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Multidimensional noncommutative Laplace transforms over octonions are studied. Theo-
rems about direct and inverse transforms and other properties of the Laplace transforms
over the Cayley-Dickson algebras are proved. Applications to partial differential equations
including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial
differential equations of higher order with real and complex coefficients and with variable
coefficients with or without boundary conditions are considered.
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1 Introduction.
The Laplace transform over the complex field is already classical and plays very important
role in mathematics including complex analysis and differential equations [29, 12, 23]. The
classical Laplace transform is used frequently for ordinary differential equations and also for
partial differential equations sufficiently simple to be resolved, for example, of two variables.
But it meets substantial difficulties or does not work for general partial differential equations
even with constant coefficients especially for that of hyperbolic type.
To overcome these drawbacks of the classical Laplace transform in the present paper more

general noncommutative multiparameter transforms over Cayley-Dickson algebras are inves-
tigated. In the preceding paper a noncommutative analog of the classical Laplace transform
over the Cayley-Dickson algebras was defined and investigated [18]. This paper is devoted to
its generalizations for several real parameters and also variables in the Cayley-Dickson alge-
bras. For this the preceding results of the author on holomorphic, that is (super)differentiable
functions, and meromorphic functions of the Cayley-Dickson numbers are used [17, 16]. The
super-differentiability of functions of Cayley-Dickson variables is stronger than the Fréchet’s
differentiability. In those works also a noncommutative line integration was investigated.
We remind that quaternions and operations over them had been first defined and investi-

gated by W.R. Hamilton in 1843 [8]. Several years later on Cayley and Dickson had introduced
generalizations of quaternions known now as the Cayley-Dickson algebras [2, 9, 11, 25]. These
algebras, especially quaternions and octonions, have found applications in physics. They were
used by Maxwell, Yang and Mills while derivation of their equations, which they then have
rewritten in the real form because of the insufficient development of mathematical analysis over
such algebras in their time [4, 7, 13]. This is important, because noncommutative gauge fields
are widely used in theoretical physics [27].
Each Cayley-Dickson algebra Ar over the real field R has 2r generators {i0, i1, ..., i2r−1}

such that i0 = 1, i2j = −1 for each j = 1, 2, ..., 2
r−1, ijik = −ikij for every 1 ≤ k 6= j ≤ 2r−1,

where r ≥ 1. The algebra Ar+1 is formed from the preceding algebra Ar with the help of the
so-called doubling procedure by generator i2r . In particular, A1 = C coincides with the field of
complex numbers, A2 = H is the skew field of quaternions, A3 is the algebra of octonions, A4
is the algebra of sedenions. This means that a sequence of embeddings ... ↪→ Ar ↪→ Ar+1 ↪→ ...
exists.
Generators of the Cayley-Dickson algebras have a natural physical meaning as generating

operators of fermions. The skew field of quaternions is associative, and the algebra of octonions
is alternative. The Cayley-Dickson algebra Ar is power associative, that is, zn+m = znzm
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for each n,m ∈ N and z ∈ Ar. It is non-associative and non-alternative for each r ≥ 4. A
conjugation z∗ = z̃ of Cayley-Dickson numbers z ∈ Ar is associated with the norm |z|2 = zz∗ =
z∗z. The octonion algebra has the multiplicative norm and is the division algebra. Cayley-
Dickson algebras Ar with r ≥ 4 are not division algebras and have not multiplicative norms.
The conjugate of any Cayley-Dickson number z is given by the formula:

(M1) z∗ := ξ∗ − ηl.
The multiplication in Ar+1 is defined by the following equation:

(M2) (ξ + ηl)(γ + δl) = (ξγ − δ̃η) + (δξ + ηγ̃)l

for each ξ, η, γ, δ ∈ Ar, z := ξ + ηl ∈ Ar+1, ζ := γ + δl ∈ Ar+1.
At the beginning of this article a multiparameter noncommutative transform is defined.

Then new types of the direct and inverse noncommutative multiparameter transforms over
the general Cayley-Dickson algebras are investigated, particularly, also over the quater-
nion skew field and the algebra of octonions. The transforms are considered in Ar spher-
ical and Ar Cartesian coordinates. At the same time specific features of the noncommu-
tative multiparameter transforms are elucidated, for example, related with the fact that
in the Cayley-Dickson algebra Ar there are 2r−1 imaginary generators {i1, ..., i2r−1} apart
from one in the field of complex numbers such that the imaginary space in Ar has the di-
mension 2r−1. Theorems about properties of images and originals in conjunction with the
operations of linear combinations, differentiation, integration, shift and homothety are proved.
An extension of the noncommutative multiparameter transforms for generalized functions is
given. Formulas for noncommutative transforms of products and convolutions of functions are
deduced.
Thus this solves the problem of non-commutative mathematical analysis to develop the

multiparameter Laplace transform over the Cayley-Dickson algebras. Moreover, an application
of the noncommutative integral transforms for solutions of partial differential equations is
described. It can serve as an effective means (tool) to solve partial differential equations with
real or complex coefficients with or without boundary conditions and their systems of different
types. An algorithm is described which permits to write fundamental solutions and functions of
Green’s type. A moving boundary problem and partial differential equations with discontinuous
coefficients are also studied with the use of the noncommutative transform.
Moreover, a decomposition theorem of linear partial differential operators over the Cayley-

Dickson algebras is proved. A relation between fundamental solutions of an initial and compo-
nent operators is demonstrated. In conjunction with a line integration over the Cayley-Dickson
algebras and the decomposition theorem of partial differential operators it permits to solve par-
tial differential equations linear with constant and variable coefficients and non-linear as well
as boundary problems (see also [19]). Certainly, this approach effectively encompasses systems
of partial differential equations, because each function f with values in the Cayley-Dickson
algebra is the sum of functions fjij, where each function fj is real-valued.
All results of this paper are obtained for the first time.

2 Multidimensional noncommutative integral transforms.

1. Definitions. Transforms in Ar Cartesian coordinates.
Denote by Ar the Cayley-Dickson algebra, 0 ≤ r, which may be, in particular, H = A2 the
quaternion skew field or O = A3 the octonion algebra. For unification of the notation we put
A0 = R, A1 = C. A function f : Rn → Ar we call a function-original, where 2 ≤ r, n ∈ N, if
it fulfills the following conditions (1− 5).

(1). The function f(t) is almost everywhere continuous on Rn relative to the Lebesgue
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measure λn on Rn.

(2). On each finite interval in R each function gj(tj) = f(t1, ..., tn) by tj with marked all
other variables may have only a finite number of points of discontinuity of the first kind, where
t = (t1, ..., tn) ∈ Rn, tj ∈ R, j = 1, ..., n. Recall that a point u0 ∈ R is called a point of
discontinuity of the first type, if there exist finite left and right limits limu→u0,u<u0 g(u) =:
g(u0 − 0) ∈ Ar and limu→u0,u>u0 g(u) =: g(u0 + 0) ∈ Ar.

(3). Every partial function gj(tj)=f(t1, ..., tn) satisfies the Hölder condition: |gj(tj + hj) −
gj(tj)| ≤ Aj|hj|αj for each |hj| < δ, where 0 < αj ≤ 1, Aj = const > 0, δj>0 are constants for a
given t = (t1, ..., tn) ∈ Rn, j = 1, ..., n, everywhere on Rn may be besides points of discontinuity
of the first type.

(4). The function f(t) increases not faster, than the exponential function, that is there
exist constants Cv = const > 0, v = (v1, ..., vn), a−1, a1 ∈ R, where vj ∈ {−1, 1} for every
j = 1, ..., n, such that
|f(t)| < Cv exp((qv, t)) for each t ∈ Rn with tjvj ≥ 0 for each j = 1, ..., n, qv =

(v1av1 , ..., vnavn); where

(5) (x, y) :=
∑n

j=1 xjyj denotes the standard scalar product in R
n.

Certainly for a bounded original f it is possible to take a−1 = a1 = 0.
Each Cayley-Dickson number p ∈ Ar we write in the form

(6) p =
∑2r−1

j=0 pjij, where {i0, i1, ..., i2r−1} is the standard basis of generators of Ar so that
i0 = 1, i2j = −1 and i0ij = ij = iji0 for each j > 0, ijik = −ikij for each j > 0 and k > 0 with
k 6= j, pj ∈ R for each j.

If there exists an integral

(7) F n(p) := F n(p; ζ) :=
∫
Rn
f(t)e−<p,t)−ζdt,

then F n(p) is called the noncommutative multiparameter (Laplace) transform at a point p ∈ Ar
of the function-original f(t), where ζ − ζ0 = ζ1i1 + ...+ ζ2r−1i2r−1 ∈ Ar is the parameter of an
initial phase, ζj ∈ R for each j = 0, 1, ..., 2r − 1, ζ ∈ Ar, n = 2r − 1, dt = λn(dt),

(8) < p, t) = p0(t1 + ...+ t2r−1) +
∑2r−1

j=1 pjtjij, we also put

(8.1) u(p, t; ζ) =< p, t) + ζ.

For vectors v, w ∈ Rn we shall consider a partial ordering

(9) v ≺ w if and only if vj ≤ wj for each j = 1, ..., n and a k exists so that vk < wk,
1 ≤ k ≤ n.

2. Transforms in Ar spherical coordinates.
Now we consider also the non-linear function u = u(p, t; ζ) taking into account non commuta-
tivity of the Cayley-Dickson algebra Ar. Put

(1) u(p, t) := u(p, t; ζ) := p0s1 +M(p, t) + ζ0, where

(2) M(p, t) =M(p, t; ζ) = (p1s1 + ζ1)
[
i1 cos(p2s2 + ζ2) + i2 sin(p2s2 + ζ2) cos(p3s3 + ζ3) + ...

+ i2r−2 sin(p2s2 + ζ2)... sin(p2r−2s2r−2 + ζ2r−2) cos(p2r−1s2r−1 + ζ2r−1) + i2r−1 sin(p2s2 + ζ2)...
sin(p2r−2s2r−2 + ζ2r−2) sin(p2r−1s2r−1 + ζ2r−1)

]

for the general Cayley-Dickson algebra with 2 ≤ r <∞,

(2.1) sj := sj(n; t) := tj + ...+ tn for each j = 1, ..., n, n = 2r− 1, so that s1 = t1+ ...+ tn,
sn = tn. More generally, let

(3) u(p, t) = u(p, t; ζ) = p0s1 + w(p, t) + ζ0, where w(p, t) is a locally analytic function,
Re(w(p, t))=0 for each p ∈ Ar and t ∈ R2

r−1, Re(z) := (z+ z̃)/2, z̃ = z∗ denotes the conjugated
number for z ∈ Ar. Then the more general non-commutative multiparameter transform over
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Ar is defined by the formula:

(4) F n
u (p; ζ) :=

∫
Rn
f(t) exp(−u(p, t; ζ))dt

for each Cayley-Dickson numbers p ∈ Ar whenever this integral exists as the principal value
of either Riemann or Lebesgue integral, n = 2r − 1. This non-commutative multiparameter
transform is in Ar spherical coordinates, when u(p, t; ζ) is given by Formulas (1, 2).

At the same time the components pj of the number p and ζj for ζ in u(p, t; ζ) we write in
the p- and ζ-representations respectively such that

(5) hj =
(
−hij + ij(2r − 2)−1

{
−h+

∑2r−1
k=1 ik(hi

∗
k)
})/

2 for each j = 1, 2, ..., 2r − 1,

(6) h0 =
(
h+ (2r − 2)−1

{
−h+

∑2r−1
k=1 ik(hi

∗
k)
})/

2,

where 2 ≤ r ∈ N, h = h0i0 + ... + h2r−1i2r−1 ∈ Ar, hj ∈ R for each j, i∗k = ĩk = −ik for each
k > 0, i0 = 1, h ∈ Ar. Denote F n

u (p; ζ) in more details by F
n(f, u; p; ζ).

Henceforth, the functions u(p, t; ζ) given by 1(8, 8.1) or (1, 2, 2.1) are used, if an-
other form (3) is not specified. If for u(p, t; ζ) concrete formulas are not mentioned,
it will be undermined, that the function u(p, t; ζ) is given in Ar spherical coordinates
by Expressions (1, 2, 2.1). If in Formulas 1(7) or (4) the integral is not by all, but
only by tj(1), ..., tj(k) variables, where 1 ≤ k < n, 1 ≤ j(1) < ... < j(k) ≤ n,

then we denote a noncommutative transform by F
k;tj(1),...,tj(k)
u (p; ζ) or Fk;tj(1),...,tj(k)(f, u; p; ζ). If

j(1) = 1,...,j(k) = k, then we denote it shortly by F k
u (p; ζ) or F

k(f, u; p; ζ). Henceforth, we
take ζm = 0 and tm = 0 and pm = 0 for each 1 ≤ m /∈ {j(1), ..., j(k)} if something other is not
specified.

3. Remark. The spherical Ar coordinates appear naturally from the following consideration
of iterated exponents:

(1) exp(i1(p1s1 + ζ1) exp
(
−i3(p2s2 + ζ2) exp(−i1(p3s3 + ζ3))

))

= exp
(
i1(p1s1 + ζ1) exp

(
−(p2s2 + ζ2)(i3 cos(p3s3 + ζ3)− i2 sin(p3s3 + ζ3))

))

= exp
(
i1(p1s1 + ζ1)(cos(p2s2 + ζ2)− sin(p2s2 + ζ2)(i3 cos(p3s3 + ζ3)− i2 sin(p3s3 + ζ3)))

)

= exp
(
(p1s1+ζ1)(i1 cos(p2s2+ζ2)+i2 sin(p2s2+ζ2) cos(p3s3+ζ3)+i3 sin(p2s2+ζ2) sin(p3s3+ζ3))

)
.

Consider i2r the generator of the doubling procedure of the Cayley-Dickson algebra Ar+1 from
the Cayley-Dickson algebra Ar, such that iji2r = i2r+j for each j = 0, ..., 2r−1. We denote now
the function M(p, t; ζ) from Definition 2 over Ar in more details by rM .
Then by induction we write:

(2) exp
(
r+1M(p, t; ζ)

)
= exp

{
rM
(
(i1p1 +. ..+ i2r−1p2r−1), (t1, ..., t2r−2, (t2r−1 + s2r));

(i1ζ1 + ...+ i2r−1ζ2r−1) exp(−i2r+1(p2rs2r + ζ2r) exp(− rM((i1p2r+1 + ...+ i2r−1p2r+1−1),

(t2r+1, ..., t2r+1−1); (i1ζ2r+1 + ...+ i2r−1ζ2r+1−1)))
}
,

where t = (t1, ..., tn), n = n(r + 1) = 2r+1 − 1, sj = sj(n(r + 1); t) for each j = 1, ..., n(r + 1),
since sm(n(r+1); t) = tm+ ...+ tn(r+1) = sm(n(r); t)+ s2r(n(r+1); t) for each m = 1, ..., 2r− 1.
An image function can be written in the form

(3) F n
u (p; ζ) :=

∑2r−1
j=0 ijF

n
u,j(p; ζ),

where a function f is decomposed in the form

(3.1) f(t) =
∑2r−1

j=0 ijfj(t), fj : R
n → R for each j = 0, 1, ..., 2r − 1, F n

u,j(p; ζ) denotes the
image of the function-original fj.

If an automorphism of the Cayley-Dickson algebra Ar is taken and instead of the standard
generators {i0, ..., i2r−1} new generators {N0, ..., N2r−1} are used, this provides also M(p, t; ζ) =
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MN(p, t; ζ) relative to new basic generators, where 2 ≤ r ∈ N. In this more general case
we denote by NF

n
u (p; ζ) an image for an original f(t), or in more details we denote it by

NFn(f, u; p; ζ).
Formulas 1(7) and 2(4) define the right multiparameter transform. Symmetrically is defined

a left multiparameter transform. They are related by conjugation and up to a sign of basic
generators. For real valued originals they certainly coincide. Henceforward, only the right
multiparameter transform is investigated.
Particularly, if p = (p0, p1, 0, ..., 0) and t = (t1, 0, ..., 0), then the multiparameter non-

commutative Laplace transforms 1(7) and 2(4) reduce to the complex case, with parameters
a1, a−1. Thus, the given above definitions over quaternions, octonions and general Cayley-
Dickson algebras are justified.

4. Theorem. If an original f(t) satisfies Conditions 1(1 − 4) and a1<a−1, then its image
Fn(f, u; p; ζ) is Ar-holomorphic (that is locally analytic) by p in the domain {z ∈ Ar : a1 <
Re(z) < a−1}, as well as by ζ ∈ Ar, where 1≤r∈N, 2r−1≤n≤2r − 1, the function u(p, t; ζ) is
given by 1(8,8.1) or 2(1,2, 2.1).
Proof. At first consider the characteristic functions χUv(t), where χU(t) = 1 for each t ∈ U ,

while χU(t) = 0 for every t ∈ Rn \ U , Uv := {t ∈ Rn : vjtj ≥ 0 ∀j = 1, ..., n} is the domain in
the Euclidean space Rn for any v from §1. Therefore,

(1) F n
u (p; ζ) :=

∑
[v=(v1,...,vn):v1,...,vn∈{−1,1}]

∫
Uv
f(t) exp(−u(p, t; ζ))dt,

since λn(Uv ∩ Uw) = 0 for each v 6= w. Each integral
∫
Uv
f(t) exp(−u(p, t; ζ))dt is absolutely

convergent for each p ∈ Ar with the real part a1 < Re(p) < a−1, since it is majorized by the
converging integral

(2)
∣
∣
∣
∫
Uv
f(t) exp(−u(p, t; ζ))dt

∣
∣
∣ ≤

∫∞
0
...
∫∞
0
Cv exp{−v1(w−av1)y1− ...−vn(w−avn)yn−ζ0}

dy1...dyn = Cve
−ζ0
∏n

j=1 vj(w − avj)
−1,

where w = Re(p), since |ez| = exp(Re(z)) for each z ∈ Ar in view of Corollary 3.3 [16]. While
an integral, produced from the integral (1) differentiating by p converges also uniformly:

(3)
∣
∣
∣
∫
Uv
f(t) [∂ exp(−u(p, t; ζ))/∂p] .hdt

∣
∣
∣

≤
∫∞
0
...
∫∞
0
Cv
∣
∣(h0(v1y1+ ...+vnyn), h1(v1y1+ ...+vnyn), ..., hn−1(vn−1yn−1+vnyn), hnvnyn)

∣
∣

exp{−v1(w − av1)y1 − ...− vn(w − avn)yn − ζ0}dy1...dyn
≤ |h|Cve−ζ0

∏n
j=1(w − avj)

−2

for each h ∈ Ar, since each z ∈ Ar can be written in the form z = |z| exp(M), where |z|2 =
zz̃ ∈ [0,∞) ⊂ R, M ∈ Ar, Re(M) := (M + M̃)/2 = 0 in accordance with Proposition 3.2 [16].
In view of Equations 2(5, 6):

(4) ∂
(∫
Rn
f(t) exp(−u(p, t; ζ))dt

)
/∂p̃ = 0 and

(5) ∂
(∫
Rn
f(t) exp(−u(p, t; ζ))dt

)
/∂ζ̃ = 0, while

(6)
∣
∣
∣
∫
Uv
f(t)

[
∂ exp(−u(p, t; ζ))/∂ζ

]
.hdt

∣
∣
∣ ≤ |h|

∫∞
0
...
∫∞
0
Cv exp

{
−v1(w−av1)y1− ...−vn(w−

avn)yn − ζ0
}
dy1...dyn = |h|Cve−ζ0

∏n
j=1 vj(w − avj)

−1

for each h ∈ Ar. In view of convergence of integrals given above (1−6) the multiparameter non-
commutative transform F n

u (p; ζ) is (super)differentiable by p and ζ, moreover, ∂F
n
u (p; ζ)/∂p̃ = 0

and ∂F n
u (p; ζ)/∂ζ̃ = 0 in the considered (p, ζ)-representation. In accordance with [17, 16] a

function g(p) is locally analytic by p in an open domain U in the Cayley-Dickson algebra Ar,
2 ≤ r, if and only if it is (super)differentiable by p, in another words Ar-holomorphic. Thus,
F n
u (p; ζ) is Ar-holomorphic by p ∈ Ar with a1 < Re(p) < a−1 and ζ ∈ Ar due to Theorem 2.6
[18].
4.1. Corollary. Let suppositions of Theorem 4 be satisfied. Then the image Fn(f, u; p; ζ)
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with u = u(p, t; ζ) given by 2(1, 2) has the following periodicity properties:
(1) Fn(f, u; p; ζ + βij) = Fn(f, u; p; ζ) for each j = 1, ..., n and β ∈ 2πZ;

(2) Fn(f, u; p1; ζ1) = (−1)κFn(f, u; p2; ζ2) for each j = 1, ..., n − 1 so that ζ10 = ζ20 and
ζ1j = −ζ

2
j , ζ

1
j+1 = π + ζ2j+1, ζ

1
s = ζ2s for each s 6= j and s 6= j + 1, while either p1j = −p

2
j and

p1l = p2l for each l 6= j with κ = 2 or p1 = p2 and f(t) is an even function with κ = 2 by the
sj = (tj + ...+ tn) variable or an odd function by sj = (tj + ...+ tn) with κ = 1;

(3) Fn(f, u; p; ζ + πi1) = −Fn(f, u; p; ζ).

Proof. In accordance with Theorem 4 the image Fn(f, u; p; ζ) exists for each p ∈ Wf :=
{z ∈ Ar : a1 < Re(z) < a−1} and ζ ∈ Ar, where 1≤r. Then from the 2π periodicity of sine
and cosine functions the first statement follows. From sin(−φ) = − sin(φ), cos(φ) = cos(−φ),
sin(π+φ) = − sin(φ), cos(φ + π) = − cos(φ) we get that cos(pjsj + ζ1j ) = cos(−pjsj + ζ2j ),
sin(pjsj + ζ

1
j ) cos(pj+1sj+1 + ζ

1
j+1) = (− sin(−pjsj + ζ

2
j ))(− cos(pj+1sj+1 + ζ

2
j+1)) and sin(pjsj +

ζ1j ) sin(pj+1sj+1 + ζ
1
j+1) = (− sin(−pjsj + ζ

2
j ))(− sin(pj+1sj+1 + ζ

2
j+1)) for each t ∈ R

n. On the
other hand, either p1j = −p

2
j and p

1
l = p2l for each l 6= j ≥ 1 with κ = 2 or p1 = p2 and

f(t1, ..., sj−1 + sj,−sj − sj+1, tj+1, ..., tn) = (−1)κf(t1, ..., sj−1 − sj, sj − sj+1, tj+1, ..., tn) is an
even with κ = 2 or odd with κ = 1 function by the sj = (tj + ... + tn) variable for each
t = (t1, ..., tn) ∈ Rn, where tj = sj − sj+1 for j = 1, ..., n, sn+1 = sn+1(n; t) = 0. From this and
Formulas 2(1, 2, 4) the second and the third statements of this corollary follow.

5. Remark. For a subset U in Ar we put πs,p,t(U) := {u : z ∈ U, z =
∑
v∈bwvv, u = wss+wpp}

for each s 6= p ∈ b, where t :=
∑
v∈b\{s,p}wvv ∈ Ar,s,p := {z ∈ Ar : z =

∑
v∈bwvv, ws = wp = 0,

wv ∈ R ∀v ∈ b}, where b := {i0, i1, ..., i2r−1} is the family of standard generators of the Cayley-
Dickson algebra Ar. That is, geometrically πs,p,t(U) means the projection on the complex
plane Cs,p of the intersection U with the plane π̃s,p,t 3 t, Cs,p := {as + bp : a, b ∈ R}, since
sp∗ ∈ b̂ := b \ {1}. Recall that in §§2.5-7 [16] for each continuous function f : U → Ar
it was defined the operator f̂ by each variable z ∈ Ar. For the non-commutative integral
transformations consider, for example, the left algorithm of calculations of integrals.
A Hausdorff topological space X is said to be n-connected for n ≥ 0 if each continuous map

f : Sk → X from the k-dimensional real unit sphere into X has a continuous extension over
Rk+1 for each k ≤ n (see also [28]). A 1-connected space is also said to be simply connected.
It is supposed further, that a domain U in Ar has the property that U is (2r−1)-connected;

πs,p,t(U) is simply connected in C for each k = 0, 1, ..., 2r−1, s = i2k, p = i2k+1, t ∈ Ar,s,p and
u ∈ Cs,p, for which there exists z = u+ t ∈ U .

6. Theorem. If a function f(t) is an original (see Definition 1), such that NF
n
u (p; ζ) is its

image multiparameter non-commutative transform, where the functions f and F n
u are written

in the forms given by 3(3, 3.1), f(Rn) ⊂ Ar over the Cayley-Dickson algebra Ar, where
1 ≤ r ∈ N, 2r−1≤n≤2r−1.
Then at each point t, where f(t) satisfies the Hölder condition the equality is accomplished:

(1) f(t) =

{[

(2πNn)
−1
∫ Nn∞

−Nn∞

](

...

([

(2πN1)
−1

∫ N1∞

−N1∞

]

NF
n
u (a+ p; ζ)

exp{u(a+ p, t; ζ)}

)

...

)

dp

}

=: (Fn)−1( NF
n
u (a+ p; ζ), u, t; ζ),

where either u(p, t; ζ) =< p, t) + ζ or u(p, t; ζ) = p0s1 +MN(p, t; ζ) + ζ0 (see §§1 and 2), the
integrals are taken along the straight lines p(τj) = Njτj ∈ Ar, τj ∈ R for each j = 1, ..., n;
a1 < Re(p) = a < a−1 and this integral is understood in the sense of the principal value,
t = (t1, ..., tn) ∈ Rn, dp = (...((d[p1N1])d[p2N2])...)d[pnNn].
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Proof. In Integral (1) an integrand η(p)dp certainly corresponds to the iterated integral as
(...(η(p)d[p1N1])...)d[pnNn], where p = p1N1 + ... + pnNn, p1, ..., pn ∈ R. Using Decomposition
3(3.1) of a function f it is sufficient to consider the inverse transformation of the real valued
function fj, which we denote for simplicity by f . We put

NF
n
u,j(p; ζ) :=

∫

Rn
fj(t) exp(−u(p, t; ζ))dt.

If η is a holomorphic function of the Cayley-Dickson variable, then locally in a simply connected
domain U in each ball B(Ar, z0, R) with the center at z0 of radius R > 0 contained in the interior
Int(U) of the domain U there is accomplished the equality
(
∂
[∫ z

z0
η(a+ ζ)dζ

]/
∂z
)
.1 = η(a+ z),

where the integral depends only on an initial z0 and a final z points of a rectifiable path in
B(Ar, z0, R), a ∈ R (see also Theorem 2.14 [18]). Therefore, along the straight line NjR the
restriction of the antiderivative has the form

∫ θ
θ0
η(a+Njτj)dτj, since

(2)
∫ z=Njθ
z0=Njθ0

η(a+ ζ)dζ =
∫ θ
θ0
η̂(a+Njτj).Njdτj,

where ∂η(a + z)/∂θ = (∂η(a + z)/∂z).Nj for the (super)differentiable by z ∈ U function η(z),
when z=θNj, θ ∈ R. For the chosen branch of the line integral specified by the left algorithm
this antiderivative is unique up to a constant from Ar with the given z-representation ν of
the function η [16, 17, 18]. On the other hand, for analytic functions with real expansion
coefficients in their power series non-commutative integrals specified by left or right algorithms
along straight lines coincide with usual Riemann integrals by the corresponding variables. The
functions sin(z), cos(z) and ez participating in the multiparameter non-commutative transform
are analytic with real expansion coefficients in their series by powers of z ∈ Ar.
Using Formula 4(1) we reduce the consideration to χUv(t)f(t) instead of f(t). By symmetry

properties of such domains and integrals and utilizing change of variables it is sufficient to
consider Uv with v = (1, ..., 1). In this case

∫
Rn
for the direct multiparameter non-commutative

transform 1(7) and 2(4) reduces to
∫∞
0
...
∫∞
0
. Therefore, we consider in this proof below the

domain U1,...,1 only. Using Formulas 3(3, 3.1) and 2(1, 2, 2.1) we mention that any real algebra
with generators N0 = 1, Nk and Nj with 1 ≤ k 6= j is isomorphic with the quaternion skew field
H, since Re(NjNk) = 0 and |Nj| = 1, |Nk| = 1 and |NjNk| = 1. Then exp(α +Mβ) exp(γ +
Mω) = exp((α + γ) + M(β + ω)) for each real numbers α, β, γ, δ and a purely imaginary
Cayley-Dickson number M .
The octonion algebra O is alternative, while the real field R is the center of the Cayley-

Dickson algebra Ar. We consider the integral

(3) gb(t) :=
[
(2πNn)

−1
∫ Nnb
−Nnb

] (
...
([
(2πN1)

−1
∫ N1b
−N1b

]
NF

n
u,j(a+p; ζ) exp{u(a+p, t; ζ)}

)
...
)
dp

for each positive value of the parameter 0 < b <∞. With the help of generators of the Cayley-
Dickson algebra Ar and the Fubini Theorem for real valued components of the function the
integral can be written in the form:

(4) gb(t) =

[

(2πNn)
−1

∫ ∞

0

dτn

∫ Nnb

−Nnb

](

...

([

(2πN1)
−1

∫ ∞

0

dτ1

∫ N1b

−N1b

]

f(τ) exp{−uN(a+ p, t; ζ)} exp{uN(a+ p, τ ; ζ)}

)

...

)

dp,

since the integral
∫
U1,...,1

f(τ) exp{−uN(a + p, τ ; ζ)}dτ for any marked 0 < δ < (a−1 − a1)/3 is
uniformly converging relative to p in the domain a1 + δ ≤ Re(p) ≤ a−1 − δ in Ar (see also
Proposition 2.18 [18]).
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If take marked tk for each k 6= j and S = Nj for some j ≥ 1 in Lemma 2.17 [18] considering
the variable tj, then with a suitable (R-linear) automorphism v of the Cayley-Dickson algebra
Ar an expression for v(M(p, t; ζ)) simplifies like in the complex case with CK := R⊕RK for a
purely imaginary Cayley-Dickson number K, |K| = 1, instead of C := R⊕Ri1, where v(x) = x
for each real number x ∈ R. But each equality α = β in Ar is equivalent to v(α) = v(β).
Then

(5) Re [(NjNq)(NjNl)
∗] = Re(NqN

∗
l ) = δq,l for each q, l.

If Sj =
∑
0≤l≤n;l 6=j αlNl, N j =

∑
0≤l≤n;l 6=j βlNl with j ≥ 1 and real numbers αl, βl ∈ R for

each l, then

(6) Re [(NjS
j)(NjN

j)∗] = Re [Sj(N j)∗] =
∑

l αlβl.

The latter identity can be applied to either Sk=Mk+1(pk+1Nk+1 + ... +
pnNn, (tk+1, ..., tn); ζk+1Nk+1 + ... + ζnNn) and Nk = Mk+1(pk+1Nk+1 + ... +
pnNn, (τk+1, ..., τn); ζk+1Nk+1 + ...+ ζnNn), or Sk = (pk+1tk+1 + ζk+1)Nk+1 + ...+ (pntn + ζn)Nn

and Nk = (pk+1τk+1 + ζk+1)Nk+1 + ...+ (pnτn + ζn)Nn, where

(7) Mk+1(pk+1Nk+1 + ... + pnNn, (tk+1, ..., tn); ζk+1Nk+1 + ... + ζnNn) = (pk+1s1,k+1 +
ζk+1)[Nk+1 cos(pk+2s2,k+1 + ζk+2) + ...+Nn sin(pk+2s2,k+1 + ζk+2)... sin(pnsn−k,k+1 + ζn)],

(8) sj,k+1 = sj,k+1(n; t) = tk+j + ... + tn = sk+j(n; t) for each j = 1, ..., n − 1; sn−k,k+1 =
sn−k,k+1(n; t) = tn.

We take the limit of gb(t) when b tends to the infinity. Evidently, sk(n; τ) − sj(n; τ) =
sk(j − 1; τ) = τk + ...+ τj−1 for each 1 ≤ k < j ≤ n. By our convention sk(n; τ) = s1(n; τ) for
k < 1, while sk(n; τ) = 0 for k > n. Put

(9) un,j(p0 + pjNj + ...+ pnNn, (τj, ..., τn); ζ0 + ζjNj + ...+ ζnNn) = ζ0 + p0s1,j +Mj(pjNj +
...+ pnNn, (τj, ..., τn); ζ0 + ζjNj + ...+ ζnNn)
for uN given by 2(1, 2, 2.1), where Mj is prescribed by (7), sk,j = sk,j(n; τ);

(10) un,j(p0+pjNj+ ...+pnNn, (τj, ..., τn); ζ0+ζjNj+ ...+ζnNn) = ζ0+p0s1,j+
∑n

k=j(pkτk+
ζk)Nk

for u = uN given by 1(8, 8.1). For j > 1 the parameter ζ0 for u = uN given by 1(8, 8.1) or
2(1, 2, 2.1) can be taken equal to zero.

When t1, ..., tj−1, tj+1, ..., tn and p1, ..., pj−1, pj+1, ..., pn variables are marked, we take the
parameter

ζj := ζj(pjNj + ... + pnNn, (τj, ..., τn); ζ0 + ζjNj + ... + ζnNn) := (ζ0 + ζjNj + ... + ζnNn) +
(a+ p0)sj+1 + pj+1sj+1Nj+1 + ...+ pnsnNn for u(p, τ ; ζ) given by Formulas 2(1, 2, 2.1) or

ζj := ζj(pjNj + ...+ pnNn), (τj, ..., τn); ζ0 + ζjNj + ...+ ζnNn) := (ζ0 + ζjNj + ...+ ζnNn) +
(a+ p0)sj+1+ pj+1τj+1Nj+1+ ...+ pnτnNn for u(p, τ ; ζ) described in 1(8, 8.1). Then the integral
operator
limb→∞[(2πNj)

−1
∫∞
0
dτj
∫ Njb
−Njb
]...(dpjNj) (see also Formula (4) above) applied to the func-

tion f(t1, ..., tj−1, τj, ..., τn) exp{−uN,j(a + p0 + pjNj + ... + pnNn, (tj, ..., tn); ζ0 + ζjNj + ... +
ζnNn)} exp{uN,j(a + p0 + pjNj + ... + pnNn, (τj, ..., τn); ζ0 + ζjNj + ... + ζnNn)} with the pa-
rameter ζj instead of ζ treated by Theorems 2.19 and 3.15 [18] gives the inversion formula
corresponding to the real variable tj for f(t) and to the Cayley-Dickson variable p0N0 + pjNj

restricted on the complex plane CNj = R⊕RNj, since d(τj + c) = dτj for each (real) constant
c. After integrations with j = 1, ..., k with the help of Formulas (6− 10) and 3(1, 2) we get the
following:

(11) lim
b→∞

gb(t) = Re

[

(2πNn)
−1

∫ ∞

0

dτn

∫ Nn∞

−Nn∞

](

...

([

(2πNk+1)
−1

∫ ∞

0

dτk+1

∫ Nk+1∞

−Nk+1∞

]

f(t1, ..., tk, τk+1, ..., τn) exp
{
−uN,k+1((a+ p0 + pk+1Nk+1 + ...+ pnNn), (tk+1, ..., tn);
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(ζ0 + ζk+1Nk+1 + ...+ ζnNn))
}
exp
{
uN,k+1((a+ p0 + pk+1Nk+1 + ...+ pnNn),

(τk+1, ..., τn); (ζ0 + ζk+1Nk+1 + ...+ ζnNn))
}
)

...

)

dp.

Moreover, Re(fq) = fq for each q and in (11) the function f = fq stands for some marked q in
accordance with Decompositions 3(3, 3.1) and the beginning of this proof.
Mention, that the algebra algR(Nj, Nk, Nl) over the real field with three generators Nj, Nk

and Nl is alternative. The product NkNl of two generators is also the corresponding generator
(−1)ξ(k,l)Nm with the definite number m = m(k, l) and the sign multiplier (−1)ξ(k,l), where
ξ(k, l) ∈ {0, 1}. On the other hand, Nk1 [Ñj(Nj(Nk2Nl))] = Nk1(Nk2Nl). We use decompositions
(7−10) and take k2 = l due to Formula (11), where Re stands on the right side of the equality,
since Re(NkNl) = 0 and Re[Ñj(Nj(NkNl))] = 0 for each k 6= l. Thus the repeated application
of this procedure by j = 1, 2, ..., n leads to Formula (1) of this theorem.
6.1. Corollary. If the conditions of Theorem 6 are satisfied, then

(1) f(t) = (2π)−n
∫

Rn
F n
u (a+ p; ζ) exp{u(a+ p, t; ζ)}dp1...dpn

= (Fn)−1
(
NF

n
u (a+ p; ζ), u, t; ζ

)
.

Proof. Each algebra algR(Nj, Nk, Nl) is alternative. Therefore, in accordance with §6 and
Formulas 1(8, 8.1) and 2(1− 4) for each non-commutative integral given by the left algorithm
we get

(2) N−1j

∫ Njb

−Njb

[
f(τ) exp{−uN(a+ p, t; ζ)}

]
exp{uN(a+ p, τ ; ζ)}d(pjNj)

2r−1∑

l=0

Ñj

[

Nj

(∫ Njb

−Njb

[
Nlfl(τ) exp{−uN(a+ p, t; ζ)}

]
exp{uN(a+ p, τ ; ζ)}dpj

)]

=

∫ b

−b

[
f(τ) exp{−uN(a+ p, t; ζ)}

]
exp{uN(a+ p, τ ; ζ)}dpj

for each j = 1, ..., n, since the real field is the center of the Cayley-Dickson algebra Ar, while
the functions sin and cos are analytic with real expansion coefficients. Thus

(3) gb(t) = (2π)
−n
[∫∞
0
dτn
∫ b
−b

](
...
([∫∞

0
dτ1
∫ b
−b

]
f(τ) exp{−uN(a+ p, t; ζ)}

exp{uN(a+ p, τ ; ζ)}
)
...
)
dp1...dpn,

hence taking the limit with b tending to the infinity implies, that the non-commutative iterated
(multiple) integral in Formula 6(1) reduces to the principal value of the usual integral by real
variables (τ1, ..., τn) and (p1, ..., pn) 6.1(1).

7. Theorem. An original f(t) with f(Rn) ⊂ Ar over the Cayley-Dickson algebra Ar with
1 ≤ r ∈ N is completely defined by its image NF

n
u (p; ζ) up to values at points of discontinuity,

where the function u(p, t; ζ) is given by 1(8,8.1) or 2(1,2, 2.1).
Proof. Due to Corollary 6.1 the value f(t) at each point t of continuity of f(t) has

the expression throughout NF
n
u (p; ζ) prescribed by Formula 6.1(1). Moreover, values of the

original at points of discontinuity do not influence on the image NF
n
u (p; ζ), since on each

bounded interval in R by each variable tj a number of points of discontinuity is finite and by
our supposition above the original function f(t) is λn-almost everywhere on Rn continuous.

8. Theorem. Suppose that a function NF
n
u (p; ζ) is analytic by the variable p ∈ Ar in a domain
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W := {p ∈ Ar : a1 < Re(p) < a−1}, where 2 ≤ r ∈ N, 2r−1 ≤ n ≤ 2r − 1, f(Rn) ⊂ Ar, either
u(p, t; ζ) =< p, t) + ζ or u(p, t; ζ) := p0s1 +M(p, t; ζ) + ζ0 (see §§1 and 2). Let NF

n
u (p; ζ) be

written in the form NF
n
u (p; ζ) = NF

n,0
u (p; ζ)+ NF

n,1
u (p; ζ), where NF

n,0
u (p; ζ) is holomorphic

by p in the domain a1 < Re(p). Let also NF
n,1
u (p; ζ) be holomorphic by p in the domain

Re(p) < a−1. Moreover, for each a > a1 and b < a−1 there exist constants Ca > 0, Cb > 0 and
εa > 0 and εb > 0 such that

(1)
∣
∣
∣ NF n,0

u (p; ζ)
∣
∣
∣≤ Ca exp(−εa|p|) for each p ∈ Ar with Re(p) ≥ a,

(2)
∣
∣
∣ NF n,1

u (p; ζ)
∣
∣
∣≤ Cb exp(−εb|p|) for each p ∈ Ar with Re(p) ≤ b, the integral

(3)
∫ Nn∞
−Nn∞

...
∫ N1∞
−N1∞ NF

n,k
u (w + p; ζ)dp converges absolutely for k = 0 and k = 1 and each

a1<w<a−1.

Then NF
n
u (w + p; ζ) is the image of the function

(4)

f(t) =

[

(2π)−1Ñn

∫ Nn∞

−Nn∞

](

...

([

(2π)−1Ñ1

∫ N1∞

−N1∞

]

NF
n
u (w + p; ζ) exp{u(w + p, t; ζ)}

)

...

)

dp

= (Fn)−1( NF
n
u (w + p; ζ), u, t; ζ).

Proof. For the function NF
n,1
u (p; ζ) we consider the substitution of the variable p = −g,

−a−1 < Re(g). Thus the proof reduces to the consideration of NF
n,0
u (w + p; ζ).

An integration by dp in the iterated integral (4) is treated as in §6. Take marked values
of variables p1, ..., pj−1, pj+1, ..., pn and t1, ..., tj−1, tj+1, ..., tn, where sk = sk(n; τ) for each k =
1, ..., n (see §6 also). For a given parameter ζj := (ζ0 + ζjNj + ... + ζnNn) + (w + p0)sj+1 +
pj+1sj+1Nj+1+...+pnsnNn for u(p, τ ; ζ) prescribed by Formulas 2(1, 2, 2.1) or ζj := (ζ0+ζjNj+
...+ ζnNn) + (w + p0)sj+1 + pj+1τj+1Nj+1 + ...+ pnτnNn for u(p, t; ζ) given by 1(8, 8.1) instead
of ζ and any non-zero Cayley-Dickson number β ∈ Ar we have limτj→∞[βτj+ ζ

j]/[βτj+ ζ] = 1.
For any locally z-analytic function g(z) in a domain U satisfying conditions of §5 the

homotopy theorem for a non-commutative line integral over Ar, 2 ≤ r, is satisfied (see [17, 16]).
In particular if U contains the straight line w + RNj and the path γj(tj) := ζj + tjNj , then∫ Nj∞
−Nj∞

g(z)dz =
∫
γj
g(w + z)dz, when ĝ(z) → 0 while |z| tends to the infinity, since |ζj| is a

finite number (see Lemma 2.23 in [18]). We apply this to the integrand in Formula (4), since
NF

n
u (w+ p; ζ) is locally analytic by p in accordance with Theorem 4 and Conditions (1, 2) are

satisfied.
Then the integral operator

[
(2πNj)

−1
∫ Nj∞
−Nj∞

]
on the j-th step with the help of Theorems

2.22 and 3.16 [18] gives the inversion formula corresponding to the real parameter tj for f(t)
and to the Cayley-Dickson variable p0N0 + pjNj which is restricted on the complex plane
CNj = R⊕RNj (see also Formulas 6(4, 11) above). Therefore, an application of this procedure
by j = 1, 2, ..., n as in §6 implies Formula (4) of this theorem.
Thus there exist originals f 0 and f 1 for functions NF

n,0
u (p; ζ) and NF

n,1
u (p; ζ) with a choice

of w ∈ R in the common domain a1 < Re(p) < a−1. Then f = f 0 + f 1 is the original for
NF

n
u (p; ζ) due to the distributivity of the multiplication in the Cayley-Dickson algebra Ar

leading to the additivity of the considered integral operator in Formula (4).
8.1. Corollary. Let the conditions of Theorem 8 be satisfied, then

(1) f(t) = (2π)−n
∫

Rn
NF

n
u (w + p; ζ) exp{u(w + p, t; ζ)}dp1...dpn

= (Fn)−1( NF
n
u (w + p; ζ), u, t; ζ).
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Proof. In accordance with §§6 and 6.1 each non-commutative integral given by the left
algorithm reduces to the principal value of the usual integral by the corresponding real variable:

(2) (2π)−1Ñj

∫ Nj∞

−Nj∞
NF

n
u (w + p; ζ) exp{u(w + p, t; ζ)}d(pjNj)

= (2π)−1
∫ ∞

−∞
NF

n
u (w + p; ζ) exp{u(w + p, t; ζ)}dpj

for each j = 1, ..., n. Thus Formula 8(4) with the non-commutative iterated (multiple) integral
reduces to Formula 8.1(1) with the principal value of the usual integral by real variables
(p1, ..., pn).

9. Note. In Theorem 8 Conditions (1, 2) can be replaced on

(1) limn→∞ supp∈CR(n) ‖F̂ (p)‖ = 0,

where CR(n) := {z ∈ Ar : |z| = R(n), a1 < Re(z) < a−1} is a sequence of intersections of
spheres with a domain W , where R(n) < R(n+ 1) for each n, limn→∞R(n) =∞. Indeed, this
condition leads to the accomplishment of the Ar analog of the Jordan Lemma for each r ≥ 2
(see also Lemma 2.23 and Remark 2.24 [18]).
Subsequent properties of quaternion, octonion and general Ar multiparameter non-

commutative analogs of the Laplace transform are considered below. We denote by

(2) Wf = {p ∈ Ar : a1(f) < Re(p) < a−1(f)} a domain of NF
n
u (p; ζ) by the p variable,

where a1 = a1(f) and a−1 = a−1(f) are as in §1. For an original

(3) f(t)χU1,...,1(t) we put Wf = {p ∈ Ar : a1(f) < Re(p)},
that is a−1 = ∞. Cases may be, when either the left hyperplane Re(p) = a1 or the right
hyperplane Re(p) = a−1 is (or both are) included in Wf . It may also happen that a domain
reduces to the hyperplane Wf = {p : Re(p) = a1 = a−1}.

10. Proposition. If images NF
n
u (p; ζ) and NG

n
u(p; ζ) of functions-originals f(t) and g(t)

exist in domains Wf and Wg with values in Ar, where the function u(p, t; ζ) is given by 1(8, 8.1)
or 2(1, 2, 2.1), then for each α, β ∈ Ar in the case A2 = H; as well as f and g with values in
R and each α, β ∈ Ar or f and g with values in Ar and each α, β ∈ R in the case of Ar with
r ≥ 3; the function α NFu(p; ζ) + β NGu(p; ζ) is the image of the function αf(t) + βg(t) in a
domain Wf ∩Wg.
Proof. Since the transforms NF

n
u (p; ζ) and NG

n
u(p; ζ) exist, then the integral

∫

Rn
(αf(t) + βg(t)) exp(−u(p, t; ζ))dt =

∫

Rn
αf(t) exp(−u(p, t; ζ))dt

+

∫

Rn
βg(t) exp(−u(p, t; ζ))dt

converges in the domain
Wf ∩Wg = {p ∈ Ar : max(a1(f), a1(g)) < Re(p) < min(a−1(f), a−1(g))}.

We have t ∈ Rn, 2r−1 ≤ n ≤ 2r − 1, while R is the center of the Cayley-Dickson algebra Ar.
The quaternion skew field H is associative. Thus, under the imposed conditions the constants
α, β can be carried out outside integrals.

11. Theorem. Let α = const > 0, let also F n(p; ζ) be an image of an original function f(t)
with either u =< p, t) + ζ or u given by Formulas 2(1, 2) over the Cayley-Dickson algebra Ar
with 2 ≤ r <∞, 2r−1 ≤ n ≤ 2r−1. Then an image F n(p/α; ζ)/αn of the function f(αt) exists.
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Proof. Since pjsj+ζj = pj(s′j/α)+ζj = (pj/α)s′j+ζj for each j = 1, ..., n, where sjα = s′j,
sj = sj(n; t), s′j = sj(n; τ), τj = αtj for each j = 1, ..., n. Then changing of these variables
implies:∫

Rn
f(αt)e−u(p,t;ζ)dt =

∫
Rn
f(τ)e−u(p,τ/α;ζ)dτ/αn = F n(p/α; ζ)/αn

due to the fact that the real filed R is the center Z(Ar) of the Cayley-Dickson algebra Ar.

12. Theorem. Let f(t) be a function-original on the domain U1,...,1 such that ∂f(t)/∂tk also
for k = j − 1 and k = j satisfies Conditions 1(1 − 4). Suppose that u(p, t; ζ) is given by
2(1, 2, 2.1) or 1(8, 8.1) over the Cayley-Dickson algebra Ar with 2 ≤ r <∞, 2r−1 ≤ n ≤ 2r− 1.
Then

(1) Fn
(
(∂f(t)/∂tj)χU1,...,1(t), u; p; ζ

)
= −Fn−1;t

j
(
f(t)χU1,...,1(t

j), u(p, tj; ζ); p; ζ
)

+

[

p0 +

j∑

k=1

pkSek

]

Fn
(
f(t)χU1,...,1(t), u; p; ζ

)

in the Ar spherical coordinates or

(1.1) Fn
(
(∂f(t)/∂tj)χU1,...,1(t), u; p; ζ

)
= −Fn−1;t

j
(
f(t)χU1,...,1(t

j), u(p, tj; ζ); p; ζ
)

+
[
p0 + pjSej

]
Fn
(
f(t)χU1,...,1(t), u; p; ζ

)

in the Ar Cartesian coordinates in a domain W = {p ∈ Ar : max(a1(f), a1(∂f/∂tj)) < Re(p)},
where tj := (t1, ..., tj, ..., tn : tj = 0), Sek = −∂/∂ζk for each k ≥ 1.
Proof. Certainly,

(2) ∂f
(
t(s)
)/
∂s1 = ∂f(t)/∂t1 and

(2.1) ∂f(t)/∂tj =
∑n

k=1

(
∂f(t(s))/∂sk

)
(∂sk/∂tj) =

∑j
k=1 ∂f(t(s))/∂sk

for each j = 2, ..., n, since tj = sj − sj+1, t1 = s1 − s2, where sj = sj(n; t), sn+l = 0 for each
l ≥ 1. From Formulas 30(6, 7) [18] we have the equality in the Ar spherical coordinates:

(3) ∂ exp(−u(p, t; ζ))/∂sj = −p0δ1,j exp(−u(p, t; ζ))− pjSej exp(−u(p, t; ζ)),
since
exp(−u(p, t; ζ)) = exp{−p0s1 − ζ0} exp(−M(p, t; ζ)),
∂ exp(−p0s1 − ζ0)/∂sj = −p0δ1,j exp(−p0s1 − ζ0),
∂[cos(pjsj+ζj)−sin(pjsj+ζj)ij]/∂sj = ∂ exp(−(pjsj+ζj)ij)/∂sj = −pjij exp(−(pjsj+ζj)ij)
= −pj exp(−(pjsj + ζj − π/2)ij) = −pj[cos(pjsj + ζj − π/2)− sin(pjsj + ζj − π/2)ij]
= −pjSej [cos(pjsj + ζj)− sin(pjsj + ζj)ij],

since sj and sk are real independent variables for each k 6= j, where δj,k = 0 for j 6= k, while
δj,j = 1,

(3.1) Sej [cos(pjsj + ζj)− sin(pjsj + ζj)ij] =
−∂[cos(pjsj + ζj)− sin(pjsj + ζj)ij]/∂ζj
= [cos(pjsj + ζj − π/2)− sin(pjsj + ζj − π/2)ij].

In the Ar Cartesian coordinates we take tj instead of sj in (3.1). If φ(z) is a differentiable
function by zj for each j, φ : Ar → Ar, zj = pjtj + ζj, then

(3.2) ∂ exp(−φ(z))/∂(qtj) = −q[d exp(ξ)/dξ]|ξ=−φ.(∂φ(z)/∂zj)pj
= −qpj[

∑∞
n=1

∑n−1
k=1((ξ(z))

k(∂φ(z)/∂zj))(ξ(z))
n−1−k/n!]|ξ=−φ

= −qpj(−∂ exp(−φ(z))/∂ζj)=− pjSqej exp(−φ(z)),
where either q = 1 or q = −1, since ∂zj/∂ζj=1.
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That is

(3.3) Sxej exp(−ik(φk + ζk)) = 0 for each j 6= k ≥ 1 and any positive number x > 0,

(3.4) Sxej exp(−ij(φj + ζj)) = exp(−ij(φj + ζj − xπ/2)) and
Sx−ej exp(−ij(φj + ζj)) = exp(−ij(φj + ζj + xπ/2))

for each non-negative real number x ≥ 0, φk and ζk ∈ R, where Sej = Sej(ζj), the zero power
S0ej = I is the unit operator;

(3.5) Sqeje
−u(p,t;ζ) = e−p0s1−ζ0

T qj

[

i0δj,1 cos(p1s1 + ζ1) + (1 − δj,1)ij−1 sin(p1s1 + ζ1)... cos(pjsj + ζj) +
{∑2r−2

k=j ik sin(p1s1 +

ζ1)... cos(pk+1sk+1 + ζk+1)
}
+i2r−1 sin(p1s1 + ζ1)... sin(p2r−1s2r−1 + ζ2r−1)

]

in the Ar spherical coordinates, where either q = 1 or q = −1 and

(3.6) T xj ξ(ζj) := ξ(ζj − xπ/2)
for any function ξ(ζj) and any real number x ∈ R, where j ≥ 1. Then in accordance with
Formula (3.2) we have:

(3.7) Sqej exp(−u(p, t; ζ)) =

=
[∑∞

n=1

∑n−1
k=1

(
(ξ(z))kqij

)
(ξ(z))n−1−k/n!

]∣∣
∣
ξ=−u(p,t;ζ)

for u(p, t; ζ) given by Formulas 1(8, 8.1) in the Ar Cartesian coordinates, where either q = 1 or
q = −1.

The integration by parts theorem (Theorem 2 in §II.2.6 on p. 228 [10]) states: if a < b
and two functions f and g are Riemann integrable on the segment [a, b], F (x) = A+

∫ x
a
f(t)dt

and G(x) = B +
∫ x
a
g(t)dt, where A and B are two real constants, then

∫ b
a
F (x)g(x)dx =

F (x)G(x)
∣
∣b
a
−
∫ b
a
f(x)G(x)dx.

Therefore, the integration by parts gives

(4)

∫ ∞

0

(∂f(t)/∂tj) exp(−u(p, t; ζ))dtj = f(t) exp(−u(p, t; ζ))
∣
∣
∣
tj=∞

tj=0

−
∫ ∞

0

[
f(t)(∂ exp(−u(p, t; ζ))/∂tj)

]
dtj.

Using the change of variables t 7→ s with the unit Jacobian ∂(t1, ..., tn)/∂(s1, ..., sn) and applying
the Fubini’s theorem componentwise to fjij we infer:

(5)

∫

U1,...,1

(∂f(t)/∂tj) exp(−u(p, t; ζ))dt =
∫

s1≥s2≥...≥sn≥0
(∂f(t)/∂tj) exp(−u(p, t; ζ))ds

=

∫ ∞

0

...

∫ ∞

0

[∫ ∞

sj+1

(∂f(t)/∂tj) exp(−u(p, t; ζ))dsj

]

dtj

= −

[∫ ∞

0

...

∫ ∞

0

f(tj) exp(−u(p, tj; ζ))dtj
]

+

[

p0 +

j∑

k=1

pkSek

]∫ ∞

0

...

∫ ∞

0

f(t) exp(−u(p, t; ζ))dt

in the Ar spherical coordinates, or

(5.1)

∫

U1,...,1

(∂f(t)/∂tj) exp(−u(p, t; ζ))dt
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= −

[∫ ∞

0

...

∫ ∞

0

f(tj) exp(−u(p, tj; ζ))dtj
]

+
[
p0 + pjSej

]∫ ∞

0

...

∫ ∞

0

f(t) exp(−u(p, t; ζ))dt

in the Ar Cartesian coordinates, since ∂ exp(−(p0s1+ζ0))/∂tj = −p0 exp(−(p0s1+ζ0)) for each
1 ≤ j ≤ n. This gives Formula (1), where

(6) Fn−1;t
j(
f(tj)χU1,...,1 , u(p, t

j; ζ); p; ζ
)
=

∫ ∞

0

...

∫ ∞

0

f(tj) exp(−u(p, tj; ζ))dtj

=

∫ ∞

0

dt1...

∫ ∞

0

dtj−1

∫ ∞

0

dtj+1...

∫ ∞

0

(dtn)f(t
j) exp(−u(p, tj; ζ))

is the non-commutative transform by tj = (t1, ..., tj−1, 0, tj+1, ..., tn).
12.1. Remark. Shift operators of the form ξ(x + φ) = exp(φd/dx)ξ(x) in real variables

are also frequently used in the class of infinite differentiable functions with converging Taylor
series expansion in the corresponding domain.
It is possible to use also the following convention. One can put cos(φ1 + ζ1) =

cos(φ1 + ζ1) cos(ψ2)... cos(ψ2r−1),...,sin(φ1 + ζ1)... cos(φk + ζk) = sin(φ1 + ζ1)... cos(φk +
ζk) cos(ψk+1)... cos(ψ2r−1), where ψj = 0 for each j ≥ 1, 2 ≤ k < 2r − 1, so that
T lj cos(φ1 + ζ1) = 0 for each j > 1 and l ≥ 1, T lj sin(φ1 + ζ1)... cos(φk + ζk) = 0 for each
j > k and l ≥ 1, where T ljξ = T l−1j (Tjξ) is the iterated composition for l > 1, l ∈ N. Then
T lje

−u(p,t;ζ) gives with such convention the same result as Sleje
−u(p,t;ζ), so one can use the sym-

bolic notation T lje
−u(p,t;ζ) = e−u(p,t;ζ−ijπl/2). But to avoid misunderstanding we shall use Sej and

Tj in the sense of Formulas 12(3.1− 3.7).
It is worth to mention that instead of 12(3.7) also the formulas

(1) exp(p1i1 + ... + pnin) = cos(φ) + M sin(φ) with φ := φ(p) :=
[
p21 + ... + p2n

]1/2
and

M = (p1i1 + ...+ pnin)/φ for φ 6= 0, e0 = 1;

(2) ∂ exp(p1i1 + .. + pnin)/∂pj =
[
− sin(φ) +M cos(φ)

]
pj/φ + (φij −Mpj)φ

−2 sin(φ) and
∂(pjtj + ζj)/∂ζj = 1 can be used.

13. Theorem. Let f(t) be a function-original. Suppose that u(p, t; ζ) is given by 2(1, 2, 2.1)
or 1(8, 8.1) over the Cayley-Dickson algebra Ar with 2 ≤ r < ∞. Then a (super)derivative of
an image is given by the following formula:

(1)
(
∂Fn(f(t), u; p; ζ)/∂p

)
.h = −Fn

(
f(t)s1, u; p; ζ

)
h0

−Se1F
n
(
f(t)s1, u; p; ζ

)
h1 − ...− SenF

n
(
f(t)sn, u; p; ζ

)
hn

in the Ar spherical coordinates, or

(1.1)
(
∂Fn(f(t), u; p; ζ)/∂p

)
.h = −Fn

(
f(t)s1, u; p; ζ

)
h0

−Se1F
n
(
f(t)t1, u; p; ζ

)
h1 − ...− SenF

n
(
f(t)tn, u; p; ζ

)
hn

in the Ar Cartesian coordinates for each h = h0i0 + ... + hnin ∈ Ar, where h0, ..., hn ∈ R,
2r−1 ≤ n ≤ 2r − 1, p ∈ Wf .

Proof. The inequalities a1(f) < Re(p) < a−1(f) are equivalent to the inequalities
a1(f(t)|t|) < Re(p) < a−1(f(t)|t|), since lim|t|→+∞ exp(−b|t|)|t| = 0 for each b > 0. An image
Fn(f(t), u; p; ζ) is a holomorphic function by p for a1(f) < Re(p) < a−1(f) by Theorem 4, also
|
∫∞
0
e−cttndt| < ∞ for each c > 0 and n = 0, 1, 2, .... Thus it is possible to differentiate under

the sign of the integral:

(2)

(

∂

(∫

Rn
f(t) exp(−u(p, t; ζ))dt

)/
∂p

)

.h =
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∑

v∈{−1,1}n

(

∂

(∫

Uv

f(t) exp(−u(p, t; ζ))χUvdt

)/
∂p

)

.h =

=

∫

Rn
f(t)(∂ exp(−u(p, t; ζ))/∂p).hdt.

Due to Formulas 12(3, 3.2) we get:

(3) (∂ exp(−u(p, t; ζ))/∂p).h = − exp(−u(p, t; ζ))s1h0 − Se1 exp(−u(p, t; ζ))s1h1 − ... −
Sen exp(−u(p, t; ζ))snhn
in the Ar spherical coordinates, or

(4) (∂ exp(−u(p, t; ζ))/∂p).h = − exp(−u(p, t; ζ))s1h0 − Se1 exp(−u(p, t; ζ))t1h1 − ... −
Sen exp(−u(p, t; ζ))tnhn
in the Ar Cartesian coordinates.
Thus from Formulas (2, 3) we deduce Formula (1).

14. Theorem. If f(t) is a function-original, then

(1) Fn(f(t− τ), u; p; ζ) = Fn(f(t), u; p; ζ+ < p, τ ]) for either

(i) u(p, t; ζ) = p0s1 +M(p, t; ζ) + ζ0 or

(ii) u(p, t; ζ) =< p, t) + ζ over Ar with 2 ≤ r < ∞ in a domain p ∈ Wf , where τ ∈ Rn,
2r−1 ≤ n ≤ 2r − 1,

(2) < p, τ ] = p0s1 + p1s1i1 + ... + pnsnin with sj = sj(n; τ) for each j in the first (i) and
< p, τ ] =< p, τ ) in the second (ii) case (see also Formulas 1(8), 2(1, 2, 2.1)).

Proof. For p in the domain Re(p) > a1 the identities are satisfied:

(3) Fn
(
(fχU1,...,1)(t− τ), u; p; ζ

)
=

∫ ∞

τ1

...

∫ ∞

τn

f(t− τ)e−u(p,t;ζ)dt

=

∫

U1,...,1

f(t)e−u(p,ξ;ζ+<p,τ ])dξ = Fn
(
(fχU1,...,1)(t), u; p; ζ+ < p, τ ]

)
,

due to Formulas 1(7, 8) and 2(1, 2, 2.1, 4), since p0s1(n; t) + ζ0 = p0s1(n; ξ) + ζ0 + p0s1(n; τ)
and pjtj + ζj = pjξj + (ζj + pjτj) and pjsj(n; t) + ζj = pjsj(n; ξ) + (ζj + pjsj(n; τ)) for each
j = 1, ..., 2r − 1, where t = ξ + τ . Symmetrically we get (2) for Uv instead of U1,...,1. Naturally,
that the multiparameter non-commutative Laplace integral for an original f can be considered
as the sum of 2n integrals by the sub-domains Uv:

(4)

∫

Rn
f(t) exp

(
−u(p, t; ζ)

)
dt =

∑

v∈{−1,1}n

∫

Rn
f(t) exp

(
−u(p, t; ζ)

)
χUv(t)dt.

The summation by all possible v ∈ {−1, 1}n gives Formula (1).

15. Note. In view of the definition of the non-commutative transform Fn and u(p, t; ζ) and
Theorem 14 the term ζ1i1 + ... + ζ2r−1i2r−1 has the natural interpretation as the initial phase
of a retardation.

16. Theorem. If f(t) is a function-original with values in Ar for 2 ≤ r < ∞, 2r−1 ≤ n ≤
2r − 1, b ∈ R, then

(1) Fn
(
eb(t1+...+tn)f(t), u; p; ζ

)
= Fn

(
f(t), u; p− b; ζ

)

for each a−1 + b > Re(p) > a1 + b, where u is given by 1(8, 8.1) or 2(1, 2).
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Proof. In accordance with Expressions 1(8, 8.1) and 2(1, 2, 2.1) one has u(p, t; ζ) − b(t1 +
...+ tn) = u(p− b, t; ζ). If a−1 + b > Re(p) > a1 + b, then the integral

(2) Fn
(
eb(t1+...+tn)f(t)χUv(t), u; p; ζ

)
=

∫

Uv

f(t)eb(t1+...+tn) exp(−u(p, t; ζ))dt

=

∫

Uv

f(t) exp(−u(p− b, t; ζ))dt = Fn(f(t)χUv(t), u; p− b; ζ)

converges. Applying Decomposition 14(4) we deduce Formula (1).

17. Theorem. Let a function f(t) be a real valued original,
F (p; ζ) = Fn(f(t); u; p; ζ), where the function u(p, t; ζ) is given by 1(8, 8.1) or 2(1, 2, 2.1). Let
also G(p; ζ) and q(p) be locally analytic functions such that

(1) Fn(g(t, τ ); u; p; ζ) = G(p; ζ) exp(−u(q(p), τ ; ζ))
for u =< p, t) + ζ or u = p0(t1 + ...+ tn) +M(p, t; ζ) + ζ0, then

(2) Fn(
∫
Rn
g(t, τ )f(τ)dτ ; u; p; ζ) = G(p; ζ)F (q(p); ζ)

for each p ∈ Wg and q(p) ∈ Wf , where 2 ≤ r <∞, 2r−1 ≤ n ≤ 2r − 1.

Proof. If p ∈ Wg and q(p) ∈ Wf , then in view of the Fubini’s theorem and the theorem
conditions a change of an integration order gives the equalities:

∫

Rn

(∫

Rn
g(t, τ )f(τ)dτ

)

exp(−u(p, t; ζ))dt

=

∫

Rn

(∫

Rn
g(t, τ ) exp(−u(p, t; ζ))dt

)

f(τ)dτ

=

∫

Rn
G(p; ζ) exp(−u(q(p), τ ; ζ))f(τ)dτ

= G(p; ζ)

∫

Rn
f(τ) exp(−u(q(p), τ ; ζ))dτ = G(p; ζ)F (q(p); ζ),

since t, τ ∈ Rn and the center of the algebra Ar is R.

18. Theorem. If a function f(t)χU1,...,1 is original together with its derivative
∂nf(t)χU1,...,1(t)/∂s1...∂sn or ∂

nf(t)χU1,...,1(t)/∂t1...∂tn, where F
n
u (p; ζ) is an image function

of f(t)χU1,...,1 over the Cayley-Dickson algebra Ar with 2 ≤ r ∈ N, 2r−1 ≤ n ≤ 2r − 1, for
u = p0s1 +M(p, t; ζ) + ζ0 given by 2(1, 2, 2.1), then

(1) lim
p→∞

{
[p0 + p1Se1 ]p2Se2 ...pnSenF

n
u (p; ζ) +

n−1∑

m=0

(−1)m

∑

1≤j1<...<jn−m≤n; 1≤l1<...<lm≤n; lα 6=jβ ∀α,β

[p0δ1,j1 + pj1Sej1 ]pj2Sej2 ...pjn−mSejn−m

F n−m
u (p(l); ζ)

}
= (−1)n+1f(0)e−u(0,0;ζ),

or

(1.1) lim
p→∞

{
[p0 + p1Se1 ][p0 + p2Se2 ]...[p0 + pnSen ]F

n
u (p; ζ) +

n−1∑

m=0

(−1)m
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∑

1≤j1<...<jn−m≤n; 1≤l1<...<lm≤n; lα 6=jβ ∀α,β

[p0 + pj1Sej1 ][p0 + pj2Sej2 ]...[p0 + pjn−mSejn−m ]

F n−m
u (p(l); ζ)

}
= (−1)n+1f(0)e−u(0,0;ζ)

for u(p, t; ζ) given by 1(8, 8.1), where f(0) = limt∈U1,...,1;t→0 f(t), p tends to the infinity inside
the angle |Arg(p)| < π/2 − δ for some 0 < δ < π/2, 1 ≤ j ≤ 2r − 1, p(l) =

∑n
j=0,j /∈(l) pjij,

(l) = (l1, ..., lm). If the restriction
f(t)|tj1=0,...,tjm=0;tk=∞∀k/∈{j1,...,jm} = limt∈U1,...,1;tj1→0,...,tjm→0;tk→∞ ∀k/∈{j1,...,jm} f(t) exists for all

1 ≤ j1 < ... < jm ≤ n, then

(2) lim
p→0

{
[p0 + p1Se1 ]p2Se2 ...pnSenF

n
u (p; ζ) +

n−1∑

m=0

(−1)m

∑

1≤j1<...<jn−m≤n; 1≤l1<...<lm≤n; lα 6=jβ ∀α,β

[p0δ1,j1 + pj1Sej1 ]pj2Sej2 ...pjn−mSejn−m

F n−m
u (p(l); ζ)

}

=
n−1∑

m=0

(−1)m
∑

1≤j1<...<jm≤n

f(t)
∣
∣
tj1=0,...,tjm=0;tk=∞∀k/∈{j1,...,jm}

e−u(0,0,ζ)

in the Ar spherical coordinates or

(2.1) lim
p→0

{
[p0 + p1Se1 ][p0 + p2Se2 ]...[p0 + pnSen ]F

n
u (p; ζ) +

n−1∑

m=0

(−1)m

∑

1≤j1<...<jn−m≤n; 1≤l1<...<lm≤n; lα 6=jβ ∀α,β

[p0 + pj1Sej1 ][p0 + pj2Sej2 ]...[p0 + pjn−mSejn−m ]

F n−m
u (p(l); ζ)

}

=
n−1∑

m=0

(−1)m
∑

1≤j1<...<jm≤n

f(t)
∣
∣
tj1=0,...,tjm=0;tk=∞∀k/∈{j1,...,jm}

e−u(0,0,ζ)

in the Ar Cartesian coordinates, where p→ 0 inside the same angle.
Proof. In accordance with Theorem 12 the equality follows:

(3) Fn((∂f(t)/∂sj)χU1,...,1(t), u; p; ζ) = [p0δ1,j + pjSej ]F
n(f(t)χU1,...,1(t), u(p, t; ζ), p; ζ)

−Fn−1;t
j

(f(tj)χU1,...,1 , u(p, t
j; ζ); p; ζ)

for u = u(p, t; ζ) = p0s1 +M(p, t; ζ) + ζ0 in the Ar spherical coordinates, or

(3.1) Fn((∂f(t)/∂tj)χU1,...,1(t), u; p; ζ) = [p0 + pjSej ]F
n(f(t)χU1,...,1(t), u(p, t; ζ), p; ζ)

−Fn−1;t
j

(f(tj)χU1,...,1 , u(p, t
j; ζ); p; ζ)

in the Ar Cartesian coordinates, since
(3.2) ∂f(t(s))/∂sj = −∂f(t)/∂tj−1 + ∂f(t)/∂tj for each j ≥ 2, ∂f(t(s))/∂s1 = ∂f(t)/∂t1,

where p = p0 + p1i1 + ... + p2r−1i2r−1 ∈ Ar, p0, ..., p2r−1 ∈ R, {i0, ..., i2r−1} are the generators
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of the Cayley-Dickson algebra Ar, sn+l = 0 for each l ≥ 1, the zero power S0ej = I is the unit
operator. For short we write f instead of fχU1,...,1 . Thus the limit exists:

(4) Fn−1;t
j

(f(tj), u(p, tj; ζ); p; ζ) =

lim
tj→+0

∫ ∞

0

dt1...

∫ ∞

0

dtj−1

∫ ∞

0

dtj+1...

∫ ∞

0

(dtn)f(t) exp(−u(p, t; ζ)).

Mention, that (...((t1)2)...)j = (0, ..., 0, tj, ..., tn : tj = 0) for every 1 ≤ j ≤ n, since tk = sk−sk+1
for each 1 ≤ k ≤ n. We apply these Formulas (3, 4) by induction j = 1, ..., n, 2r−1 ≤ n ≤ 2r−1,
to ∂nf(t)/∂s1...∂sn,...,∂n−j+1f(t)/∂sj...∂sn, ...,∂f(t)/∂sn instead of ∂f(t)/∂sj.
From Note 8 [18] it follows, that in the Ar spherical coordinates

lim
p→∞,|Arg(p)|<π/2−δ

Fn((∂nf(t)/∂s1...∂sn)χU1,..,1 , u; p; ζ) = 0,

also in the Ar Cartesian coordinates

lim
p→∞,|Arg(p)|<π/2−δ

Fn((∂nf(t)/∂t1...∂tn)χU1,..,1 , u; p; ζ) = 0,

which gives the first statement of this theorem, since u(p, 0, ζ) = u(0, t; ζ) = u(0, 0, ζ) and
F 0u (p

(1,...,1); ζ) = f(0)e−u(0,0,ζ), while F n
u (p; ζ) is defined for each Re(p) > 0.

If the limit f(t<j>) exists, where t<j> := (t1, ..., tj, ..., tn : tj =∞), then

(5) lim
tj→∞

∫ ∞

0

dt1...

∫ ∞

0

dtj−1

∫ ∞

0

dtj+1...

∫ ∞

0

(dtn)f(t) exp(−u(p, t; ζ))

=: Fn−1;<t
j>(f(t<j>), u(p, t<j>; ζ); p; ζ).

Certainly, (...((t<1>)<2>)...)<j> = (t1, ..., tn : t1 =∞, ..., tj =∞) for each 1 ≤ j ≤ n. Therefore,
the limit exists:

lim
p→0,|Arg(p)|<π/2−δ

∫

U1,...,1

(∂nf(t)/∂s1...∂sn) exp(−p0s1 − ζ0 −M(p, t; ζ))

=

∫

U1,...,1

(∂nf(t)/∂s1...∂sn)e
−u(0,0;ζ)dt

=
n∑

m=0

(−1)m
∑

1≤j1<...<jm≤n

f(t)|tj1=0,...,tjm=0;tk=∞ ∀k/∈{j1,...,jm}

= lim
p→0,|Arg(p)|<π/2−δ

{
[p0 + p1Se1 ]p2Se2 ...pnSenF

n
u (p; ζ)

+
n−1∑

m=0

(−1)m

∑

1≤j1<...<jn−m≤n; 1≤l1<...<lm≤n; lα 6=jβ ∀α,β

[p0δ1,j1 + pj1Sej1 ]pj2Sej2 ...pjn−mSejn−m

F n−m
u (p(l); ζ) + (−1)nf(0)e−u(0,0,ζ)

}
,

from which the second statement of this theorem follows in the Ar spherical coordinates and
analogously in the Ar Cartesian coordinates using Formula (3.1).

19. Definitions. Let X and Y be two R linear normed spaces which are also left and right Ar
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modules, where 1 ≤ r. Let Y be complete relative to its norm. We put X⊗k := X ⊗R ...⊗RX
is the k times ordered tensor product over R of X. By Lq,k(X

⊗k, Y ) we denote a family
of all continuous k times R poly-linear and Ar additive operators from X⊗k into Y . Then
Lq,k(X

⊗k, Y ) is also a normed R linear and left and right Ar module complete relative to its
norm. In particular, Lq,1(X,Y ) is denoted also by Lq(X,Y ).
We present X as the direct sum X = X0i0⊕ ...⊕X2r−1i2r−1, where X0,...,X2r−1 are pairwise

isomorphic real normed spaces. If A ∈ Lq(X,Y ) and A(xb) = (Ax)b or A(bx) = b(Ax) for each
x ∈ X0 and b ∈ Ar, then an operator A we call right or left Ar-linear respectively.
An R linear space of left (or right) k times Ar poly-linear operators is denoted by

Ll,k(X
⊗k, Y ) (or Lr,k(X⊗k, Y ) respectively).

We consider a space of test function D := D(Rn, Y ) consisting of all infinite differentiable
functions f : Rn → Y on Rn with compact supports. A sequence of functions fn ∈ D
tends to zero, if all fn are zero outside some compact subset K in the Euclidean space Rn,
while on it for each k = 0, 1, 2, ... the sequence {f (k)n : n ∈ N} converges to zero uniformly.
Here as usually f (k)(t) denotes the k-th derivative of f , which is a k times R poly-linear
symmetric operator from (Rn)⊗k to Y , that is f (k)(t).(h1, ..., hk) = f (k)(t).(hσ(1), ..., hσ(k)) ∈ Y
for each h1, ..., hk ∈ Rn and every transposition σ : {1, ..., k} → {1, ..., k}, σ is an element
of the symmetric group Sk, t ∈ Rn. For convenience one puts f (0) = f . In particular,
f (k)(t).(ej1 , ..., ejk) = ∂

kf(t)/∂tj1 ...∂tjk for all 1 ≤ j1, ..., jk ≤ n, where ej = (0, ..., 0, 1, 0, ..., 0) ∈
Rn with 1 on the j-th place.
Such convergence in D defines closed subsets in this space D, their complements by the

definition are open, that gives the topology on D. The space D is R linear and right and left
Ar module.
By a generalized function of class D′ := [D(Rn, Y )]′ is called a continuous R-linear Ar-

additive function g : D → Ar. The set of all such functionals is denoted by D′. That is,
g is continuous, if for each sequence fn ∈ D, converging to zero, a sequence of numbers
g(fn) =: [g, fn) ∈ Ar converges to zero for n tending to the infinity.
A generalized function g is zero on an open subset V in Rn, if [g, f) = 0 for each f ∈ D

equal to zero outside V . By a support of a generalized function g is called the family, denoted
by supp(g), of all points t ∈ Rn such that in each neighborhood of each point t ∈ supp(g) the
functional g is different from zero. The addition of generalized functions g, h is given by the
formula:

(1) [g + h, f) := [g, f) + [h, f).

The multiplication g ∈ D′ on an infinite differentiable function w is given by the equality:

(2) [gw, f) = [g, wf) either for w : Rn → Ar and each test function f ∈ D with a real image
f(Rn) ⊂ R, where R is embedded into Y ; or w : Rn → R and f : Rn → Y .

A generalized function g′ prescribed by the equation:

(3) [g′, f) := −[g, f ′) is called a derivative g′ of a generalized function g, where f ′ ∈
D(Rn, Lq(R

n, Y )), g′ ∈ [D(Rn, Lq(R
n, Y ))]′.

Another space B := B(Rn, Y ) of test functions consists of all infinite differentiable functions
f : Rn → Y such that the limit lim|t|→+∞ |t|mf (j)(t) = 0 exists for each m = 0, 1, 2, ...,

j = 0, 1, 2, .... A sequence fn ∈ B is called converging to zero, if the sequence |t|mf
(j)
n (t)

converges to zero uniformly onRn\B(Rn, 0, R) for eachm, j = 0, 1, 2, ... and each 0 < R < +∞,
where B(Z, z,R) := {y ∈ Z : ρ(y, z) ≤ R} denotes a ball with center at z of radius R in a
metric space Z with a metric ρ. The family of all R-linear and Ar-additive functionals on B is
denoted by B′.
In particular we can take X = Aαr , Y = A

β
r with 1 ≤ α, β ∈ Z. Analogously spaces D(U, Y ),

[D(U, Y )]′, B(U, Y ) and [B(U, Y )]′ are defined for domains U in Rn, for example, U = Uv (see
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also §1).
A generalized function f ∈ B′ we call a generalized original, if there exist real numbers

a1 < a−1 such that for each a1 < w−1, w1, ..., w−n, wn < a−1 the generalized function

(4) f(t) exp(−(qv, t))χUv is in [B(Uv, Y )]
′ for all v = (v1, ..., vn), vj ∈ {−1, 1} for every

j = 1, ..., n for each t ∈ Rn with tjvj ≥ 0 for each j = 1, ..., n, where qv = (v1wv11, ..., vnwvnn).

By an image of such original we call a function

(5) Fn(f, u; p; ζ) := [f, exp(−u(p, t; ζ))) of the variable p ∈ Ar with the parameter ζ ∈ Ar,
defined in the domain Wf = {p ∈ Ar : a1 < Re(p) < a−1} by the following rule. For a given
p ∈ Wf choose a1 < w1, ..., wn < Re(p) < w−1, ..., w−n < a−1, then

(6) [f, exp(−u(p, t; ζ)) :=
∑

v[f exp(−(qv, t)), exp{−[u(p, t; ζ)− (qv, t)]}χUv),
since exp{−[u(p, t; ζ)− (qv, t)]} ∈ B(Uv, Y ), where in each term
[f exp(−(qv, t)), exp{−[u(p, t; ζ) − (qv, t)]}χUv) the generalized function belongs to [B(Uv, Y )]

′

by Condition (4), while the sum in (6) is by all admissible vectors v ∈ {−1, 1}n.

20. Note and Examples. Evidently the transform Fn(f, u; p; ζ) does not depend on a choice
of {w−1, w1, ..., w−n, wn}, since

[f exp(−(qv, t), exp(−[u(p, t; ζ)− (qv, t)])χUv) =
[f exp(−(qv, t)− (bv, t)), exp(−[u(p, t; ζ)− (qv, t)− (bv, t)])χUv)

for each b ∈ Rn such that a1 < wj+bj < Re(p) < w−j+b−j < a−1 for each j = 1, ..., n, because
exp(−(bv, t)) ∈ R. At the same time the real field R is the center of the Cayley-Dickson algebra
Ar, where 2 ≤ r ∈ N.
Let δ be the Dirac delta function, defined by the equation

(DF ) [δ(t), φ(t)) := φ(0) for each φ ∈ B. Then

(1) Fn(δ(j)(t−τ), u; p; ζ) =
∑

v∈{−1,1}n [δ
(j)(t−τ) exp(−(qv, t)), exp(−[u(p, t; ζ)−(qv, t)])χUv)

= (−1)j∂jt exp(−[u(p, t; ζ)])|t=τ ,

since it is possible to take −∞ < a1 < 0 < a−1 < ∞ and wk = 0 for each k ∈
{−1, 1,−2, 2, ...,−n, n}, where τ ∈ Rn is the parameter, ∂jt := ∂

|j|/∂tj11 ...∂t
j1
1 . In particular, for

j = 0 we have

(2) Fn(δ(t− τ), u; p; ζ) = exp(−u(p, τ ; ζ)).

In the general case:

(3) Fn(∂|j|δ(t)/∂sj11 ...∂s
jn
n , u; p; ζ) =∑

0≤k1≤j1

(
j1
k1

)
pj1−k10 (p1Se1)

k1(p2Se2)
j2 ...(pnSen)

jn exp(−ζ0 −M(p, 0; ζ))

in the Ar spherical coordinates, or

(3.1) Fn(∂|j|δ(t)/∂tj11 ...∂t
jn
n , u; p; ζ) =

(p0 + p1Se1)
j1(p0 + p2Se2)

j2 ...(p0 + pnSen)
jn exp(−u(p, 0; ζ))

in the Ar Cartesian coordinates, where j1 + ...+ jn = |j|, k1, j1, ..., jn are nonnegative integers,
2r−1 ≤ n ≤ 2r−1,

(
l
m

)
:= l!/[m!(l−m)!] denotes the binomial coefficient, 0! = 1, 1! = 1, 2! = 2;

l! = 1 ∙ 2 ∙ ... ∙ l for each l ≥ 3, sj = sj(n; t).
The transform Fn(f) of any generalized function f is the holomorphic function by p ∈ Wf

and by ζ ∈ Ar, since the right side of Equation 19(5) is holomorphic by p in Wf and by ζ in
view of Theorem 4. Equation 19(5) implies, that Theorems 11 - 13 are accomplished also for
generalized functions.
For a1 = a−1 the region of convergence reduces to the vertical hyperplane in Ar over R.

For a−1 < a1 there is no any common domain of convergence and f(t) can not be transformed.

21. Theorem. If f(t) is an original function on Rn, F n(p; ζ) is its image, ∂|j|f(t)/∂sj11 ...∂s
jn
n
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or ∂|j|f(t)/∂tj11 ...∂t
jn
n is an original, |j| = j1 + ... + jn, 0 ≤ j1, ..., jn ∈ Z, 2r−1 ≤ n ≤ 2r − 1;

then

(1) Fn
(
∂|j|f(t)/∂sj11 ...∂s

jn
n , u; p; ζ

)

=
∑

0≤k1≤j1

(
j1

k1

)

pj1−k10 (p1Se1)
k1(p2Se2)

j2 ...(pnSen)
jnFn(f(t), u; p; ζ)

for u(p, t; ζ) := p0s1 +M(p, t; ζ) + ζ0 given by 2(1, 2, 2.1), or

(1.1) Fn
(
∂|j|f(t)/∂tj11 ...∂t

jn
n , u; p; ζ

)
=

(p0 + p1Se1)
j1(p0 + p2Se2)

j2 ...(p0 + pnSen)
jnFn(f(t), u; p; ζ)

for u(p, t; ζ) given by 1(8, 8.1) over the Cayley-Dickson algebra Ar with 2 ≤ r < ∞. Do-
mains, where Formulas (1, 1.1) are true may be different from a domain of the multiparameter
noncommutative transform for f , but they are satisfied in the domain a1 < Re(p) < a−1, where

a−1 = min(a−1(f), a−1(∂
|m|f(t)/∂φm11 ...∂φmnn ) : |m| ≤ |j|, 0 ≤ ml ≤ jl∀l);

a1 = max(a1(f), a1(∂
|m|f(t)/∂φm11 ...∂φmnn ) : |m| ≤ |k|, 0 ≤ ml ≤ jl∀l), if a1 < a−1, where

φj = sj or φj = tj for each j correspondingly.
Proof. To each domain Uv the domain U−v symmetrically corresponds. The number of

different vectors v ∈ {−1, 1}n is even 2n. Therefore, for u = p0t+ζ0+M(p, t; ζ) due to Theorem
12 the equality

(2)

∫

Rn
(∂f(t)/∂sj)e

−u(p,t;ζ)ds =

∫

Rn
(∂f(t)/∂sj)e

−u(p,t;ζ)dt =

∫

Rn−1
(dtj)

[
f(t)e−u(p,t;ζ)

]∣∣
∣
∞

−∞
−
∫

Rn−1
(dtj)

(∫ ∞

−∞
f(t)[∂e−u(p,t;ζ)/∂sj]dsj

)

is satisfied in the Ar spherical coordinates, since the absolute value of the Jacobian ∂t/∂(tj, sj)
is unit. Since for a1 < Re(p) < a−1 the first additive is zero, while the second integral converts
with the help of Formulas 12(2, 2.1), Formula (1) follows for k = 1:

(3) Fn(∂f(t)/∂sj, u; p; ζ) = p0δ1,jFn(f(t), u; p; ζ) + pjSejF
n(f(t), u; p; ζ).

To accomplish the derivation we use Theorem 14 so that

lim
τ→0

[
Fn(f(t), u; p; ζ)−Fn(f(t− τej), u; p; ζ)

]
/τ

= lim
τ→0

[
Fn(f(t), u; p; ζ)−Fn(f(t), u; p; ζ + τ(p0 + p1i1 + ...+ pjij))

]
/τ

= lim
τ→0

∫

Rn
f(t)

[
e−u(p,t;ζ) − e−u(p,t;ζ+τ(p0+p1i1+...+pjij))

]
τ−1dt,

where ej = (0, ..., 0, 1, 0, .., 0) ∈ Rn with 1 on the j-th place. If the original ∂|j|f(t)/∂sj11 ...∂s
jn
n

exists, then ∂|m|f(t)/∂sm11 ...∂smnn is continuous for 0 ≤ |m| ≤ |j| − 1 with 0 ≤ ml ≤ jl
for each l = 1, ..., n, where f 0 := f . The interchanging of limτ→0 and

∫
Rn

may change a
domain of convergence, but in the indicated in the theorem domain a1 < Re(p) < a−1, when
it is non void, Formula (3) is valid. Applying Formula (3) in the Ar spherical coordinates
by induction to (∂|m|f(t)/∂sm11 ...∂smnn ) : |m| ≤ |j|, 0 ≤ ml ≤ jl∀l) with the corresponding
order subordinated to ∂|j|f(t)/∂sj11 ...∂s

jn
n , or in the Ar Cartesian coordinates using Formula

12(1.1) for the partial derivatives (∂|m|f(t)/∂tm11 ...∂tmnn ) : |m| ≤ |j|, 0 ≤ ml ≤ jl∀l) with the
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corresponding order subordinated to ∂|j|f(t)/∂tj11 ...∂t
jn
n we deduce Expressions (1) and (1.1)

with the help of Statement 6 from §XVII.2.3 [30] about the differentiation of an improper
integral by a parameter and §2.

22. Remarks. For the entire Euclidean space Rn Theorem 21 for ∂f(t)/∂sj gives only one
or two additives on the right side of 21(1) in accordance with 21(3).
Evidently Theorems 4, 11 and Proposition 10 are accomplished for Fk;tj(1),...,tj(k)(f, u; p; ζ)

also.
Theorem 12 is satisfied for Fk;tj(1),...,tj(k) and any j ∈ {j(1), ..., j(k)}, so that sl = sl(k; t) =

tj(l) + ... + tj(k) for each 1 ≤ l ≤ k, pm = 0 and ζm = 0 for each 1 ≤ m /∈ {j(1), ..., j(k)}
(the same convention is in 13, 14, 17, 21, see also below). For Fk;tj(1),...,tj(k) in Theorem 13 in
Formula 13(1) it is natural to put tm = 0 and hm = 0 for each 1 ≤ m /∈ {j(1), ..., j(k)}, so that
only (k + 1) additives with h0, hj(1),...,hj(k) on the right side generally may remain. Theorems
14 and 17 and 21 modify for Fk;tj(1),...,tj(k) putting in 14(1) and 17(1, 2) and 21(1) tj = 0 and
τj = 0 respectively for each j /∈ {j(1), ..., j(k)}.
To take into account boundary conditions for domains different from Uv, for example, for

bounded domains V in Rn we consider a bounded noncommutative multiparameter transform

(1) Fn(f(t)χV , u; p; ζ) =: FnV (f(t), u; p; ζ).

For it evidently Theorems 4, 6-8, 11, 13, 14, 16, 17, Proposition 10 and Corollary 4.1 are
satisfied as well taking specific originals f with supports in V .
At first take domains W which are quadrants, that is canonical closed subsets affine diffeo-

morphic with Qn =
∏n

j=1[aj, bj], where −∞ ≤ aj < bj ≤ ∞, [aj, bj] := {x ∈ R : aj ≤ x ≤ bj}
denotes the segment in R. This means that there exists a vector w ∈ Rn and a linear invert-
ible mapping C on Rn so that C(W ) − w = Q. We put tj,1 := (t1, ..., tj , ..., tn : tj = aj),
tj,2 := (t1, ..., tj, ..., tn : tj = bj). Consider t = (t1, ..., tn) ∈ Qn.

23. Theorem. Let f(t) be a function-original with a support by t variables in Qn and zero
outside Qn such that ∂f(t)/∂tj also satisfies Conditions 1(1 − 4). Suppose that u(p, t; ζ) is
given by 2(1, 2, 2.1) or 1(8, 8.1) over Ar with 2 ≤ r <∞, 2r−1 ≤ n ≤ 2r − 1. Then

(1) Fn
(
(∂f(t)/∂tj)χQn(t), u; p; ζ

)
=

Fn−1;t
j,2(

f(tj,2)χQn(t
j,2), u; p; ζ

)
−Fn−1;t

j,1(
f(tj,1)χQn(t

j,1), u; p; ζ
)

+
[
p0 +

j∑

k=1

pkSek

]
Fn
(
f(t)χQn(t), u; p; ζ

)

in the Ar spherical coordinates, or

(1.1) Fn
(
(∂f(t)/∂tj)χQn(t), u; p; ζ

)
=

Fn−1;t
j,2(

f(tj,2)χQn(t
j,2), u; p; ζ

)
−Fn−1;t

j,1(
f(tj,1)χQn(t

j,1), u; p; ζ
)

+
[
p0 + pjSej

]
Fn
(
f(t)χQn(t), u; p; ζ

)

in the Ar Cartesian coordinates in a domain W ⊂ Ar; if aj = −∞ or bj = +∞, then the
addendum with tj,1 or tj,2 correspondingly is zero.
Proof. Here the domain Qn is bounded and f is almost everywhere continuous and sat-

isfies Conditions 1(1 − 4), hence f(t) exp(−u(p, t; ζ)) ∈ L1(Rn, λn,Ar) for each p ∈ Ar, since
exp(−u(p, t; ζ)) is continuous and supp(f(t)) ⊂ Qn.
Analogously to §12 the integration by parts gives

(2)

∫ bj

aj

(∂f(t)/∂tj) exp(−u(p, t; ζ))dtj = f(t) exp(−u(p, t; ζ))
∣
∣
∣
tj=bj

tj=aj
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−
∫ bj

aj

[
f(t)(∂ exp(−u(p, t; ζ))/∂tj)

]
dtj,

where t = (t1, ..., tn). Then the Fubini’s theorem implies:

(3)

∫

Qn
(∂f(t)/∂tj) exp(−u(p, t; ζ))dt =

∫ b1

a1

...

∫ bj−1

aj−1

∫ bj+1

aj+1

∫ bn

an

[∫ bj

aj

(∂f(t)/∂tj) exp(−u(p, t; ζ))dtj

]

dtj

=

[∫

t∈Qn, tj=bj

f(tj,2) exp(−u(p, tj,2; ζ))dtj
]

−

[∫

t∈Qn, tj=aj

f(tj,1) exp(−u(p, tj,1; ζ))dtj
]

+

[

p0 +

j∑

k=1

pkSek

]∫ b1

a1

...

∫ bn

an

f(t) exp(−u(p, t; ζ))dt

in the Ar spherical coordinates or

(3.1)

∫

Qn
(∂f(t)/∂tj) exp(−u(p, t; ζ))dt

=

[∫

t∈Qn, tj=bj

f(tj,2) exp(−u(p, tj,2; ζ))dtj
]

−

[∫

t∈Qn, tj=aj

f(tj,1) exp(−u(p, tj,1; ζ))dtj
]

+[p0 + pjSej ]

∫ b1

a1

...

∫ bn

an

f(t) exp(−u(p, t; ζ))dt

in the Ar Cartesian coordinates, where as usually tj = (t1, ..., tj−1, 0, tj+1, ..., tn), dtj =
dt1...dtj−1dtj+1...dtn. This gives Formulas (1, 1.1), where

(4) Fn−1;t
j,k

(f(tj,k)χQn(t
j,k), u(p, tj,k; ζ); p; ζ) =

∫ b1

a1

...

∫ bj−1

aj−1

∫ bj+1

aj+1

∫ bn

an

f(tj,k) exp(−u(p, tj,k; ζ))dtj,k

is the non-commutative transform by tj,k, 2r−1 ≤ n ≤ 2r − 1, dtj,k is the Lebesgue volume
element on Rn−1.

24. Theorem. If a function f(t)χQn(t) is original together with its derivative
∂nf(t)χQn(t)/∂s1...∂sn or ∂nf(t)χQn(t)/∂t1...∂tn, where F n

u (p; ζ) is an image function of
f(t)χQn(t) over the Cayley-Dickson algebra Ar with 2 ≤ r ∈ N, 2r−1 ≤ n ≤ 2r − 1, for
the function u(p, t; ζ) given by 2(1, 2, 2.1) or 1(8, 8.1), Qn =

∏n
j=1[0, bj], bj > 0 for each j, then

(1) lim
p→∞

{
[p0 + p1Se1 ]p2Se2 ...pnSenF

n
u (p; ζ) +

n−1∑

m=0

(−1)m

∑

1≤j1<...<jn−m≤n; 1≤l1<...<lm≤n; lα 6=jβ ∀α,β

[p0δ1,j1 + pj1Sej1 ]pj2Sej2 ...pjn−mSejn−m

F n−m
u (p(l); ζ)

}
= (−1)n+1f(0)e−u(0,0;ζ)
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in the Ar spherical coordinates, or

(1.1) lim
p→∞

{
[p0 + p1Se1 ][p0 + p2Se2 ]...[p0 + pnSen ]F

n
u (p; ζ) +

n−1∑

m=0

(−1)m

∑

1≤j1<...<jn−m≤n; 1≤l1<...<lm≤n; lα 6=jβ ∀α,β

[p0 + pj1Sej1 ][p0 + pj2Sej2 ]...[p0 + pjn−mSejn−m ]

F n−m
u (p(l); ζ)

}
= (−1)n+1f(0)e−u(0,0;ζ)

in the Ar Cartesian coordinates, where f(0) = limt∈Qn, t→0 f(t), p tends to the infinity inside
the angle |Arg(p)| < π/2− δ for some 0 < δ < π/2.
Proof. In accordance with Theorem 23 we have Equalities 23(1, 1.1). Therefore we infer

that

(2) Fn−1;t
j,k(

f(tj,k)χQn(t
j,k), u(p, tj,k; ζ); p; ζ

)
=

lim
tj→βj,k+0

∫ b1

a1

dt1...

∫ bj−1

aj−1

dtj−1

∫ bj+1

aj+1

dtj+1...

∫ bn

an

(dtn)f(t) exp(−u(p, t; ζ)),

where βj,1 = aj = 0, βj,2 = bj > 0, k = 1, 2. Mention, that (...((t1,l1)2,l2)...)j,lj = (t : t1 =
β1,l1 , ..., tj = βj,lj) for every 1 ≤ j ≤ n. Analogously to §12 we apply Formula (2) by induction
j = 1, ..., n, 2r−1 ≤ n ≤ 2r − 1, to

∂nf(t(s))/∂s1...∂sn,...,∂n−j+1f(t(s))/∂sj...∂sn,...,∂f(t(s))/∂sn
instead of ∂f(t(s))/∂sj, sj = sj(n; t) as in §2, or applying to the partial derivatives

∂nf(t)/∂t1...∂tn,...,∂n−j+1f(t)/∂tj...∂tn,...,∂f(t)/∂tn
instead of ∂f(t)/∂tj correspondingly. If sj > 0 for some j ≥ 1, then s1 > 0 for Qn and
limp→∞ e

−u(p,t(l);ζ) = 0 for such t(l), where t = (t1, ..., tn), (l) = (l1, ..., ln), |l| = l1 + ... + ln,
t(l) = (t

(l)
1 , ..., t

(l)
n ), t

(l)
j = aj for lj = 1 and t

(l)
j = bj for lj = 2, 1 ≤ j ≤ 2r − 1. Therefore,

lim
p→∞

∑

lj∈{1,2}; j=1,...,n

(−1)|l|f(t(l))e−u(p,t
(l);ζ) = (−1)nf(0)e−u(0,0;ζ),

since u(p, 0; ζ) = u(0, 0; ζ), where f((l)) = limt∈Qn;t→t(l) f(t).
In accordance with Note 8 [18]

lim
p→∞,|Arg(p)|<π/2−δ

Fn((∂nf(t)/∂s1...∂sn)χQn(t), u(p, t; ζ); p; ζ) = 0

in the Ar spherical coordinates and

lim
p→∞,|Arg(p)|<π/2−δ

Fn((∂nf(t)/∂t1...∂tn)χQn(t), u(p, t; ζ); p; ζ) = 0

in the Ar Cartesian coordinates, which gives the statement of this theorem.

25. Suppose that f(t)χQn(t) is an original function, F n(p; ζ) is its image,
∂|j|f(t)χQn(t)/∂t

j1
1 ...∂t

jn
n is an original, |j| = j1 + ...+ jn, 0 ≤ j1, ..., jn ∈ Z, 2r−1 ≤ n ≤ 2r − 1,

−∞ ≤ ak < bk ≤ ∞ for each k = 1, ..., n, (l) = (l1, ..., ln), lk ∈ {0, 1, 2}, W = Ar for
bounded Qn. Let W = {p ∈ Ar : a1 < Re(p)} for bk = ∞ for some k and finite ak for
each k; W = {p ∈ Ar : Re(p) < a−1} for ak = −∞ for some k and finite bk for each
k; W = {p ∈ Ar : a1 < Re(p) < a−1} when ak = −∞ and bl = +∞ for some k and l;
t(l) = (t

(l)
1 , ..., t

(l)
n ).
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We put t(l)k = tk and qk = 0 for lk = 0, t
(l)
k = ak for lk = 1, t

(l)
k = bk for lk = 2,

(q) = (q1, ..., qn), |q| = q1 + ...+ qn,

a1 = max(a1(f), a1(∂
|m|f(t)/∂tm11 ...∂tmnn ) : |m| ≤ |j|, 0 ≤ mk ≤ jk∀k),

a−1 = min(a−1(f), a−1(∂
|m|f(t)/∂tm11 ...∂tmnn ) : |m| ≤ |j|, 0 ≤ mk ≤ jk ∀k) if a1 < a−1.

If ak = −∞ and bk = +∞ for Qn with a given k, then lk = 0. If either ak > −∞ or
bk < +∞ for a marked k, then lk ∈ {0, 1, 2}. We also put hk = hk(l) = sign(lk) for each k,
where sign(x) = −1 for x < 0, sign(0) = 0, sign(x) = 1 for x > 0, h = h(l), |h| = |h1|+...+|hn|,

(lj) := (l1sign(j1), ..., lnsign(jn)).

Let the vector (l) enumerate faces ∂Qn
(l) in ∂Q

n
k−1 for |h(l)| = k ≥ 1, so that ∂Qn

k−1 =⋃
|h(l)|=kQ

n
(l), ∂Q

n
(l) ∩ ∂Q

n
(m) = ∅ for each (l) 6= (m) (see also more detailed notations in §28).

Let the shift operator be defined:

T(m)F (p; ζ) := F (p; ζ − (i1m1 + ...+ inmn)π/2), also the operator

(SO) S(m)F (p; ζ) := S
m1
e1
...Smnen F (p; ζ),

where (m) = (m1, ...,mn) ∈ [0,∞)n ⊂ Rn, Sk(m) = Sk(m) for each positive number 0 < k ∈ R,
S0 = I is the unit operator for (m) = 0 (see also Formulas 12(3.1 − 3.7)). As usually let
e1 = (1, 0, ..., 0),...,en = (0, ..., 0, 1) be the standard orthonormal basis in Rn so that (m) =
m1e1 + ...+mnen.
Theorem. Then

(1) Fn
(
∂|j|f(t)χQn(t)/∂t

j1
1 ...∂t

jn
n , u(p, t; ζ); p; ζ

)
=

Rj1e1R
j2
e2
...RjnenF

n(f(t)χQn(t), u; p; ζ)

+
∑

1≤|(lj)|; mk+qk+hk=jk;0≤mk; 0≤qk; hk=sign(lkjk); qk=0 for lkjk=0, for each k=1,...,n; (l)∈{0,1,2}n

(−1)|(lj)|Rm1e1 R
m2
e2
...Rmnen F

n−|h(lj)|(∂|q|f(t(lj))χ∂Qn
(lj)
(t(lj))/∂tq11 ...∂t

qn
n , u; p; ζ)

for u(p, t; ζ) in the Ar spherical coordinates or the Ar Cartesian coordinates over the Cayley-
Dickson algebra Ar with 2 ≤ r <∞, where

(1.1) Re1 := p0 + p1Se1, Re2 := p0 + p1Se1 + p2Se2,..., Ren := p0 + p1Se1 + p2Se2 + ... + pnSen
in the Ar spherical coordinates, while

(1.2) Re1 := p0 + p1Se1, Re2 := p0 + p2Se2,..., Ren := p0 + pnSen in the Ar Cartesian
coordinates, i.e. Rej = Rej(p) are operators depending on the parameter p. If t

(l)
j = ∞ for

some 1 ≤ j ≤ n, then the corresponding addendum on the right of (1) is zero.

Proof. In view of Theorem 23 we get the equality

(2)

∫

Qn

[
(∂|m|+1f(t)/∂tm11 ...∂t

mk−1
k−1 ∂t

mk+1
k ∂t

mk+1
k+1 ...∂t

mn
n )e

−u(p,t;ζ)
]
dt =

∫

Rn−1∩Qn
(dtk)

[
(∂|m|f(t)/∂tm11 ...∂tmnn )e

−u(p,t;ζ)
]∣∣
∣
bk

ak

−
∫

Rn−1∩Qn
(dtk)

(∫ bk

ak

(
∂|m|f(t)/∂tm11 ...∂tmnn

)[
∂e−u(p,t;ζ)/∂tk

]
dtk

)

is satisfied for 0 ≤ mk ≤ jk for each k = 1, ..., n with |m| < |j|. On the other hand, for p ∈ W
additives on the right of (2) convert with the help of Formula 23(1). Each term of the form

∫

Rn−|h(l)|∩Qn
(dt(l))

[
(∂|q|f(t(l))χ∂Qn

(l)
(t(l))/∂tq11 ...∂t

qn
n e
−u(p,t;ζ)

]
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can be further transformed with the help of (2) by the considered variable tk only in the
case lk = 0. Applying Formula (2) by induction to partial derivatives ∂|j|f/∂tj11 ...∂t

jn
n ,

∂|j|−j1f/∂tj22 ...∂t
jn
n ,...,∂

jnf/∂tjnn ,...,∂f/∂tn as in §21 and using Theorem 14 and Remarks 22
we deduce (1).

26. Theorem. Let f(t)χU1,...,1(t) be a function-original with values in Ar with 2 ≤ r < ∞,
2r−1 ≤ n ≤ 2r − 1, u is given by 2(1, 2, 2.1) or 1(8, 8.1),

(1) g(t) :=

∫ t1

0

...

∫ tn

0

f(x)dx, then

(2) Fn(fχU1,...,1(t), u; p; ζ) = Re1Re2 ...RenF
n(g(t)χU1,...,1(t), u; p; ζ)

in the domain Re(p) > max(a1, 0), where the operators Rej are given by Formulas 25(1.1, 1.2).
Proof. In view of Theorem 25 the equation

(3) Fn(fχU1,...,1(t), u; p; ζ) =

Re1Re2 ...RenF
n(g(t), u; p; ζ)

+
∑

1≤|l|; 0≤mk≤1; mk+hk=1; hk=sign(lk); for each k=1,...,n; q1=0,...,qn=0

(−1)|(l)|Rm1e1 R
m2
e2
...Rmnen F

n−|h(l)|(g(t(l)), u; p; ζ),

is satisfied, since ∂ng(t)/∂t1...∂tn = (fχU1,...,1)(t), where j1 = 1,...,jn = 1, lj = 1 for each
j = 1, ..., n. Equation (3) is accomplished in the same domain Re(p) > max(a1, 0), since
g(0) = 0 and g(t) also fulfills conditions of Definition 1, while a1(g) < max(a1(f), 0) + b for
each b > 0, where a1 ∈ R. On the other hand, g(t) is equal to zero on ∂U1,...,1 and outside
U1,...,1 in accordance with formula (1), hence all terms on the right side of Equation (3) with
|l| > 0 disappear and supp(g(t)) ⊂ U1,...,1. Thus we get Equation (2).

27. Theorem. Suppose that F k(p; ζ) is an image Fk;t1,...,tk(f(t)χU1,...,1(t), u; p; ζ) of an original
function f(t) for u given by 2(1, 2, 2.1) in the half space W := {p ∈ Ar : Re(p) > a1} with
2 ≤ r < ∞, p1 = 0,...,pj−1 = 0; ζ1 = π/2,...,ζj−1 = π/2 for each j ≥ 2 in the Ar spherical
coordinates or ζ1 = 0,...,ζj−1 = 0 for each j ≥ 2 in the Ar Cartesian coordinates;

(1) the integral
∫∞ij
pjij

F k(p0+ z; ζ)dz converges, where p = p0+p1i1+ ...+pkik ∈ Ar, pj ∈ R

for each j = 0, ..., 2r − 1, 2r−1 ≤ k ≤ 2r − 1, U1,...,1 := {(t1, ..., tk) ∈ Rk : t1 ≥ 0, ..., tk ≥ 0}.
Let also

(2) the function F k(p; ζ) be continuous by the variable p ∈ Ar on the open domain W ,
moreover, for each w > a1 there exist constants Cw

′ > 0 and εw > 0 such that

(3) |F k(p; ζ)| ≤ Cw
′ exp(−εw|p|) for each p ∈ SR(n), SR := {z ∈ Ar : Re(z) ≥ w}, 0 <

R(n) < R(n+1) for each n ∈ N, limn→∞R(n) =∞, where a1 is fixed, ζ = ζ0i0+ ...+ζkik ∈ Ar
is marked, ζj ∈ R for each j = 0, ..., k. Then

(4)

∫ ∞ij

pjij

F k(p0 + z; ζ)dz = S−ejF
k;t1,...,tk(f(t)χU1,...,1(t)/ξj, u; p; ζ),

where p1 = 0,...,pj−1 = 0 for each j ≥ 2; ζ1 = π/2,...,ζj−1 = π/2 and ξj = sj(k; t) in the Ar
spherical coordinates, while ζ1 = 0,...,ζj−1 = 0 and ξj = tj in the Ar Cartesian coordinates
correspondingly for each j ≥ 1.
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Proof. Take a path of an integration belonging to the half space Re(p) ≥ w for some
constant w > a1. Then

∣
∣
∣
∣
∣

∫

U1,...,1

f(t) exp(−u(p, t; ζ))dt

∣
∣
∣
∣
∣
≤ C

∫

U1,...,1

exp(−(p0 − a1)(t1 + ...+ tk))dt <∞

converges, where C = const > 0, p0 ≥ w. For tj > 0 for each j = 1, ..., k conditions of Lemma
2.23 [18] (that is of the noncommutative analog over Ar of Jordan’s lemma) are satisfied. If
tj → ∞, then sj → ∞, since all t1,...,tk are non-negative. Up to a set ∂U1,...,1 of λk Lebesgue
measure zero we can consider that t1 > 0,...,tk > 0. If sj → ∞, then also s1 → ∞. The
converging integral can be written as the following limit:

(5)

∫ ∞ij

pjij

F k(p0 + z; ζ)dz = lim
0<κ→0

∫ ∞ij

pjij

F k(p0 + z; ζ) exp(−κ|z|)dz

for 1 ≤ j ≤ k, since the integral
∫ S∞
−S∞[F

k(w + z; ζ)]dz is absolutely converging and the limit
limκ→0 exp(−κ|z|) = 1 uniformly by z on each compact subset in Ar, where S is a purely
imaginary marked Cayley-Dickson number with |S| = 1. Therefore, in the integral

(6)

∫ ∞ij

pjij

F k(p0 + z; ζ)dz =

∫ ∞ij

pjij

(∫

U1,...,1

f(t)
[
exp(−u(p0 + z, t; ζ))

]
dt

)

dz

the order of the integration can be changed in accordance with the Fubini’s theorem applied
componentwise to an integrand g = g0i0 + ...+ gnin with gl ∈ R for each l = 0, ..., n:

(7)

∫ ∞ij

pjij

F k(p0 + z; ζ)dz =

∫

U1,...,1

dt

(∫ ∞ij

pjij

f(t) exp(−u(p0 + z, t; ζ))dz

)

=

∫

U1,...,1

f(t)

{∫ ∞ij

pjij

[
e−u(p0+z,t;ζ)

]
dz

}

dt.

Generally, the condition p1 = 0,...,pj−1 = 0 and ζ1 = π/2,...,ζj−1 = π/2 in the Ar spherical
coordinates or ζ1 = 0,...,ζj−1 = 0 in the Ar Cartesian coordinates for each j ≥ 2 is essential for
the convergence of such integral. We certainly have

(8)

∫ bjij

pjij

cos(i∗jzξj + ζj)dz =
[
sin(θjξj + ζj)/ξj

]∣∣
∣
θj=bj

θj=pj
=
[
− cos(θjξj + ζj + π/2)/ξj

]∣∣
∣
θj=bj

θj=pj

and

(9)

∫ bjij

pjij

sin(i∗jzξj + ζj)dzj =
[
− cos(θjξj + ζj)/ξj

]∣∣
∣
θj=bj

θj=pj
=
[
− sin(θjξj + ζj + π/2)/ξj

]∣∣
∣
θj=bj

θj=pj

for each ξj > 0 and −∞ < pj < bj < ∞ and j = 1, ..., k. Applying Formulas (5 − 9) and
2(1, 2, 2.1) or 1(8, 8.1) and 12(3.1− 3.7) we deduce that:

∫ ∞ij

pjij

[
F k(p0 + z; ζ)

]
dz = S−ej

∫

U1,...,1

[f(t)/ξj] exp{−u(p, t; ζ)}dt

= S−ejF
k;t1,...,tk(f(t)χU1,...,1(t)/ξj, u; p; ζ),
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where t = (t1, ..., tk), sj = tj + ... + tk for each 1 ≤ j < k, sk = tk, ξj = sj in the Ar spherical
coordinates or ξj = tj in the Ar Cartesian coordinates.

28. Application of the noncommutative multiparameter transform to partial dif-
ferential equations.
Consider a partial differential equation of the form:

(1) A[f ](t) = g(t), where

(2) A[f ](t) :=
∑
|j|≤α aj(t)(∂

|j|f(t)/∂tj11 ...∂t
jn
n ),

aj(t) ∈ Aκ are continuous functions, where 0 ≤ κ ∈ Z, j = (j1, ..., jn), |j| := j1 + ... + jn,
0 ≤ jk ∈ Z, α is a natural order of a differential operator A, 2 ≤ r, 2r−1 ≤ n ≤ 2r − 1. Since
sk = sk(n; t) = tk+ ...+ tn for each k = 1, ..., n, the operator A can be rewritten in s coordinates
as

(2.1) A[f ](t(s)) :=
∑
|j|≤α bj(t)(∂

|j|f(t(s))/∂sj11 ...∂s
jn
n ).

That is, there exists bj 6= 0 for some j with |j| = α and bj = 0 for |j| > α, while a function∑
j,|j|=α bj(t(s))s

j1
1 ...s

jn
n is not zero identically on the corresponding domain V . We consider

that

(D1) U is a canonical closed subset in the Euclidean space Rn, that is U = cl(Int(U)),
where Int(U) denotes the interior of U and cl(U) denotes the closure of U .

Particularly, the entire space Rn may also be taken. Under the linear mapping (t1, ..., tn) 7→
(s1, ..., sn) the domain U transforms onto V .
We consider a manifold W satisfying the following conditions (i− v).

(i). The manifold W is continuous and piecewise Cα, where C l denotes the family of l times
continuously differentiable functions. This means by the definition that W as the manifold is
of class C0 ∩ Cα

loc. That is W is of class Cα on open subsets W0,j in W and W \ (
⋃
jW0,j) has

a codimension not less than one in W .

(ii). W =
⋃m
j=0Wj, where W0 =

⋃
kW0,k, Wj ∩ Wk = ∅ for each k 6= j, m = dimRW ,

dimRWj = m− j, Wj+1 ⊂ ∂Wj.

(iii). Each Wj with j = 0, ...,m− 1 is an oriented Cα-manifold, Wj is open in
⋃m
k=jWk. An

orientation of Wj+1 is consistent with that of ∂Wj for each j = 0, 1, ...,m − 2. For j > 0 the
set Wj is allowed to be void or non-void.

(iv). A sequence W k of Cα orientable manifolds embedded into Rn, α ≥ 1, exists such that
W k uniformly converges to W on each compact subset in Rn relative to the metric dist.

For two subsets B and E in a metric space X with a metric ρ we put

(3) dist(B,E) := max{supb∈B dist({b}, E), supe∈E dist(B, {e})}, where
dist({b}, E) := infe∈E ρ(b, e), dist(B, {e}) := infb∈B ρ(b, e), b ∈ B, e ∈ E.

Generally, dimRW = m ≤ n. Let (ek1(x), ..., e
k
m(x)) be a basis in the tangent space TxW

k at
x ∈ W k consistent with the orientation of W k, k ∈ N.
We suppose that the sequence of orientation frames (ek1(xk), ..., e

k
m(xk)) of W

k at xk con-
verges to (e1(x), ..., em(x)) for each x ∈ W0, where limk xk = x ∈ W0, while e1(x),...,em(x) are
linearly independent vectors in Rn.

(v). Let a sequence of Riemann volume elements λk on W k (see §XIII.2 [30]) induce a limit
volume element λ on W , that is, λ(B ∩W ) = limk→∞(B ∩W k) for each compact canonical
closed subset B in Rn, consequently, λ(W \W0) = 0. We shall consider surface integrals of
the second kind, i.e. by the oriented surface W (see (iv)), where each Wj, j = 0, ...,m − 1 is
oriented (see also §XIII.2.5 [30]).

Recall, that a subset V inRn is called convex, if from a, b ∈ V it follows that εa+(1−ε)b ∈ V
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for each ε ∈ [0, 1].

(vi). Let a vector w ∈ Int(U) exist so that U −w is convex in Rn and let ∂U be connected.
Suppose that a boundary ∂U of U satisfies Conditions (i− v) and

(vii) let the orientations of ∂Uk and Uk be consistent for each k ∈ N (see Proposition 2
and Definition 3 [30]).

Particularly, the Riemann volume element λk on ∂Uk is consistent with the Lebesgue mea-
sure on Uk induced from Rn for each k. This induces the measure λ on ∂U as in (v).
Also the boundary conditions are imposed:

(4) f(t)|∂U = f0(t′), (∂|q|f(t)/∂s
q1
1 ...∂s

qn
n )|∂U = f(q)(t

′) for |q| ≤ α−1, where s = (s1, ..., sn) ∈
Rn, (q) = (q1, ..., qn), |q| = q1 + ...+ qn, 0 ≤ qk ∈ Z for each k, t ∈ ∂U is denoted by t′, f0, f(q)
are given functions. Generally these conditions may be excessive, so one uses some of them or
their linear combinations (see (5.1) below). Frequently, the boundary conditions

(5) f(t)|∂U = f0(t′), (∂lf(t)/∂ν l)|∂U = fl(t′) for 1 ≤ l ≤ α−1 are also used, where ν denotes
a real variable along a unit external normal to the boundary ∂U at a point t′ ∈ ∂U0. Using
partial differentiation in local coordinates on ∂U and (5) one can calculate in principle all other
boundary conditions in (4) almost everywhere on ∂U .

Suppose that a domain U1 and its boundary ∂U1 satisfy Conditions (D1, i− vii) and g1 =
gχU1 is an original on R

n with its support in U1. Then any original g on Rn gives the original
gχU2 =: g2 on R

n, where U2 = Rn \U1. Therefore, g1+g2 is the original on Rn, when g1 and g2
are two originals with their supports contained in U1 and U2 correspondingly. Take now new
domain U satisfying Conditions (D1, i− vii) and (D2−D5):

(D2) U ⊃ U1 and ∂U ⊂ ∂U1;

(D3) if a straight line ξ containing a point w1 (see (vi)) intersects ∂U1 at two points y1 and
y2, then only one point either y1 or y2 belongs to ∂U , where w1 ∈ U1, U − w1 and U1 − w1 are
convex; if ξ intersects ∂U1 only at one point, then it intersects ∂U at the same point. That is,

(D4) any straight line ξ through the point w1 either does not intersect ∂U or intersects the
boundary ∂U only at one point.

Take now g with supp(g) ⊂ U , then supp(gχU1) ⊂ U1. Therefore, any problem (1) on U1 can
be considered as the restriction of the problem (1) defined on U , satisfying (D1−D4, i− vii).
Any solution f of (1) on U with the boundary conditions on ∂U gives the solution as the
restriction f |U1 on U1 with the boundary conditions on ∂U .
Henceforward, we suppose that the domain U satisfies Conditions (D1, D4, i− vii), which

are rather mild and natural. In particular, for Qn this means that either ak = −∞ or bk = +∞
for each k. Another example is: U1 is a ball in Rn with the center at zero, U = U1∪(Rn\U1,...,1),
w1 = 0; or U = U1 ∪ {t ∈ Rn : tn ≥ −ε} with a marked number 0 < ε < 1/2. But subsets
∂U(l) in ∂U can also be specified, if the boundary conditions demand it.
The complex field has the natural realization by 2 × 2 real matrices so that i =

(
0 1
−1 0

)
,

i2 = −
(
1 0
0 1

)
. The quaternion skew field, as it is well-known, can be realized with the help of

2 × 2 complex matrices with the generators I =
(
1 0
0 1

)
, J =

(
0 1
−1 0

)
, K =

(
i 0
0 −i

)
, L =

(
0 −i
−i 0

)
, or

equivalently by 4 × 4 real matrices. Considering matrices with entries in the Cayley-Dickson
algebra Av one gets the complexified or quaternionified Cayley-Dickson algebras (Av)C or
(Av)H with elements z = aI + bi or z = aI + bJ + cK + eL, where a, b, c, e ∈ Av, such that
each a ∈ Av commutes with the generators i, I, J , K and L.
When r = 2, f and g have values in A2 = H and 2 ≤ n ≤ 4 and coefficients of differential

operators belong to A2, then the multiparameter noncommutative transform operates with the
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associative case so that

Fn(af) = aFn(f)

for each a ∈ H. The left linearity property Fn(af) = aFn(f) for any a ∈ HJ,K,L is also
accomplished for either operators with coefficients in R or Ci = IR ⊕ iR or HJ,K,L = IR ⊕
JR⊕KR⊕ LR and f with values in Av with 1 ≤ n ≤ 2v − 1; or vice versa f with values in
Ci or HJ,K,L and coefficients a in Av but with 1 ≤ n ≤ 4. Thus all such variants of operator
coefficients aj and values of functions f can be treated by the noncommutative transform.
Henceforward, we suppose that these variants take place.
We suppose that g(t) is an original function, that is satisfying Conditions 1(1−4). Consider

at first the case of constant coefficients aj on a quadrant domain Qn. Let Qn be oriented so
that ak = −∞ and bk = +∞ for each k ≤ n − κ; either ak = −∞ or bk = +∞ for each
k > n − κ, where 0 ≤ κ ≤ n is a marked integer number. If conditions of Theorem 25 are
satisfied, then

(6) Fn(A[f ](t), u; p; ζ) =
∑

|j|≤α

aj

{
[Re1(p)]

j1 [Re2(p)]
j2 ...[Ren(p)]

jnFn(f(t)χQn(t), u; p; ζ)

+
∑

1≤|(lj)|; mk+qk+hk=jk; 0≤mk; 0≤qk; hk=sign(lkjk); qk=0 for lkjk=0, for each k=1,...,n; (l)∈{0,1,2}n

(−1)|(lj)|[Re1(p)]
m1 [Re2(p)]

m2 ...[Ren(p)]
mnFn−|h(lj)|

(
∂|q|f(t(lj))χ∂Qn

(lj)
(t(lj))/∂tq11 ...∂t

qn
n , u; p; ζ

)}

= Fn(g(t)χQn(t), u; p; ζ)

for u(p, t; ζ) in the Ar spherical or Ar Cartesian coordinates, where the operators Rej(p) are
given by Formulas 25(1.1) or 25(1.2). Here (l) enumerates faces ∂Qn

(l) in ∂Q
n
k−1 for |h(l)| =

k ≥ 1, so that ∂Qn
k−1 =

⋃
|h(l)|=kQ

n
(l), ∂Q

n
(l) ∩ ∂Q

n
(m) = ∅ for each (l) 6= (m) in accordance with

§25 and the notation of this section.
Therefore, Equation (6) shows that the boundary conditions are necessary:

(∂|q|f(t(l))/∂tq11 ...∂t
qn
n )|∂Qn(l) for |j| ≤ α, |(lj)| ≥ 1, aj 6= 0, qk = 0 for lkjk = 0, mk+qk+hk =

jk, hk = sign(lkjk), k = 1, ..., n, t(l) ∈ ∂Qn
(l). But dimR∂Q

n = n−1 for ∂Qn 6= ∅, consequently,

(∂|q|f(t(l))/∂tq11 ...∂t
qn
n )|∂Qn(l) can be calculated if know (∂

|β|f(t(l))/∂tβ1γ(1)...∂t
βm
γ(m))|∂Qn(l) for |β| =

|q|, where β = (β1, ..., βm), m = |h(l)|, a number γ(k) corresponds to lγ(k) > 0, since qk = 0 for
lk = 0 and qk > 0 only for lkjk > 0 and k > n− κ. That is, tγ(1),...,tγ(m) are coordinates in Rn

along unit vectors orthogonal to ∂Qn
(l).

Take a sequence Uk of sub-domains Uk ⊂ Uk+1 ⊂ U for each k ∈ N so that each Uk =⋃m(k)
l=1 Qn

k,l is the finite union of quadrants Q
n
k,l, m(k) ∈ N. We choose them so that each two

different quadrants may intersect only by their borders, each Uk satisfies the same conditions
as U and

(7) limk→∞ dist(U,U
k) = 0.

Therefore, Equation (6) can be written for more general domain U also.
For U instead of Qn we get a face ∂U(l) instead of ∂Qn

(l) and local coordinates τγ(1),...,τγ(m)
orthogonal to ∂U(l) instead of tγ(1),...,tγ(m) (see Conditions (i− iii) above).
Thus the sufficient boundary conditions are:

(5.1)
(
∂|β|f(t(lj))/∂τβ1γ(1)...∂τ

βm
γ(m)

)∣∣
∣
∂U(lj)

= φβ,(lj)(t
(lj))

for |β| = |q|, wherem = |h(lj)|, |j| ≤ α, |(lj)| ≥ 1, aj 6= 0, qk = 0 for lkjk = 0, mk+qk+hk = jk,
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hk = sign(lkjk), 0 ≤ qk ≤ jk − 1 for k > n − κ; φβ,(l)(t(l)) are known functions on ∂U(l),
t(l) ∈ ∂U(l). In the half-space tn ≥ 0 only

(5.2) ∂βf(t)/∂tβn|tn=0
are necessary for β = |q| < α and q as above.

Depending on coefficients of the operator A and the domain U some boundary conditions
may be dropped, when the corresponding terms vanish in Formula (6). For example, if A =
∂2/∂t1∂t2, U = U1,1, n = 2, then ∂f/∂ν|∂U0 is not necessary, only the boundary condition
f |∂U is sufficient.
If U = Rn, then no any boundary condition appears. Mention that

(5.3) F0(f(a); u; p; ζ) = f(a)e−u(p,a;ζ),
which happens in (6), when a = t(l) and |h(l)| = n.

Conditions in (5.1) are given on disjoint for different (l) submanifolds ∂U(l) in ∂U and
partial derivatives are along orthogonal to them coordinates in Rn, so they are correctly posed.
In Ar spherical coordinates due to Corollary 4.1 Equation (6) with different values of the pa-

rameter ζ gives a system of linear equations relative to unknown functions S(m)Fn(f(t), u; p; ζ),
from which Fn(f(t), u; p; ζ) can be expressed through a family

{
S(m)F

n(g(t), u; p; ζ); S(m)F
n−|h(l)|

(
∂|q|f(t(l))χ∂Qn

(l)
(t(l))/∂tq11 ...∂t

qn
n , u; p; ζ

)
: (m) ∈ Zn

}

and polynomials of p, where Z denotes the ring of integer numbers, where the corresponding
term Fn−|h(l)| is zero when t(l)j = ±∞ for some j. In the Ar Cartesian coordinates there are
not so well periodicity properties generally, so the family may be infinite. This means that
Fn(f(t), u; p; ζ) can be expressed in the form:

(8) Fn(f(t), u; p; ζ) =
∑

(m)

P(m)(p)S(m)F
n(g(t), u; p; ζ)

+
∑

j,(q),(l),|(l)|≥1,(m)

Pj,(q),(l),(m)(p)S(m)F
n−|h(lj)|

(
∂|q|f(t(lj))χ∂U(lj)(t

(lj))/∂tq11 ...∂t
qn
n , u; p; ζ

)
,

where P(m)(p) and Pj,(q),(l),(m)(p) are quotients of polynomials of real variables p0, p1, ..., pn. The
sum in (8) is finite in the Ar spherical coordinates and may be infinite in the Ar Cartesian
coordinates. To the obtained Equation (8) we apply the theorem about the inversion of the
noncommutative multiparameter transform. Thus this gives an expression of f through g as a
particular solution of the problem given by (1, 2, 5.1) and it is prescribed by Formulas 6.1(1)
and 8.1(1).
For Fn(f ; u; p; ζ) Conditions 8(1, 2) are satisfied, since P(m)(p) and Pj,(q),(l),(m)(p) are quo-

tients of polynomials with real, complex or quaternion coefficients and real variables, also Gn

and Fn−|h(l)| terms on the right of (6) satisfy them. Thus we have demonstrated the theorem.
28.1. Theorem. Suppose that Fn(f ; u; p; ζ) given by the right side of (8) satisfies Condi-

tions 8(3). Then Problem (1, 2, 5.1) has a solution in the class of original functions, when g and
φβ,(l) are originals, or in the class of generalized functions, when g and φβ,(l) are generalized
functions.
Mention, that a general solution of (1, 2) is the sum of its particular solution and a general

solution of the homogeneous problem Af = 0. If φβ,(l) = φ1β,(l)+ φ
2
β,(l), g = g1+ g2, f = f1+ f2,

Afj = gj and fj on ∂Uj satisfies (5.1) with φ
j
β,(l), j = 1, 2, then Af = g and f on ∂U satisfies

Conditions (5.1) with φβ,(l).
28.2. Example. We take the partial differential operator of the second order

A =
n∑

h,m=1

ah,m∂
2/∂τh∂τm +

n∑

h=1

αh∂/∂τh + ω,
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where the quadratic form a(τ) :=
∑

h,m ah,mτhτm is non-degenerate and is not always negative,
because otherwise we can consider −A. Suppose that ah,m = am,h ∈ R, αh, τh ∈ R for each
h,m = 1, ..., n, ω ∈ A3. Then we reduce this form a(τ) by an invertible R linear operator C to
the sum of squares. Thus

(9) A =
n∑

h=1

ah∂
2/∂t2h +

n∑

h=1

βh∂/∂th + ω,

where (t1, ..., tn) = (τ1, ..., τn)C with real ah and βh for each h. If coefficients of A are constant,
using a multiplier of the type exp(

∑
h εhsh) it is possible to reduce this equation to the case so

that if ah 6= 0, then βh = 0 (see §3, Chapter 4 in [26]). Then we can simplify the operator with
the help of a linear transformation of coordinates and consider that only βn may be non-zero
if an = 0. For A with constant coefficients as it is well-known from algebra one can choose a
constant invertible real matrix (ch,m)h,m=1,...,k corresponding to C so that ah = 1 for h ≤ k+
and ah = −1 for h > k+, where 0 < k+ ≤ n. For k+ = n and β = 0 the operator is elliptic, for
k+ = n − 1 with an = 0 and βn 6= 0 the operator is parabolic, for 0 < k+ < n and β = 0 the
operator is hyperbolic. Then Equation (6) simplifies:

(10) Fn(A[f ](t), u; p; ζ) =
n∑

h=1

ah

{
[Reh(p)]

2Fn(f(t)χQn(t), u; p; ζ)

+
∑

lh∈{1,2};(l)=lheh

(−1)lh
[
Fn−1

(
∂f(t(l))χ∂Qn

(l)
(t(l))/∂th, u; p; ζ

)

+[Reh(p)]F
n−1(f(t(l))χ∂Qn

(l)
(t(l)), u; p; ζ)

]}

+βn

{
Fn−1;t

n,2(
f(tn,2)χ∂Qn2en (t

n,2), u; p; ζ
)
−Fn−1;t

n,1(
f(tn,1)χ∂Qnen (t

n,1), u; p; ζ
)

+[Ren(p)]F
n
(
f(t)χQn(t), u; p; ζ

)}
+ωFn

(
f(t)χQn(t), u; p; ζ

)
= Fn(g(t), u; p; ζ)

in the Ar spherical or Ar Cartesian coordinates, where eh = (0, ..., 0, 1, 0, ..., 0) ∈ Rn with 1 on
the h-th place, S0 = I is the unit operator, the operators Reh(p) are given by Formulas 25(1.1)
or 25(1.2) respectively.
We denote by δS(x) the delta function of a continuous piecewise differentiable manifold S

in Rn satisfying conditions (i− vi) so that

(Δ)

∫

Rn
η(x)δS(x)dx =

∫

S

η(y)λm(dy)

for a continuous integrable function η(x) on Rn, where dim(S) = m < n, λm(dy) denotes
a volume element on the m dimensional surface S (see Condition (v) above). Thus we can
consider a non-commutative multiparameter transform on ∂U for an original f on U given by
the formula:

(11) Fn−1;t
′

∂U (f(t′)χ∂U(t
′), u; p; ζ) = Fn;t(f(t)δ∂U(t), u; p; ζ).

Therefore, terms like Fn−1 in (10) correspond to the boundary ∂Qn. They can be simplified:

(12) βn

{
Fn−1;t

n,2(
f(tn,2)χ∂Qn2en (t), u; p; ζ

)
−Fn−1;t

n,1(
f(tn,1)χ∂Qnen (t), u; p; ζ

)}

= Fn−1;t
′

∂Qn (β(t
′)f(t′)χ∂Qn(t

′), u; p; ζ),



S.V. Ludkovsky Multidimensional Laplace transforms over Cayley-Dickson algebras... 151

where β(t′) is a piecewise constant function on ∂Qn equal to βn on the corresponding faces of
Qn orthogonal to en given by condition: either tn = an or tn = bn; β(t′) = 0 is zero otherwise.
If ak = −∞ or bk = +∞, then the corresponding term disappears. If Rn embed into Ar

with 2r−1 ≤ n ≤ 2r − 1 as Ri1 ⊕ ... ⊕Rin, then this induces the corresponding embedding Θ
of Qn or U into Ar. This permits to make further simplification:

(12.1)
n∑

h=1

ah

{
∑

lh∈{1,2};(l)=lheh

(−1)lh
[
[Reh(p)]F

n−1(f(t(l))χ∂Qn
(l)
(t(l)), u; p; ζ)

+Fn−1
(
∂f(t(l))χ∂Qn

(l)
(t(l))/∂th, u; p; ζ

)]
}

= Fn−1∂Qn

(
a(t′)

(
∂f(t′)χ∂Qn0 (t

′)/∂ν
)
, u(p, t′; ζ); p; ζ

)

+Fn−1∂Qn

(
P(t′)f(t′)χ∂Qn0 (t

′), u; p; ζ
)
,

where ν = ν(t′) denotes a real coordinate along an external unit normal M(t′) to Θ(∂U) at
Θ(t′), so that M(t′) is a purely imaginary Cayley-Dickson number, a(t′) is a piecewise constant
function equal to ah for the corresponding t′ in the face ∂Qn

lheh
with lh > 0; P(t′, p) := P(t′) :=

Reh(p) for t
′ ∈ ∂Qn

lheh
, h = 1, ..., n, since sin(ψ + π) = − sin(ψ) and cos(ψ + π) = − cos(ψ) for

each ψ ∈ R. Certainly the operator-valued function P(t′) has a piecewise continuous extension
P(t) on Qn. That is

(13) Fn−1∂U

(
ξ(t′)f(t′)χ∂U(t

′), u(p, t′; ζ); p; ζ
)

:=

∫

Rn
ξ(t)f(t)δ∂U (t) exp{−u(p, t; ζ)}dt

for an integrable operator-valued function ξ(t) so that [ξ(t)f(t)] is an original on U whenever
this integral exists. For example, when ξ is a linear combination of shift operators S(m) with
coefficients ε(m)(t, p) such that each ε(m)(t, p) as a function by t ∈ U for each p ∈ W and f(t) are
originals or f and g are generalized functions. For two quadrants Qm,l and Qm,k intersecting by
a common face Υ external normals to it for these quadrants have opposite directions. Thus the
corresponding integrals in Fn−1∂Qm,l

and Fn−1∂Qm,k
restricted on Υ summands cancel in Fn−1∂(Qm,l∪Qm,k)

.
Using Conditions (iv−vii) and the sequence Um and quadrants Qn

m,l outlined above we get
for a boundary problem on U instead of Qn the following equation:

(14) Fn(A[f ](t), u; p; ζ) =

{
n∑

h=1

ah[Reh(p)]
2Fn(f(t)χU(t), u; p; ζ)

}

+

{
Fn−1∂U

(
[β(t′) + P(t′, p)]f(t′)χ∂U0(t

′), u; p; ζ
)
+Fn−1∂U (a(t

′)(∂f(t′)χ∂U0(t
′)/∂ν), u; p; ζ

)}

Fn
(
βn[Rn(p)]f(t)χU(t), u; p; ζ

)
+ωFn

(
f(t)χU(t), u; p; ζ

)
= Fn(g(t), u; p; ζ),

where P(t′, p) := P(t′) :=
∑n

h=1 ah[Rh(p)](∂ν/∂th) for each t
′ ∈ ∂U0 (see also Stokes’ formula

in §XIII.3.4 [30] and Formulas (14.2, 14.3) below). Particularly, for the quadrant domain Qn

we have a(t) = ah for t ∈ ∂Qn
lheh

with lh > 0, β(t) = βn for t ∈ ∂Qn
lnen

with ln > 0 and zero
otherwise.
The boundary conditions are:

(14.1) f(t)|∂U0 = φ(t)|∂U0 , (∂f(t)/∂ν)|∂U0 = φ1(t)|∂U0 .
The functions a(t) and β(t) can be calculated from {ah : h} and βn almost everywhere on ∂U
with the help of change of variables from (t1, ..., tn) to (y1, ..., yn−1, yn), where (y1, ..., yn) are
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local coordinates in ∂U0 in a neighborhood of a point t′ ∈ ∂U0, yn = ν, since ∂U0 is of class C1.
Consider the differential form

∑n
h=1(−1)

n−hahdt1 ∧ ... ∧ d̂th ∧ ... ∧ dtn = ady1 ∧ ... ∧ dyn−1 and
its external product with dν =

∑n
h=1(∂ν/∂th)dth, then

(14.2) a(t)|∂U0 =
∑n

h=1 ah(∂ν/∂th)|∂U0 and

(14.3) β(t)|∂U0 = βnχUen∪U2en (∂ν/∂tn)|∂U0 .

This is sufficient for the calculation of Fn−1∂U .
28.3. Inversion procedure in the Ar spherical coordinates.
When boundary conditions 28(5.1) are specified, this equation 28(6) can be resolved relative

to Fn(f(t)χU(t), u(p, t; ζ); p; ζ), particularly, for Equations 28.2(14, 14.1) also. The operators
Sej and Tj of §12 have the periodicity properties: S

4+k
ej

F (p; ζ) = SkejF (p; ζ) and T 4+kj F (p; ζ) =

T kj F (p; ζ) , S
2+k
e1

F (p; ζ) = −Ske1F (p; ζ) and T 2+k1 F (p; ζ) = −T k1 F (p; ζ) for each positive integer
number k and 1 ≤ j ≤ 2r − 1. We put

(6.1) Fj(p; ζ) := (S
4
ej
− S4ej+1)F (p; ζ) for any 1 ≤ j ≤ 2r − 2,

(6.2) F2r−1(p; ζ) := S
4
e2r−1

F (p; ζ). Then from Formula 28(6) we get the following equations:

(6.3)
∑

|j|≤α

aj

{
[p0 + p1T1]

j1 [p0 + p1T1 + p2T2]
j2

...[p0 + p1T1 + ...+ pnTn]
jn
}∣∣
∣
pb=0 ∀b>w

Fw(p; ζ) =
{
−
∑

|j|≤α

aj

∑

1≤|(lj)|; mk+qk+hk=jk; 0≤mk; 0≤qk; hk=sign(lkjk); qk=0 for lkjk=0, for each k=1,...,n; (l)∈{0,1,2}n

(−1)|(lj)|
{
[p0 + p1T1]

m1 [p0 + p1T1 + p2T2]
m2 ...[p0 + p1T1 + ...+ pnTn]

mn
}∣∣
pb=0 ∀b>w

Fn−|h(lj)|w

(
∂|q|f(t(lj))χ∂Qn

(lj)
(t(lj))/∂tq11 ...∂t

qn
n , u; p; ζ

)}
+Gw(p; ζ)

for each w = 1, ..., n, where F (p; ζ) = Fn(f(t)χQn(t), u; p; ζ) and G(p; ζ) =
Fn(g(t)χQn(t), u; p; ζ). These equations are resolved for each w = 1, ..., n as it is indicated
below. Taking the sum one gets the result

(6.4) F (p; ζ) = F1(p; ζ) + ...+ Fn(p; ζ),

since
{[∑2r−2

j=1 (S
4
ej
− S4ej+1)

]
+S4e2r−1

}
e−u(p,t;ζ) = S4e1e

−u(p,t;ζ) = e−u(p,t;ζ).

The analogous procedure is for Equation (14) with the domain U instead of Qn.
From Equation (6.3) or (14) we get the linear equation:

(15)
∑

(l)

ψ(l)x(l) = φ,

where φ is the known function and depends on the parameter ζ, ψ(l) are known coefficients
depending on p, x(l) are indeterminates and may depend on ζ, l1 = 0, 1 for h = 1, so that
x(l)+2e1 = −x(l); lh = 0, 1, 2, 3 for h > 1, where x(l)+4eh = x(l) for each h > 1 in accordance with
Corollary 4.1, (l) = (l1, ..., ln).
Acting on both sides of (6.3) or (14) with the shift operators T(m) (see Formula 25(SO)),

where m1 = 0, 1, mh = 0, 1, 2, 3 for each h > 1, we get from (15) a system of 21+2(k−1) linear
equations with the known functions φ(m) := T(m)φ instead of φ, φ(0) = φ:

(15.1)
∑
(l) ψ(l)T(m)x(l) = φ(m) for each (m).

Each such shift of ζ left coefficients ψ(l) intact and x(l)+(m) = (−1)ηx(l′) with l′1 =
l1 + m1 (mod 2), l′h = lh + mh (mod 4) for each h > 1, where η = 1 for l1 + m1 − l′1 = 2,
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η = 2 otherwise. This system can be reduced, when a minimal additive group G :=
{(l) : l1 (mod 2), lj (mod 4) ∀2 ≤ j ≤ k; generated by all (l) with non-zero coefficients
in Equation (15)} is a proper subgroup of g2 × g

k−1
4 , where gh := Z/(hZ) denotes the finite

additive group for 0 < h ∈ Z. Generally the obtained system is non-degenerate for λn+1 almost
all p = (p0, ..., pn) ∈ Rn+1 or in W , where λn+1 denotes the Lebesgue measure on the real space
Rn+1.
We consider the non-degenerate operator A with real, complex Ci or quaternion HJ,K,L

coefficients. Certainly in the real and complex cases at each point p, where its determinate
Δ = Δ(p) is non-zero, a solution can be found by the Cramer’s rule.
Generally, the system can be solved by the following algorithm. We can group variables by

l1, l2,...,lk. For a given l2, ..., lh and l1 = 0, 1 subtracting all other terms from both sides of (15)
after an action of T(m) with m1 = 0, 1 and marked mh for each h > 1 we get the system of the
form

(16) αx1 + βx2 = b1,
−βx1 + αx2 = b2,

which generally has a unique solution for λn+1 almost all p:

(17) x1 = (α(α
2+ β2)−1)b1− (β(α2+ β2)−1)b2); x2 = (α(α2+ β2)−1)b2+ (β(α2+ β2)−1)b1,

where b1, b2 ∈ Ar, for a given set (m2, ...mn).
When lh are specified for each 1 ≤ h ≤ k with h 6= h0, where 1 < h0 ≤ k, then the system

is of the type:

(18) ax1 + bx2 + cx3 + dx4 = b1,
dx1 + ax2 + bx3 + cx4 = b2,
cx1 + dx2 + ax3 + bx4 = b3,
bx1 + cx2 + dx3 + ax4 = b4,

where a, b, c, d ∈ R or Ci or HJ,K,L, while b1, b2, b3, b4 ∈ Ar. In the latter case of HJ,K,L it can
be solved by the Gauss’ exclusion algorithm. In the first two cases of R or Ci the solution is:

(19) xj = Δj/Δ, where
Δ = aξ1 − dξ2 + cξ3 − bξ4,
Δ1 = b1ξ1 − b2ξ2 + b3ξ3 − b4ξ4,
Δ2 = −b1ξ4 + b2ξ1 − b3ξ2 + b4ξ3,
Δ3 = b1ξ3 − b2ξ4 + b3ξ1 − b4ξ2,
Δ4 = −b1ξ2 + b2ξ3 − b3ξ4 + b4ξ1,
ξ1 = a

3 + b2c+ cd2 − ac2 − 2abd,
ξ2 = a

2b+ bc2 + d3 − b2d− 2acd,
ξ3 = ab

2 + c3 + ad2 − a2c− 2bcd,
ξ4 = a

2d+ b3 + c2d− bd2 − 2abc.

Thus on each step either two or four indeterminates are calculated and substituted into
the initial linear algebraic system that gives new linear algebraic system with a number of
indeterminates less on two or four respectively. May be pairwise resolution on each step is
simpler, because the denominator of the type (α2 + β2) should be λ2r almost everywhere by
p ∈ Ar positive (see (6), (14) above). This algorithm acts analogously to the Gauss’ algorithm.
Finally the last two or four indeterminates remain and they are found with the help of Formulas
either (17) or (19) respectively. When for a marked h in (6) or (14) all lh = 0 (mod 2) (remains
only x1 for h = 1, or remain x1 and x3 for h > 1) or for some h > 1 all lh = 0 (mod 4) (remains
only x1) a system of linear equations as in (15, 15.1) simplifies.
Thus a solution of the type prescribed by (8) generally λn+1 almost everywhere by p ∈ W

exists, where W is a domain W = {p ∈ Ar : a1 < Re(p) < a−1, pj = 0 ∀j > n} of convergence
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of the noncommutative multiparameter transform, when it is non-void, 2r−1 ≤ n ≤ 2r − 1,
Re(p) = p0, p = p0i0 + ...+ pnin.
This domain W is caused by properties of g and initial conditions on ∂U and by the domain

U also. Generally U is worthwhile to choose with its interior Int(U) non-intersecting with a
characteristic surface φ(x1, ..., xn) = 0, i.e. at each point x of it the condition is satisfied

(CS)
∑
|j|=α aj(t(x))(∂φ/∂x1)

j1 ...(∂φ/∂xn)
jn = 0

and at least one of the partial derivatives (∂φ/∂xk) 6= 0 is non-zero.

In particular, the boundary problem may be with the right side g = ςf in (2, 2.1, 14), where
ς is a real or complex Ci or quaternion HJ,K,L multiplier, when boundary conditions are non-
trivial. In the space either D(Rn,Ar) or B(Rn,Ar) (see §19) a partial differential problem
simplifies, because all boundary terms disappear. If f ∈ B(Rn,Ar), then {p ∈ Ar : Re(p) ≥
0} ⊂ Wf . For f ∈ D(Rn,Ar) certainly Wf = Ar (see also §9).
28.4. Examples. Take partial differential equations of the fourth order. In this subsection

the noncommutative multiparameter transforms in Ar spherical coordinates are considered. For

(20) A = ∂3/∂s31 +
∑n

j=2 γj∂
4/∂s4j

with constants γj ∈ HJ,K,L \ {0} on the space either D(Rn,Ar) or B(Rn,Ar), where n ≥ 2,
Equation (6) takes the form:

(21) Fn(A[f ](t), u; p; ζ) =

{
p0(p

2
0 + 3(p1Se1)

2) +
n∑

j=2

γj(pjSej)
4
}
Fn(f(t), u; p; ζ) + p1(3p

2
0 + (p1Se1)

2)Se1F
n(f(t), u; p; ζ)

= Fn(g(t), u; p; ζ)

due to Corollary 4.1. In accordance with (16, 17) we get:

(22) Fw(p; ζ) = (α(α
2 + β2)−1)Gw(p; ζ)− (β(α2 + β2)−1)T1Gw(p; ζ)) for each w = 1, ..., n,

where αw = α = [p0(p
2
0 − 3p

2
1) +

∑n
j=2 γjp

4
j ]
∣
∣
∣
pb=0 ∀b>w

, βw = β = p1(3p
2
0 − p

2
1)
∣
∣
∣
pb=0 ∀b>w

. From

Theorem 6, Corollary 6.1 and Remarks 24 we infer that:

(23) f(t) = (2π)−n
∫

Rn
F (a+ p; ζ) exp{u(p, t; ζ)}dp1...dpn

supposing that the conditions of Theorem 6 and Corollary 6.1 are satisfied, where F (p; ζ) =
Fn(f(t), u; p; ζ).
If on the space either D(Rk,Ar) or B(Rk,Ar) an operator is as follows:

(24) A = ∂4/∂s21∂s
2
2 +
∑n

j=3 γj∂
4/∂s4j , where γj ∈ HJ,K,L \ {0}, where n ≥ 3, then (6) reads

as:

(25) Fn(Af(t), u; p; ζ) = p22(p
2
0 + (p1Se1)

2)S2e2F
n(f(t), u; p; ζ)

+2p0p1p
2
2Se1S

2
e2
Fn(f(t)), u; p; ζ) +

∑n
j=3 γj(pjSej)

4Fn(f(t)), u; p; ζ)
= Fn(g(t), u; p; ζ).

If on the same spaces an operator is:

(26) A = ∂3/∂s1∂s
2
2 +

∑n
j=3 γj∂

4/∂s4j , where n ≥ 3, then (6) takes the form:

(27) Fn(Af(t), u; p; ζ) = p0p
2
2S
2
e2
Fn(f(t), u; p; ζ) + p1p

2
2Se1S

2
e2
Fn(f(t), u; p; ζ) +∑n

j=3 γj(pjSej)
4Fn(f(t), u; p; ζ) = Fn(g(t), u; p; ζ).

To find Fn(f(t), u; p; ζ) in (25) or (27) after an action of suitable shift operators T(0,2,0,...,0),
T(1,0,...,0) and T(1,2,0,...,0) we get the system of linear algebraic equations:
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(28) ax1 + bx3 + cx4 = b1,
bx1 + cx2 + ax3 = b2,
ax2 − cx3 + bx4 = b3,
−cx1 + bx2 + ax4 = b4

with coefficients a, b and c, and Cayley-Dickson numbers on the right side b1, ..., b4 ∈ Ar,
where x1 = Fw(p; ζ), x2 = T1Fw(p; ζ), x3 = T 22Fw(p; ζ), x4 = T1T

2
2Fw(p; ζ), b1 =

Gw(p; ζ) = (Fn(g(t), u; p; ζ))w, b2 = T 22Gw(p; ζ), b3 = T1Gw(p; ζ), b4 = T1T
2
2Gw(p; ζ). Co-

efficients are: aw = a = [
∑n

j=3 γjp
4
j ]|pb=0 ∀b>w ∈ HJ,K,L, bw = b = p22(p

2
0 − p21) ∈ R,

cw = c = 2p0p1p
2
2|pb=0 ∀b>w ∈ R for A given by (24); aw = a =

[∑n
j=3 γjp

4
j

]∣∣
∣
pb=0 ∀b>w

∈ HJ,K,L,

bw = b = p0p
2
2

∣
∣
pb=0 ∀b>w

∈ R, cw = c = p1p
2
2

∣
∣
pb=0 ∀b>w

∈ R for A given by (26), w = 1, ..., n. If
a = 0 the system reduces to two systems with two indeterminates (x1, x2) and (x3, x4) of the
type described by (16) with solutions given by Formulas (17). It is seen that these coefficients
are non-zero λn+1 almost everywhere on Rn+1. Solving this system for a 6= 0 we get:

(29) Fw(p; ζ) = a
−1b1− [a2−b2+c2)2+4b2c2]−1a−1[(a2−b2+c2)((c2−b2)b1+abb2−2bcb3+

acb4)− 2bc(2bcb1 − acb2 + (c2 − b2)b3 + abb4)].

Finally Formula (23) provides the expression for f on the corresponding domain W for suitable
known function g for which integrals converge. If γj > 0 for each j, then a > 0 for each
p23 + ...+ p

2
w > 0.

For (21, 24) on a bounded domain with given boundary conditions equations will be of an
analogous type with a term on the right Fn(g(t), u; p; ζ) minus boundary terms appearing in
(6) in these particular cases.
For a partial differential equation

(30) a(tn+1)Af(t1, ..., tn+1) + ∂f(t1, ..., tn+1)/∂tn+1 = g(t1, ..., tn+1)

with octonion valued functions f, g, where A is a partial differential operator by variables
t1, ..., tn of the type given by (2, 2.1) with coefficients independent of t1, ..., tn, it may be simpler
the following procedure. If a domain V is not the entire Euclidean space Rn+1 we impose
boundary conditions as above in (5.1). Make the noncommutative transform Fn;t1,...,tn of both
sides of Equation (30), so it takes the form:

(31) a(tn+1)F
n;t1,...,tn(Af(t1, ..., tn+1), u; p; ζ) + ∂F

n;t1,...,tn(f(t1, ..., tn+1), u; p; ζ)/∂tn+1

= Fn;t1,...,tn(g(t1, ..., tn+1), u; p; ζ).

In the particular case, when
a(tn+1)

∑
|j|≤α aj(tn+1)

∑
0≤k1≤j1

(
j1
k1

)
S(k1,j2,...,jk)e

−u(p,t;ζ) = e−u(p,t;ζ)

for each tn+1, p, t and ζ, with the help of (6, 8) one can deduce an expression of F n(p; ζ; tn+1) :=
Fn;t1,...,tn(f(t1, ..., tn+1), u; p; ζ) through Gn(p; ζ; tn+1) := Fn;t1,...,tn(g(t1, ..., tn+1), u; p; ζ) and
boundary terms in the following form:

(32) b(p0, ..., pn; tn+1)F
n(p; ζ; tn+1) + ∂F

n(p; ζ; tn+1)/∂tn+1 = Q(p0, ..., pn; tn+1),

where b(p0, ..., pn; tn+1) is a real mapping and Q(p0, ..., pn; tn+1) is an octonion valued function.
The latter differential equation by tn+1 has a solution analogously to the real case, since tn+1
is the real variable, while R is the center of the Cayley-Dickson algebra Ar. Thus we infer:

(33) F n(p; ζ; tn+1) = exp

{

−
∫ tn+1

τ0

b(p0, ..., pn; ξ)dξ

}
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{

C0 +

[∫ tn+1

τ0

Q(p0, ..., pn; τ) exp

{∫ τ

τ0

b(p0, ..., pn; ξ)dξ

}

dτ

]}

,

since the octonion algebra is alternative and each equation bx = c with non-zero b has the
unique solution x = b−1c, where C0 is an octonion constant which can be specified by an
initial condition. More general partial differential equations as (30), but with ∂lf/∂tln+1, l ≥ 2,
instead of ∂f/∂tn+1 can be considered. Making the inverse transform (Fn;t1,...,tn)−1 of the right
side of (33) one gets the particular solution f .
28.5. Integral kernel. We rewrite Equation 28(6) in the form:

(34) ASF
n(fχQn , u; p; ζ) = F

n(gχQn , u; p; ζ)−
∑

|j|≤α

aj
∑

1≤|(lj)|, 0≤mk, 0≤qk, hk=sign(lkjk), mk+qk+hk=jk; qk=0 for lkjk=0; ∀k=1,...,n; (l)∈{0,1,2}n

(−1)|(lj)|SmFn−|h(lj)|
(
∂|q|f(t(lj))/∂tq11 ...∂t

qn
n

)
χ∂Qn

(lj)
(t(lj)), u; p; ζ), where

(34.1) Sk(p) := Sk := Rek(p)
in the Ar spherical or Ar Cartesian coordinates respectively (see also Formulas 25(1.1, 1.2)),
for each k = 1, ..., n,

(34.2) Sm(p) := Sm := Sm11 ...Smnn ,

(35) AS :=
∑
|j|≤α ajS

j(p).

Then we have the integral formula:

(36) ASFn(fχQn , u; p; ζ) =
∫
Qn
f(t)[AS exp(−u(p, t; ζ))]dt

in accordance with 1(7) and 2(4). Due to §28.3 the operator AS has the inverse operator for
λn+1 almost all (p0, ..., pn) in Rn+1. Practically, its calculation may be cumbersome, but finding
for an integral inversion formula its kernel is sufficient. In view of the inversion Theorem 6 or
Corollary 6.1 and §§19 and 20 we have

(37) (2π)−n
∫
Rn
exp(−u(a+ p, t; ζ)) exp(u(a+ p, τ ; ζ))dp1...dpn = δ(t; τ), where

(38) [δ, f)(τ) =
∫
Rn
f(t)δ(t; τ)dt1...dtn = f(τ)

at each point τ ∈ Rn, where the original f(τ) satisfies Hölder’s condition. That is, the func-
tional δ(t; τ) is Ar linear. Thus the inversion of Equation (36) is:

(39)

∫

Rn

(∫

Rn
f(t)χQn(t)

{[
AS exp(−u(p+ a, t; ζ))

]
ξ(p+ a, t, τ ; ζ)

}
dt

)

dp1...dpn = f(τ),

so that

(40)
[
AS exp(−u(p+a, t; ζ))

]
ξ(p+a, t, τ ; ζ) = (2π)−n exp(−u(p+a, t; ζ)) exp(−u(p+a, τ ; ζ)),

where the coefficients of AS commute with generators ij of the Cayley-Dickson algebra Ar for
each j. Consider at first the alternative case, i.e. over the Cayley-Dickson algebra Ar with
r ≤ 3.
Let by our definition the adjoint operator A∗S be defined by the formula

(41) A∗Sη(p, t; ζ) =
∑
|j|≤α a

∗
jS

jη∗(p, t; ζ) for any function η : Ar × Rn × Ar → Ar, where

t ∈ Rn, p and ζ ∈ Ar, Sjη∗(p, t; ζ) :=
[
Sjη(p, t; ζ)

]∗
. Any Cayley-Dickson number z ∈ Av can

be written with the help of the iterated exponent (see §3) in Av spherical coordinates as

(42) z = |z| exp(−u(0, 0;ψ)),
where v ≥ r, ψ ∈ Av, u ∈ Av, Re(ψ) = 0. Certainly the phase shift operator is isometrical:

(43) |T k11 ...T
kn
n z| = |z|
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for any k1, ..., kn ∈ R, since | exp(−u(0, 0; Im(ψ))| = 1 for each ψ ∈ Av, while
T k11 ...T

kn
n e−u(0,0;Im(ψ)) = exp{−u(0, 0; Im(ψ)− (k1i1 + ...+ knin)π/2)} (see §12).

In the Ar Cartesian coordinates each Cayley-Dickson number can be presented as:

(42.1) z = |z| exp(φM), where φ ∈ R is a real parameter, M is a purely imaginary Cayley-
Dickson number (see also §3 in [17, 16]). Therefore, we deduce that

(44) |AS exp(−u(p+ a, t; ζ))| = exp(−(p0 + a)s1 − ζ0)|AS exp(−u(Im(p), t; Im(ζ)))|,
since R is the center of the Cayley-Dickson algebra Av and p0, a, ζ0, s1 ∈ R, s1 = s1(t),
where particularly AS1 := ASe−u(0,0;ζ)|ζ=0 (see also Formulas 12(3.1− 3.7)).

Then expressing ξ from (40) and using Formulas (41, 42, 42.1, 44) we infer, that

(45) ξ(p, t, τ ; ζ) = (2π)−n[A∗S exp(−u(Im(p), t; Im(ζ))]
[exp(−u(Im(p), t; Im(ζ)) exp(u(p, τ ; ζ))]|AS exp(−u(Im(p), t; Im(ζ))|−2,

since z−1 = z∗/|z|2 for each non-zero Cayley-Dickson number z ∈ Av, v ≥ 1, where Im(p) =
p1i1 + ...+ pnin, p = p0i0 + ...+ pnin, p0 = Re(p).

Generally, for r ≥ 4, Formula (45) gives the integral kernel ξ(p, t, τ ; ζ) for any restriction
of ξ on the octonion subalgebra algR(N1, N2, N4) embedded into Ar. In view of §28.3 ξ is
unique and is defined by (45) on each subalgebra algR(N1, N2, N4), consequently, Formula (45)
expresses ξ by all variables p, ξ ∈ Ar and t, τ ∈ Rn. Applying Formulas (39, 45) and 28.2(Δ)
to Equation (34), when Condition 8(3) is satisfied, we deduce, that

(46) (fχQn)(τ) =

∫

Rn

(∫

Rn
g(t)χQn(t)[exp(−u(p+ a, t; ζ))ξ(p+ a, t, τ ; ζ)]dt

)

dp1...dpn−

∑

|j|≤α

aj
∑

1≤|(lj)|, 0≤mk, 0≤qk, hk=sign(lkjk); mk+qk+hk=jk; qk=0 for lkjk=0, ∀ k=1,...,n; (l)∈{0,1,2}n
(−1)|(lj)|

∫

Rn

(∫

∂Qn
(lj)

[
∂|q|f(t(lj)/∂tq11 ...∂t

qn
n

][{
Sm(p) exp(−u(p+ a, t(lj); ζ))

}

ξ(p+ a, t(lj), τ ; ζ)
]
dt(lj)

)

dp1...dpn,

where dimR∂Qn
(lj) = n − |h(lj)|, t(lj) ∈ ∂Qn

(lj) in accordance with §28.1, S
m(p) is given by

Formulas (34.1, 34.2) above.
For simplicity the zero phase parameter ζ = 0 in (46) can be taken. In the particular case

Qn = Rn all terms with
∫
∂Qn
(lj)
vanish.

Terms of the form
∫
Rn

[
{Sm(p) exp(−u(p+a, t; ζ))}ξ(p+a, t, τ ; ζ)

]
dp1...dpn in Formula (46)

can be interpreted as left Ar linear functionals due to Fubini’s theorem and §§19 and 20, where
S0 = I.
For the second order operator from (14) one gets:

(47) AS = (
∑n

h=1 ah[Sh(p)]
2) + βnSn(p) + ω and

(48) (fχU)(t) =

∫

Rn

(∫

Rn
g(t)χU(t)

[
exp(−u(p+ a, t; ζ))ξ(p, t, τ ; ζ)

]
dt

)

dp1...dpn−

∫

Rn

(∫

∂U0

f(t′)
[{
(β(t′) + P(t′, p)) exp(−u(p+ a, t; ζ))

}
ξ(p, t′, τ ; ζ)

]
dt′

)

dp1...dpn−
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∫

Rn

(∫

∂U0

a(t′)(∂f(t′)/∂ν)
[
exp(−u(p+ a, t; ζ))ξ(p, t′, τ ; ζ)

]
dt′

)

dp1...dpn.

For a calculation of the appearing integrals the generalized Jordan lemma (see §§23 and 24 in
[18]) and residues of functions at poles corresponding to zeros |AS exp(−u(Im(p), t; Im(ζ)))|=0
by variables p1, ..., pn can be used.
Take g(t) = δ(y; t), where y ∈ Rn is a parameter, then

(49)

∫

Rn

(∫

Rn
δ(y; t)

[
exp(−u(p+ a, t; ζ))ξ(p+ a, t, τ ; ζ)

]
dt

)

dp1...dpn

=

∫

Rn

[
exp(−u(p+ a, y; ζ))ξ(p+ a, y, τ ; ζ)

]
dp1...dpn =: E(y; τ)

is the fundamental solution in the class of generalized functions, where

(50) AtE(y; t) = δ(y; t),

(51)
∫
Rn
δ(y; t)f(t)dt = f(y)

for each continuous function f(t) from the space L2(Rn,Ar); At is the partial differential
operator as above acting by the variables t = (t1, ..., tn) (see also §§19, 20 and 33-35).

29. The decomposition theorem of partial differential operators over the Cayley-
Dickson algebras.
We consider a partial differential operator of order u:

(1) Af(x) =
∑

|α|≤u

aα(x)∂
αf(x),

where ∂αf = ∂|α|f(x)/∂xα00 ...∂x
αn
n , x = x0i0 + ...xnin, xj ∈ R for each j, 1 ≤ n = 2r − 1,

α = (α0, ..., αn), |α| = α0+ ...+αn, 0 ≤ αj ∈ Z. By the definition this means that the principal
symbol

(2) A0 :=
∑

|α|=u

aα(x)∂
α

has α so that |α| = u and aα(x) ∈ Ar is not identically zero on a domain U in Ar. As
usually Ck(U,Ar) denotes the space of k times continuously differentiable functions by all real
variables x0, ..., xn on U with values in Ar, while the x-differentiability corresponds to the
super-differentiability by the Cayley-Dickson variable x.
Speaking about locally constant or locally differentiable coefficients we shall undermine

that a domain U is the union of subdomains U j satisfying conditions 28(D1, i − vii) and
U j ∩Uk = ∂U j ∩ ∂Uk for each j 6= k. All coefficients aα are either constant or differentiable of
the same class on each Int(U j) with the continuous extensions on U j. More generally it is up
to a Cu or x-differentiable diffeomorphism of U respectively.
If an operator A is of the odd order u = 2s − 1, then an operator E of the even order

u+ 1 = 2s by variables (t, x) exists so that

(3) Eg(t, x)|t=0 = Ag(0, x) for any g ∈ Cu+1([c, d]×U,Ar), where t ∈ [c, d] ⊂ R, c ≤ 0 < d,
for example, Eg(t, x) = ∂(tAg(t, x))/∂t.

Therefore, it remains the case of the operator A of the even order u = 2s. Take z =
z0i0 + ... + z2v−1i2v−1 ∈ Av, zj ∈ R. Operators depending on a less set zl1 , ..., zln of variables
can be considered as restrictions of operators by all variables on spaces of functions constant
by variables zs with s /∈ {l1, ..., ln}.
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Theorem. Let A = Au be a partial differential operator of an even order u = 2s with
locally constant or variable Cs or x-differentiable on U coefficients aα(x) ∈ Ar such that it has
the form

(4) Af = cu,1(Bu,1f) + ...+ cu,k(Bu,kf), where each

(5) Bu,p = Bu,p,0 +Qu−1,p

is a partial differential operator by variables xmu,1+...+mu,p−1+1,...,xmu,1+...+mu,p and of the order
u, mu,0 = 0, cu,k(x) ∈ Ar for each k, its principal part

(6) Bu,p,0 =
∑
|α|=s ap,2α(x)∂

2α

is elliptic with real coefficients ap,2α(x) ≥ 0, either 0 ≤ r ≤ 3 and f ∈ Cu(U,Ar), or r ≥ 4
and f ∈ Cu(U,R). Then three partial differential operators Υs and Υs1 and Q of orders s and
p with p ≤ u− 1 with locally constant or variable Cs or x-differentiable correspondingly on U
coefficients with values in Av exist, r ≤ v, such that

(7) Af = Υs(Υs1f) +Qf .

Proof. Certainly we have ordQu−1,p ≤ u−1, ord(A−A0) ≤ u−1. We choose the following
operators:

(8) Υsf(x) =
k∑

p=1

∑

|α|≤s, αq=0∀q<(mu,1+...+mu,p−1+1) and q>(mu,1+...+mu,p)

(∂αf(x))[w∗pψp,α] and

(9) Υs1f(x) =
k∑

p=1

∑

|α|≤s, αq=0∀q<(mu,1+...+mu,p−1+1) and q>(mu,1+...+mu,p)

(∂αf(x))[wpψ
∗
p,α],

where w2p = cu,p for all p and ψ2p,α(x) = −ap,2α(x) for each p and x, wp ∈ Ar, ψp,α(x) ∈ Ar,v
and ψp,α(x) is purely imaginary for ap,2α(x) > 0 for all α and x, Re(wpIm(ψp,α)) = 0 for
all p and α, Im(x) = (x − x∗)/2, v > r. Here Ar,v = Av/Ar is the real quotient algebra.
The algebra Ar,v has the generators ij2r , j = 0, ..., 2v−r − 1. A natural number v so that
2v−r−1 ≥

∑k
p=1

∑u
q=0

(
mp+q−1

q

)
is sufficient, where

(
m
q

)
= m!/(q!(m−q)!) denotes the binomial

coefficient,
(
m+q−1

q

)
is the number of different solutions of the equation α1 + ... + αm = q in

non-negative integers αj. We have either ∂α+βf ∈ Ar for 0 ≤ r ≤ 3 or ∂α+βf ∈ R for r ≥ 4.
Therefore, we can take ψp,α(x) ∈ i2rqR, where q = q(p, α) ≥ 1, q(p1, α1) 6= q(p, α) when
(p, α) 6= (p1, α1).
Thus Decomposition (7) is valid due to the following. For b = ∂α+βf(z) and l = i2rp and

w ∈ Ar one has the identities:

(10) (b(wl))(w∗l) = ((wb)l)(w∗l) = −w(wb) = −w2b and

(11) (((bl)w∗)l)w = (((bw)l)l)w = −(bw)w = −bw2 in the considered here cases, since Ar
is alternative for r ≤ 3 while R is the center of the Cayley-Dickson algebra (see Formulas
(M1,M2) in the introduction).

This decomposition of the operator A2s is generally up to a partial differential operator of
order not greater, than (2s− 1):

(12) Qf(x) =
∑k

p=1 cu,pQu−1,p+
∑
|α|≤s,|β|≤s;γ≤α,ε≤β,|γ+ε|>0

[∏2v−1
j=0

(
αj
γj

)(
βj
εj

)](
∂α+β−γ−εf(x)

)[
(∂γηα(x))∂

εη1β(x)
]
,
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where operators Υs and Υs1 are already written in accordance with the general form

(13) Υsf(x) =
∑
|α|≤s(∂

αf(x))ηα(x);

(14) Υs1f(x) =
∑
|β|≤s(∂

βf(x))η1β(x).

When A in (3) is with constant coefficients, then the coefficients wp and ψp,α for Υm and
Υm1 can also be chosen constant and Q−

∑k
p=1 cu,pQu−1,p = 0.

30. Corollary. Let suppositions of Theorem 29 be satisfied. Then a change of variables locally
affine or variable C1 or x-differentiable on U correspondingly exists so that the principal part
A2,0 of A2 becomes with constant coefficients, when ap,2α > 0 for each p, α and x.

31. Corollary. If two operators E = A2s and A = A2s−1 are related by Equation 29(3), and
A2s is presented in accordance with Formulas 29(4, 5), then three operators Υs, Υs−1 and Q
of orders s, s− 1 and 2s− 2 exist so that

(1) A2s−1 = Υ
sΥs−1 +Q.

Proof. It remains to verify that ord(Q) ≤ 2s − 2 in the case of A2s−1, where Q =
{∂(tA2s−1)/∂t − ΥsΥs1}|t=0. Indeed, the form λ(E) corresponding to E is of degree 2s − 1
by x and each addendum of degree 2s in it is of degree not less than 1 by t, consequently, the
product of forms λ(Υs)λ(Υs1) corresponding to Υ

s and Υs1 is also of degree 2s−1 by x and each
addendum of degree 2s in it is of degree not less than 1 by t. But the principal parts of λ(E)
and λ(Υs)λ(Υs1) coincide identically by variables (t, x), hence ord({E − Υ

sΥs1}|t=0) ≤ 2s − 2.
Let a(t, x) and h(t, x) be coefficients from Υs1 and Υ

s. Using the identities

a(t, x)∂t∂
γtg(x) = a(t, x)∂γg(x) and

h(t, x)∂β∂t[a(t, x)∂
γg(x)] = h(t, x)∂β[(∂ta(t, x))∂

γg(x)]

for any functions g(x) ∈ C2s−1 and a(t, x) ∈ Cs, ord[(h(t, x)∂β), (a(t, x)∂γ)]|t=0 ≤ 2s−2, where
∂t = ∂/∂t, |β| ≤ s− 1, |γ| ≤ s, [A,B] := AB − BA denotes the commutator of two operators,
we reduce (ΥsΥs1 +Q1)|t=0 from Formula 29(7) to the form prescribes by equation (1).

32. We consider operators of the form:

(1) (Υk + βIr)f(z) := {
∑
0<|α|≤k(∂

αf(z)ηα(z)}+ f(z)β(z),
with ηα(z) ∈ Av, α = (α0, ..., α2r−1), 0 ≤ αj ∈ N
for each j, |α| = α0 + ...+ α2r−1, βIrf(z) := f(z)β,

∂αf(z) := ∂|α|f(z)/∂zα00 ...∂z
α2r−1
2r−1 , 2 ≤ r ≤ v < ∞, β(z) ∈ Av, z0, ..., z2r−1 ∈ R, z =

z0i0 + ...+ z2r−1i2r−1.

Proposition. The operator (Υk + β)∗(Υk + β) is elliptic on the space C2k(R2
r
,Av), where

(Υk + β)∗ denotes the adjoint operator (i.e. with adjoint coefficients).
Proof. We establish the identity

(2) (ay)z∗ + (az)y∗ = a2Re(yz∗)
for any a, y, z ∈ Av. It is sufficient to prove Equality (2) for any three basic generators of the
Cayley-Dickson algebra Av, since the real field R is its center, while the multiplication in Av
is distributive (a+ y)z = az + yz and ((αa)(βy))(γz∗) = (αβγ)((ay)z∗) for all α, β, γ ∈ R and
a, y, z ∈ Av. If a = i0, then (2) is evident, since yz∗+ zy∗ = yz∗+(yz∗)∗ = 2Re(yz∗). If y = i0,
then (ay)z∗ + (az)y∗ = az∗ + az = a2Re(z) = a2Re(yz∗). Analogously for z = i0.

For three purely imaginary generators ip, is, ik consider the minimal Cayley-Dickson algebra
Φ = algR(ip, is, ik) over the real field generated by them. If it is associative, then it is isomorphic
with either the complex field C or the quaternion skew field H, so that (ay)z∗ + (az)y∗ =
a(yz∗ + zy∗) = a2Re(yz∗).
If the algebra Φ is isomorphic with the octonion algebra, then we use Formulas (M1,M2)

from the introduction for either a, y ∈ H and z = l or a, z ∈ H and y = l. This gives (2) in
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all cases, since the algebra algR(ip, is) with two basic generators ip and is is always associative.
Particularly, if y = is 6= z = ik, s, k ≥ 1, then the result in (2) is zero.
Using (2) we get more generally, that

(3) ((ay)z∗)b∗ + ((az)y∗)b∗ = (a2Re(yz∗))b∗ = (ab∗)2Re(yz∗),
consequently,

(4) ((ay)z∗)b∗ + ((az)y∗)b∗ + ((by)z∗)a∗ + ((bz)y∗)a∗ = 4Re(ab∗)Re(yz∗)

for any Cayley-Dickson numbers a, b, y, z ∈ Av. In view of Formulas (1, 4) the form corre-
sponding to the principal symbol of the operator (Υk + β)∗(Υk + β) is with real coefficients, of
degree 2k and non-negative definite, consequently, the operator (Υk + β)∗(Υk + β) is elliptic.

33. Fundamental solutions. Let either Y be a real Y = Av or complexified Y = (Av)C
or quaternionified Y = (Av)H Cayley-Dickson algebra (see §28). Consider the space B(Rn, Y )
(see §19) supplied with a topology in it is given by the countable family of semi-norms

(1) pα,k(f) := supx∈Rn |(1 + |x|)
k∂αf(x)|,

where k = 0, 1, 2, ...; α = (α1, ..., αn), 0 ≤ αj ∈ Z. On this space we take the space B′(Rn, Y )l
of all Y valued continuous generalized functions (functionals) of the form

(2) f = f0i0 + ... + f2v−1i2v−1 and g = g0i0 + ... + g2v−1i2v−1, where fj and gj ∈
B′(Rn, Y ), with restrictions on B(Rn,R) being real or Ci or HJ,K,L -valued generalized func-
tions f0, ..., f2v−1, g0, ..., g2v−1 respectively. Let φ = φ0i0 + ... + φ2v−1i2v−1 with φ0, ..., φ2v−1 ∈
B(Rn,R), then

(3) [f, φ) =
∑2v−1

k,j=0[fj, φk)ikij. We define their convolution as

(4) [f ∗ g, φ) =
∑2v−1

j,k=0([fj ∗ gk, φ)ij)ik for each φ ∈ B(R
n, Y ). As usually

(5) (f ∗ g)(x) = f(x− y) ∗ g(y) = f(y) ∗ g(x− y)
for all x, y ∈ Rn due to (4), since the latter equality (5) is satisfied for each pair fj and gk.
Thus a solution of the equation

(6) (Υs + β)f = g in B(Rn, Y ) or in the space B′(Rn, Y )l is:

(7) f = EΥs+β ∗ g, where EΥs+β denotes a fundamental solution of the equation

(8) (Υs + β)EΥ+β = δ, (δ, φ) = φ(0). The fundamental solution of the equation

(9) A0V = δ with A0 = (Υs + β)(Υ
s1
1 + β1)

using Equalities 32(2− 4) can be written as the convolution

(10) V =: VA0 = EΥs+β ∗ EΥs11 +β1 .

More generally we can consider the equation

(11) Af = g with A = A0 + (Υ2 + β2),

where A0 = (Υ+β)(Υ1+β1), Υ, Υ1, Υ2 are operators of orders s, s1 and s2 respectively given
by 32(1) with z-differentiable coefficients. For Υ2 + β2 = 0 this equation was solved above.
Suppose now, that the operator Υ2 + β2 is non-zero.
To solve Equation (11) on a domain U one can write it as the system:

(12) (Υ1 + β1)f = g1, (Υ + β)g1 = g − (Υ2 + β2)f .
Find at first a fundamental solution VA of Equation (11) for g = δ. We have:

(13) f = EΥ1+β1 ∗ g1 = EΥ2+β2 ∗ (g − (Υ + β)g1), consequently,

(13.1) EΥ1+β1 ∗ g1 + EΥ2+β2 ∗ ((Υ + β)g1) = EΥ2+β2 ∗ g.
In accordance with (3 − 5) and 32(1) the identity is satisfied: [EΥ2+β2 ∗ ((Υ + β)g1), φ0) =
[(Υ + β)(EΥ2+β2 ∗ g1), φ0). Thus (13) is equivalent to

(14) EΥ1+β1 ∗ g1 + (Υ + β)(EΥ2+β2 ∗ g1) = EΥ2+β2



162 Hypercomplex Numbers in Geometry and Physics, 2 (14), Vol 7, 2010

for g = δ, since EΥ2+β2 ∗ δ = EΥ2+β2 .

We consider the Fourier transform F by real variables with the generator i commuting with
ij for each j = 0, ..., 2v − 1 such that

(F1) (Fg)(y) =
∫
Rn
e−i(y,x)g(x)dx1...dxn

for any g ∈ L1(Rn,Av), i.e.
∫
Rn
|g(x)|dx1...dxn < ∞, where g : Rn → Y is an integrable

function, (y, x) = x1y1 + ... + xnyn, x = (x1, ..., xn) ∈ Rn, xj ∈ R for every j. The inverse
Fourier transform is:

(F2) (F−1g)(y) = (2π)−n
∫
Rn
ei(y,x)g(x)dx1...dxn.

For a generalized function f from the space B′(Rn, Y )l its Fourier transform is defined by
the formula

(F3) (Ff, φ) = (f, Fφ), (F−1f, φ) = (f, F−1φ).

In view of (2− 5) the Fourier transform of (14) gives:

(15) [F (EΥ1+β1)][F (g1)] +
∑2v−1

j=0 [F ((Υ + β)jEΥ2+β2)][F (g1)]ij = F (EΥ2+β2)
for g = δ. With generators i0, ..., i2v−1, i0i, ..., i2v−1i the latter equation gives the linear system
of 2v+1 equations over the real field, or 2v+2 equations when Y = (Av)H. From it F (g1)
and using the inverse transform F−1 a generalized function g1 can be found, since F (g) =
F (g0)i0 + ... + F (g2v−1)i2v−1 and F−1(g) = F−1(g0)i0 + ... + F−1(g2v−1)i2v−1 (see also the
Fourier transform of real and complex generalized functions in [5, 29]). Then

(16) VA = EΥ1+β1 ∗ g1 and f = VA ∗ g gives the solution of (11), where g1 was calculated
from (15).
Let πvr : (Av)H → (Ar)H be the R-linear projection operator defined as the sum of projection
operators π0 + ...+ π2r−1, where πj : (Av)H → Hij,

(17) πj(h) = hjij, h =
∑2v−1

j=0 hjij, hj ∈ HJ,K,L, that gives the corresponding restrictions
when hj ∈ Ci or hj ∈ R for j = 0, ..., 2r − 1. Indeed, Formulas 2(5, 6) have the natural
extension on (Av)H, since the generators J, K and L commute with ij for each j.

Finally, the restriction from the domain in Av onto the initial domain of real variables in
the real shadow and the extraction of πvr ◦ f ∈ Ar with the help of Formulas 2(5, 6) gives the
reduction of a solution from Av to Ar.
Theorems 29, Proposition 32 and Corollaries 30, 31 together with formulas of this section

provide the algorithm for subsequent resolution of partial differential equations for s, s−1, ..., 2,
because principal parts of operators A2 on the final step are with constant coefficients. A
residue term Q of the first order can be integrated along a path using a non-commutative line
integration over the Cayley-Dickson algebra [17, 16].

34. Multiparameter transforms of generalized functions.
If φ ∈ B(Rn, Y ) and g ∈ B′(Rn, Y )l (see §§19 and 33) we put

(1)
∑2v−1

j=0 [F
n(gj; u; p; ζ), φ)ij :=

∑2v−1
j=0 [gj,F

n(φ; u; p; ζ))ij or shortly

(2)
∑2v−1

j=0 [gje
−u(p;t;ζ), φ)ij =

∑2v−1
j=0 [gj, φe

−u(p;t;ζ))ij.

If the support supp(g) of g is contained in a domain U , then it is sufficient to take a base
function φ with the restriction φ|U ∈ B(U, Y ) and any φ|Rn\U ∈ C∞.
34.1. Remark. It is possible to use Theorem 29, Corollaries 30 and 31, Proposition 32 and

§33 for solutions of definite differential equations with variable coefficients. For this purpose one
can present an operator A as the composition A = ΥΥ1+Q, where ord(A) = ord(Υ)+ord(Υ1),
ord(Q) ≤ ord(A) − 1, Υ and Υ1 are operators with variable coefficients, Υ∗Υ and Υ∗1Υ1
are elliptic operators with constant coefficients of their principal symbols at least. Then use
Formulas 33(1 − 16) to find fundamental solutions EΥ, EΥ1 and EA or iterate this procedure
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(see also §35). A generalization of Feynman’s formula over the Cayley-Dickson algebras for
the second order partial differential operators with the first order addendum Q with variable
coefficients from [20] also can be used.

35. Examples.
Let

(1) Af(t) =
∑n

j=1(∂
2f(t)/∂t2j)cj

be the operator with constant coefficients cj ∈ Ar, |cj| = 1, by the variables t1, ..., tn, n ≥ 2.
We suppose that cj are such that the minimal subalgebra algR(cj, ck) containing cj and ck is
alternative for each j and k and |(...(c1/21 c

1/2
2 )...)c

1/2
n | = 1. Since

(2) ∂f(t)/∂tj =
∑n

k=1(∂f(t(s))/∂sk)(∂sk/∂tj) =
∑j

k=1 ∂f(t(s))/∂sk, the operator A takes
the form

(3) Af =
∑n

j=1(
∑
1≤k,b≤j(∂

2f(t(s))/∂sk∂sb))cj,
where sj = tj + ...+ tn for each j. Therefore, by Theorem 12 and Formulas 25(SO) and 28(6)
we get:

(4) Fn(Af ; u; p; ζ) =
∑n

j=1{[Rej(p)]
2F n

u (p; ζ)}cj for u(p, t; ζ) either in Ar spherical or Ar
Cartesian coordinates with the corresponding operators Rej(p) (see also Formulas 25(1.1, 1.2)).
On the other hand,

(5) Fn(δ; u; p; ζ) = e−u(p,0;ζ) = e−u(0,0;ζ) in accordance with Formula 20(2). The delta
function δ(t) is invariant relative to any invertible linear operator C : Rn → Rn with the
determinant | det(C)| = 1, since

∫

Rn
δ(Cx)φ(x)dx =

∫

Rn
δ(y)φ(C−1y)| det(C)|dy = φ(C−10) = φ(0).

Thus

(5) Fn(C(Af); u; p; ζ) = Fn(Af ; u; p; ζ)
for any Fundamental solution f , where Cg(t) := g(Ct), Af = δ. If C : Rn → Rn is an invertible
linear operator and ξ = Ct, q = Cp, ζ ′ = Cζ, then t = C−1ξ, p = C−1q and ζ = C−1ζ ′. In the
multiparameter noncommutative transform Fn there are the corresponding variables (tj, pj, ζj).
This is accomplished in particular for the operator C(t1, ..., tn) = (s1, ..., sn). The operator C−1

transforms the right side of Formula (4), when it is written in the Ar spherical coordinates,
into

∑n
j=1{(p0 + qjSej)

2F n
u (q; ζ)}cj. The Cayley-Dickson number q = q0 + q1i1 + ... + qnin

can be written as q = q0 + qMM , where |M | = 1, M is a purely imaginary Cayley-Dickson
number, qM ∈ R, qMM = q1i1 + ... + qnin, since q0 = Re(q). After a suitable automorphism
θ : Ar → Ar we can take θ(q) = q0+qM i1, so that θ(x) = x for any real number. The functions
[
∑n

j=1 q
2
jS
2
ej
cj] and [

∑n
j=1 p

2
jS
2
ej
cj] are even by each variable qj and pj respectively. Therefore,

we deduce in accordance with (5) and 2(3, 4) and Corollary 6.1 with parameters p0 = 0 and
ζ = 0 and cj ∈ {−1, 1} for each j that

(6) (Fn)−1
(

1/
[∑n

j=1

{∑
1≤k,b≤j pkSekpbSeb

}
cj

]
; u; y; ζ

)

= −
[
g, eN([y],[q])

)

in the Ar spherical coordinates, where g = 1
/[∑n

j=1 q
2
j cj

]
, or

(6.1) (Fn)−1(1/[
∑n

j=1{p
2
jS
2
ej
}cj]; u; y; ζ) = −[g, eN([y],[p]))

in the Ar Cartesian coordinates, where g = 1/[
∑n

j=1 p
2
jcj], N = y/|y| for y 6= 0, N = i1

for y = 0, y = y1i1 + ... + ynin ∈ Ar, [y] = (y1, ..., yn) ∈ Rn, ([y], [q]) =
∑n

j=1 yjqj, since
S2ek cos(φ+ζk) = cos(φ+ζk+π) = − cos(φ+ζk) and S

2
ek
sin(φ+ζk) = sin(φ+ζk+π) = − sin(φ+ζk)
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for each k.

Particularly, we take cj = 1 for each j = 1, ..., k+ and cj = −1 for any j = k+ + 1, ..., n,
where 1 ≤ k+ ≤ n. Thus the inverse Laplace transform for q0 = 0 and ζ = 0 in accordance
with Formulas 2(1− 4) reduces to

(7) (Fn)−1
(
1
/[∑n

j=1

{∑
1≤k,b≤j pkSekpbSeb

}
cj

]
; u; y; ζ

)
=

(2π)−n
∫
Rn
exp(i(q1y1 + ...+ qnyn))

(
1
/[∑k+

j=1 q
2
j −

∑n
j=k++1

q2j

])
dq1...dqn

in the Ar spherical coordinates and

(7.1) (Fn)−1
(
1
/[∑n

j=1 p
2
jS
2
ej
cj

]
; u; y; ζ

)
=

(2π)−n
∫
Rn
exp(i(p1y1 + ...+ pnyn))

(
1
/[∑k+

j=1 p
2
j −

∑n
j=k++1

p2j

])
dp1...dpn

in the Ar Cartesian coordinates,
since for any even function its cosine Fourier transform coincides with the Fourier transform.

The inverse Fourier transform (F−1g)(x) = (2π)−n(Fg)(−x) =: Ψn of the functions g =
1/(
∑n

j=1 z
2
j ) for n ≥ 3 and P(1/(

∑2
j=1 z

2
j )) for n = 2 in the class of the generalized functions is

known (see [5] and §§9.7 and 11.8 [29]) and gives

(8) Ψn(z1, ..., zn) = Cn(
∑n

j=1 z
2
j )
1−n/2 for 3 ≤ n, where Cn = −1/[(n − 2)σn], σn =

4πn/2/Γ((n/2)− 1) denotes the surface of the unit sphere in Rn, Γ(x) denotes Euler’s gamma-
function, while

(9) Ψ2(z1, z2) = C2 ln(
∑2

j=1 z
2
j ) for n = 2, where C2 = 1/(4π).

Thus the technique of §2 over the Cayley-Dickson algebra has permitted to get the solution of
the Laplace operator.

For the function
(10) P (x) =

∑k+
j=1 x

2
j −
∑n

j=k++1
x2j with 1 ≤ k+ < n the generalized functions (P (x) + i0)λ

and (P (x)− i0)λ are defined for any λ ∈ C = R⊕ iR (see Chapter 3 in [5]). The function P λ

has the cone surface P (z1, ..., zn) = 0 of zeros, so that for the correct definition of generalized
functions corresponding to P λ the generalized functions

(11) (P (x) + ci0)λ = lim0<cε,ε→0(P (x)
2 + ε2)λ/2 exp(iλarg(P (x) + icε))

with either c = −1 or c = 1 were introduced. Therefore, the identity

(12) F (Ψk+,n−k+)(x) = −
(∑k+

j=1 x
2
j −

∑n
j=k++1

x2j

)[
F (Ψk+,n−k+)(x)

]2
or

(13) F (Ψ) = −1/(P (x) + ci0) follows, where c = −1 or c = 1.

The inverse Fourier transform in the class of the generalized functions is:

(14) F−1((P (x)+ci0)λ)(z1, ..., zn) = exp(−πc(n−k+)i/2)22λ+nπn/2Γ(λ+n/2)(Q(z1, ..., zn)−
ci0)−λ−n/2)/[Γ(−λ)|D|1/2]

for each λ ∈ C and n ≥ 3 (see §IV.2.6 [5]), where D = det(gj,k) denotes a discriminant of the
quadratic form P (x) =

∑n
j,k=1 gj,kxjxk, while Q(y) =

∑n
j,k=1 g

j,kxjxk is the dual quadratic form

so that
∑n

k=1 g
j,kgk,l = δjl for all j, l; δ

j
l = 1 for j = l and δjl = 0 for j 6= l. In the particular

case of n = 2 the inverse Fourier transform is given by the formula:

(15) F−1((P (x) + ci0)−1)(z1, z2) = −4−1|D|−1/2 exp(−πc(n− k+)i/2) ln(Q(z1, ..., zn)− ci0).
Making the inverse Fourier transform F−1 of the function −1/(P (x) + i0) in this particular
case of λ = −1 we get two complex conjugated fundamental solutions

(16) Ψk+,n−k+(z1, ..., zn) = − exp(πc(n − k+)i/2)Γ((n/2) − 1)(Q(z1, ..., zn) +
ci0)1−(n/2)/(4πn/2) for 3 ≤ n and 1 ≤ k+ < n, while

(17) Ψ1,1(z1, z2) = 4
−1 exp(πc(n− k+)i/2) ln(Q(z1, z2) + ci0) for n = 2,
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where either c = 1 or c = −1.

Generally for the operator A given by Formula (1) we get P (x) = P0(x) + Pi(x), where
P0(x) =

∑n
j=1 x

2
jRe(cj) and Pi(x) =

∑n
j=1 x

2
jIm(cj) are the real and imaginary parts of P ,

Im(z) = z − Re(z) for any Cayley-Dickson number z. Take l = i2r and consider the form
P (x) + εcl with ε 6= 0 and either c = 1 or c = −1, then P (x) + εcl 6= 0 for each x ∈ Rn. We
put

(18) (P (x) + cl0)λ = lim0<cε,ε→0(P (x)
2 + ε2)λ/2 exp(iλArg(P (x) + lcε)). Consider λ ∈ R,

the generalized function (P (x)2+ ε2)λ/2 exp(iλArg(P (x)+ lcε)) is non-degenerate and for it the
Fourier transform is defined. The limit lim0<cε,ε→0 gives by our definition the Fourier transform
of (P (x) + cl0)λ. Since

(19) cj(βj +
∑
1≤k≤n,k 6=j c

−1
j ckβk) =

∑n
j=1 cjβj

for all βj ∈ R and any 1 ≤ j ≤ n in accordance with the conditions imposed on cj at the
beginning of this section and iNj = Nji for each j, the Fourier transform with the generator i
can be accomplished subsequently by each variable using Identity (19). The transform xj 7→
(cj)

1/2xj is diagonal and |(...((c
1/2
1 c

1/2
2 )...)c

1/2
n | = 1, so we can put |D| = 1.

Each Cayley-Dickson number can be presented in the polar form z = |z|eφM , φ ∈ R,
|φ| ≤ π, M is a purely imaginary Cayley-Dickson number |M | = 1, Arg(z) = (φ+ 2πk)M has
the countable number of values, k ∈ Z (see §3 in [17, 16]). Therefore, we choose the branch
z1/2 = |z|1/2 exp((Argz)/2), |z|1/2 > 0 for z 6= 0, with |Arg(z)| ≤ π, Arg(M) = Mπ/2 for each
purely imaginary M with |M | = 1.
We treat the iterated integral as in §6, i.e. with the same order of brackets. Taking initially

cj ∈ R and considering the complex analytic extension of formulas given above in each complex
plane R ⊕NjR by cj for each j by induction from 1 to n, when cj is not real in the operator
A, Im(cj) ∈ RNj, we get the fundamental solutions for A with the form (P (x) + cl0)λ instead
of (P (x)+ ci0)λ with multipliers (...(cc/21 c

c/2
2 )...)c

c/2
n instead of exp(πc(n− k+)i/2) as above and

putting |D| = 1. Thus

(20) Ψ(z1, ..., zn) = −Γ((n/2)−1)(P ∗(z1, ..., zn)−cl0)1−(n/2)[(...(c
c/2
1 c

c/2
2 )...)c

c/2
n ]∗/(4πn/2) for

3 ≤ n, while

(21) Ψ(z1, z2) = 4
−1[c

c/2
1 c

c/2
2 ]
∗Ln(P ∗(z1, z2)− cl0) for n = 2,

since c∗j = c
−1
j for |cj| = 1, yjqj = yj(c

c/2
j )

∗qjc
1/2
j , while

(...(dc
c/2
1 q1dc

c/2
2 q2)...)dc

c/2
n qn] = dq1...dqn[(...(c

c/2
1 c

c/2
2 )...)c

c/2
n ] and

|(...(cc/21 c
c/2
2 )...)c

c/2
n | = 1.

36. Partial differential equations with polynomial real coefficients.
Let

(1) A =
∑
|α|≤m aα(q)∂

α
q , aα(q) =

∑
β aα,βq

β, qβ := qβ11 ...q
βn
n , aα,β and f have values as

in §28, and Af be an original. Using the transform in the Ar Cartesian coordinates we take
qj = tj for each j, while using the transform in Ar spherical coordinates we choose qj = sj(t)
for each j. Then

(2) Fn(Af ; u; p; ζ) =
∑

β(−1)
|β|Sβ(p)∂

β
p

[
∑

β aα,β([p0 + p1Se1 ]
α1pα22 S

α2
e2
...pαnn S

αn
en
)]F n(p; ζ) = Gn(p; ζ)

in the Ar spherical coordinates and

(2.1) Fn(Af ; u; p; ζ) =
∑

β(−1)
|β|Sβ(p)∂

β
p

(
∑

β aα,β[p0 + p1Se1 ]
α1 [p0 + p2Se2 ]

α2 ...[p0 + pnSen ]
αn)F n(p; ζ) = Gn(p; ζ)

in the Ar Cartesian coordinates (see Theorems 12 and 13 above). It may happen that the
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second differential equation is simpler than the initial one:

(3) Af = g.

For example, when coefficients depend only on one variable tn, then the second differential
equation is ordinary and linear.

37. Noncommutative transforms of products and convolutions of functions in the
Ar spherical coordinates.
For any Cayley-Dickson number z = z0i0 + ...+ z2r−1i2r−1 we consider projections

(1) θj(z) = zj, zj ∈ R or Ci or HJ,K,L, j = 0, ..., 2r − 1, θj(z) = πj(z)i∗j ,
given by Formulas 2(5, 6) and 33(17). We define the following operators

(2) Rα,j(F
n(p; ζ)) := F n(p0, (−1)α1p1, ..., (−1)

αj+1−δj,npj+1−δj,n , pj+2−δj,n ,
..., pn; ζ0, (−1)α1ζ1 + πα1/2, ..., (−1)

αj+1−δj,nζj+1−δj,n + παj+1−δj,n/2, ζj+2−δj,n , ..., ζn)
on images F n, 2r−1 ≤ n ≤ 2r − 1, j = 0, ..., n. For αj and βj ∈ {0, 1} their sum αj + βj is
considered by (mod 2), i.e. in the ring Z2 = Z/(2Z), for two vectors α and β ∈ {0, 1}2

r−1 their
sum is considered componentwise in Z2. Let

(3) Fn(f ; u; p; ζ) =
n∑

j=0

2r−1∑

k=0

θj(F
n(θk(f); u; p; ζ))ikij,

also F n
j (p; ζ) :=

∑2r−1
k=0 θj(F

n(θk(f); u; p; ζ))ik for an original f , where u(p, t; ζ) is given by
Formulas 2(1, 2, 2.1). If f is real or Ci or HJ,K,L -valued, then F n

j = θj(F
n).

Theorem. If f and g are two originals, then

(4) Fn(fg; u; p; ζ) =
∑n

j=0

∑
α,β∈{0,1}n(−1)

αj+1(1−δj+1,n)(Rα,j(F
n
j (p−q0; ζ−η))∗(Rβ,j(G

n
j (p+

q0 − p0; η))ij,

(4.1) Fn(f ∗ g; u; p; ζ) =
∑n

j=0

∑
α,β∈{0,1}n(−1)

αj+1(1−δj+1,n)(Rα,j(F
n
j (p; ζ −

η))(Rβ,j(G
n
j (p; η))ij,

whenever Fn(fg), Fn(f), Fn(g) exist, where 1 ≤ n ≤ 2r − 1, 2 ≤ r; αk + βk = 1 (mod 2) for
k ≤ j or k = j + 1 = n, αk + βk = 0 (mod 2) for k = j + 1 < n and αk = βk = 0 for k > j + 1
in the j-th addendum on the right of Formulas (4, 4.1); the convolution is by (p1, ..., pn) in (4),
at the same time q0 ∈ R and η ∈ Ar are fixed.

Proof. The product of two originals can be written in the form:

(5) f(t)g(t) =
∑2r−1

j=0

∑
k,l: ikil=ij

θk(f(t))θl(g(t))ij.
The functions θk(f) and θl(g) are real or Ci or HJ,K,L valued respectively. The non-
commutative transform of fg is:

(6) Fn(fg)(p; ζ) =
∫

Rn
f(t)g(t) exp(−u(p, t; ζ))dt =

{∫

Rn
(f(t)g(t))e−p0s1 cos(p1s1 + ζ1)i0dt

}

+

{
n−1∑

j=2

∫

Rn
(f(t)g(t))e−p0s1 sin(p1s1 + ζ1)... sin(pj−1sj−1 + ζj−1) cos(pjsj + ζj)ij−1dt

}

+

∫

Rn
(f(t)g(t))e−p0s1 sin(p1s1 + ζ1)... sin(pnsn + ζn)indt.

On the other hand,

(7)

∫

Rn
f(t)g(t)e−p0s1+i

∑k
j=1(pjsj+ζj)γjdt =
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∫

Rn

(∫

Rn
f(t)e−(p0−q0)s1+i

∑k
j=1((pj−qj)sj+ζj−ηj)γjdt

)(∫

Rn
g(t)e−q0s1+i

∑k
j=1(qjsj+ηj)γjdt

)

dq,

where k = 1, 2, ..., n, γj ∈ {−1, 1}. Therefore, using Euler’s formula eiφ = cos(φ) + i sin(φ)
and the trigonometric formulas cos(φ + ψ) = cos(φ) cos(ψ) − sin(φ) sin(ψ), sin(φ + ψ) =
sin(φ) cos(ψ) + cos(φ) sin(ψ) for all φ, ψ ∈ R, and Formulas (6, 7), we deduce expressions
for θj(Fn(fg)). We get the integration by q1, ..., qn, which gives convolutions by the p1, ..., pn
variables. Here q0 ∈ R and η ∈ Ar are any marked numbers. Thus from Formulas (5− 7) and
2(1, 2, 2.1, 4) we deduce Formula (4).
Moreover, one certainly has

(8)

∫

Rn
(f ∗ g)(t)e−p0s1+i

∑k
j=1(pjsj+ζj)γjdt =

(∫

Rn
f(t)e−p0s1+i

∑k
j=1(pjsj+ζj−ηj)γjdt

)(∫

Rn
g(t)e−p0s1+i

∑k
j=1(pjsj+ηj)γjdt

)

for each 1 ≤ k ≤ n, γj ∈ {−1, 1}, since sj(t) = sj(t−τ)+sj(τ) for all j = 1, ..., n and t, τ ∈ Rn.
Thus from Relations (6, 8) and 2(1, 2, 2.1, 4) and Euler’s formula one deduces expressions for
θj(Fn(f ∗ g)) and Formula (4.1).

38. Moving boundary problem.
Let us consider a boundary problem
(1) Af = g in the half-space tn ≥ φ(tn), where φ(0) = 0 and φ(tn) < tn for each 0 ≤ tn ∈ R.

Suppose that the function tn − φ(tn) =: ψ(tn) is differentiable and bijective. For example, if
0 < v < 1 and φ(tn) = vtn, then the boundary is moving with the speed v. Make the change of
variables yn = ψ(tn), y1 = t1,...,yn−1 = tn−1, then tn = ψ−1(yn) and dtn = dsn = (dtn/dyn)dyn
and due to Theorem 25 we infer that

(2) Fn




∑

|α|≤m

bα∂
α
s χyn≥0f(t); p; ζ



 =
∑

|α|≤m,0≤qn≤αn−1

bα(δ0,αn − 1)

(p0 + Se1p1)
α1pα22 ...p

αn−1
n−1 p

αn−qn−1
n Sα−α1e1−(qn+1)enF

n−1,yn(∂qntnw(y), u(p, (y
n); ζ); p; ζ)

+
∑

|α|≤m

bα(p0 + Se1p1)
α1pα22 ...p

αn
n Sα−α1e1F

n(χyn≥0(y)w(y); p; ζ) = G
n(p; ζ)

in the Ar spherical coordinates and

(2.1) Fn




∑

|α|≤m

aα∂
α
t χyn≥0f(t); p; ζ



 =
∑

|α|≤m,0≤qn≤αn−1

aα(δ0,αn − 1)

(p0 + Se1p1)
α1(p0 + p2Se2)

α2 ...(p0 + pn−1Sen−1)
αn−1(p0 + pnSen)

αn−qn−1

Fn−1,y
n

(∂qntnw(y), u(p, (y
n); ζ); p; ζ)

+
∑

|α|≤m

aα(p0 + Se1p1)
α1(p0 + p2Se2)

α2 ...(p0 + pnSen)
αnFn(χyn≥0(y)w(y); p; ζ) = G

n(p; ζ)

in the Ar Cartesian coordinates, where w(y) := f(t(y))(dtn/dyn).
Expressing Fn(χyn≥0(y)w(y); p; ζ) through Gn(p; ζ) and the boundary terms

Fn−1,y
n
(∂qntnw(y), u(p, (y

n); ζ); p; ζ) as in §28.3 and making the inverse transform 8(4) or 8.1(1),
or using the integral kernel ξ as in §28.5, one gets a solution w(y) or f(t) = w(y(t))(dyn(tn)/dtn).
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39. Partial differential equations with discontinuous coefficients.
Consider a domain U and its subdomains U ⊃ U1 ⊃ ... ⊃ Uk satisfying Conditions
28(D1, D4, i − vii) so that coefficients of an operator A (see 28(2)) are constant on Int(Uk)
and on V1 = U \ Int(U1), V2 = U1 \ Int(U2),...,Vk = Uk−1 \ Int(Uk) and are allowed to be
discontinuous at the common borders ∂Vj ∩ ∂Uj for each j = 1, ..., k. Each function fχUj is an
original on U or a generalized function with the support supp(fχUj) ⊂ Uj if f is an original
or a generalized function on U . Choose operators Aj with constant coefficients on U j and
Aj|Int(Vj) = 0, where U

0 = U , so that A|Uk = A
k,..., A|Uj = A

j+ ...+Ak,..., A|U = A0+ ...+Ak.
Therefore, in the class of originals or generalized functions on U the problem (see 28(1, 2)) can
be written as

(1) Af = g, or

(2) A0fχV1 = gχV1 ,...,A
k−1fχVk = gχVk , A

kfχUk = gχUk ,
since χV1 + ...+ χVk + χUk = χU . Thus the equivalent problem is:

(3) A0f 0 = g0, A1f 1 = g1,...,Akfk = gk

with fk = fχUk , g
k = gχUk , also f

j = fχVj+1 , g
j = gχVj+1 for each j = 0, ..., k − 1. On ∂U

take the boundary condition in accordance with 28(5.1). With any boundary conditions in the
class of originals or generalized functions on additional borders ∂Uj \ ∂U given in accordance
with 28(5.1) a solution f j on U j exists, when the corresponding condition 8(3) is satisfied (see
Theorems 8 and 28.1).
Each problem Ajf j = gj can be considered on Uj, since supp(gj) ⊂ Uj. Extend f j by zero

on U \ Vj for each 0 ≤ j ≤ k − 1. When the right side of 28(6) is non-trivial, then f j is
non-trivial. If f j−1 is calculated, then the boundary conditions on ∂U j \ ∂U can be chosen in
accordance with values of f j−1 and its corresponding derivatives (∂βf j−1/∂νβ)|(∂Uj\∂U) for some
β < ord(Aj) in accordance with the operator Aj and the boundary conditions 28(5.1) on the
boundary ∂U j \∂U . Having found f j for each j = 0, ..., k one gets the solution f = f 0+ ...+fk

on U of Problem (1) with the boundary conditions 28(5.1) on ∂U .

40. Remark. The multiparameter noncommutative transform over the Cayley-Dickson alge-
bras presented above is the natural generalization of the usual complex one-parameter Laplace
transform. It opens new opportunities for solving partial differential equations of different
types.
It may happen that Theorem 13 is simpler to use, than Theorem 21 for partial differential

equations with real variables. Theorem 13 has an advantage that it can be simpler used
for partial differential equations of complex and hyper-complex variables, because each pair
(pl + pji

∗
l ij) for l 6= j is the complex variable. In these variants boundary conditions may be

for F k(p; ζ) on a hyperplane Re(p) = a in Ar.
As it was seen above the appearing integrals are by multidimensional domains. For their

calculations the Fubini’s theorem, residues, Jordan Lemma and tables of known integrals also
can be used. Generally in computational mathematics integrals are easier to calculate, than to
solve partial differential equations numerically. As a rule iterations of algorithms for integrals
converge faster, than iterations of numerical methods for partial differential equations.
Functions with octonion values may be used to resolve systems of partial differential equa-

tions. Using conjugations of Cayley-Dickson numbers one gets the transition between opera-
tors with coefficients either on the left or on the right of partial derivatives: [(∂αf(x))cα]∗ =
c∗α(∂

αf(x))∗, particularly, (∂αf(x))∗ = ∂αf ∗(x) for x ∈ Rn, ∂α = ∂αx .
Using of Formulas 2(5, 6) gives variables tj = zj for z ∈ Ar. So one can consider a class

of super-differentiable originals f(z), z ∈ V ⊂ Ar. In the class of piecewise on open subsets
super-differentiable originals f(z), z ∈ V ⊂ Ar, with tj = zj for each j = 1, ..., n, n = 2r − 1,
in the fixed z-representations we get the noncommutative transform for f(z)χV (z) relative to



S.V. Ludkovsky Multidimensional Laplace transforms over Cayley-Dickson algebras... 169

the Cayley-Dickson variable z ∈ Ar. Therefore, the results given above transfer on this variant
also.
Theorem 17 also opens new opportunities to investigate and solve certain types of nonlinear

partial differential equations using previous results on spectral theory of functions of operators
[21, 22]. For example, analytic functions q(z) in Theorem 17 permit to consider nonlinear
operators q(σ), where σf(z) :=

∑2r−1
j=0 (∂f(z)/∂zj)ij. It is planned to study in the next paper.

Partial differential equations with periodic g and f with vector period corresponding to
Qn may be considered also. Certainly others classes of smoothness, for example, Sobolev’s or
generalized functions can also be considered. It is planned in a next paper to consider this
and also problems with boundary conditions as well as with non-constant coefficients in more
details.
The technique described above permits to consider partial differential equations of different

types and write their solutions in integral forms. If appearing integrals can be calculated in
elementary or special of generalized functions, then this gives the explicit formulas in terms of
known functions. In conjunction with the line integration over the Cayley-Dickson algebras it
permits to solve some types of non linear partial differential equations. The multiparameter
Laplace transform over the Cayley-Dickson algebras takes into account the boundary condi-
tions. It naturally means the treatment of systems of partial differential equations due to the
multidimensionality of the Cayley-Dickson algebras.
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Изучаются многомерные некоммутативные преобразования Лапласа над алгебрами
Кэли-Диксона. Доказываются теоремы о прямом и обратном преобразованиях
Лапласа над алгебрами Кэли-Диксона. Исследуются применения к дифференциаль-
ным уравнениям с частными производными, включая эллиптические, параболические
и гиперболические. Более того, рассматриваются дифференциальные уравнения с
частными производными более высоких порядков с вещественными и комплексными
коэффициентами, которые могут быть переменными, с граничными условиями или
без них.

Ключевые слова: многомерное некоммутативное преобразование Лапласа, алгебры
Кэли-Диксона, дифференциальные уравнения с частными производными, граничные
условия




