim,_,., R(n) = co. Indeed, this
condition leads to the accomplishment of the A, analog of the Jordan Lemma for each r > 2
(see also Lemma 2.23 and Remark 2.24 [18]).

Subsequent properties of quaternion, octonion and general A, multiparameter non-
commutative analogs of the Laplace transform are considered below. We denote by

2) Wr={pe A : ai(f) < Re(p) < a_1(f)} a domain of NF(p;() by the p variable,

where a; = a1(f) and a_; = a_1(f) are as in §1. For an original

3) f)xv,, ., (t) we put Wy ={p e A : ai(f) < Re(p)},
that is a_; = oo. Cases may be, when either the left hyperplane Re(p) = a; or the right
hyperplane Re(p) = a_; is (or both are) included in Wy. It may also happen that a domain
reduces to the hyperplane Wy = {p: Re(p) = a1 = a_1}.

10. Proposition. If images nF!(p;¢) and NG (p;C) of functions-originals f(t) and g(t)
ezist in domains Wy and W, with values in A,, where the function u(p,t; () is given by 1(8,8.1)
or 2(1,2,2.1), then for each o, € A, in the case Ay = H; as well as f and g with values in
R and each o, 3 € A, or f and g with values in A, and each o, 3 € R in the case of A, with
r > 3; the function a yF,(p;C) + 8 vGu(p; C) is the image of the function af(t) + Bg(t) in a
domain Wy N W,.

Proof. Since the transforms nF(p;() and yGI(p;() exist, then the integral

[ (@s(0)+ gty exp(-ulp,ts )it = [ af(®)exp(-u(p.t: )i

n

+ . Bg(t) exp(—u(p,t; C))dt

converges in the domain

WenW, ={p € A : max(ai(f),ai(g)) < Re(p) < min(a_1(f),a_1(g))}.
We have t € R", 271 < n < 2" — 1, while R is the center of the Cayley-Dickson algebra A, .
The quaternion skew field H is associative. Thus, under the imposed conditions the constants
a, # can be carried out outside integrals.

11. Theorem. Let a = const > 0, let also F"(p; () be an image of an original function f(t)
with either u =< p,t) + ¢ or u given by Formulas 2(1,2) over the Cayley-Dickson algebra A,
with2 <r < 00, 2" <n < 2"—1. Then an image F™(p/c;()/a™ of the function f(at) exists.
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Proof. Since pjs;+(; = pj(s';/a)+(; = (pj/a)s’;+(j for each j = 1,...,n, where s;a = §';,
s; = sj(n;t), s'; = sj(n;7), 7, = at; for each j = 1,...,n. Then changing of these variables
implies:

Jan flat)e®H9dt = [o, f(r)e " ®T/aVdr /o™ = F"(p/a; () Ja”
due to the fact that the real filed R is the center Z(A,) of the Cayley-Dickson algebra A,.

12. Theorem. Let f(t) be a function-original on the domain Uy ;1 such that Of(t)/0ty also
for k = 5 —1 and k = j satisfies Conditions 1(1 — 4). Suppose that u(p,t;() is given by
2(1,2,2.1) or 1(8,8.1) over the Cayley-Dickson algebra A, with2 <r < oo, 21 <n <2"—1.
Then

W PO/t x5 C)= —F 7 (f(Exwn, . (), ulp, 5 s i€)

..........

TPot Zpksek] F" (f(t)Xm ..... (1), us p; C)
k=1

in the A, spherical coordinates or

(L) F@FO/0t)xw, (0, uipi¢) = —F 7 (FHxw,

(), ulp, ¥50); p; C)

,,,,,

,,,,,

in the A, Cartesian coordinates in a domain W = {p € A, : max(ai(f),a1(0f/0t;)) < Re(p)},
where t7 := (t1,...,t5,....,tn : t; =0), S, = —0/9¢, for each k > 1.
Proof. Certainly,

(2) Of (t(s)) /0s1 = Of(t)/0t; and
(2.1) Of (1)/0t; = 25, (9f (t(s))/Ds1) (Bsi/Ot;) = D21, D (t(s)) /s

for each j = 2,...,n, since t; = s; — 541, t1 = $1 — sp, where s; = s;(n;t), s,y = 0 for each
[ > 1. From Formulas 30(6,7) [18] we have the equality in the A, spherical coordinates:

(3) dexp(—u(p,t;())/0s; = —podu; exp(—u(p, t;C)) — p;Se, exp(—u(p,t; (),
since
exp(—u(p,t; () = exp{—pos1 — Go} exp(—M(p, t; (),
dexp(—pos1 — Co)/0s; = —podyj exp(—pos1 — (o),
Olcos(p;s;j+¢;) —sin(p;s;+(;)i;]/0s; = Oexp(—(pjs;+(;)i;)/0s; = —pjij exp(—(p;s;+¢;)i;)
= —pjexp(—(p;s; + ¢; — m/2)i;) = —pj[cos(p;s; + ( — m/2) — sin(p;s; + ¢ — 7/2)i;]
= —p;Se;[cos(p;s; + () — sin(p;s; + )],
since s; and s are real independent variables for each k # j, where §;, = 0 for j # k, while

5]7] - ]_’

(3.1) Se,[cos(pjs; + ¢;) — sin(pss; + ¢)is] =

—0[cos(p;s; + ;) — sin(p;s; + ¢;)i;]/0¢;

= [cos(p;sj + (j — m/2) — sin(pjs; + ¢ — 7/2)1;].

In the A, Cartesian coordinates we take ¢; instead of s; in (3.1). If ¢(2) is a differentiable
function by z; for each j, ¢ : A, = A,, 2; = p;t; + (j, then

(3.2) Dexp(—¢(2))/0(qt;) = —qldexp(£)/dE]|e=—4-(09(2)/0z;)p;

= —ap;[o0, Yoo ((€(2))4 (99 (2 )/3%))( £(2))" 1 F nl]le——

= —qpj(—9 exp(—¢(2))/0C;)= — p;Sqe, exp(—(2)),
where either ¢ = 1 or ¢ = —1, since 0z;/0(;=1.



S.V. Ludkovsky Multidimensional Laplace transforms over Cayley-Dickson algebras... 131

That is
(3.3) S¢, exp(—tk(¢x + (k) = 0 for each j # k > 1 and any positive number z > 0,
(3.4) SZ, exp(—1;(¢; + (;)) = exp(—1;(¢; + (; — am/2)) and
ST, exp(—ij(¢; + (;)) = exp(—i;(¢; + § + 27m/2))
for each non-negative real number x > 0, ¢ and ¢ € R, where S.; = S.,((;), the zero power

Se, = I is the unit operator;

(3.5) Sge,e P10 = emPos1=Go

T |io6j,1 cos(prsy + 1) + (1 — 6;1)ij-1sin(prsy + C1)... cos(p;s; + ) + {Zi;f ixsin(pys; +

C1)-.. coS(Prt15k41 + Ck+1)}+i2r—1 sin(p1s1 + ¢1)... sin(par—152r—1 + Cor—1)

in the A, spherical coordinates, where either ¢ = 1 or ¢ = —1 and

(3.6) T7E() = €(¢; — am/2)
for any function £(¢;) and any real number € R, where j > 1. Then in accordance with
Formula (3.2) we have:

(3.7) Sqej exp(—u(p,t;()) =

= | T (@) @l
for u(p, t; ¢) given by Formulas 1(8,8.1) in the A, Cartesian coordinates, where either ¢ = 1 or
qg=—1.

The integration by parts theorem (Theorem 2 in §I1.2.6 on p. 228 [10]) states: if a < b
and two functions f and g are Riemann integrable on the segment [a,b], F(z) = A+ [ f(t)dt
and G(z) = B + [’ g(t)dt, where A and B are two real constants, then fab F(z)g(z)dx =
F(2)G(@)|— [? f(2)G(z)da.

Therefore, the integration by parts gives

() / " (0F (1)/0t,) exp(—ulp, t: O))dt, = F(£) exp(—u(p, £:))

0

tj=00

t;=0

- /ooo [f()(9 exp(—u(p, t; ¢))/0t;)] dt,.

Using the change of variables ¢t — s with the unit Jacobian 0(t, ..., t,)/9(s1, ..., $) and applying
the Fubini’s theorem componentwise to f;i; we infer:

(0f(t)/0t;) exp(—u(p, t;())dt = / (0f(t)/0t;) exp(—u(p, t;¢))ds

812>2822>...25p,20

:/OOO.../OOO [/:I@f(t)/atj)exp(_u(p,t;o)dsj] »

[T [ s epi-atp i ar

m+ zpksek] | [ soesp-ut a0

in the A, spherical coordinates, or

(5.1) / (8F(1)/0t;) exp(—ulp, t; C))dt

,,,,,

+
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[T [ s et o

[P0+ psSe,] / C / " () exp(—ulp, £:0))dt

in the A, Cartesian coordinates, since 0 exp(—(pos1 +¢o))/0t; = —po exp(—(pos1+ (o)) for each
1 < j <n. This gives Formula (1), where

6 FEE)xwule V Oipi ()= /w /OOOf<tf>exp<—u<p,tf;c>>dtj

.....

= [t [t [t [t 50 exp(-ulp.#50)

is the non-commutative transform by t/ = (t1,...,t;-1,0, %41, ..., tn)-

12.1. Remark. Shift operators of the form &(z + ¢) = exp(¢pd/dx){(x) in real variables
are also frequently used in the class of infinite differentiable functions with converging Taylor
series expansion in the corresponding domain.

It is possible to use also the following convention. One can put cos(¢; + (1) =
cos(¢p1 + (1) cos(vh2)... cos(ar_1),...,sin(¢py + (1)...cos(¢pp + () = sin(¢r + (1)... cos(dr +
Ci) cos(Yr41)-.. cos(Por_1), where 1p; = 0 for each j > 1, 2 < k < 2" — 1, so that
T}cos(qﬁ + () = 0 for each j > 1 and [ > 1, T;sin(Qﬁl + (1)...cos(dx + () = 0 for each
j>kandl > 1, where T}f = T;‘l(Tjﬁ) is the iterated composition for [ > 1, [ € N. Then
Tje 5% gives with such convention the same result as SL e™*®#% 50 one can use the sym-
bolic notation T;e_“(p’t?o = e uPHC-4m/2) Byt to avoid misunderstanding we shall use Se; and
Tj in the sense of Formulas 12(3.1 — 3.7).

It is worth to mention that instead of 12(3.7) also the formulas

(1) exp(priy + ... + puin) = cos(¢) + Msin(¢) with ¢ := ¢(p) := [p} + ... + p}
M = (pyiy + ... 4+ pnin)/¢ for ¢ #0, € = 1;

(2) Oexp(pris + .. + pain)/Op; = [—sin(¢) + M cos(¢)]p;/¢ + (¢i; — Mp;)¢~?sin(¢) and
O(p;t; + ¢;)/0¢; =1 can be used.

13. Theorem. Let f(t) be a function-original. Suppose that u(p,t;() is given by 2(1,2,2.1)
or 1(8,8.1) over the Cayley-Dickson algebra A, with 2 <r < oo. Then a (super)derivative of
an image is given by the following formula:

(1) (OF™(f(t),u;p;¢)/Op).h = —=F™(f(t)s1,u; p; () ho
—Se, F(f(t)s1,u;p; ) ha — oo — Se, F™ (£ () Sy ;93 C)

in the A, spherical coordinates, or

(1.1) (OF™(f(t),u;p;€)/Op).h = —F"(f(t)s1,u; p;¢)ho
—Se, I (f(t)t1, u;p; ) by — oo = S, F™(F () tn, w5 95 C) b
in the A, Cartesian coordinates for each h = hgyig + ... + hypi, € A,., where hg,....,h, € R,
2l <n<2r—1,peW;.

Proof. The inequalities a;(f) < Re(p) < a_i(f) are equivalent to the inequalities
ar(f(t)[t]) < Re(p) < a—1(f(t)[t]), since limy ;o exp(—b[t])|t| = O for each b > 0. An image
F™(f(t),u;p; ¢) is a holomorphic function by p for a;(f) < Re(p) < a_1(f) by Theorem 4, also
| fooo e~ t"dt| < oo for each ¢ > 0 and n = 0,1,2,.... Thus it is possible to differentiate under
the sign of the integral:

) (o[ semt-utsonar) fop) -

]1/2 and
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> (3( . f(@) exp(—U(p,t;C))xU,,dt) /8p) h=

ve{-1,1}n

| FO@exp(—u(p,t;0))/0p) bt

Due to Formulas 12(3,3.2) we get:

(3) (Oexp(—u(p,t;())/9p).-h = —exp(—u(p,t;())siho — Se, exp(—u(p,t;())sthy — ... —
Se,, exp(—u(p, t;C))snhn
in the A, spherical coordinates, or

(4) (Oexp(—u(p,t;())/0p).h = —exp(—u(p,t;())siho — Se, exp(—ulp,t; )t — ... —
Se,, exp(—u(p, t; ())tnhn
in the A, Cartesian coordinates.
Thus from Formulas (2,3) we deduce Formula (1).

14. Theorem. If f(t) is a function-original, then

(1) Fr(f(t = 7),usp; Q) = F(f(t), usp; 4+ < p, 7)) for either
(Z) (pat C) Pos1 + M(p7 ta C) + CO or
(
1

i1) u(p,t;¢) =< p,t) + ¢ over A, with 2 < r < oo in a domain p € Wy, where T € R",
2 <n<2r -1,
(2) < p,T] = pos1 + P15161 + ... + PuSnin with s; = s;(n;T) for each j in the first (i) and
< p, 7| =< p,T) in the second (ii) case (see also Formulas 1(8), 2(1,2,2.1)).

Proof. For p in the domain Re(p) > a; the identities are satisfied:

(3) Fr((fxuvr.. )t —7),u;05€ / / f(t —T)e Pt g

_ /U F(He S+ ge = Fr((fxo, () wipiCH < p,7]),s

,,,,,

due to Formulas 1(7,8) and 2(1,2,2.1,4), since pgsi(n;t) + o = posi(n; &) + (o + posi(n;7)
and p;t; + ¢ = p;i&; + (¢ + pj7y) and p;sj(n;t) + (G = pjs;j(n; &) + (¢ + p;sj(n; 7)) for each
j=1,...,2" — 1, where t = { + 7. Symmetrically we get (2) for U, instead of U; ;. Naturally,
that the multiparameter non-commutative Laplace integral for an original f can be considered
as the sum of 2" integrals by the sub-domains U,,:

(4) [ jWep(-upao) - / F(t) exp(—u(p, £ ) xun ()t

ve{-1,1}"

The summation by all possible v € {—1,1}" gives Formula (1).

15. Note. In view of the definition of the non-commutative transform F" and u(p,t;¢) and
Theorem 14 the term (141 + ... + (or_172-_1 has the natural interpretation as the initial phase
of a retardation.

16. Theorem. If f(t) is a function-original with values in A, for 2 <r < oo, 21 < n <
2 —1,beR, then

(1) Fr(ett £ (t),u; s ()= F*(f(t),us p — b;C)

for each a_y +b > Re(p) > a1 + b, where u is given by 1(8,8.1) or 2(1,2).
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Proof. In accordance with Expressions 1(8,8.1) and 2(1,2,2.1) one has u(p, t;¢) — b(t1 +
ot ty) =ulp—>,t;¢). If a_y +b > Re(p) > a; + b, then the integral

@ PO @)= [ el u(p, )

=/, ft) exp(=u(p = b,t; ())dt = F*(f(t)xv, (t), u; p = b;C)

converges. Applying Decomposition 14(4) we deduce Formula (1).
17. Theorem. Let a function f(t) be a real valued original,
F(p; () = F*(f(t);u;p; (), where the function u(p,t; ) is given by 1(8,8.1) or 2(1,2,2.1). Let
also G(p; ¢) and q(p) be locally analytic functions such that
(1) F(g(t,7);u; p; ) = G(p; ) exp(—u(q(p), 75¢))
foru=<p,t)+( oru=py(t; + ... +t,) + M(p,t;¢) + (o, then
(2) F*(Jgn 9t 7) f(7)dT3 0503 C) = G(p; O F (q(p); €)
for each p € W, and q(p) € Wy, where 2 <r < o0, 21 <n <27 —1.
Proof. If p € W, and ¢(p) € Wy, then in view of the Fubini’s theorem and the theorem
conditions a change of an integration order gives the equalities:

| ( / ng(t,f)f(T)dT> exp(—u(p, 1))t
- ( [ att.m)ep(-uip.t C))dt) frdr

_ / G ¢ exp(—ulg(p), 7:O)) (T)dr

=G(p; Q) - f(7) exp(—u(q(p), 7;¢))dr = G(p; O)F(q(p); ),

since t,7 € R™ and the center of the algebra A, is R.

18. Theorem. If a function f(t)xv, , is original together with its derivative
,,,,, (t)/0s1...05,, or O™ f(t)xv,...
of f(t)xu, .., over the Cayley-Dickson algebra A, with 2 < r € N, 2" <n < 2" —1, for
u=pos1 + M(p,t; () + (o given by 2(1,2,2.1), then

n—1
(1) plggo{[po + P1Se, [P2Ses - PnSe, Fy (0;C) + Z:O(—l)
Z [Pod1j, + pj Se;, 1Pj, Sej, - Pin-—mOe;, .

1<51 < <Jn—m<n; 1< <..<Im<n; la#jg Vo,

Fﬁ’m(p(l); ¢) }: (— 1)n+1f(0)67u(0,0;§),

or

(11) pliglo{[po + p1561][p0 +p25e2][p0 +pnsen]Fq?(pa C) + (_1)m
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Z [Po + PjiSe; 1[Po + Pj5Sej, |-+ [P0 + Pj 1 Se; ]

1<j1 <o inem <n; 1<h <ol <y la#p Va8

F:Z_m(p(l); g)}: (_1)n+1f(0)6—u(0,0;0

-----

1<j1<..<ijm<nmn, then

n—1
(2) }g%{[ﬁo + plSel]pZSezanean(pa C-) + (_1)m
m=0
Z [pOél,]& + pjlsejl ]pjz S€j2 "'pjnfmsejn,m
1<1 < <Jn—-m<n; 1< <...<Im<n; la#jg Yo,
Frmp®i )}
n—1
. _1\m —u(0,0,¢)
o ( 1) Z (t”th_o ..... tjm =05t =00VkE{j1,.., gm}e
m=0 1<j1 <. <jm<n
in the A, spherical coordinates or
n—1
(2.1) tim [po + p1Se,)[po + PaSea - [po + PuSe [ FE (w3 C) + D (<1)"
p—0 f—
Z [po + pjlsejl][po + pj2S€j2]"'[p0 t Pjn—m 6jn_m]
1<51<<Jn—m<n; 1< <. <Im<n; la#jg Vo8

Frm(p50)}

3

G VD W (] N e~ u(0.0.0)

LN ) L S\ =0, ijO;tk:OOVk¢{j1 ..... ]m}
m=0 1<ji<.<m<n

in the A, Cartesian coordinates, where p — 0 inside the same angle.
Proof. In accordance with Theorem 12 the equality follows:

(3) fn((af(t)/asj)XUl ..... 1(t)7 u; p, C) = [pO(SLj +pjse]-]~7:n(f(t)XU1 ..... 1 (t)7 u(p, t§ <)7p§ C)

,,,,,

for u = u(p,t;¢) = pos1 + M(p,t; () + (o in the A, spherical coordinates, or

(3.1)  FU0f()/0t;)xu, 1 (), u;p;C) = [po + p;iSe, | F" (f (t)xun,. (), u(p, ;€),p; )

.....

in the A, Cartesian coordinates, since

(32) 0 (1())/0s; = —0(1)/hy 1 + DF(6)/t; for each j > 2, 0 (t(s))/0s, = DF (1)t
where p = po + p1i1 + ... + par_1i2r—1 € Ay, Do, -, P2r—1 € R, {ig, ..., 79r_1} are the generators



136 Hypercomplex Numbers in Geometry and Physics, 2 (14), Vol 7, 2010

of the Cayley-Dickson algebra A,, s, = 0 for each [ > 1, the zero power ng = I is the unit
operator. For short we write f instead of fxy, ,. Thus the limit exists:

.....

(4) Fr (f(#)ulp, #5.Q); pi ) =
th—{& dtl / dt;_ 1/ dtjiy.. / (dt,) f(t) exp(—u(p,t;Q)).
Mention, that (.. ((tl) ) ) = 50,y ety 1 t; = 0) for every 1 < j < n, since ty = $p—Sg41

foreach 1 < k <n. We apply these Formulas (3, 4) by induction j =1,...,n, 2" 1 <n < 2" -1,
to 0" f(t)/0s1...05p,...,0" I f(t)/0s;...08p, ...,0f(t)/0s, instead of 0f(t)/83j.
From Note 8 [18] it follows, that in the A, spherical coordinates

lim F((0"f(t)/0s1..0sn)xu: w305 C) = 0,

p—oo,|Arg(p)|<m/2—5

also in the A, Cartesian coordinates

lim Fr(9"f(t)/0t1..0tw) X0y 4> usp;C) =0,

p—oo,|Arg(p)|<m/2—4

which gives the first statement of this theorem, since u(p,0,¢) = u(0,¢;¢) = u(0,0,¢) and
FO(p(t-D): ¢) = £(0)e=009)  while F7(p;() is defined for each Re(p) > 0.
If the limit f(¢<7) exists, where t<9> := (t1,...,t;, .., t, : t; = 00), then

(5) lim / .. /0 Tt /0 . /O " (dt) £(8) exp(—u(p, £:O))

tj—00 0

= S (F(E97), ulp t750) s )
Certainly, (...((t<17)<27)...)9 = (t1, .oy ty 1 t1 = 00, ..., t; = 00) for each 1 < j < n. Therefore,
the limit exists:

p—>0,|Ar};1(I;)l|<n/2—5/Ul 1(0 f(t)/0s1...08,) exp(—pos1 — (o — M (p,t;())

,,,,,

,,,,,

= (_l)m Z f(t)|tj1=0 ----- i =0itpg=00 Vk&{j1,....jm}

m=0 1<j1 <. <jm<n
- li { Se,|P2Se, - PnSe, F™
 po0 lArglp)<n/2-5 [Po + P1Se,]P2Ses -+ PnSe, B (3 €)
n—1
2
m=0
Z (P01, + D5y Se;, 1Pi2Se;, P Se;, .

1< <o <Jn—m <n; 1<h <. <Im<n; la?'éjﬂ Vo,

im0+ (1) f(0)e 009,

from which the second statement of this theorem follows in the A, spherical coordinates and
analogously in the A, Cartesian coordinates using Formula (3.1).

19. Definitions. Let X and Y be two R linear normed spaces which are also left and right A,
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modules, where 1 < r. Let Y be complete relative to its norm. We put X®* := X ®g ... ®r X
is the k times ordered tensor product over R of X. By L,x(X®" V) we denote a family
of all continuous k times R poly-linear and A, additive operators from X®* into Y. Then
L,x(X®*Y) is also a normed R linear and left and right A, module complete relative to its
norm. In particular, L,;(X,Y’) is denoted also by L,(X,Y).

We present X as the direct sum X = Xgig®... H Xor_1i9r_1, where Xj,...,Xor_1 are pairwise
isomorphic real normed spaces. If A € L,(X,Y) and A(zb) = (Az)b or A(bx) = b(Ax) for each
x € Xo and b € A,, then an operator A we call right or left A,-linear respectively.

An R linear space of left (or right) k& times A, poly-linear operators is denoted by
Lix(X®5Y) (or Ly, (X®*Y) respectively).

We consider a space of test function D := D(R"™,Y) consisting of all infinite differentiable
functions f : R™ — Y on R"™ with compact supports. A sequence of functions f, € D
tends to zero, if all f,, are zero outside some compact subset K in the Euclidean space R",
while on it for each k = 0,1,2, ... the sequence { fék) : n € N} converges to zero uniformly.
Here as usually f*)(t) denotes the k-th derivative of f, which is a k times R poly-linear
symmetric operator from (R")®* to Y, that is f®(¢).(h1, ..., hx) = fE(t).(ho(1), - Por) €Y
for each hq,...,h;, € R™ and every transposition o : {1,....,k} — {1,...,k}, o is an element
of the symmetric group S, t € R® For convenience one puts f® = f. In particular,
FE@).(e)ys - €5,) = OFf(t)/0t,...0t, for all 1 < jy, ..., 5 < n, where e; = (0, ...,0,1,0,...,0) €
R™ with 1 on the j-th place.

Such convergence in D defines closed subsets in this space D, their complements by the
definition are open, that gives the topology on D. The space D is R linear and right and left
A, module.

By a generalized function of class D' := [D(R",Y)]’ is called a continuous R-linear A,-
additive function g : D — A,. The set of all such functionals is denoted by D’. That is,
g is continuous, if for each sequence f, € D, converging to zero, a sequence of numbers
9(fn) =: g, fa) € A, converges to zero for n tending to the infinity.

A generalized function g is zero on an open subset V in R™ if [g, f) = 0 for each f € D
equal to zero outside V. By a support of a generalized function g is called the family, denoted
by supp(g), of all points ¢ € R™ such that in each neighborhood of each point ¢ € supp(g) the
functional g is different from zero. The addition of generalized functions g, h is given by the
formula:

(1) lg+h, f) =19, F) + [h, f).
The multiplication g € D’ on an infinite differentiable function w is given by the equality:

(2) [gw, f) = g, wf) either for w : R" — A, and each test function f € D with a real image
f(R™) C R, where R is embedded into Y; or w : R* - R and f : R* — Y.

A generalized function ¢’ prescribed by the equation:

(3) ¢, f) = —lg, f') is called a derivative ¢’ of a generalized function g, where f’ €
D(R", Ly(R"Y)), ¢’ € [D(R", Ly(R",Y))]".

Another space B := B(R",Y) of test functions consists of all infinite differentiable functions
f : R® — Y such that the limit limp_, o [t|"fY(t) = 0 exists for each m = 0,1,2, ...,
j =0,1,2,.... A sequence f,, € B is called converging to zero, if the sequence |t|mf,§j)(t)
converges to zero uniformly on R\ B(R"™, 0, R) for each m,j = 0,1,2,... and each 0 < R < 400,
where B(Z,z,R) :={y € Z : p(y,z) < R} denotes a ball with center at z of radius R in a
metric space Z with a metric p. The family of all R-linear and A,-additive functionals on B is
denoted by B'.

In particular we can take X = A% Y = A? with 1 < a, 3 € Z. Analogously spaces D(U,Y),
[D(U,Y)], B(U,Y) and [B(U,Y)] are defined for domains U in R", for example, U = U, (see
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also §1).
A generalized function f € B’ we call a generalized original, if there exist real numbers
a1 < a_1 such that for each a; < w_q,wq,...,w_,,w, < a_; the generalized function

(4) f(t)exp(—(gqv,t))xv, is in [B(U,,Y)]" for all v = (vy,...,v,), v; € {—1,1} for every
j=1,..,n for each t € R" with t;u; > 0 for each j =1, ...,n, where ¢, = (V1Wy,1, .., U Wy, n)-

By an image of such original we call a function

(5) F(f,u;p;C) := [f, exp(—u(p,t;¢))) of the variable p € A, with the parameter ¢ € A,,
defined in the domain Wy = {p € A, : a1 < Re(p) < a_1} by the following rule. For a given
p € Wy choose a1 < wy, ..., w, < Re(p) < w_q,...,w_, < a_q, then

(6) [f, exp(—u(p, t; Q) == 22, [f exp(—(qu, 1)), exp{—[u(p, £; ¢) — (qv, )]} X03,),
since exp{—[u(p,t; () — (quv,t)]} € B(U,,Y), where in each term

[f exp(—(qu, 1)), exp{—[u(p,t;¢) — (qu, )]} xv,) the generalized function belongs to [B(U,,Y))
by Condition (4), while the sum in (6) is by all admissible vectors v € {—1,1}".

20. Note and Examples. Evidently the transform F"(f,u; p; ¢) does not depend on a choice
of {w_1,wy, ..., w_p,w,}, since

[f exp(—(qv, 1), exp(—[ulp, ;¢) — (@, t)])xv,) =

[f exp(—(qu, t) — (bo, 1)), exp(=[u(p, t; ¢) = (qv, t) — (bo, 1)])xw,)
for each b € R™ such that a; < w;+b; < Re(p) < w_;+b_; < a_; for each j = 1,...,n, because
exp(—(by,t)) € R. At the same time the real field R is the center of the Cayley-Dickson algebra
A,, where 2 <r € N.

Let 0 be the Dirac delta function, defined by the equation

(DF) [6(t),¢(t)) := ¢(0) for each ¢ € B. Then

(1) 720Vt =7),u:9;C) = Xpeo1,1 [0 (t=7) exp(—(gv, 1)), exp(=[u(p, £; O) = (00, )] )x7,)
= (—=1)70; exp(—[u(p, t; O)])|e=r
since it is possible to take —oco < a1 < 0 < a; < oo and wy = 0 for each k €
{-1,1,-2,2, ..., —n,n}, where 7 € R" is the parameter, 9} := 9Vl /9tJ*...0t}*. In particular, for
j =0 we have

(2) F*(6(t — 7),u; p; ¢) = exp(—u(p, 7;¢)).
In the general case:

(3) f"(ﬁ‘j‘é(t)/aiil---asf;",U;p; ()= ,

Zogklgjl (ﬁ)pg)li 1(p1561)k1 (pQSez)]z“‘(anen)]n exp(—(o - M(p7 0; C))
in the A, spherical coordinates, or

(3.1) Fr(oVl§(t) /ot ..ot u;p; ¢) =

(Po + P1Se, )™ (Po + P2Se,)2...(Po + PuSe,, ) exp(—u(p, 0;¢))
in the A, Cartesian coordinates, where j; + ... + j, = |j|, k1,71, ..., Jn are nonnegative integers,
2rt <n <27 —1, (1) :=1l/[m!(l—m)!] denotes the binomial coefficient, 0! =1, 11 =1, 2! = 2;
N'=1-2....-lforeachl >3, s; =s;(n;t).

The transform F"(f) of any generalized function f is the holomorphic function by p € Wy
and by ¢ € A,, since the right side of Equation 19(5) is holomorphic by p in Wy and by ¢ in
view of Theorem 4. Equation 19(5) implies, that Theorems 11 - 13 are accomplished also for
generalized functions.

For a; = a_; the region of convergence reduces to the vertical hyperplane in A, over R.
For a_; < ay there is no any common domain of convergence and f(t) can not be transformed.

21. Theorem. If f(t) is an original function on R™, F™(p; () is its image, OV f(t)/0s"...0sir
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or VI f(t) /Ot ...0tIn is an original, |j| = j1 4 ... + jn, 0 < J1,enfn € Z, 2771 < n < 20 — 15
then

&) F (99 £(2) /052 . Ol ui pi )

= > (ﬁ)pﬁl’“1(plsel)’“(p2Se2)j2.~-<anen)j”f”(f(t),u;psO

0<ki<ji N

for u(p,t;¢) = pos1 + M(p,t; ) + (o given by 2(1,2,2.1), or
(1) F (0915 (0)/ 08 0 ui i €)=

(po + P1Se, )  (Po + P2Ses)2...(Po + PuSe, )" F(f (1), w; p; €)

for u(p,t;¢) given by 1(8,8.1) over the Cayley-Dickson algebra A, with 2 < r < oo. Do-
mains, where Formulas (1,1.1) are true may be different from a domain of the multiparameter
noncommutative transform for f, but they are satisfied in the domain a; < Re(p) < a_1, where

a1 = min(a_i(f),a_1 (0™ f(t)/0¢7"...007")  [m| < |j],0 < my < jiVI);

a; = max(ay(f), a1 (0™ f(t)/0¢7"...007) = |m| < |k|,0 < my < 5V1), if ay < a_1, where
¢; = s; or ¢; =t; for each j correspondingly.

Proof. To each domain U, the domain U_, symmetrically corresponds. The number of
different vectors v € {—1,1}" is even 2". Therefore, for u = pot+{o+ M (p, t; () due to Theorem
12 the equality

(2) /n(af(t)/asj>e—u(p,t;4)ds _ /n(af(t)/asj)e_u(p’t;odt _

/Rnl(dtj) [f(t)efu(p,t;@} ‘(io_ /Rnl(dtj) (/_Z f(t)[@e“(p’mo/asj}dsj>

is satisfied in the A, spherical coordinates, since the absolute value of the Jacobian 9t/9(#, s;)
is unit. Since for a; < Re(p) < a_; the first additive is zero, while the second integral converts
with the help of Formulas 12(2,2.1), Formula (1) follows for k = 1:

(3) Fr(0f(t)/0sj,u;p; C) = podr ; F(f(t), w;p; C) + piSe, F™(f (), u; p; ).

To accomplish the derivation we use Theorem 14 so that

lim [f"(f(t),u;p; Q) = F(f(t—Tej), u;p; g)] I

T—0

= lim [f"(f(t),u;p; ¢) = F(f(t),u; p; ¢ + 7(po + prix + ... "‘pjij))} /T

= lim f( )[ —u(p,t;{) _ (p,t;C+T(po+p1i1+v..+pjij))] T_ldt,
=0 Jrn
where ¢; = (0,...,0,1,0,..,0) € R™ with 1 on the j-th place. If the original 819! f(t)/8si...0sln
exists, then O™ f(¢)/0s7™...0s™ is continuous for 0 < |m| < [j| — 1 with 0 < my; < j
for each [ = 1,...,n, where f® := f. The interchanging of lim,_,, and fRn may change a
domain of convergence, but in the indicated in the theorem domain a; < Re(p) < a_;, when
it is non void, Formula (3) is valid. Applying Formula (3) in the A, spherical coordinates
by induction to (8™ f(¢)/ds7...0sm) : |m| < |j],0 < my < 5Vl) with the corresponding
order subordinated to 9Vl f(t)/ds)'...0sin, or in the A, Cartesian coordinates using Formula
12(1.1) for the partial derivatives (0™ f(t)/0t7*...0t™) : |m| < |j],0 < my < 5;VI) with the
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corresponding order subordinated to 9V f(t)/0t)...0t» we deduce Expressions (1) and (1.1)
with the help of Statement 6 from §XVII.2.3 [30] about the differentiation of an improper
integral by a parameter and §2.

22. Remarks. For the entire Euclidean space R"™ Theorem 21 for 0f(t)/0s; gives only one
or two additives on the right side of 21(1) in accordance with 21(3).

Evidently Theorems 4, 11 and Proposition 10 are accomplished for FFtia»tiw (f u;p; ()
also.

Theorem 12 is satisfied for F*tim»~-t® and any j € {j(1),...,7(k)}, so that s; = s;(k;t) =
tiqy + .. + tjwy for each 1 <1 <k, pp, = 0 and ¢, = 0 for each 1 < m ¢ {j(1),...,5(k)}

Formula 13(1) it is natural to put t,, = 0 and h,, = 0 for each 1 <m ¢ {j(1),...,5(k)}, so that
only (k4 1) additives with ho, hjay,...,h;x) on the right side generally may remain. Theorems
14 and 17 and 21 modify for F*%im»-%w putting in 14(1) and 17(1,2) and 21(1) t; = 0 and
7; = 0 respectively for each j ¢ {j(1),...,5(k)}.

To take into account boundary conditions for domains different from U, for example, for
bounded domains V' in R™ we consider a bounded noncommutative multiparameter transform

(1) F(fOxv, u;p; Q) = FR(f(8), us p; €).
For it evidently Theorems 4, 6-8, 11, 13, 14, 16, 17, Proposition 10 and Corollary 4.1 are
satisfied as well taking specific originals f with supports in V.

At first take domains W which are quadrants, that is canonical closed subsets affine diffeo-

morphic with Q" = [[}_,[aj, bj], where —oo < a; < b; <00, [a;,b;] :=={z € R: a; <z < b}

denotes the segment in R. This means that there exists a vector w € R™ and a linear invert-
ible mapping C' on R™ so that C(W) —w = Q. We put &' := (t1,...,t5,....,tn : t; = a;),
9% := (t1y ey tjy ooyt o t; = b;). Consider t = (ty,...,t,) € Q™

23. Theorem. Let f(t) be a function-original with a support by t variables in Q™ and zero
outside Q" such that 0f(t)/0t; also satisfies Conditions 1(1 — 4). Suppose that u(p,t;¢) is
giwen by 2(1,2,2.1) or 1(8,8.1) over A, with2 <r < oo, 21 <n <2"—1. Then

1) Fr((04(8)/0t)xqn (8), wi )=
FrIE (F(#2)xgn (82), s 95 ) = F" 5 (F(E ) xn (#7), w3 p; )

[P0+ D7 miSe | F (F 00 (1), wi 5 0)

k=1
in the A, spherical coordinates, or

(1.1) Fr(OF(1)/0t;)x@n(t), us p; ()=

Froi (F (82 xqn (%), u; 5 Q) = F 5 (F (87 ) xgn (1), w5 p; €)
+[po + p;Se, | F™ (f (£)xqn (1), u; p; €)
in the A, Cartesian coordinates in a domain W C A,; if a; = —oo or b; = +oo, then the
addendum with t"* or t9? correspondingly is zero.

Proof. Here the domain Q" is bounded and f is almost everywhere continuous and sat-
isfies Conditions 1(1 — 4), hence f(t)exp(—u(p,t;¢)) € L*(R™ \,, A,) for each p € A,, since
exp(—u(p, t;¢)) is continuous and supp(f(t)) C Q™.

Analogously to §12 the integration by parts gives

thbj

tj=a;

b
@) / (OF(1)/0t;) exp(—u(p,t:O))dt; = F(£) exp(—u(p,£:C))

J
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_/j[f(t)(@exp(—u(pyt;C))/atJ‘)]dt

J

where ¢ = (ty,...,t,). Then the Fubini’s theorem implies:

®) | @r(6)/0t) exp(-utp. t: )it =

[ L] enmencinom]
— [/teQn, - f(t7?) exp(—u(p, t772; g))dtﬂ‘] — [/tem - FEY) exp(—u(p, 9 O)dtj]

b1 b
+|po + Zpksek] / (¢) exp(—u(p, t; ¢))dt

in the A, spherical coordinates or

(31) | @rt0on) exp(-uip, )y

= [/ f(tj’Q)exp(—U(p,tj’2;C))dtj] — [/ F(#Y) exp(—u(p, t"; ¢))dt’
teQn, tj=b; teQn, tj=a;

b1 bn
P+ ;5. | / ) exp(—ulp, 5 0))dt

in the A, Cartesian coordinates, where as usually # = (t1,...,t;_1,0,tj41,...,t,), dt/ =
dty...dtj_1dt;+q...dt,. This gives Formulas (1,1.1), where

(4) FroB0N (F(#%) xgn (877), u(p, 95, C); p; €) =

b1 bj,1 bj+1 bn, ) . )
[ e ety e et
al aj,1 aj+1 a

n

is the non-commutative transform by #* 2771 < n < 2" — 1, dt?* is the Lebesgue volume
element on R" 1.

24. Theorem. If a function f(t)xon(t) is original together with its derivative
O"f(t)xon(t)/0s1...0s, or O"f(t)xgn(t)/0t1...0t,, where F!(p;C) is an image function of
f(t)xon(t) over the Cayley-Dickson algebra A, with 2 < r € N, 27t < n < 2" — 1, for
the function u(p,t;C) given by 2(1,2,2.1) or 1(8,8.1), Q" = H?Zl[o,bj], bj > 0 for each j, then

n—1
(1) Tim {[po + piSe,poSes-PuSe, i (pi )+ D (<1)"
m=0
Z [poél,jl + pj1SEj1 ]p]2 Sejz "‘pjnfmsejnfm

1< < <Jn—m<n; 1<h <. <Im<n; la#jg Vol

Fr (050 = (-1 f(0)e 00
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in the A, spherical coordinates, or

n—1
(1.1) ]}Lrgo{[po + P1Se,][Po + P2Ses]---[Po + PrSe. | Fy (0 ) + Y (=)™
m=0
Z [po + pjy Sejl][]?o + Djs Sem]---[po + pjn_msejn_m]

1<1 <o Sinem <n; 1<l <eoolm<n; la#is Va8

Frm (050 = (-1 f(0)e 00

in the A, Cartesian coordinates, where f(0) = limyegn, +—0 f(t), p tends to the infinity inside
the angle |Arg(p)| < ©/2 — 9§ for some 0 < § < 7/2.

Proof. In accordance with Theorem 23 we have Equalities 23(1,1.1). Therefore we infer
that

2) FrrBEE(F (5 xon (75, u(p, 855 C); p; €)=

b1 bj 1 b1 bn
lim dtl.../ dtjl/ dt]-H.../ (dt,) f(t) exp(—u(p,t;()),

ti—=05k+0 J4, y ajt1 an
where 31 = a; = 0, B2 = b; > 0, k = 1,2. Mention, that (...((¢"")>%2).. )0 = (t: t; =
Biis -ty = Bjy,) for every 1 < j <n. Analogously to §12 we apply Formula (2) by induction
j=1,...,n,2"1<n<2" —1, to
O"f(t(s))/Ds1...08p,...,0" T f(£(5))/08;...08n,....,0f (t(s))/Dsn
instead of f(t(s))/0s;, s; = s;(n;t) as in §2, or applying to the partial derivatives
o"f(t)/0t;...0ty,....,0" T f(t)/Ot;...0t,...,0f (t) /O,
instead of Of(t)/0t; correspondingly. If s; > 0 for some j > 1, then s; > 0 for Q" and
lim, o0 e~uPt0) = 0 for such tO, where ¢t = (t1y e tn), (1) = (L1, ooy bn), [l = 4 oo + 1,
t0 = (tgl), s 55)), t§l) =a, for I; =1 and t§-l) =b; for [; =2, 1 < j <27 — 1. Therefore,

im > () fE0)e @O = (—1) f(0)e 009,

— 00
lj€{172}§ Jj=1,.., n

since u(p, 0; C) = u<07 O; C)? where f((l)) = limteQ”;t—nf(l) f<t)
In accordance with Note 8 [18§]
lim FH(9"f(t)/0s1...08n) xn (1), u(p, t; C); p; €) = 0

p—roo,|Arg(p)|<m/2—4

in the A, spherical coordinates and

lim F (9" f(t)/0t1...0tn) xon (8), ulp, 1 ¢);p; ¢) = 0

p—00,|Arg(p)|<m/2-6
in the A, Cartesian coordinates, which gives the statement of this theorem.

25. Suppose that f(t)xon(t) is an original function, F"(p;() is its image,
VL f (t)xon (t) /O] ...0t" is an original, |j| = 51 + ... + jn, 0 < Jiyeoyfin € Z, 2771 < <27 — 1,
—00 < a < by < oo for each k = 1,...,n, (I) = (l1,...,0n), lx € {0,1,2}, W = A, for
bounded Q". Let W = {p € A, : a1 < Re(p)} for by = oo for some k and finite aj for
ecach k; W = {p € A, : Re(p) < a_1} for a = —oo for some k and finite by for each
k;, W ={pe A : a < Re(p) < a_1} when a = —oo and b, = 400 for some k and I;
t0 = (¢ Dy,
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We put t,(cl) =t and ¢ = 0 for I, = 0, t,gl) = a for [, = 1, th) by for 1, = 2,
(Q) = (q17"'aQn)7 ’(J‘ :(I1+ +Qn7

ay = max(ay (f), ar (O™ f(t) /7.0t < Jm| < |j,0 < my < §VE),

a_y =min(a_1(f),a_1 (™ f(t)/0t7*...0tm )« |m| < |5],0 < my < g VE) ifa; < a_y.

If a = —o0 and b, = 400 for Q™ with a given k, then [, = 0. If either ap > —o0 or
by < +oo for a marked k, then I, € {0,1,2}. We also put hy = hi(l) = sign(ly) for each k,
where sign(z) = —1for z < 0, sign(0) = 0, sign(z) = 1 for z > 0, h = h(l), |h| = |h1|+...+]|hnl,

(lj) = (ZISign(j1>? ) lnSZgn(jn))

Let the vector (I) enumerate faces 9Q(), in 0Q}_, for [h(l)] = k > 1, so that 0Q}_; =
U= @y 0Q NOQY,,) = () for each (1) # (m) (see also more detailed notations in §28).

Let the shift operator be defined:

Ty F (p; Q) := F(p; ¢ — (i2mq + ... +i,my)m/2), also the operator

(SO) Sy F'(p; €) := SE*-.. ST F (p; ),
where (m) = (my,...,m,) € [0,00)" C R", Sfm) = Si(m) for each positive number 0 < k € R,
So = I is the unit operator for (m) = 0 (see also Formulas 12(3.1 — 3.7)). As usually let

= (1,0,...,0),...,e, = (0,...,0,1) be the standard orthonormal basis in R™ so that (m) =
mie1 + ... + mpén,.

Theorem. Then

M F (0715 (0)xqn (8) /08 . 082 ulp 1 C)ipi € ) =
RARE R F™ (F()xon (1), ;i )

+ >
1<) mptar+he=4k;0<my; 0<qr; hp=sign(lxjr); qx=0 for ljx=0, for each k=1,..n; (1)e{0,1,2}"
(_1)|(lj)|R:}1 RgszZ;nj:n—lh(lj)l(aIQIf(t(lj))XaQ?l (t +(19) )/OtI .00 u; p; )

for u(p,t; ) in the A, spherical coordinates or the A, Cartesian coordinates over the Cayley-
Dickson algebra A, with 2 < r < oo, where

(11) R€1 ‘= Do +pls€17 Rez = Do +pls€1 +p2$€27"'; Ren ‘= Do +pls€1 +p2582 + o +pns€n
in the A, spherical coordinates, while

(1.2) Re, := po + p1Se,, Rey := po + p2Seys---, Re, = po + DuSe, in the A, Cartesian
coordinates, i.e. R.;, = Re,(p) are operators depending on the parameter p. If t§l) = oo for
some 1 < j < n, then the corresponding addendum on the right of (1) is zero.

Proof. In view of Theorem 23 we get the equality

b
/ (dtk) |:(8\m\f(t)/at;nl mat?n)e—u(p,t;g)] k
R—1nQ"™ o
by,
_/ (dtk) (/ (8‘m\f( ) /Ot .. tm") [&an(p,t;C)/atk] dtk>
Rnilan ak

is satisfied for 0 < my, < ji for each k = 1,...,n with |m| < |j|. On the other hand, for p € W
additives on the right of (2) convert with the help of Formula 23(1). Each term of the form

/ (dt(l))[(ﬁ‘q|f(t(l))x(9@n( ) /Ot Ot e (p,t;c)}
R— 1R (DINQn @
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can be further transformed with the help of (2) by the considered variable t; only in the
case I, = 0. Applying Formula (2) by induction to partial derivatives 9Vl f/ot)'...oti,
a‘j‘*jlf/ﬁt?...atjn'“,...,8“]”/815{%”,...,af/atn as in §21 and using Theorem 14 and Remarks 22
we deduce (1).

26. Theorem. Let f(t)xu, ,(t) be a function-original with values in A, with 2 < r < oo,
211 <n < 2" — 1, u is given by 2(1,2,2.1) or 1(8,8.1),

(1) o(t) = /Otl .../Otnf(m)dm, then

(2) F*(fxuvn... (), u;0;¢) = Re,Rey .. Re, F™ (gt xv,. 1 (), w5 p; €)

,,,,,,,,,,

in the domain Re(p) > max(ai,0), where the operators R, are given by Formulas 25(1.1,1.2).
Proof. In view of Theorem 25 the equation

(3) fn(fXU1 1(t)7 u; p; C) =
Re,Rey---Re, F(g(t), u; p; )
+ >
1<|I|; 0<mE<1; mp+hi=1; hp=sign(lx); for each k=1,.., n; q1=0,...,qn=
(1) ORIREE . RE O (g (0), 5 ),

is satisfied, since 9"g(t)/0t:1...0t, = (fxv,. ,)(t), where j; = 1,...5, = 1, [; = 1 for each
j = 1,..,n. Equation (3) is accomplished in the same domain Re(p) > max(as,0), since
g(0) = 0 and g(t) also fulfills conditions of Definition 1, while a;(g) < max(a;(f),0) + b for
1 and outside

.....

-----
.....

.....

.....

function f(t) for u given by 2(1,2,2.1) in the half space W = {p € A, : Re(p) > a1} with
2<r<oo,pr=0,.,pj-1=0; G =7/2,....,¢;_1 = 7/2 for each j > 2 in the A, spherical
coordinates or (1 = 0,...,(;—1 = 0 for each j > 2 in the A, Cartesian coordinates;

(1) the integral foo” F*(po+z;¢)dz converges, where p = po+p1i1 +... +piix, € A, p; € R
for each j =0,..,2" =1, 271 <k <2" —1, Uy 4 :={(ts,....tx) € R¥: t; > 0,...,t > 0}.
Let also

(2) the function F*(p;¢) be continuous by the variable p € A, on the open domain W,
moreover, for each w > a; there exist constants C,' > 0 and €, > 0 such that

(3) |F*(p; Q)| < C' exp(—ewlp|) for each p € Srm), Sk :={2z € A, : Re(z) > w}, 0 <
R(n) < R(n+1) for each n € N, lim,,_,o, R(n) = oo, where a; is fized, { = (oio+ ...+ (xix € A,
is marked, ¢; € R for each j =0,...,k. Then

(4) / FMpo+ 2Q)dz = S FE ()X, (D)6, w05 ),
Pji;

where py = 0,...,p;— 1—0f0reachj >2; ¢ =7/2,...(_1=7/2 and & = s;(k;t) in the A,

spherical coordinates, while ¢; = 0,...,¢;—1 = 0 and §J = t; in the A, Cartesian coordinates

correspondingly for each 7 > 1.
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Proof. Take a path of an integration belonging to the half space Re(p) > w for some
constant w > a;. Then

/ £(8) exp(—u(p,t; O))dt

< C’/ exp(—(po — a1)(t1 + ... + t))dt < oo

converges, where C' = const > 0, pg > w. For t; > 0 for each j =1, ...,k conditions of Lemma
2.23 [18] (that is of the noncommutative analog over A, of Jordan’s lemma) are satisfied. If
t; — oo, then s; — oo, since all ¢;,...,¢; are non-negative. Up to a set OU;,__; of A Lebesgue
measure zero we can consider that t; > 0,...,ty > 0. If s; — oo, then also s; — oo. The
converging integral can be written as the following limit:

ooij OOij
(5) / F*(po + 2; C)alz:olim0 F*(po + 2;¢) exp(—k|z|)dz

Pji; <=0 Jpji;
for 1 < j < k, since the integral ffgooo [F*(w + 2;¢)]dz is absolutely converging and the limit
lim,_,oexp(—k|z|) = 1 uniformly by z on each compact subset in A,, where S is a purely
imaginary marked Cayley-Dickson number with |S| = 1. Therefore, in the integral

o " Fo (o + 25 0)dz = / °° (

i)

/U f(t) [exp(—u(po + z,t; C))} dt) dz

the order of the integration can be changed in accordance with the Fubini’s theorem applied
componentwise to an integrand g = goig + ... + gntn With ¢, € R for each [ =0, ..., n:

@ [ P = |

bjtj

dt( - f(t) exp(—u(po + 2, ¢; C))d2>

bjtj

,,,,,

f (t){ / - [e—“@ﬁz:t@} dz}dt.
1 Dt

VA

.....

Generally, the condition p; = 0,....pj—; = 0 and ¢; = 7/2,...,(;_1 = 7/2 in the A, spherical
coordinates or ¢; = 0,...,(j_1 = 0 in the A, Cartesian coordinates for each j > 2 is essential for
the convergence of such integral. We certainly have

bji; 0;,=b; 0;=b;
(8) / - cos(ijzE; + ()dz = [Sin(ejﬁj + Cj)/ﬁj] o = [— cos(0;&; + ¢ + 7T/Q)/&}
Djtj i=Pj i =DPj
and
0,=b; 0,=b,

bi,
9) / sin(i}2€; + (j)dz; = [— cos(0;; + Cj)/ﬁ;}

bjty

- [_ sin(0;¢; + ¢+ 7/ 2)/&}

i=D; i=P

for each {; > 0 and —oo < p; < b; < oo and j = 1,...,k. Applying Formulas (5 — 9) and
2(1,2,2.1) or 1(8,8.1) and 12(3.1 — 3.7) we deduce that:

/ °° [F “(po + 2 Q}dz =S, / [f(t)/&5] exp{—u(p, t; ¢) }dt

= S_o, FH st (f(t)xo,,. . (8)/&,u; p; €),

,,,,,
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where t = (t1,...,t), S; =t; + ...+t for each 1 < j < k, s = ty, & = s; in the A, spherical
coordinates or §; = t; in the A, Cartesian coordinates.

28. Application of the noncommutative multiparameter transform to partial dif-
ferential equations.
Consider a partial differential equation of the form:

(1) ALfI(t) = 9(t), where |
(2) ALFI() = 0 (O (008 .01,

a;(t) € A, are continuous functions, where 0 < k € Z, j = (J1, ..., Jn)s |J| = J1 + - + Jns
0 < ji € Z, o is a natural order of a differential operator A, 2 < r, 2"~! < n < 2" — 1. Since
sk = Sg(n;t) = tp+...+t, for each k = 1, ..., n, the operator A can be rewritten in s coordinates
as

(2.1) A[fI(t()) == X)j1<a (D)@Y (2(5)) /057" .07
That is, there exists b; # 0 for some j with |j| = a and b; = 0 for |j| > a, while a function
> ljl=a b;(t(s))s]'...si» is not zero identically on the corresponding domain V. We consider
that

(D1) U is a canonical closed subset in the Euclidean space R", that is U = cl(Int(U)),
where Int(U) denotes the interior of U and cl(U) denotes the closure of U.

Particularly, the entire space R™ may also be taken. Under the linear mapping (t1, ..., t,) —
(81, ...y Sp) the domain U transforms onto V.
We consider a manifold W satisfying the following conditions (i — v).

(). The manifold W is continuous and piecewise C®, where C! denotes the family of [ times
continuously differentiable functions. This means by the definition that W as the manifold is
of class C° N Cf.. That is W is of class C* on open subsets Wy ; in W and W'\ (U] Wo,;) has

loc*
a codimension not less than one in W.

(17). W = U;”:O W;, where Wy = |J, Wor, W; N Wy, = 0 for each k # j, m = dimgW,
dimRWj =m — j, I/I/j_t,_l - 8VVJ

(#77). Each W; with j = 0,...,m — 1 is an oriented C*-manifold, W} is open in [J;_; Wi. An
orientation of Wj,, is consistent with that of OW; for each 7 = 0,1,...,m — 2. For 7 > 0 the
set W; is allowed to be void or non-void.

(iv). A sequence W* of C* orientable manifolds embedded into R™, a > 1, exists such that
W* uniformly converges to W on each compact subset in R™ relative to the metric dist.

For two subsets B and E in a metric space X with a metric p we put

(3) dist(B, E) := max{sup,cg dist({b}, E),sup,cp dist(B,{e})}, where

dist({b}, E) := inf.cg p(b,e), dist(B,{e}) := infycp p(b,e), b € B, e € E.
Generally, dimpW = m < n. Let (ef(x),...,e" (z)) be a basis in the tangent space T,W* at
x € W* consistent with the orientation of W*, k € N.

We suppose that the sequence of orientation frames (e¥(xy), ..., eF (zx)) of W* at x; con-
verges to (e1(x), ..., e (z)) for each x € Wy, where limy, ), = © € Wy, while e;(z),....en(x) are
linearly independent vectors in R™.

(v). Let a sequence of Riemann volume elements A\, on W* (see §XII1.2 [30]) induce a limit
volume element A on W, that is, A(B N W) = limy_,.(B N W*) for each compact canonical
closed subset B in R", consequently, A(W \ W) = 0. We shall consider surface integrals of
the second kind, i.e. by the oriented surface W (see (iv)), where each W;, j = 0,...,m — 1 is
oriented (see also §XIII.2.5 [30]).

Recall, that a subset V in R™ is called convex, if from a,b € V it follows that ea+(1—€)b € V
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for each € € [0, 1].

(vi). Let a vector w € Int(U) exist so that U —w is convex in R™ and let QU be connected.
Suppose that a boundary OU of U satisfies Conditions (i — v) and

(vii) let the orientations of OU* and U* be consistent for each k € N (see Proposition 2
and Definition 3 [30]).

Particularly, the Riemann volume element )\ on OUF is consistent with the Lebesgue mea-
sure on U* induced from R" for each k. This induces the measure A on 9U as in (v).

Also the boundary conditions are imposed:

(4) f()]ov = fo(t)), (DM f(t)/0sF...08%)|or = fiq(t') for |q| < a—1, where s = (51, ..., $,) €
R™ (¢) = (¢15 ), |9l = @1 + ... + qn, 0 < g € Z for each k, t € OU is denoted by t', fo, fiq
are given functions. Generally these conditions may be excessive, so one uses some of them or
their linear combinations (see (5.1) below). Frequently, the boundary conditions

(5) fF()|ov = fo(t'), (O f(t)/0VY)|ov = fi(t') for 1 <1 < a—1 are also used, where v denotes
a real variable along a unit external normal to the boundary OU at a point ¢ € 9U,. Using
partial differentiation in local coordinates on QU and (5) one can calculate in principle all other
boundary conditions in (4) almost everywhere on 9U.

Suppose that a domain U; and its boundary 0U; satisfy Conditions (D1,i — vii) and g; =
gXu, is an original on R™ with its support in U;. Then any original g on R" gives the original
gXu, =: go on R" where Uy = R™\ U;. Therefore, g; + g is the original on R™, when ¢; and g,
are two originals with their supports contained in U; and U, correspondingly. Take now new
domain U satisfying Conditions (D1,i — vii) and (D2 — D5):

(D2) U D Uy and U C 9Uy;

(D3) if a straight line £ containing a point w; (see (vi)) intersects OU; at two points y; and
2, then only one point either y; or y, belongs to OU, where w; € Uy, U — wy; and U; — w; are
convex; if £ intersects QU; only at one point, then it intersects QU at the same point. That is,

(D4) any straight line ¢ through the point w; either does not intersect OU or intersects the
boundary OU only at one point.

Take now g with supp(g) C U, then supp(gxv,) C Uy. Therefore, any problem (1) on U; can
be considered as the restriction of the problem (1) defined on U, satistfying (D1 — D4, — vii).
Any solution f of (1) on U with the boundary conditions on OU gives the solution as the
restriction f|y, on U; with the boundary conditions on 9U.

Henceforward, we suppose that the domain U satisfies Conditions (D1, D4, — vii), which
are rather mild and natural. In particular, for Q™ this means that either a;, = —oo or by, = +00
for each k. Another example is: U is a ball in R™ with the center at zero, U = UU(R"\Uy,.. 1),
wy =0;or U=U,U{t € R": t, > —e} with a marked number 0 < ¢ < 1/2. But subsets
OU(;y in QU can also be specified, if the boundary conditions demand it.

The complex field has the natural realization by 2 x 2 real matrices so that i = ( 0 1),

~10
i = —( (1) (1)) The quaternion skew field, as it is well-known, can be realized with the help of
2 x 2 complex matrices with the generators I = ( (1) ?), J = (_01 B), K = (5 _Oi), L= (O_i*é), or

equivalently by 4 x 4 real matrices. Considering matrices with entries in the Cayley-Dickson
algebra A, one gets the complexified or quaternionified Cayley-Dickson algebras (A,)c or
(A,)m with elements z = al + bi or z = al + bJ + cK + eL, where a,b,c,e € A,, such that
each a € A, commutes with the generators i, I, J, K and L.

When r = 2, f and g have values in A = H and 2 < n < 4 and coefficients of differential
operators belong to Aj, then the multiparameter noncommutative transform operates with the
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associative case so that

Fr(af) = aF"(f)
for each a € H. The left linearity property F"(af) = aF"(f) for any a € H; k1 is also
accomplished for either operators with coefficients in R or C; = IR@® iR or Hy 1, = IR ®
JR® KR @ LR and f with values in A, with 1 <n < 2Y — 1; or vice versa f with values in
C; or H; g, and coefficients a in A, but with 1 <n < 4. Thus all such variants of operator
coefficients a; and values of functions f can be treated by the noncommutative transform.
Henceforward, we suppose that these variants take place.

We suppose that g(t) is an original function, that is satisfying Conditions 1(1—4). Consider
at first the case of constant coefficients a; on a quadrant domain Q". Let Q™ be oriented so
that a, = —oo and b, = +oo for each k& < n — k; either ay, = —o0 or by = +oo for each
k > n — k, where 0 < k < n is a marked integer number. If conditions of Theorem 25 are
satisfied, then

6)  F A5 = Y a{Re @) Rea(p) Re () F(£(8)xqe (8), i €)

7| <

+ 2.

1<|(t)]; ma+ar-+ha=ir; 0<muy; 0<qr; hx=sign(lxjx); ax=0 for 1.5,=0, for each k=1,...n; 1)e{0,1,2}"
(=) Rey (p))™ Ry ()] . R (p) ™ 101 (09 £ (10 oy (199) /085" . 008 i€ ) }

= F™"(9()xqn (1), u; p; €)
for u(p,t;¢) in the A, spherical or A, Cartesian coordinates, where the operators R, (p) are
given by Formulas 25(1.1) or 25(1.2). Here (I) enumerates faces Q) in 0Qp_; for |h(l)| =
k > 1, so that 8@?_1 = U\.h(l)|:k QZ), Q) NOQY,,) = 0 for each (I) # (m) in accordance with
§25 and the notation of this section.
Therefore, Equation (6) shows that the boundary conditions are necessary:

(8‘q|f(t(l))/8t‘1“...8tg")|a%) for 7] < a, [(I5)] > 1, a; # 0, ¢& = 0 for lyj =0, mp+q+hy =

Jky b = sign(lxje), k=1,. A0S 9Q7y- But dimr0Q"™ = n—1for 9Q" # (), consequently,
(01917 (¢V) /0t ..0t8 ) oy, can be calculated if know (917 f(t™)/ot2,,..ot0" )|a% for |B| =
lq|, where 8 = (f1, .. ,ﬁm) = |h(l)|, a number (k) corresponds to Ly > 0, since g = 0 for

Iy =0 and g > 0 only for l;jx > 0 and k > n — k. That is, t,x),...,t(m) are coordinates in R"
along unit vectors orthogonal to 8@’&)

Take a sequence U* of sub-domains U* C U**! C U for each k € N so that each U* =
Ul"i(lk ) Qy,; is the finite union of quadrants Q};, m(k) € N. We choose them so that each two
different quadrants may intersect only by their borders, each U* satisfies the same conditions

as U and

(7)) limy_o0 dist(U, U*) = 0.

Therefore, Equation (6) can be written for more general domain U also.

For U instead of Q" we get a face OUj;) instead of 8@6) and local coordinates 7,(1),...,7y(m)
orthogonal to OUy; instead of t.(1),...,ty(m) (see Conditions (i — iii) above).

Thus the sufficient boundary conditions are:

181 £ (+(13) B Pm - NEAC
(5'1) (8 f(t >/87—’Y(1)”'6T’Y(m))’GU(U) ¢B,(l])(t )

for || = |q|, where m = [h(l7)], 7] < o, [(Ij)| > 1,a; # 0, gx = 0 for lyjix = 0, mp+qe+hy = ji,
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hi, = sign(lyjr), 0 < qx < jx — 1 for k > n — k; (b/g’(l)(t(l)) are known functions on 9Uy,
tW ¢ OU(y. In the half-space t,, > 0 only

(5.2) 9°f(t)/ 0t} 1,=0
are necessary for § = |¢| < a and ¢ as above.

Depending on coefficients of the operator A and the domain U some boundary conditions
may be dropped, when the corresponding terms vanish in Formula (6). For example, if A =
0?/0t,0ty, U = Uyy, n = 2, then 8f/0v|sy, is not necessary, only the boundary condition
flav is sufficient.

If U = R", then no any boundary condition appears. Mention that

(5.3) FO(f(a);u;p; ¢) = f(a)e ®9),
which happens in (6), when a = t® and |h(l)| = n.

Conditions in (5.1) are given on disjoint for different (I) submanifolds 0Uy) in OU and
partial derivatives are along orthogonal to them coordinates in R", so they are correctly posed.

In A, spherical coordinates due to Corollary 4.1 Equation (6) with different values of the pa-
rameter ¢ gives a system of linear equations relative to unknown functions S, F"(f(t), u; p; ),
from which F™(f(t),u;p; () can be expressed through a family

{S(m)f"”(g(t),wp; ¢); SemF" "V (3'q'f(t(l))><a@g)(t(”)/at‘{l.--ati”,U;p; C)r (m) € Z"}

and polynomials of p, where Z denotes the ring of integer numbers, where the corresponding
term F" MOl i zero when ty) = 400 for some j. In the A, Cartesian coordinates there are
not so well periodicity properties generally, so the family may be infinite. This means that
F™(f(t),u;p; ¢) can be expressed in the form:

(8) FH(f (), w595¢) =Y Py (P)Sem) F (g (1), 15 15 €)
(m)

+ > Piwm®SmF" _'h(”)'(8'q‘f(t(lj))x@u<lj)(t(“))/at?l---5t2”,u;p; C),
3:(@),(D,1()]=1,(m)

where P,y (p) and Pj () 1),im)(p) are quotients of polynomials of real variables pg, p1, ..., p,. The
sum in (8) is finite in the A, spherical coordinates and may be infinite in the A, Cartesian
coordinates. To the obtained Equation (8) we apply the theorem about the inversion of the
noncommutative multiparameter transform. Thus this gives an expression of f through g as a
particular solution of the problem given by (1,2,5.1) and it is prescribed by Formulas 6.1(1)
and 8.1(1).

For F™(f;u;p;¢) Conditions 8(1,2) are satisfied, since P,y (p) and P; ) @),mm)(p) are quo-
tients of polynomials with real, complex or quaternion coefficients and real variables, also G™
and F* 10l terms on the right of (6) satisfy them. Thus we have demonstrated the theorem.

28.1. Theorem. Suppose that F"(f;u;p; () given by the right side of (8) satisfies Condi-
tions 8(3). Then Problem (1,2,5.1) has a solution in the class of original functions, when g and
¢,y are originals, or in the class of generalized functions, when g and ¢g ;) are generalized
functions.

Mention, that a general solution of (1,2) is the sum of its particular solution and a general
solution of the homogeneous problem Af = 0. If ¢35 ) = ¢,18,(l) + q%,(l)’ g=ag1+92, f = fi+ fo,
Af; = g; and f; on OU; satisfies (5.1) with ¢Z3,(l)’ j=1,2, then Af = g and f on QU satisfies
Conditions (5.1) with ¢g ).

28.2. Example. We take the partial differential operator of the second order

A= Z ap,m0>/0T0T,, + Z ap0/0T, + w,
h=1

h,m=1 =
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where the quadratic form a(7) := )" hm @h,mThTm 18 non-degenerate and is not always negative,
because otherwise we can consider —A. Suppose that aj,, = an, € R, ap, 7 € R for each
h,m=1,...n, w € As. Then we reduce this form a(7) by an invertible R linear operator C' to
the sum of squares. Thus

(9) A= "a,0°/ot + ) 30/0ty +w,
h=1 h=1

where (t1,...,t,) = (11, ..., 7,,)C with real a; and ), for each h. If coefficients of A are constant,
using a multiplier of the type exp(}_, €xsp) it is possible to reduce this equation to the case so
that if aj, # 0, then 5, = 0 (see §3, Chapter 4 in [26]). Then we can simplify the operator with
the help of a linear transformation of coordinates and consider that only 3, may be non-zero
if a, = 0. For A with constant coefficients as it is well-known from algebra one can choose a
constant invertible real matrix (¢pm)n.m=1,. corresponding to C' so that a, = 1 for h < k.
and ap = —1 for h > k,, where 0 < k, <n. For k, =n and 8 = 0 the operator is elliptic, for
k, =n —1 with a, = 0 and 3, # 0 the operator is parabolic, for 0 < k, < n and g = 0 the
operator is hyperbolic. Then Equation (6) simplifies:

n

(10) FH A1), u;p; €) :Zah{[Reh(p)]QFn(f(t)XQ"(t)au;p; ¢)

h=1

Y CDR[F O )xoay, (1) /0t wi i )

Ihe{1,2};(D=lnen
R, IF(F () xoay, (¢0), wips )| |
0 T (P2 xaan,, (02), w05 C) = F 0 ()Xo, (¢, s C)

+[Re,, (D) F™ (f () xqn (£), u; p; C) }+wf"”(f(t)xQn (t), u;p; €)= F*(g(t), u; p; )

in the A, spherical or A, Cartesian coordinates, where e, = (0, ...,0,1,0,...,0) € R" with 1 on
the h-th place, So = I is the unit operator, the operators R, (p) are given by Formulas 25(1.1)
or 25(1.2) respectively.

We denote by dg(z) the delta function of a continuous piecewise differentiable manifold S
in R" satisfying conditions (i — vi) so that

@) [ a@sste)ds = [ amrala)

for a continuous integrable function n(x) on R", where dim(S) = m < n, A\,(dy) denotes
a volume element on the m dimensional surface S (see Condition (v) above). Thus we can
consider a non-commutative multiparameter transform on QU for an original f on U given by
the formula:

(11) Fpr ™ (F () xou (t'), us p; €) = F(f(£)dou (t), u; p; C).
Therefore, terms like 7"~ in (10) correspond to the boundary Q™. They can be simplified:

(12) B F (o, (0w Q) —F T (£ xaas, (), uipi€) |

= Fpor (BE) F () xagn (t), us p; €),
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where ((t') is a piecewise constant function on dQ™ equal to (3, on the corresponding faces of
Q™ orthogonal to e, given by condition: either ¢, = a,, or ¢, = b,; B(t') = 0 is zero otherwise.

If a, = —o0 or b, = +o0, then the corresponding term disappears. If R™ embed into A,
with 2771 <n < 2" —1 as Ri; @ ... ® Ri,, then this induces the corresponding embedding ©
of Q" or U into A,. This permits to make further simplification:

(12.1) Zah{ S U R @IF ) xaag, (10), w51 )

h=1 Ihe{1,25(D=lnen
+ 7 (04 (0 xoap, (40) /0, wipi C) |3
= Tt (alt) (OF () xoas (£)/0v) ulp. ' ): i)
+ Tzt (PU) S xoag (#), s 13 ),

where v = v(t') denotes a real coordinate along an external unit normal M(t') to ©(0U) at
O(t'), so that M (t') is a purely imaginary Cayley-Dickson number, a(t') is a piecewise constant
function equal to ay, for the corresponding ¢’ in the face 0Q7 . with I, > 0; P(¢',p) := P(t') :=
Re,(p) for t' € Q7 ., h =1,...,n, since sin(y) + ) = —sin(¢)) and cos(y) + 7) = — cos(¢) for
each ¢ € R. Certainly the operator-valued function P(¢’) has a piecewise continuous extension
P(t) on Q™. That is

(13) Foor (€A F()xou (1), ulp, t'5 () p3 €)

[ 07000 0) exp{ —u(p,:C) o

for an integrable operator-valued function £(t) so that [£(f)f(¢)] is an original on U whenever
this integral exists. For example, when ¢ is a linear combination of shift operators S,y with
coefficients €()(t, p) such that each () (¢, p) as a function by ¢t € U for each p € W and f(t) are
originals or f and g are generalized functions. For two quadrants @),,,; and @, intersecting by
a common face T external normals to it for these quadrants have opposite directions. Thus the
corresponding integrals in F5, ! and Fgé ! restricted on T summands cancel in fg(_le,lUQm,k).

Using Conditions (iv — vi1) and the sequence U™ and quadrants Q7 ; outlined above we get
for a boundary problem on U instead of Q" the following equation:

(14) F(A[f1(t), w5 p; ¢ {Zah en( (f(t)XU(t)au§p§<)}+

{Fa0 (B + P D) () xo0n (8), w93 )+ F5 (a(E) (OF (¢ Yxoun () /00), s p: €) }

F(BuRa(@)]f (&) xu (1), us p; ) +wF™ (f ) xu (t), us p; ¢)= F (g(t), us p; €),

where P(t',p) := P(t') := > _7_, an[Rn(p)](Ov/0t,) for each ¢ € OU (see also Stokes’ formula
in §XII1.3.4 [30] and Formulas (14.2,14.3) below). Particularly, for the quadrant domain Q"
we have a(t) = ay, for t € Q7 with I, > 0, B(t) = B, for t € 9Q} . with [, > 0 and zero
otherwise.

The boundary conditions are:

(14.1) f(®)lovy = &(®)lovs, (O ()/0V)|avs = ¢1(t)]ovs,-

The functions a(t) and ((t) can be calculated from {a; : h} and (3, almost everywhere on OU
with the help of change of variables from (t1,...,t,) t0 (Y1, .., Yn—1,Yn), Where (y1,...,y,) are
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local coordinates in dUp in a neighborhood of a point t' € Uy, y,, = v, since 9V is of class C 1
Consider the differential form >, _ (—1)""aydt; A ... Adty A ... Adt, = ady; A ... A dy,—q and
its external product with dv =", _,(0v/0t)dt, then

(142) a(t)|3U0 = 22:1 ah(aV/ath)|an and

(14.3) B(t)lovy = BrXv., s, (OV/Otn)|ou,-

This is sufficient for the calculation of Fj .

28.3. Inversion procedure in the A, spherical coordinates.

When boundary conditions 28(5.1) are specified, this equation 28(6) can be resolved relative
to F*(f(t)xu(t),u(p,t;C);p; ¢), particularly, for Equations 28.2(14,14.1) also. The operators
Se, and T of §12 have the periodicity properties: Sffij(p; () = S’;jF(p; ¢) and T;HI“F(p; ¢) =
TFF(p;C) , SZFF(p;¢) = =SE F(p;¢) and TP F(p; () = =T F (p; ¢) for each positive integer
number k and 1 < j < 2" — 1. We put

(6.1) Fj(p; ¢) := (S¢, — Se,,, ) F(p; ¢) for any 1 < j < 2" —2,

€j+1
(6.2) For_1(p;¢) :==S;,._ F(p;¢). Then from Formula 28(6) we get the following equations:
(6.3) Z aj{[po + pi T po + prTh + p2To)”

lil<er

Ipo+piTy+ +pnTn]j"}

pp=0 Vb>w Fw(p; C) - {_ jz<:a aj
2

1<) ]; ma+qr+he=jr; 0<mu; 0<qy; hrp=sign(lyjr); qx=0 for 1,j,=0, for each k=1,...,n; (1)e{0,1,2}»

(=D [po +pi )™ [po + pr1 Ty + p2To]™  [po + 1Ty + oo+ 2T ™ o e

Fo M0 £ () xaqn,  (¢7) /0.0t u; p; C)}+Gw(p; ¢)

for each w = 1,..,n, where F(p;{) = F"(f(t)xon(t),u;p;¢{) and G(p;¢) =
F™(g(t)xon(t),u;p; (). These equations are resolved for each w = 1,...,n as it is indicated
below. Taking the sum one gets the result

(6.4) F(p;¢) = Fi(p; ¢) + ... + Fu(p; €),
since {[ZT 2(54 —S? )}—1—54 } —u(p,t;C) f54 u(ptiC) — p—ulptiC).

€j+1 €ar_1

The analogous procedure is for Equation (14) with the domain U instead of Q™.
From Equation (6.3) or (14) we get the linear equation:

(15) > bwme =0
0

where ¢ is the known function and depends on the parameter ¢, 1) are known coefficients
depending on p, z() are indeterminates and may depend on ¢, [; = 0,1 for h = 1, so that
T()42e, = —2); In = 0,1,2,3 for h > 1, where ()4, = (1) for each b > 1 in accordance with
Corollary 4.1, (1) = (I1, ..., 1,).

Acting on both sides of (6.3) or (14) with the shift operators T{,,) (see Formula 25(S0)),
where m; = 0,1, my, = 0,1,2,3 for each h > 1, we get from (15) a system of 2+2*~1) Jinear
equations with the known functions ¢, := T(;,)¢ instead of ¢, ¢ ) = ¢:

(15.1) Z(l) ¢(Z)T(m)$(l) = Qb(m) for each (m)
Each such shift of ¢ left coefficients ¢ intact and z@)imm) = (—1)"z@y with Iy =
li + my (mod 2), I'y, = U, + my (mod 4) for each h > 1, where n = 1 for Iy + my — I'y = 2,
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n = 2 otherwise. This system can be reduced, when a minimal additive group G :=
{() : & (mod 2), l; (mod 4) V2 < j < k; generated by all (I) with non-zero coefficients
in Equation (15)} is a proper subgroup of gy x g¥~!, where g, := Z/(hZ) denotes the finite
additive group for 0 < h € Z. Generally the obtained system is non-degenerate for \,,; almost
all p = (po, ..., pn) € R"™ or in W, where \,;; denotes the Lebesgue measure on the real space

We consider the non-degenerate operator A with real, complex C; or quaternion Hjx 1,
coefficients. Certainly in the real and complex cases at each point p, where its determinate
A = A(p) is non-zero, a solution can be found by the Cramer’s rule.

Generally, the system can be solved by the following algorithm. We can group variables by
l1, la,...,l,. For a given Iy, ..., 1, and [; = 0,1 subtracting all other terms from both sides of (15)
after an action of T{,,) with m; = 0,1 and marked m,, for each h > 1 we get the system of the
form

(16) axy + fzy = by,
—Bz1 4+ axy = by,
which generally has a unique solution for A, ; almost all p:
(17) 1 = (a(a®+ %) ~1)by — (B(a® + 5%) " 1)ba); z2 = (a(a® 4+ 3%) )by + (B(a? + %) )by,
where by, by € A, for a given set (mg,...my,).

When [, are specified for each 1 < h < k with h # hg, where 1 < hy < k, then the system
is of the type:

(18) axy + bxy + cx3 + dxy = by,
de’l + axy + b.’l?g +cxry = bg,
cx1 + dxy + axs + bxy = bg,
ba:l + cro + d:L'g +axry = b4,

where a,b,c,d € R or C; or Hj g 1, while by, by, bs, by € A,. In the latter case of Hj g 1, it can
be solved by the Gauss’ exclusion algorithm. In the first two cases of R or C; the solution is:

(19) z; = A;/A, where

A = a&y — d&s + c§3 — by,

Ay =b1&1 — b2y + b3z — baly,

Ay = —b1&y + ba&y — bsz&s + byl

Az = b1&§3 — ba&s + b3&y — balo,

Ay = —bi& + bas — b3y + by,

& = a® + b?c+ cd?* — ac® — 2abd,

& = a?b + be? + d® — b*d — 2acd,

& = ab® + A + ad® — a’c — 2bcd,

& = a’d+ b + Ad — bd* — 2abe.

Thus on each step either two or four indeterminates are calculated and substituted into
the initial linear algebraic system that gives new linear algebraic system with a number of
indeterminates less on two or four respectively. May be pairwise resolution on each step is
simpler, because the denominator of the type (a? + 3?) should be Ay almost everywhere by
p € A, positive (see (6), (14) above). This algorithm acts analogously to the Gauss’ algorithm.
Finally the last two or four indeterminates remain and they are found with the help of Formulas
either (17) or (19) respectively. When for a marked h in (6) or (14) all [, = 0 (mod 2) (remains
only z; for h = 1, or remain z; and z3 for A > 1) or for some h > 1 all [, = 0 (mod 4) (remains
only z;) a system of linear equations as in (15, 15.1) simplifies.

Thus a solution of the type prescribed by (8) generally A, ;; almost everywhere by p € W
exists, where W is a domain W = {p € A, : a1 < Re(p) < a_1, p; = 0Vj > n} of convergence
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of the noncommutative multiparameter transform, when it is non-void, 2" ! < n < 2" — 1,
Re(p) = po, p = poio + .- + Dnlin.

This domain W is caused by properties of g and initial conditions on QU and by the domain
U also. Generally U is worthwhile to choose with its interior Int(U) non-intersecting with a
characteristic surface ¢(x1,...,x,) = 0, i.e. at each point z of it the condition is satisfied

(C8) 3)j1=a 2(t(2))(0¢/0x1)...(0¢ /O, )" =
and at least one of the partial derivatives (0¢/0zy) # 0 is non-zero.

In particular, the boundary problem may be with the right side g = ¢f in (2,2.1, 14), where
¢ is a real or complex C; or quaternion Hj j ; multiplier, when boundary conditions are non-
trivial. In the space either D(R", 4,) or B(R", A,) (see §19) a partial differential problem
simplifies, because all boundary terms disappear. If f € B(R", A,), then {p € A, : Re(p) >
0} € Wy. For f € D(R™, A,) certainly Wy = A, (see also §9).

28.4. Examples. Take partial differential equations of the fourth order. In this subsection
the noncommutative multiparameter transforms in A, spherical coordinates are considered. For

(20) A =0°/0s} + > _,7;0/0s]
with constants v; € Hj g \ {0} on the space either D(R", A,) or B(R",A,), where n > 2,
Equation (6) takes the form:

(21) FAf1(#),usp; €) =
{po(po + 3(p1Se,)?) + Z% ;Se, } "(f(t),u;p; ¢) + pr(3p5 + (P1Se,)?)Se, F'(f(£), u; p; €)

F(9(t), u; p; €)
due to Corollary 4.1. In accordance with (16,17) we get:
(22) Fu(p; ¢) = (a(a® + B3 HGu(p;¢) — (B(a? + 8% HT1Gw(p; €)) for each w =1, ..., n,
where @ — o = [~ 3) + Slawpl| Bu—B-p(Gi-s)| . From
pp=0 Vb>w pp=0 Vb>w
Theorem 6, Corollary 6.1 and Remarks 24 we infer that:

(23) 10 =0 [ PlatmOesplulp ) )apr-.dp,

supposing that the conditions of Theorem 6 and Corollary 6.1 are satisfied, where F(p;({) =
Fr(f(8),u; 95 C).

If on the space either D(RF, A,) or B(R*, A,) an operator is as follows:

(24) A = 0%/0s70s5 + 37 _37;0/0s}, where v; € H g\ {0}, where n > 3, then (6) reads
as:

(25) FM(AS(8), w pi ) = P30 + (P15e,)*)Se, 7" (£ (1), i p3 )
+2p0p105Se, SLF(f (1)), w5 05 €) 4 D07 vi(03Se, ) F (f(t)), u; p; €)
= F"(g(t),u; p; C).-

If on the same spaces an operator is:

(26) A= 0°/0s510s5 + 3 __3v;0*/0s], where n > 3, then (6) takes the form:

27)  FHAf(t),wsp;C) = popsSLFM(f(t),w;p;C) + pipsSe, SLF(f(t),uip; () +
> g Vi(0iSe; )P F(f (1), us 05 C) = F*(g(t), u; 5 €).

To find F*(f(t),u;p; ¢) in (25) or (27) after an action of suitable shift operators T{g2,0...0),
Th,...0 and T(120,...0) We get the system of linear algebraic equations:

.....
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(28) axq + bxs + cxy = by,
bxy 4 cxy + axs = by,

axry — Cr3 + biE’4 = bg,
—cx1 + by + axy = by

with coefficients a, b and ¢, and Cayley-Dickson numbers on the right side by,...,by € A,,

where 21 = Fu(p;¢), 22 = TiFu(p;Q), 25 = T3Fu(p;¢), ©a = TIZF,(p;(), b1 =

G (p;€) = (F™(g(t),u; 05 C))ws ba = T5 Gy (p; €), bs = T1Gu(p; (), by = T3 Gy(p; ). Co-

efficients are: a, = a = [Z?:'g’yjp‘?ﬂpb:o wsw € Hygr, by = b = p3(0§ — pl) € R,

Cw = € = 2pop1P3lp,=0 vb>w € R for A given by (24); a,, = a = [ = 3’pr]] 0 Voo €Hykr,
Pv= w

by = b= popg‘pbzo vhowE Ry Cw = €= plpg\pbzo whowE R for A given by (26), w =1,...,n. If
a = 0 the system reduces to two systems with two indeterminates (x,z2) and (z3,x4) of the
type described by (16) with solutions given by Formulas (17). It is seen that these coefficients
are non-zero \,,1 almost everywhere on R"*!. Solving this system for a # 0 we get:

(29) Fu(p;¢) = a'by —[a® = * + )2+ 4b*c*] La(a® — b* + %) ((c® — b?)by + abby — 2bcbs +
acby) — 2be(2bcby — acby + (¢ — b%)bs + abby))].
Finally Formula (23) provides the expression for f on the corresponding domain W for suitable
known function g for which integrals converge. If v; > 0 for each j, then a > 0 for each
p3+ ... +p2 >0

For (21,24) on a bounded domain with given boundary conditions equations will be of an
analogous type with a term on the right F"(g(t),u; p; () minus boundary terms appearing in
(6) in these particular cases.

For a partial differential equation

(30) a(tye1)Af(te, .oy tnsr) + Of (t1, s tng1) /Ot = g(t1, ooy tng)

with octonion valued functions f,g, where A is a partial differential operator by variables
t1, ..., t, of the type given by (2,2.1) with coefficients independent of ¢4, ..., ¢, it may be simpler
the followmg procedure. If a domain V is not the entire Euclidean space R we impose
boundary conditions as above in (5.1). Make the noncommutative transform F"™-- of both
sides of Equation (30), so it takes the form:

(B1)  altpy) Fr - (Af(t1, s tng), w; p; €) A+ OF 0t (F(ty, oy tnga), 405 €) /Otnga

— P’L;t17~"7t" (g(t]_’ ceey tn+1)7 u7p7 C)

In the particular case, when ‘
a(t"'H) Z|j|§a aj <t"+1) ZOSkléjl (ill)S(kl7j2,--~,jk)6_U(p’t;O = e )

for each t,,11, p, t and (, with the help of (6,8) one can deduce an expression of F"™(p; (;t,.1) :=

Frifvestn (f(tr, oo tasr), w5 p; Q) through G™(p; Gitpyr) = Fr-n(g(ty, .., tnsa), us p; () and
boundary terms in the following form:

(32) b(p(), -evy Pnj tn—i—l)Fn(p; C; tn—i—l) + 6Fn(p; C; tn—i—l)/atn—i-l = Q(p07 -ovy Pns tn+1)7

where b(po, ..., Pn; tne1) is a real mapping and Q(py, ..., Pn; tas1) is an octonion valued function.
The latter differential equation by t,,; has a solution analogously to the real case, since ¢,
is the real variable, while R is the center of the Cayley-Dickson algebra A,. Thus we infer:

70

(33) F™(p; i tng) Zexp{—/n+1 b(po,...,pn;ﬁ)dﬁ}



156 Hypercomplex Numbers in Geometry and Physics, 2 (14), Vol 7, 2010

tni1 T
{OO+ Q(poa"'7pn;7—) exp{/ b(poaapnag)dg}d’r] }a

since the octonion algebra is alternative and each equation bz = c¢ with non-zero b has the
unique solution x = b~ !¢, where Cy is an octonion constant which can be specified by an
initial condition. More general partial differential equations as (30), but with &' f / oth 1, 1> 2,
instead of O f/0t,1 can be considered. Making the inverse transform (F™t-n)=1 of the right
side of (33) one gets the particular solution f.

28.5. Integral kernel. We rewrite Equation 28(6) in the form:

(34) AsF" (fxar,u;p; ¢) = F (gxqn, u;p; ) —
PIEY 2.
lil<e 1<|(15)], 0<my, 0<qr, hu=sign(lejr), mu+qu+hr=rjr; qx=0 fOT 1;j,=0; Vk=1,...n; (1)€{0,1,2}"
(—1)Wlgmgn=WI (9 £ (119 /Ot]'..0te ) xoqy,, (1)), u; pi (), where
(34.1) Sk(p) := Sk := R, (p)

in the A, spherical or A, Cartesian coordinates respectively (see also Formulas 25(1.1,1.2)),
foreach k=1,...,n

(34.2) S™(p) :== 8™ =SS,
Then we have the integral formula:

(36) ASF”(fXQ", u)pa an AS exp(—U(p, t; g))]
in accordance with 1(7) and 2(4). Due to §28.3 the operator Ag has the inverse operator for
Ant1 almost all (po, ..., p,) in R™. Practically, its calculation may be cumbersome, but finding

for an integral inversion formula its kernel is sufficient. In view of the inversion Theorem 6 or
Corollary 6.1 and §§19 and 20 we have

(37) fRn exp(— (a +p,t;C)) exp(u(a + p, 7; ) )dpy...dpn = 6(t; ), where
(38 = Jgn fF@O(t;7)dty...dt, = f(T)

at each pornt 7€ R", Where the original f(7) satisfies Holder’s condition. That is, the func-
tional d(¢;7) is A, linear. Thus the inversion of Equation (36) is:

@) [ ( | xe O] [Asexp(—ulp +a,t: )] +a.t,7 o}dt) dpr.-dp, = f(7),

so that
(40) [As exp(—u(p+a,t; ()| E(p+a,t, 7;¢) = (2m) ™ exp(—u(p+a, t; ¢)) exp(—u(p+a, 7; (),

where the coefficients of As commute with generators i; of the Cayley-Dickson algebra A, for
each j. Consider at first the alternative case, i.e. over the Cayley-Dickson algebra A, with
r<3J.

Let by our definition the adjoint operator A% be defined by the formula

(41) Asn(p,t;¢) = nga a;ijn*(p,t;C) for any function n : A, x R" x A, — A,, where
teR", pand ¢ € A, Sn*(p,t;¢) == [STn(p,t; Q)]* Any Cayley-Dickson number z € A, can
be written with the help of the iterated exponent (see §3) in A, spherical coordinates as

(42) z = [z] exp(—u(0, 0; %)),
where v > r, ¢ € A,, u € A,, Re(y)) = 0. Certainly the phase shift operator is isometrical:

(43) | T .. Tk 2| = |2|
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for any ki,..,k, € R, since |exp(—u(0,0;Im(¢p))] = 1 for each ¢ € A,, while
Tf . Thne=w00Im¥)) — exp{—u(0,0; Im(v)) — (kyiy + ... + kpin)7/2)} (see §12).

In the A, Cartesian coordinates each Cayley-Dickson number can be presented as:

(42.1) z = |z| exp(¢M), where ¢ € R is a real parameter, M is a purely imaginary Cayley-
Dickson number (see also §3 in [17, 16|). Therefore, we deduce that

(44) |As exp(—u(p + a, £ ()| = exp(—(po + a)s1 — Co)|As exp(—u(Im(p), t; Im(()))|,
since R is the center of the Cayley-Dickson algebra A, and po, a, (o, s1 € R, s1 = s1(t),
where particularly Agl := Age “0%0)|_, (see also Formulas 12(3.1 — 3.7)).

Then expressing £ from (40) and using Formulas (41, 42,42.1,44) we infer, that

(45) &(p, t,75¢) = (2m) "[AG exp(—u(Im(p),t; Im(())]

[exp(—u(Im(p), t; Im(()) exp(u(p, 7; )| As exp(—u(Im(p), t; Im(())| 72,
since 2~ = 2*/|z|* for each non-zero Cayley-Dickson number z € A,, v > 1, where Im(p) =
P1i1 + ... + DPpln, P = Polo + ... + Prin, Do = Re(p).

Generally, for r > 4, Formula (45) gives the integral kernel (p,t, ;) for any restriction
of £ on the octonion subalgebra algr (N1, Na, Ny) embedded into A,. In view of §28.3 ¢ is
unique and is defined by (45) on each subalgebra algr (N1, N2, N4), consequently, Formula (45)
expresses ¢ by all variables p, £ € A, and t, 7 € R". Applying Formulas (39,45) and 28.2(A)
to Equation (34), when Condition 8(3) is satisfied, we deduce, that

n

Z a; Z (—1)/@

i< 1<)(15)], 0<my, 0<gx, hx=sign(lxjr); mx+ax+he=jr; =0 LOT 1j,=0, V k=1,...n; (1)€{0,1,2}»

() (fxo)n) = [ ( | 9t Olexp(-ulp + a,t (o + st o]dt> dpr-dpn

/ ( / [a\ql f(tﬂj)/atzl...atgn] [{sm(p) exp(—u(p + a,t); )}
R \ JoQ

{19
£(p + a,tW) 7 C)} dt(m) dps...dp,,

where dimR(‘)Q?lj) = n — |n(l5)], tW) € (%27&].) in accordance with §28.1, S™(p) is given by
Formulas (34.1,34.2) above.
For simplicity the zero phase parameter ¢ = 0 in (46) can be taken. In the particular case

Q" = R" all terms with |, oon  vanish.
)
Terms of the form [g,, [{S8™(p) exp(—u(p+a,t;¢))}(p+a,t,7;¢)]dp1...dp, in Formula (46)
can be interpreted as left A, linear functionals due to Fubini’s theorem and §§19 and 20, where
S°=1.

For the second order operator from (14) one gets:

(47) AS = (ZZ:l ah[Sh(p)]2> + ﬁnSn(p) + w and

(48)  (F)t) = /

n

</ ) g(t)xu(t) [eXp(—U(p +a,t;¢))¢(p, t,7; C)] dt) dp1...dp,—

/Rn < o0 f(t) [{(ﬂ(t’) + P, p)) exp(—u(p + a, t; C))}g(n t 7 O} dt’) dpy...dp, —
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/ ( [ a)@5(¢)/00) [expl—ulp + o, C)elp. .70 dt') dps.-dp.
R 0Uy

For a calculation of the appearing integrals the generalized Jordan lemma (see §§23 and 24 in
[18]) and residues of functions at poles corresponding to zeros |Ags exp(—u(Im(p),t; Im(¢)))|=0
by variables p1, ..., p, can be used.

Take g(t) = §(y;t), where y € R™ is a parameter, then

(49) /n (/n 6(y;t) [eXp(—u(p +a,t,0)Ep +a,t, T C)} dt) dpy...dp,,

_ /n[exp(—u(p—l—CL,ZU?O)&(Z)‘?‘a,ZU;T;O}dpl---dpn = E(y; 7)

is the fundamental solution in the class of generalized functions, where
(50) A& (y;t) = 6(y; 1),

(51) Jgn O(y; 1) f(t)dt = f(y)

for each continuous function f(t) from the space L*(R™ A,); A; is the partial differential
operator as above acting by the variables ¢t = (t1,...,t,) (see also §§19, 20 and 33-35).

29. The decomposition theorem of partial differential operators over the Cayley-
Dickson algebras.
We consider a partial differential operator of order wu:

(1) Af(z) = aa(2)0"f(2),
lo|<u
where 9%f = 0l f(2)/0z°...02%", = zpip + ...Tnin, ¥; € R for each j, 1 < n = 2" — 1,
a = (ag,...,an), || =ag+...+ay, 0 < a; € Z. By the definition this means that the principal
symbol

(2) A=) a,(z)0"

|a|=u

has a so that |a] = uw and a,(z) € A, is not identically zero on a domain U in A,. As
usually C*(U, A,) denotes the space of k times continuously differentiable functions by all real
variables xg,...,z, on U with values in A,, while the z-differentiability corresponds to the
super-differentiability by the Cayley-Dickson variable x.

Speaking about locally constant or locally differentiable coefficients we shall undermine
that a domain U is the union of subdomains U’ satisfying conditions 28(D1,i — vii) and
UiNU* = U’ NOU* for each j # k. All coefficients a, are either constant or differentiable of
the same class on each Int(U?) with the continuous extensions on U’. More generally it is up
to a C* or z-differentiable diffeomorphism of U respectively.

If an operator A is of the odd order u = 2s — 1, then an operator E of the even order
u+ 1 = 2s by variables (t,z) exists so that

(3) Eg(t,x)|i=0 = Ag(0,z) for any g € C***([c,d] x U, A,), where t € [¢,d] CR, ¢ <0 < d,
for example, Fg(t,z) = 0(tAg(t,x))/0t.

Therefore, it remains the case of the operator A of the even order u = 2s. Take z =
20%0 + ... + 2p_1i0_1 € A,, z; € R. Operators depending on a less set 2, ..., 2, of variables
can be considered as restrictions of operators by all variables on spaces of functions constant
by variables z, with s ¢ {l1,...,1,}.
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Theorem. Let A = A, be a partial differential operator of an even order uw = 2s with
locally constant or variable C* or x-differentiable on U coefficients a,(x) € A, such that it has
the form

(4) Af = cu1(Burf) + ... + cun(Burf), where each

(5) Bu,p = Bu,p,O + Qu—l,p
is a partial differential operator by variables Tpy, 1. 4myp 141 Tmy 1 +..tma, aNd of the order
u, myo =0, cyix(z) € A, for each k, its principal part

(6) Bupo = Z\OA:S Ay 20(2) 0%
is elliptic with real coefficients a,a0(x) > 0, either 0 < r < 3 and f € C*(U, A,), orr > 4
and f € C*(U,R). Then three partial differential operators T* and Y5 and Q of orders s and

p with p < u — 1 with locally constant or variable C° or x-differentiable correspondingly on U
coefficients with values in A, exist, r < v, such that

(7) Af =T(T1f) + QFf.

Proof. Certainly we have ord@,_1, <u—1, ord(A—Ay) < u—1. We choose the following
operators:

(8) Tf@)=2, > (9% f(2)) [wythpa] and

p=1 la|<s, aqg=0Vg<(muy,1+...4+Myp—1+1) and q>(my,1+...+mu,p)

9)  Yif(z)= > (0°f (@) [wps o,

la|<s, ag=0Vq<(mqy,1+...+myp—1+1) and q>(my,1+...+muy p)

S
Il =
MR

where wg = ¢y, for all p and @Z)fm(ac) = —a,9,(z) for each p and z, w, € A,, Ypa(z) € A,
and 9, () is purely imaginary for a,s,(x) > 0 for all @ and z, Re(wp,Im(,,)) = 0 for
all p and a, Im(z) = (z — 2*)/2, v > r. Here A,, = A,/ A, is the real quotient algebra.
The algebra A,, has the generators ¢or, j = 0,...,2°7" — 1. A natural number v so that
2T —1> ZI;:1 > a0 (mpzqfl) is sufficient, where (T(’;) =m!/(q!(m —q)!) denotes the binomial
coefficient, (m+q_1) is the number of different solutions of the equation oy + ... + o, = ¢ in
non-negative integers o;. We have either 9*7°f € A, for 0 <r <3 or §**°f € R for r > 4.
Therefore, we can take ¥, (x) € i R, where ¢ = q(p,a) > 1, q(p',a') # q(p,a) when
(p,a) # (p',a').

Thus Decomposition (7) is valid due to the following. For b = 9“2 f(2) and 1 = iy, and
w € A, one has the identities:

(10) (b(wl))(w*1) = ((wb)1)(w*l) = —w(wb) = —w?b and

)
(11) ((Mw")Nw = (((bw)))w = —(bw)w = —bw? in the considered here cases, since A,
is alternative for » < 3 while R is the center of the Cayley-Dickson algebra (see Formulas
(M1, M2) in the introduction).

This decomposition of the operator Asg is generally up to a partial differential operator of
order not greater, than (2s — 1):

(12) Qf(2) = X Cup@u-10+
DRE———— | vl [ (] | Cat e () N [CON I e
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where operators T* and Y§ are already written in accordance with the general form

(13) Tf(2) = >_)01<s (0% f(2) )0 (2);

(14) Tif (@) = 32151<5(07 f (2))mp ().

When A in (3) is with constant coefficients, then the coefficients w, and v, , for T™ and
Y™ can also be chosen constant and @ — ZI;ZI CupQu-1p = 0.

30. Corollary. Let suppositions of Theorem 29 be satisfied. Then a change of variables locally
affine or variable C' or x-differentiable on U correspondingly exists so that the principal part
As o of Ay becomes with constant coefficients, when ay o, > 0 for each p, o and x.

31. Corollary. If two operators E = Ass and A = Ass_1 are related by Equation 29(3), and
Ay, is presented in accordance with Formulas 29(4,5), then three operators Y, T*71 and Q
of orders s, s — 1 and 2s — 2 exist so that

(1) Age 1 = eyt -+ Q

Proof. It remains to verify that ord(Q) < 2s — 2 in the case of Ays_1, where @ =
{0(tAgs—1)/0t — Y5} —0. Indeed, the form A(E) corresponding to E is of degree 2s — 1
by x and each addendum of degree 2s in it is of degree not less than 1 by ¢, consequently, the
product of forms A(Y)A(T3) corresponding to T* and Y*# is also of degree 2s — 1 by x and each
addendum of degree 2s in it is of degree not less than 1 by ¢. But the principal parts of A\(E)
and A(T5)A(YF) coincide identically by variables (¢,z), hence ord({E — T*Y5 }Hi—0) < 25 — 2.
Let a(t,z) and h(t,z) be coefficients from T35 and Y*. Using the identities

a(t,z)00"tg(z) = a(t,z)07"g(x) and

h(t,z)0°0[a(t,x)0"g(z)] = h(t,z)0"[(Dsa(t, x))07g(x)]
for any functions g(x) € C?**~! and a(t,z) € C%, ord[(h(t, z)0"), (a(t,z)0")]|i=0 < 25 — 2, where
Oy =0/0t, |8 <s—1, |y| <s, [A,B] := AB — BA denotes the commutator of two operators,
we reduce (T*T% + Q1)|i=o from Formula 29(7) to the form prescribes by equation (1).

32. We consider operators of the form:

(1) (Y* + BL) f(2) = {X0c)acr (07 (2)na(2)} + f(2)B(2),
with 1,(2) € Ay, a = (ap, ..., a2r—1), 0 < a;j € N
for each j, |a] = ap + ... + agr_1, BL.f(2) := f(2)5,

0°f(2) = O f(2)/025°...0297 7", 2 < r < v < o0, B(2) € Ay, 20,2001 € R, 2 =
200 + ... + Zor_1lor_1.

Proposition. The operator (T* + 3)*(Y* + 3) is elliptic on the space C**(R*" | A,), where
(Yk 4+ B)* denotes the adjoint operator (i.e. with adjoint coefficients).
Proof. We establish the identity

(2) (ay)z" + (az)y” = a2Re(yz")
for any a,y,z € A,. Tt is sufficient to prove Equality (2) for any three basic generators of the
Cayley-Dickson algebra A,, since the real field R is its center, while the multiplication in A,
is distributive (a +y)z = az + yz and ((aa)(By))(vz*) = (afv)((ay)z*) for all a, 5,7 € R and
a,y,z € A,. If a =iy, then (2) is evident, since yz* + zy* = yz* + (yz*)* = 2Re(yz*). If y = 1o,
then (ay)z* + (az)y* = az* + az = a2Re(z) = a2Re(yz*). Analogously for z = i.

For three purely imaginary generators i,, %5, 9 consider the minimal Cayley-Dickson algebra
® = algr (ip, is, i) over the real field generated by them. If it is associative, then it is isomorphic
with either the complex field C or the quaternion skew field H, so that (ay)z* + (az)y* =
a(yz* + zy*) = a2Re(yz*).

If the algebra @ is isomorphic with the octonion algebra, then we use Formulas (M1, M2)
from the introduction for either a,y € H and z =l or a,z € H and y = 1. This gives (2) in
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all cases, since the algebra algr(ip,is) with two basic generators i, and i is always associative.
Particularly, if y = is # 2z = iy, s, k > 1, then the result in (2) is zero.
Using (2) we get more generally, that
(3) ((ay)z")b" + ((az)y")b" = (a2Re(yz"))b" = (ab")2Re(yz"),
consequently,
(4) ((ay)z")b" + ((a2)y")b" + ((by)z")a” + ((bz)y")a” = 4Re(ab") Re(yz")
for any Cayley-Dickson numbers a,b,y,z € A,. In view of Formulas (1,4) the form corre-

sponding to the principal symbol of the operator (Y% + 8)*(T* + 3) is with real coefficients, of
degree 2k and non-negative definite, consequently, the operator (T* + 3)*(T* + 3) is elliptic.

33. Fundamental solutions. Let either Y be a real Y = A, or complexified Y = (A,)c
or quaternionified Y = (A,)g Cayley-Dickson algebra (see §28). Consider the space B(R",Y’)
(see §19) supplied with a topology in it is given by the countable family of semi-norms

(1) Pak(f) = suDyern |(1+ [z])*0° f ()],
where £k =0,1,2,...; o = (a1, ...,a,), 0 < o € Z. On this space we take the space B'(R",Y),
of all Y valued continuous generalized functions (functionals) of the form

(2) f = foig + ...+ fgv_ligv_l and g = goig + ... + ggv_ligv_l, where fj and g; €
B'(R",Y), with restrictions on B(R",R) being real or C; or H; g 1, -valued generalized func-

tions fo, ..., fov_1, 9o, ---, g2v_1 respectively. Let ¢ = ¢gig + ... + Pov_1i90_1 With ¢g, ..., pov_1 €
B(R™",R), then

(3) [f,0) = Zijj;lo [fj, ®x)iri;. We define their convolution as

(4) [f xg,0) = Z?;jk_:l()([fj * gk, 9)1;)i) for each ¢ € B(R",Y). As usually

(5) (f = g)(x) = f(z —y) * g(y) = f(y) * g(x — v)
for all z,y € R™ due to (4), since the latter equality (5) is satisfied for each pair f; and gy.
Thus a solution of the equation

(6) (Y*+ 06)f =g in B(R",Y) or in the space B'(R™,Y), is:
(7)
(8) (Y* + B)Evrip =19, (0,¢) = #(0). The fundamental solution of the equation
(9) AgV =6 with Ag = (T°+ B)(TT" + 51)

using Equalities 32(2 — 4) can be written as the convolution

f = &Evysyp x g, where Eysi 3 denotes a fundamental solution of the equation

(10) V= Va, = Evoqp* Exnyp,-

More generally we can consider the equation
where Ag = (T4 5)(T1+51), T, Y1, Yo are operators of orders s, s; and s, respectively given
by 32(1) with z-differentiable coefficients. For Y5 + B2 = 0 this equation was solved above.
Suppose now, that the operator T + 35 is non-zero.

To solve Equation (11) on a domain U one can write it as the system:

(12) (T1+B)f = g1, (T +B)g1 = g — (T2 + Bo) f-
Find at first a fundamental solution V4 of Equation (11) for g = §. We have:

(13) f =Evi48 * g1 = Eryup, ¥ (9 — (YT + B)g1), consequently,

(13'1> Exi1p * g1+ Exyip, * ((T + /8>gl) =&yt * G-
In accordance with (3 — 5) and 32(1) the identity is satisfied: [Ev,15, * (T + 3)g1), ¢0) =
(T + 8)(Erytp, * 91), o). Thus (13) is equivalent to

(14) 8T1+ﬂ1 * g1+ (T + ﬁ)(8T2+ﬂ2 * gl) = 5T2+/32
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for g =4, since Ex,48, ¥ 0 = Ex,ip,-

We consider the Fourier transform F' by real variables with the generator i commuting with
i; for each j =0,...,2Y — 1 such that

(F1) ( fRn (z)dzy...dz,
for any g € Ll(R” A,), ie. fR" lg(x)|dzy...dx,, < oo, where g : R" — Y is an integrable
function, (y,z) = z1y1 + ... + TpYn, ¢ = (z1,...,2,) € R, z; € R for every j. The inverse
Fourier transform is:

(F2) (F'g)(y) = (20)" [y, 0 g(2)d..d
For a generahzed functlon f from the space B'(R™,Y"); its Fourier transform is defined by
the formula

(F3) (Ff,0) = (f,F¢), (F7'f,¢)=(f,F'9).

In view of (2 — 5) the Fourier transform of (14) gives:

(15) [F(Er,4)[F(90)] + X5 [F((T + 8);€x,18)[F(90))i; = F(Ersvs,)
for ¢ = 6. With generators i, ..., 79v_1, %ol, ..., 12011 the latter equation gives the linear system

of 2vT! equations over the real field, or 2°*2 equations when Y = (A,)u. From it F(g;)
and using the inverse transform F~! a generalized function g; can be found, since F(g) =
F(go)ig + ... + F(gao_1)igv_1 and F~(g) = F(go)ip + ... + F*(gao_1)iav_1 (see also the
Fourier transform of real and complex generalized functions in [5, 29]). Then

(16) V4o = Ev,1p, * g1 and f = V4 * g gives the solution of (11), where g; was calculated
from (15).
Let ¥ : (A,)m — (A,)m be the R-linear projection operator defined as the sum of projection
operators my + ... + mor_1, where 7; : (A,)u — Hij,

(17) m;j(h) = hji;, h = 25 o' hyiz, hj € Hygp, that gives the corresponding restrictions
when h; € G or h; € R for j = 0,. 2" — 1. Indeed, Formulas 2(5,6) have the natural
extension on (A, )g, since the generators J, K and L commute with ¢; for each j.

Finally, the restriction from the domain in 4, onto the initial domain of real variables in
the real shadow and the extraction of 7¥ o f € A, with the help of Formulas 2(5,6) gives the
reduction of a solution from A, to A,.

Theorems 29, Proposition 32 and Corollaries 30, 31 together with formulas of this section
provide the algorithm for subsequent resolution of partial differential equations for s,s—1, ..., 2,
because principal parts of operators A, on the final step are with constant coefficients. A
residue term ) of the first order can be integrated along a path using a non-commutative line
integration over the Cayley-Dickson algebra [17, 16].

34. Multiparameter transforms of generalized functions.
If g € BR"Y) and g € B'(R™,Y), (see §§19 and 33) we put

(1) S35 (g5 w93 Q), @)ty == D25 g, F (5 45 p; €))ij or shortly
(2) X2, gye w80, g)iy = 323 Mgy, e D),

If the support supp(g) of g is contained in a domain U, then it is sufficient to take a base
function ¢ with the restriction ¢|y € B(U,Y') and any ¢|gn\v € C*°

34.1. Remark. It is possible to use Theorem 29, Corollaries 30 and 31, Proposition 32 and
§33 for solutions of definite differential equations with variable coefficients. For this purpose one
can present an operator A as the composition A = YT 4+ Q, where ord(A) = ord(Y)+ord(Y;),
ord(Q) < ord(A) — 1, T and T; are operators with variable coefficients, T*Y and YiY,
are elliptic operators with constant coefficients of their principal symbols at least. Then use
Formulas 33(1 — 16) to find fundamental solutions &y, vy, and £4 or iterate this procedure
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(see also §35). A generalization of Feynman’s formula over the Cayley-Dickson algebras for
the second order partial differential operators with the first order addendum ) with variable
coefficients from [20] also can be used.

35. Examples.
Let

(1) Af(t) = 3251 (02 f(t)/08)c;
be the operator with constant coefficients ¢; € A, |¢;| = 1, by the variables ¢y, ...,¢,, n > 2.
We suppose that ¢; are such that the minimal subalgebra algr(c;,cx) containing ¢; and ¢y is

alternative for each j and k and |(...(c}/205/2) .)en 2

(2) Of(t)/0t; = > r_(Of(t(s))/Osk)(0sk/0t;) = > 7_, Of (t(s))/Osk, the operator A takes

the form

(3) Af = Zg 1<Zl<k b<](82 (t(s))/0sk0sp))c;,

where s; = t; + ... + t,, for each j. Therefore, by Theorem 12 and Formulas 25(S0) and 28(6)
we get:

(4) F"(Af;u;p;¢) = Z?Zl{[Rej(p)PFﬁ(p; Q) }ej for u(p,t;C) either in A, spherical or A,
Cartesian coordinates with the corresponding operators R, (p) (see also Formulas 25(1.1,1.2)).
On the other hand,

(5) F(8;u;p;¢) = e PO = ¢7u000) in accordance with Formula 20(2). The delta
function 4(t) is invariant relative to any invertible linear operator C' : R™ — R™ with the
determinant |det(C')| = 1, since

| = 1. Since

0(Ca)p(z)de = | d(y)p(C~"y)|det(C)|dy = $(C~0) = ¢(0).

R" R"
Thus
(5) FM(C(Af);usp; €) = Fr(Af;u;p;€)

for any Fundamental solution f, where Cg¢(t) := g(Ct), Af = 4. If C : R™ — R" is an invertible
linear operator and ¢ = Ct, ¢ = Cp, (' = C(, thent = C7, p=C'qgand ( = O~ In the
multiparameter noncommutative transform F" there are the corresponding variables (¢;, p;, ¢;)-
This is accomplished in particular for the operator C'(¢y,...,t,) = (s1, ..., 8,). The operator C*
transforms the right side of Formula (4), when it is written in the A, spherical coordinates,
into 7 {(po + 4;Se;)*Fy(q; () }¢j. The Cayley-Dickson number ¢ = go + qii1 + .. + gnin
can be written as ¢ = qo + gy M, where |M| = 1, M is a purely imaginary Cayley-Dickson
number, gy € R, gy M = qui1 + ... + quin, since qo = Re(q). After a suitable automorphism
0: A, — A, we can take 0(q) = qo+ qari1, so that 6(z) = x for any real number. The functions
22721 @2S2.¢j] and [307_ piS2 c;] are even by each variable g; and p; respectively. Therefore,
we deduce in accordance Wlth (5) and 2(3,4) and Corollary 6.1 with parameters py = 0 and
¢ =0and ¢; € {—1,1} for each j that

(6) (Fm)~ (1/[23'1:1{219,(;9' pksekpbseb}cj];u;y;C>= - [97€N([y]’[q]))
in the A, spherical coordinates, where g = 1 / [Z?:l q?cj}, or

(6.1) (F)L(1/[0 {p2S2 Yol ws 45 C) = — g, eN(WHD)
in the A, Cartesian coordinates, where g = 1/[2] 1p]cj] = y/|ly| for y # 0, N =
fOr Yy = 07 Yy = ylil + ...+ ynZn S A/r? [y] (yla- 7yn> , ([ ] [ ]) Z?:l ijJ? since
S2, cos(p+Ck) = cos(p+Ce+m) = — cos(¢p+(x) and S, Sin(¢+§k) = sin(¢+Cot7) = — sin(dp+Cr)



164 Hypercomplex Numbers in Geometry and Physics, 2 (14), Vol 7, 2010

for each k.

Particularly, we take ¢; = 1 for each j = 1,...,k; and ¢; = —1 for any j = ky +1,...,n,
where 1 < k; < n. Thus the inverse Laplace transform for ¢y = 0 and ¢ = 0 in accordance
with Formulas 2(1 — 4) reduces to

(1) (F) (1[5 { Sicenss prSeumSe, fes s uiwi¢) =

(2m) ™" fr exp(ilarys + -+ qun)) (1/ [ 255, 62 = S 4 62 ) dan.-dg
in the A, spherical coordinates and

(7.1) ()7 (1) | S st o] suini )=

_ . k
(2m) ™" [gnexp(i(pryr + - + Patn)) (1/ [Zjil P =D k1 p?])dpl---dpn
in the A, Cartesian coordinates,
since for any even function its cosine Fourier transform coincides with the Fourier transform.

The inverse Fourier transform (F~'g)(z) = (2r)™(Fg)(—z) =: ¥, of the functions g =

1/(327, #3) for n > 3 and P(1/ (Z?Zl z7)) for n = 2 in the class of the generalized functions is

known (see [5] and §§9.7 and 11.8 [29]) and gives
(8) Wn(21,-20) = Cu(Dy 2)172 for 3 < n, where C, = —1/[(n — 2)oy), 0, =

472 /T'((n/2) — 1) denotes the surface of the unit sphere in R", I'(x) denotes Euler’s gamma-
function, while

(9) Wy(z1, 20) = Cy ln(Z?zl z7) for n = 2, where Cy = 1/(4n).
Thus the technique of §2 over the Cayley-Dickson algebra has permitted to get the solution of
the Laplace operator.

For the function

(10) P(z) = Zfil a? =30y, 127 with 1 < ky < n the generalized functions (P(z) 4 i0)*
and (P(z) — i0)* are defined for any A € C = R @ iR (see Chapter 3 in [5]). The function P*
has the cone surface P(zy,...,2,) = 0 of zeros, so that for the correct definition of generalized
functions corresponding to P* the generalized functions

(11) (P(x) + ci0)* = limge e 50(P(7)? + €2)2 exp(idarg(P(z) + ice))
with either ¢ = —1 or ¢ = 1 were introduced. Therefore, the identity

2

(12) F( o r)(@) = = (25022 = S 22) [Pk i) (@)] o

(13) F(¥) = —1/(P(x) + ci0) follows, where ¢ = —1 or ¢ = 1.

The inverse Fourier transform in the class of the generalized functions is:

(14) F7Y((P(z)+ci0)M) (21, ..., 2,) = exp(—me(n—ky )i/2)22 720 (A 4+n/2)(Q(21, .-y 2n) —
ci0) ==/ /[[(=X)| D[]
for each A € C and n > 3 (see §IV.2.6 [5]), where D = det(g;) denotes a discriminant of the
quadratic form P(z) = Y%, | g;xa;2x, while Q(y) = -7, _; ¢”*x;xy, is the dual quadratic form
so that > °p_, ¢7*gy, = (5{ for all j,1; 5{ =1 for j =1 and (5{ = 0 for j # [. In the particular
case of n = 2 the inverse Fourier transform is given by the formula:

(15) F~Y((P(x) + ci0) 1) (21, 20) = =47 D|"Y2 exp(—me(n — ky)i/2) In(Q(z1, ..., 2,) — ci0).
Making the inverse Fourier transform F~! of the function —1/(P(z) + i0) in this particular
case of A = —1 we get two complex conjugated fundamental solutions

(16) Weop i(otonm) =  —esplmeln — EOY2T(/2) — D(@G1m) +
ci0)1=(/2) /(47™/2) for 3 < n and 1 < ky < n, while

(17) Wy 1(21, 22) = 4 exp(me(n — k4)i/2) In(Q(z1, 22) + ¢i0) for n = 2,
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where either ¢ =1 or ¢ = —1.

Generally for the operator A given by Formula (1) we get P(z) = Py(z) + P;(x), where
Po(z) = Y77 25Re(c;) and Pi(x) = 377, x3Im(c;) are the real and imaginary parts of P,
Im(z) = z — Re(z) for any Cayley-Dickson number z. Take 1 = iy and consider the form
P(z) + ecl with € # 0 and either ¢ = 1 or ¢ = —1, then P(x) + ecl # 0 for each x € R™. We

put

(18) (P(x) + cl0)* = limgececso(P(x)? + €2)M2exp(iAArg(P(z) + lce)). Consider A € R,
the generalized function (P(z)? 4 €2)»2 exp(iAArg(P(x) +1ce)) is non-degenerate and for it the
Fourier transform is defined. The limit limg<ce 0 gives by our definition the Fourier transform
of (P(x) + cl0)*. Since

(19) ¢ (B + X 1chanis; G k) = 271 ¢
for all 8; € R and any 1 < j < n in accordance with the conditions imposed on ¢; at the
beginning of this section and iN; = Nji for each j, the Fourier transform with the generator i
can be accomplished subsequently by each variable using Identity (19). The transform z; —

(¢;)Y/?z; is diagonal and 1(..((cl2eY)..)e?| = 1, so we can put |D| = 1.

Each Cayley-Dickson number can be presented in the polar form z = [z[e?M ¢ € R,
|¢| < m, M is a purely imaginary Cayley-Dickson number |M| =1, Arg(z) = (¢ + 27k)M has
the countable number of values, k € Z (see §3 in [17, 16]). Therefore, we choose the branch
212 = 12|V2 exp((Argz)/2), |2|*/? > 0 for z # 0, with |Arg(2)| < m, Arg(M) = M= /2 for each
purely imaginary M with |M| = 1.

We treat the iterated integral as in §6, i.e. with the same order of brackets. Taking initially
¢; € R and considering the complex analytic extension of formulas given above in each complex
plane R @ N;R by ¢; for each j by induction from 1 to n, when ¢; is not real in the operator
A, Im(cj) € RNj, we get the fundamental solutions for A with the form (P(zx) + cl0)* instead
of (P(x)+ ¢i0)* with multipliers (...(¢¥*c5/?)...)¢%/* instead of exp(mc(n — k4 )i/2) as above and
putting |D| = 1. Thus

(20) W(z1, ..., 20) = —T((n/2) = 1)(P*(21, ..., 20) — A0V =D [ (22 ) )" ) (47™/2) for
3 < n, while

(21) W (21, 20) = 472 %¢]* Ln(P* (21, 22) — cl0) for n = 2,
since ¢ = ¢; ! for |e;| = 1, y;q; = yj(cj/Q)*qjc}ﬂ, while

(...(dc’i/qudcg/qu)...)dcfl/Qqn] = dq1...dqn[(...(c'{/chﬂ)...)ch/Q} and

(- (2670l = 1.

36. Partial differential equations with polynomial real coefficients.
Let

(1) A = 3 1<m (@), aalq) = >4 aapq’, ¢° = ¢"..¢°", as3 and f have values as
in §28, and Af be an original. Using the transform in the A, Cartesian coordinates we take
q; = t; for each j, while using the transform in A, spherical coordinates we choose q; = s,(t)
for each j. Then

(2) F(Af;u;p;¢) = Yo 5(—1)PISs(p)05

[>-5 @as([po + p1Se, " p3°Se2...pn" Se ) ™ (p; €) = G™ (3 €)
in the A, spherical coordinates and

(2.1) Fr(Af;u;p;¢) = 2 5(=1)11S5(p) 0]

(225 @a,8[P0 + P1Se; | [Po + PaSe, %% [P0 + PnSe, |*) F™ (p; €) = G"(p; €)
in the A, Cartesian coordinates (see Theorems 12 and 13 above). It may happen that the
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second differential equation is simpler than the initial one:

3) Af =g.
For example, when coefficients depend only on one variable t¢,,, then the second differential
equation is ordinary and linear.

37. Noncommutative transforms of products and convolutions of functions in the
A, spherical coordinates.
For any Cayley-Dickson number z = zyig + ... + 220 _1i9»_1 We consider projections

(1) 0(z) = 2zj, zj € Ror Cyor Hykr, j =0,...,2" — 1, 0;(2) = m;(2)7],
given by Formulas 2(5,6) and 33(17). We define the following operators

(2) Raj(F™(p;€)) == F™(po, (—1)*'py, .o, (1) Pimpi 5, Djsa—5; 0
oy P oy (= 1)+ e /2, o, (1) Gy s, TG, /20 Gigamgy s e Cn)
on images F", 2771 <n < 2" —1, j =0,..,n. For o; and 3; € {0,1} their sum a; + G, is
considered by (mod 2), i.e. in the ring Z, = Z/(2Z), for two vectors a and 8 € {0,1}? ! their
sum is considered componentwise in Z,. Let

n 2"-1
(3) f:u p7 Zze y U, p7§))zk137
7=0 k=0
also FJ'(p; () = 2 0 (FM0L(fF); u; p; Q)i for an original f, where u(p,t;¢) is given by

Formulas 2(1, 2, 2.1) If f is real or C; or H g 1, -valued, then FJ' = 0;(F").

Theorem. If f and g are two originals, then

4) F (fgiuips Q) = D00 >on peqoayn (1) 0750 (R 5 (F7 (p—q0; ¢ —1)) % (R 4 (G (p+
o — Po;1))i;,

41 F'(f * gupC) = Yo asepup (DR (FR(p ¢ -
1) (Rs3 (G5 (p;1))i,
whenever F"(fg), F*(f), F"(g) exist, where 1 <n <2"—1,2<7r; o + O = 1 (mod 2) for
k<jork=j4+1=mn,ar+08=0 (mod?2) fork=j+1<nand oy =p0,=0 fork>j+1
in the j-th addendum on the right of Formulas (4,4.1); the convolution is by (p1,...,pn) in (4),
at the same time qo € R and n € A, are fized.

Proof. The product of two originals can be written in the form:

(5) F(D)g() = 720" Dot iyins, Ok (F(£)00(9(1))i
The functions 6( f) and 0,(g) are real or C; or Hj valued respectively. The non-
commutative transform of fg is:

(6) F'(f9)(p;¢) = Rnf(t)g(t) exp(—u(p,t; C))dt =
{ / (f(R)g(2))e ™" cos(prsy + Cl)iodt}+

{Z / n(f(t)g(t))efposl sin(pis1 + (1)...sin(pj_15;-1 + (j-1) cos(p;s; + Cj)ijldt}—i—

j=2

/ (f(t)g(t))e ™ sin(prsi + C1)-.. sin(pnsn + Go)indt.
On the other hand,

(7) f(t)g(t> —p081+1zj L(Pis;+¢5) Vit —
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/ < f(t)e—(po—qo)81+i2§1((pj—qj)5j+cj—nj)7jdt> (/ g(t)e—qosﬁiZf1(qjsg-+nj)7jdt> dg,
n R’V‘L n

where k = 1,2,...,n, 7; € {—1,1}. Therefore, using Euler’s formula € = cos(¢) + isin(¢)
and the trigonometric formulas cos(¢ + ¥) = cos(¢) cos(¢)) — sin(¢)sin(¢)),  sin(¢p + ¢) =
sin(¢) cos(v)) + cos(¢)sin(y) for all ¢, ¥ € R, and Formulas (6,7), we deduce expressions
for 0;(F™(fg)). We get the integration by ¢, ..., ¢,, which gives convolutions by the py, ..., p,
variables. Here ¢y € R and n € A, are any marked numbers. Thus from Formulas (5 —7) and
2(1,2,2.1,4) we deduce Formula (4).

Moreover, one certainly has

(8) / (f g>(t)e—p051+iZle(ijjJer)vjdt =

( f(t>e—pos1+iZ?—l(pjs]-—i-Cj—nj)’det) (/ g(t)e_p051+iZ?zl(pj8j+nj)7j dt)
Rn n

foreach 1 <k <mn,~; € {—1,1}, since s;(t
Thus from Relations (6,8) and 2(1,2,2.1,
0;,(F™(f * g)) and Formula (4.1).

) =s;(t—7)+s;(r)forallj=1,..,nandt, T € R™
4) and Euler’s formula one deduces expressions for

38. Moving boundary problem.
Let us consider a boundary problem

(1) Af = g in the half-space t, > ¢(t,), where ¢(0) = 0 and ¢(t,) < t,, for each 0 < ¢, € R.
Suppose that the function t, — ¢(t,) =: ¥(t,) is differentiable and bijective. For example, if
0 < v < 1and ¢(t,) = vt,, then the boundary is moving with the speed v. Make the change of
variables y, = ¥(t,), Y1 = t1,sYn_1 = tn_1, then t, = = (y,) and dt,, = ds,, = (dt,/dy,)dy,
and due to Theorem 25 we infer that

(2) F LY badxyzofips¢ | = > ba(doa, — 1)

lo|<m || <m,0<gn<an—1

(Po + SeaP1) ¥ P52 P 1 DA T IS e —(gnt en F Y (0w (y), u(p, (¥™); €);p; )
+ ) ba(po+ Se,p1)™ D5 P Sacarer T (Xynz0 (W) w ()5 25 ¢) = G™(p; )
laj<m

in the A, spherical coordinates and

(2.1) F Y aadixy.=0f (1);pi ¢ | = > aa(doa, — 1)
la|<m || <m,0<gn<an—1
(pO + Selpl)al (pO + p25e2)a2---(p0 + pn—lsenfl)aTLil(pO + pnsen)an_qn_l
FrH (0 w(y), ulp, (y"); €); i €)
+ Y aa(Po + Se,p1)* (Po + P2Se)* - (Po + PuSe, )" F (Xyuz0(m)w ()i p; ¢) = G™(p; )
lal<m

in the A, Cartesian coordinates, where w(y) := f(t(y))(dt,/dy,)-

Expressing  F"(xy.>0(y)w(y);p;¢) through G"(p;¢) and the boundary terms
Fr=tv" (08 w(y), u(p, (y™); ¢); p; ¢) as in §28.3 and making the inverse transform 8(4) or 8.1(1),
or using the integral kernel ¢ as in §28.5, one gets a solution w(y) or f(t) = w(y(t))(dyn(t,)/dty).
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39. Partial differential equations with discontinuous coefficients.

Consider a domain U and its subdomains U D U; D .. D Uy satisfying Conditions
28(D1, D4,i — vii) so that coefficients of an operator A (see 28(2)) are constant on Int(Uy)
and on Vi = U\ Int(Uy), Vo = Uy \ Int(Us),...,Vi = Uk—1 \ Int(Ux) and are allowed to be
discontinuous at the common borders dV; N U; for each j =1, ..., k. Each function fyy, is an
original on U or a generalized function with the support supp(fxvy;) C U; if f is an original
or a generalized function on U. Choose operators A’ with constant coefficients on U7 and
A 1ny(v;) = 0, where U® =U, so that Aly, = A*,..., Aly, = A+ AR Aly = A+ AR
Therefore, in the class of originals or generalized functions on U the problem (see 28(1,2)) can
be written as

(1) Af =g, or

(2) A%fxvi = gxvir A xw = g9xvi A fxu, = 9xun,
since xv; + ... + Xv, + Xv, = Xv- Thus the equivalent problem is:

(3) AOfO — gO’ Alfl —_ gl,...,Akfk —_ gk
with f* = fxu,, 9* = gxv,. also f7 = fxv,,., ¢ = gxv,,, for each j = 0,...,k —1. On 9U
take the boundary condition in accordance with 28(5.1). With any boundary conditions in the
class of originals or generalized functions on additional borders 0U; \ OU given in accordance
with 28(5.1) a solution f7 on U’ exists, when the corresponding condition 8(3) is satisfied (see
Theorems 8 and 28.1).

Each problem A’ f7 = ¢/ can be considered on Uj, since supp(¢g’) C U;. Extend f7 by zero
on U\ V; for each 0 < j < k — 1. When the right side of 28(6) is non-trivial, then f7 is
non-trivial. If /=1 is calculated, then the boundary conditions on AU \ OU can be chosen in
accordance with values of f/~! and its corresponding derivatives (9° fi=1/01°) |(oui\ou) for some
B < ord(A?) in accordance with the operator A7 and the boundary conditions 28(5.1) on the
boundary OU’ \ OU. Having found f7 for each j = 0, ..., k one gets the solution f = fO+ ...+ f*
on U of Problem (1) with the boundary conditions 28(5.1) on 9U.

40. Remark. The multiparameter noncommutative transform over the Cayley-Dickson alge-
bras presented above is the natural generalization of the usual complex one-parameter Laplace
transform. It opens new opportunities for solving partial differential equations of different
types.

It may happen that Theorem 13 is simpler to use, than Theorem 21 for partial differential
equations with real variables. Theorem 13 has an advantage that it can be simpler used
for partial differential equations of complex and hyper-complex variables, because each pair
(p1 + pjifi;) for | # j is the complex variable. In these variants boundary conditions may be
for F*(p;¢) on a hyperplane Re(p) = a in A,.

As it was seen above the appearing integrals are by multidimensional domains. For their
calculations the Fubini’s theorem, residues, Jordan Lemma and tables of known integrals also
can be used. Generally in computational mathematics integrals are easier to calculate, than to
solve partial differential equations numerically. As a rule iterations of algorithms for integrals
converge faster, than iterations of numerical methods for partial differential equations.

Functions with octonion values may be used to resolve systems of partial differential equa-
tions. Using conjugations of Cayley-Dickson numbers one gets the transition between opera-
tors with coefficients either on the left or on the right of partial derivatives: [(0%f(x))ca|* =
ck (0% f(z))*, particularly, (0% f(x))* = 0*f*(z) for x € R", 0% = 02.

Using of Formulas 2(5,6) gives variables ¢; = z; for z € A,. So one can consider a class
of super-differentiable originals f(z), z € V' C A,. In the class of piecewise on open subsets
super-differentiable originals f(z), z € V C A,, with ¢; = z; foreach j =1,...,n, n = 2" — 1,
in the fixed z-representations we get the noncommutative transform for f(z)xy(z) relative to



S.V. Ludkovsky Multidimensional Laplace transforms over Cayley-Dickson algebras... 169

the Cayley-Dickson variable z € A,. Therefore, the results given above transfer on this variant
also.

Theorem 17 also opens new opportunities to investigate and solve certain types of nonlinear
partial differential equations using previous results on spectral theory of functions of operators
[21, 22]. For example, analytic functions ¢(z) in Theorem 17 permit to consider nonlinear
operators ¢(o), where o f(z) := Z?;Bl(af(z)/é)Zj)ij. It is planned to study in the next paper.

Partial differential equations with periodic g and f with vector period corresponding to
Q" may be considered also. Certainly others classes of smoothness, for example, Sobolev’s or
generalized functions can also be considered. It is planned in a next paper to consider this
and also problems with boundary conditions as well as with non-constant coefficients in more
details.

The technique described above permits to consider partial differential equations of different
types and write their solutions in integral forms. If appearing integrals can be calculated in
elementary or special of generalized functions, then this gives the explicit formulas in terms of
known functions. In conjunction with the line integration over the Cayley-Dickson algebras it
permits to solve some types of non linear partial differential equations. The multiparameter
Laplace transform over the Cayley-Dickson algebras takes into account the boundary condi-
tions. It naturally means the treatment of systems of partial differential equations due to the
multidimensionality of the Cayley-Dickson algebras.
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MHOI'OITAPAMETPUNYECKUE IIPEOBPA3OBAHUA
JIAIIJTACA HAJI AJITEBPAMMUI KSJIN-/INKCOHA U
JANOPOEPEHIINMAJIBHBIE YPABHEHIN YA C YACTHBIMUA
ITPOM3BOHBIMU

C.B. JIiogkoBckuii

Mocxosckuii 2ocydapecmeennviti mexnuveckuts yrusepcumem MHUPIA, Mocksa, Poccus
sludkowski@mail.ru

N3y4atorca MHOrOMEpHbIE HEKOMMYTATHUBHBIE TTpeoOpa3oBanusd Jlamnaca wam aaredbpamu
Komu-/Iukcona. JloKa3bIBaIOTCsI TEOPEMBI O WPSIMOM K OOpaTHOM ITPeodPA3OBAHUIX
Jlannaca maz anrebpamu Kamu-/lukcona. Vccnenytores npumenenus K auddepeHnaib-
HBIM yPaBHEHUSM C 9aCTHBIMU ITPOU3BOAHBIME, BKJIIOYas JINIITHYECKHE, TapaboInIecKre
u runepbosmueckue. Bosee Toro, paccmarpuBaiorcs auddepeHInaIbHbe YPABHEHUS C
YaCTHBIMU TTPOU3BOIHBIMU O0JIee BBICOKUX MOPSIKOB C BEIIECTBEHHBIMH M KOMIIJIEKCHBIMU
ko3 burimeHTaMm, KOTOpble MOTYT ObITh IIEPEMEHHBIMU, ¢ TPAHUYHBIMU YCJIOBUSAMU WJIN
0e3 HuX.

KirroueBble cioBa: MHOIOMEpPHOE HEKOMMYTATHUBHOE IIpeobpaszoBanue Jlansaca, aaredpbl
Ksnu-lukcona, muddepennuaababie YpaBHEHUS ¢ 9aCTHBIMU IPOU3BOIHBIMU, TDAHUYIHbBIE
yCJIOBHUS





