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1 Introduction

It is a well known fact that, in order to create the Relativity Theory, Einstein used Riemannian
geometry instead of classical Euclidean geometry, the first one representing a natural mathema-
tical model for local isotropic space-time. Although the use of Riemannian geometry was indeed
a genial idea, there are recent studies of physicists that suggest a non-isotropic perspective of
space-time. For example, in Pavlov’s opinion [15], the concept of inertial body mass emphasizes
the necessity to study the local non-isotropic spaces. Obviously, for the study of non-isotropic
physical phenomena, the Finsler geometry is very useful as a mathematical framework.

The studies of Russian scholars (Asanov [1], Garas’ko [4] and Pavlov [5, 14, 15]) emphasize
the importance of Finsler geometry which is characterized by the total equality in rights of all
non-isotropic directions. For such a reason, Asanov, Pavlov and their co-workers underline the
important role played in theory of space-time structure and gravitation (as well as in unified
gauge field theories) by Berwald-Modr metric (whose certain Finsler geometrical properties are
studied by Matsumoto and Shimada in the works [6, 7, 16])

F:TM »R, F(y) = (y'v*.v")"".

Because any of such directions can be related to the proper time of an inertial reference frame,
Pavlov considers that it is appropriate as such spaces to be generically called "multi-dimensional
times" [15]. In the framework of 3- and 4-dimensional linear space with Berwald-Modr metric
(i.e. the three- and four-dimensional time), Pavlov and his co-workers [5, 14, 15| offer some
new physical approaches and geometrical interpretations such as:

1. physical events = points in multi-dimensional time;

2. straight lines = shortest curves;

3. intervals = distances between the points along of a straight line;

4. simultaneous surfaces = the surfaces of simultaneous physical events.

According to Olver’s opinion [13|, we consider that the 1-jet fibre bundle is a basic object in
the study of classical and quantum field theories. For such geometrical and physical reasons,
this paper is devoted to the development on the 1-jet space J'(R, M?) of a Finsler-like geometry
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(together with some gravitational-like and electromagnetic-like geometrical models) for the t-
deformation of the Berwald-Moor metric given by

Fol @MY R Flty) = VAT - {viviel,

2

where hy;(t) is a Riemannian metric on R and (¢, z', 22, 2%, y{, y?, y?) are the coordinates of the

1-jet space J'(R, M3).
Remark 1.1. If we take the particular local Riemannian metric
hu(t) = e 27 >0,

it follows that F becomes a t-conformal deformation of the jet Berwald-Moor metric of

order three
BM3(y) = v/ yivivi-

The differential geometry (in the sense of Cartan linear connections, d-torsions, d-
curvatures, gravitational-like and electromagnetic-like geometrical models) produced by an
arbitrary jet Lagrangian function

L:J'R,M") =R

is now completely done in the second author’s paper [12]. We point out that the geomet-
rical ideas from [12| are similar (but however distinct ones) to those exposed by Miron and
Anastasiei in the classical Lagrangian geometry on tangent bundle [8]. More accurately, the
geometrical ideas from [12] (which we called the jet geometrical theory of relativistic rheonomic
(t-dependent) Lagrange spaces) were initially stated by Asanov in [2| and developed further in
the book [11] by the second author of this paper.

In the sequel, we apply the general geometrical results from [12] to the particular rheonomic
(t-deformed) Berwald-Moor metric F, in order to obtain what we called the jet local Riemann-
Finsler geometry for three-dimensional time.

2 Preliminary notations and formulas

Let (R, hq1(t)) be a Riemannian manifold, where R is the set of real numbers. The Christoffel
symbol of the Riemannian metric hqq(t) is

. h%dhy

M1 =

1
—_— Rl = _— >0.
2 dt’ hi1
Let also M? be a manifold of dimension three, whose local coordinates are (z!, 22, z3). Let us

consider the 1-jet space J'(R, M?), whose local coordinates are
(t,2", 2%, 2%, y1, u1, ).

These transform by the rules (the Einstein convention of summation is used throughout this
work):
-~ oz? dt —
t=1(t P = 2P (21 W=———= 1y =1,3 2.1
()7 T &L (:E )7 yl axq dt 3/1; b,q ) ( )
where dt/dt # 0 and rank (077 /0z9) = 3. We consider that the manifold M? is endowed with
a tensor of rank (0,3), given by local components G, (z). This is totally symmetric in the

indices p, ¢ and r. Suppose that the d-tensor

Gij1 = 6Gijpyy,
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is non-degenerate, that is there exists the d-tensor G'*! on J*(R, M?) such that G;;; G'* = F.
In this geometrical context, if we use the notation G111 = Gperyyiy], we can consider the
third-root Finsler-like function [16], [3| (this is 1-positive homogenous in the variable y):

F(t,x,y) = {/Gpgr()ylyiys - /B(E) = 3/ Grua(z,y) - VAH(2), (2.2)

where the Finsler function F' has as domain of definition all values (¢, x,y) which verify the
condition Gi11(x,y) # 0 (i.e. the domain where we can y-differentiate the function F(t,z,y)).

If we denote Gi11 = 3Gipytyl, then the 3-positive homogeneity of the "y-function" Gii;
(this is in fact a d-tensor on the 1-jet space J'(R, M?)) leads to equalities:

8Cllll

Gill = T 7
oy

Gimy; = 3G, Gijly{ = 2G;n,

aGill o 62G111 8G’L]1
Oy 0yidy]’ Oy*

The fundamental metrical d-tensor produced by F' is given by formula

Gij1 = Gijlyiy{ = 6G111, = 6Giji.

hii(t) O?F*
2 oyioy]

Gij (ta xZ, y) =
By direct computations, the fundamental metrical d-tensor takes the form

G? 1
1§1 {Giﬂ — @GillGﬂl] . (2.3)

gij(x7y) =

Moreover, taking into account that the d-tensor Gj;; is non-degenerate, we deduce that the
matrix g = (g;;) admits the inverse g=* = (¢/%). The entries of the inverse matrix g~! are given

by

g* =363 |GIM 4 ; (2.4)

GiGY
(Glll - glll) ’
where G{ = GjpleH and 39111 = qulequn.

3 t-Deformation of the Berwald-Moé6r metric
Starting from this Section, we will focus only on the t-deformation of the Berwald-Moor metric

of order three which is the Finsler-like metric (2.2) for particular case

1
G 3 {p,q,r} - distinct indices
par = :

0, otherwise.

Consequently, the t-deformation of the Berwald-Modér metric of order three is given by

P(t,y) = VB(t) - {/ulyiys. (3.1)

Moreover, using preceding notations and formulas, we obtain the following relations:

G
G111:y%y%y%’ G = v
1
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Glll

——— (no sum by i or j),

Gin = (1= 0y) —;
Ny

where 9;; is the Kronecker symbol. Because we have

det (Giﬂ) =13 - 2G111 7A 07

i,J
we find 5k
(1= 2%
GIM = %y{y{“ (no sum by j or k).
It follows that we have Gi11 = (1/2)G11; and G = (1/2)y].
If we replace the preceding computed entities into formulas (2.3) and (2.4), we get
2 — 30,;) Gins o
gij = ( 5 ) in; (no sum by i or j) (3.2)
iy
and ' ' '
¢ = (2 = 36" G Pylyk (no sum by j or k). (3.3)

Using a general formula from paper [12|, we find the following geometrical result:

Proposition 3.1. For the t-deformed Berwald-Modr metric (3.1), the energy action functional

b b
E(t, z(t)) :/ F2(tay)vh11dt:/ VA{vtyiudy - /bt

produces on the 1-jet space J*(R, M?3) the canonical nonlinear connection

I'= (M((& = =41, N((Sj = 0) : (3.4)

Proof. The Euler-Lagrange equations of the energy action functional [ are equivalent with the

d’z’ 0 (4 ok ok O () ko k p_ dat
Tz +2H), (t, 2", yy) + 2G 1y, (t, 2", yy) =0, vi= (3.5)
where the local geometrical components

equations

i) def 1 i
H() = __%%1(75)91

(N1 9
and . . .
G(l) def hllgik 82F2 j 6F2 4 82F2
mr 4 | 0zioyk N gk otoyr
aﬁﬂ 1 11,1 l
+8—yk%ll(t) + 2h 211 9kY1 | T 0
1

represent a semispray on the 1-jet space J'(R, M?). This semispray produces the canonical

nonlinear connection (for more details, see the papers [10], [12])

| MD —og® _ i @ _ _
41
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Generally speaking, a nonlinear connection I' = (M 81, N, ((33') on the 1-jet space J*(R, M?)
is used for construction of distinguished vector fields (which have a classical tensorial behaviour)

50 4 0 50 o0
=== M — _ 9 _ N0 2 .
ot ot (1)1 ay{ ! ot ot (1) ay{ (3 6)

It is important to note that, in our present Finsler-like geometrization, there are a lot of ge-
ometrical local components (such as the components of Cartan linear connection, d-torsions,
d-curvatures etc.) whose geometrical construction involves the M-horizontal covariant deriva-

tives 6/6z". In the case when the nonlinear connection I' has the components N((ligj equal to

zero (see (3.4), for instance), it follows that the M-horizontal covariant derivatives 6 /dz" reduce
to the classical partial derivatives 9/9z'. Consequently, the above discussed geometrical local
components (e.g., which are dependent only by ¢ and y) vanish in this case. For these reasons,
we will use on the 1-jet space J'(R, M?), by an "a priori" definition, the following non-trivial
local nonlinear connection:

= 7 7 7 % )
= (M(<1§1 = —shyyh, NG, = 50 ) (3.7)

Beside the non-triviality of the components N((gj, we have choosen the nonlinear connection
(3.7) such that its attached harmonic curves be straight lines (this is because the Euler-
Lagrange equations (3.5) also have as solutions only pieces of straight lines). In order to
be more clear, we recall that the equations of the harmonic curves of the nonlinear connection

(3.7) are given by [10]

d?x7 da® dz*\ dz™
o+ MQ) ( ‘), ) +N9, <t,xk(t), E) —=0. (3.8)

It follows that the equations (3.8) are equivalent to

d?z’ 1 dhyy da?
v §__Ul (3.9)
dt2  4dhyy dt dt

Obviously, the equations (3.9) have the general solution

T (t) = aj/ (h1)** (0)do + V7,

to

where @/, € R. In other words, the equations (3.9) have as solutions only pieces of the

straight lines
-0t 220 -0

al a? a3
Remark 3.2. We point out that the above terminology of harmonic curves (autoparallel
curves in Miron’s terminology [8]) comes from the particular form of equations (3.8) for the
particular global nonlinear connection

I'= (Mg))l = syl N = meyin) : (3.10)
where 1, (t) and +}.(x) represent the Christoffel symbols of the Riemannian manifolds

(R, h11(t)) and (M3, @ij(x)). It is obvious that, for the particular nonlinear connection (3.10),
the equations (3.8) become the equations of harmonic maps (curves)

d?xt 1 dz’ dz? dxk
W_%()dt+%’“()dt a Ve (3.11)
Bl d?xt dx’ dz? dxF B '

1
- t
A ()dt + k(@ )dt dt
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Remark 3.3. Note that the components N((ligj of the nonlinear connection (3.7), which are
giwen in the local chart U by the functions

1
o G Mg
N= (Nu)j = _7@.) :

have not a global character on the 1-jet space J'(R, M?), but have only a local character. In
conclusion, taking into account the general transformation rules (see [10])
~(k) () dt 891;’ 8’3?’“ 8:UZ 8’3]’1“

Now =Ny =57 927 ~ 93 0’

(3.12)

it follows that N has in the local chart U the following components:
i = =20+ S G+
4 The Cartan I-linear connection. d-Torsions and d-curvatures
We use the nonlinear connection (3.7) for construction of dual adapted bases of d-vector fields
(o= o+ i s = e+ B o < X(E) (@)

and d-covector fields

1
{dt, dz', 6yl = dy} — s yidt — %daz’} C X*(E), (4.2)

where £ = J*(R, M?). Note that, under a change of coordinates (2.1), the elements of adapted
bases (4.1) and (4.2) must transform as classical tensors. Consequently, all subsequent geomet-
rical objects on the 1-jet space J'(R, M?3) (such as the Cartan canonical [-linear connection,
torsion, curvature etc.) will be described in local adapted components.

Using a general result from [12], by direct computations, we can give the following important
geometrical result:

Proposition 4.1. The Cartan canonical D-linear connection, produced by the t-deformed
Berwald-Modr metric (3.1), has the following adapted components:

1
S 1 ko i _ 21 ~i(l) AL
where, if we use the notation
B 35; + 305 4+ 30, — 95§5jk -2
Jk 9

(no sum by i, j ork)

we have

C’;E,lg)) = Aé-k . gjhk (no sum by i, j ork).
Y1y

Proof. Via the t-deformed Berwald-Modr derivative operators (4.1), we use the general formulas
which give the adapted components of the Cartan canonical connection, namely [12]

ak — gk_m(SQmj i 9™ (89jm . OGkm _ 09k
]1 2 5t Y Jk? 2 51:k 5:L_j 5l_m 9
i) — g (89jm + Om agjk) 9" g

W oyl eyl oy) 2 oy
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Remark 4.2. The Cartan canonical connection CT' has the metrical properties:

haj =Bt =0, hap = Wt =0, h11|<” - hﬂIEB —0,

where 77, 77 and ”\% 7 are the R-horizontal, M-horizontal and vertical covariant

derivatives produced by the Cartan I-linear connection CT. For more details upon the local
expressions of the above covariant derivatives applied to the components of d-tensors, see pa-
per [12]. Consequently, in our jet Finsler-like geometrization, the Cartan canonical connection
plays a similar role to that of Levi-Civita connection in Riemannian spaces.

Remark 4.3. The below properties of the vertical d-tensor C’;E,lc)) are true (summation by m):

i(1) _ (1) i(1)  m __ m(l)
Ciy = Crigyr Cimyn” =0, Clny =0 (4.3)

For similar properties, see also the papers [3], [7], [9] or [16].
Remark 4.4. The coefficients Aéj have the following values:

(2 . .
—g 1FIFLA
1
Al = g i=iFlori=lFjorj=1l#i (4.4)
2
\—5,12‘]’:[

Proposition 4.5. The Cartan canonical connection cT of the t-deformation of the Berwald-
Modor metric (given by (3.1)) has three effective adapted local torsion d-tensors:

B (1) k() 1) k()
Py =—5 G By’ =G

dol
k
R( ) = 3 { dtu — %%1%%1] 5?'

Proof. A general h-normal TI'-linear connection on the 1-jet space J'(R, M?) is characterized
by eight effective d-tensors of torsion (for more details, see [12]). For our Cartan canonical
connection CT' these reduce to the following three (the other five cancel):

(k) (k) (k)
wo_ N o opw _Man Ny sy
W) = g~ B By = Ty 50 0 L =Cio) -

]

Proposition 4.6. The Cartan canonical connection cT of the t-deformation of the Berwald-
Modr metric (given by (5.1)) has three effective adapted local curvature d-tensors:

1 1 1
_ Zut gl L) _ 2 gl
R =—1Siw: Ly = 5 Sinw:
I(1) I(1)
wm _ 9% %) | mm i) om0

00 = Tggk T gy i) Ym) T Y)Y
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Proof. A general h-normal I'-linear connection on the 1-jet space J*(R, M3) is characterized
by five effective d-tensors of curvature (for more details, see [12]). For our Cartan canonical
connection CT these reduce to the following three (the other two cancel):

_ 0Ly _ oL,

R + L, — Lmrt

CL P P my»
oLt
co _ 9L i) pm) (1)
Fijoy = gyt Citays + Citm P00
80{(}) 80{(1)
gow _ %6 9% | om) i) em i)
i(7) (k) oyt oyl i(7) T m(k) i(k) —m(j)
where
0 _9Cw ) (1) 1)
iy _ 7Y m(l) r1 m _ ~1) rm
Citkyi = g5 T Gty Lmi = Gy L5 = Cimy -

51(1)(1) n 51(1

(R)(5

Remark 4.7. The vertical curvature d-tensor SE Y has the properties:
1) _
) 0

i(5)(k

Sf((;))((l) 0 (no sum by j).

Proposition 4.8. The expressions of the vertical curvature d-tensor 5118))((3 are given by:

1
558))(%) = ——L (i £k #1#1i and no sum by i);
9 (91) Yt

1 l
2. 5118))((11)) =5 (y;;lz ¥ (i #£7#1#1 and no sum by i);
1) %

3. 5! —O(i#j#k#iandnosumbyi);

)(1)
i(7) (k)

1
4. ngll))(%) = it (i #k #1%#1i and no sum by l);
1Y%1

l(Jl.)(ll) = _9yi - (i #J # 1 # 1 and no sum by l);
191

1
6. 58))(%) = m (i # 1 and no sum by i orl);
1

IR ,
00 = g i) (i # 1 and no sum by i orl);

8. S((l))((kl)) =0 (k#1 and no sum by l);
9. S((Jl))ll) =0 (j #1 and no sum by l).

Proof. For j # k, the expression of the vertical curvature tensor S )(k) takes the form (no
sum by 7, 7, k or [, but with sum by m)

ALSL AL,

JSIeNCEN B A
yiyl vyl

iG)k)

ALdi _ A§j5ikyl1
WD yr (W)’

l
+[ARAL, — ARAL T !

7

Jok’
1Y1Y1



Gh. Atanasiu, M. Neagu Jet local Riemann-Finsler geometry for the three-dimensional time 55

where the coefficients A}; are given by relations (4.4). O

5 t-Deformed field-like geometrical models constructed on 1-jet three-
dimensional time

5.1 Gravitational-like geometrical model

From a geometrical point of view, on the 1-jet three-dimensional time, the t-deformed Berwald-
Moér metric (3.1) produces the adapted metrical d-tensor

G = hyydt ® dt + gy;dz' @ da? 4+ hM g0y @ Sy, (5.1)

where g;; is given by (3.2) and dy! is given by (4.2). This may be regarded as a “non-isotropic
gravitational potential” (see Miron and Anastasiei [8]). In such a "physical" terminology, the
nonlinear connection I (used in the construction of distinguished 1-forms dy!) prescribes, prob-
ably, a kind of “interaction” between (t)-, (z)- and (y)-fields (cf. Tkeda, Miron and Anastasiei).

We postulate that the non-isotropic gravitational potential G is governed by the Einstein
geometrical equations

Ric (cf) - wG KT, (5.2)

where Ric (CF) is the Ricci d-tensor associated to the Cartan canonical connection CT (in

Riemannian sense and described in adapted bases), Sc (C’F) is the scalar curvature, K is the

FEinstein constant and T is the intrinsic stress-energy d-tensor of matter.

Thus, working with adapted basis of vector fields (4.1), we find the local Einstein geometrical
equations for the t-deformed Berwald-Moér metric (3.1). Firstly, by direct computations, we
find:

Lemma 5.1. The Ricci d-tensor of the Cartan canonical connection cT of the t-deformation
of the Berwald-Modr metric (given by (3.1)) has the following effective adapted local Ricci
d-tensors:

11 )
m 21711 (D)) 1N _ 1) pm (1) @ 1)(1)
Hij = Hijm = 4 S(i)(j)’ Pi(j) - P(i)j - Pij(m) ~ 9 S(z-)(j);
MA) gm0 —1 1 (5.3)
Sz Sz'm'mzl—'_(nOSUTbeyZOTj)
G — M) (m) 9 ylyl
Remark 5.2. The vertical Ricci d-tensor S ) has the following expression:
1 1
KN LF
g _
(1)(4) 92 1 '
9 (iV2’ =J
(y1)

Remark 5.3. Using the last equality of (5.3) and the relation (3.3), we deduce that the following
equality is true (sum by r):

. _ 1—-30" y*
Smll def mrs(l G1121/3 X Tl . % (no sum byz or m) (54)

1

Moreover, by a direct calculation, we obtain the equalities

3
osmt 2 1

Smllcﬂ"(l) 2 =—.—.@G 2/3‘ 5.5
Z i( Z oy 3 gy M (5:5)

m,r=1 m=1
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Lemma 5.4. The scalar curvature of the Cartan canonical connection cr of the t-deformed
Berwald-Modr metric (3.1) is given by

1.1
4h11 + 11711

Se (Cf) . 5 LGP,

Proof. The general formula for the scalar curvature of a Cartan connection is (for more details,
see [12])

Sc (Cf) = P Ryq + huug"SY.

O

Describing the global Einstein geometrical equations (5.2) in adapted basis of vector fields
(4.1), we find the following important geometrical result (for more details, see [12]):

Proposition 5.5. The adapted local Einstein geometrical equations, that govern the non-
isotropic gravitational potential (5.1), are given by:

¢

5 ' G1_121/3 . hll = 7‘11

X %141—,?1& +én-Gl gy =Ty (5.6)
| S+ - G = Y

0="Ti, 0="Ta, ozT(SE,

=T, Sh) -7, Sy -78) o

where
Ahyy + se1y 52y
fn=———+"—"—.
4K
Remark 5.6. The FEinstein geometrical equations (5.6) and (5.7) impose the stress-energy

d-tensor of matter T to be symmetric. In other words, the stress-enerqy d-tensor of matter T
must verify the local symmetry conditions

(5.8)

Tap=Toa, VABE {1, i, g;}}.
By direct computations, the adapted local Einstein geometrical equations (5.6) and (5.7)
imply the following identities of the distinguished stress-energy tensor (summation by ):

€

de _ d
T piy =6y -G, T e =0,

m) de mr de
T < hugm T =0, T WU =0,

1
de y 4 % -
7" - g™ T = ZICH S+ & - 1121/3 - 0"
m € h €
(m) def p mrT(SZ 121”511 SmiL, 7—( ) def hHT W —q,
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(m)(1) def mr () _ P11
7’1)(1') = hug QIS

—=Smil 4 &)y 1121/ - 6™ where the distinguished tensor S/
is given by (5.4) and &;; is given by (5.8).

Proposition 5.7. The stress-energy d-tensor of matter T must verify the following conser-
vation geometrical laws (summation by m):

LT _ (W) dhyy | PRy 3 (dhn
(m) 16K dt dt2 hyp \ dt

¢

—-2/3
’ Glll/

11/1 +

1|m

1 m (m) (1) _
T+ Tim + Tayi Ly =0

m

m)(1)(1) _
T on + T + Tl =0,

where (summation by m and r)

def 5’T 6T
7—11/1 = —- + Ty — Tioegy = 5—;,
def 0T ST
m — ’er —
7;|m Srm + 71 rm zm’
(m) (m)
T(m)’(l) def 8721) + T(T) o™ _ 3T1)
(DH1lm) — oy (D1r(m) — oy’
des 6T; _6TH
7;}1 st Jo — TG = (5_ + T;tse
def 0T sy, OT;™
mo— rym. o _gJmjpr — =2
7:|m Som i “rm 7; im 9 3%”’
8T( m) 87’(”{)
T(W)|(1) def (1) +7—(T)C«m(1) T(m 7’(1) (1)i 7
(1)i 1(m) oy m o Gy
Tl(.l)
11 def 07 ) T
Ton = —5  +t2T @,
57"’"(1) 1 07""1(1)
(1) def W 2T
(m)(1) (m)(1)
T(m)(l)’(l) def 67zl)(i) + T(T)(l)cm(l) _ T(m)(l)CT(l) _ a7?1)(1‘)
ME  H(m) oy (D@ ~r(m) (D(r) ~i(m) oy

Proof. The above conservation geometrical laws are provided by direct computations, using
the relations (4.3) and (5.5). O
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5.2 Electromagnetic-like geometrical model

In the paper [12], using only a given Lagrangian function L(¢,z,y) on the 1-jet space
JYR, M™), an electromagnetic-like geometrical model was also created. In the background
of our electromagnetic-like geometrical formalism from [12], we work with an electromagnetic
distinguished 2-form (the Latin letters run from 1 to n)

F= F 5y1 A dz?,

where
hll

_ M arm
i = 5 [gij )
The electromagnetic components F(Z)i are characterized by the following Maxwell geometrical

equations [12]:

0 = Gim NG + (gir L — 9Ly yI”] :

™ d g

m 1 Fott) (1)
Fogn = §A{id} {D(i)l\j_D M1

(im~j1

- |:O§')((r1n))R Gfm} hllgpqy‘f} ,

(m) (m)
3 F Z 0Ny, NG, v
& o = aylaylayl ok o |7V
i,5,k}
W) _
Z Folo =
[k}

where Ay; ;3 means an alternate sum, (i,j,5y means a cyclic sum and we have

—@ _ "' ogim o M _ 1 ®)
D() = 2 5t Y1 D(Z)J:h glp[ N() +L]my1:|a

Ay =1 g+ ouCriihur]

S L)l - 5Ch ik ok
Dy = 52 — D1 Lij, Gﬂb S + G Ly — G Lij,
1)
(1) 5F(i)j (1) Gm 1) m
(®)i/1 St i)j il @m it
(1)
o OF ) _p® pm g g
@il = 5k (m)j ik (iym™jk>

0 _ OF) o) m @) i)
Foily = 5 = FomiCity. ~ FomCicsy

Example 5.8. The Lagrangian function that governs the movement law of a particle of mass
m # 0 and electric charge e, which is displaced concomitantly into an environment endowed
both with a gravitational field and an electromagnetic one, is given by

L(t, 2%, y¥) = meh (1) @i(a*) yiv] + = AR (¢, 2%) i + F(t,a"), (5.9)
m

where the semi-Riemannian metric p;;(x) represents the gravitational potential of the space
of events M, Ag)) (t,z) are the components of a d-tensor on the 1-jet space J'(R, M) repre-
senting the electromagnetic potential and F(t,x) is a smooth potential function on the
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product manifold R x M. It is important to note that the jet Lagrangian function (5.9) is a
natural extension of the Lagrangian (defined on the tangent bundle) used in electrodynamics
by Miron and Anastasiei [8]. In our jet Lagrangian formalism applied to (5.9), the electro-
magnetic components are given by (see [12])

0 0
s _ e (9dy 904G
(@) 2m \ Ox7 ozt |’

and the second set of Maxwell geometrical equations reduce to the classical ones [12]:

o
> Fayu =0,

{i.5,k}

where "
oF)

1 _ (4)7 1) m 1) _m

F(i)jlk T ok F(m)j%’k - F(i)m%'k-

This fact suggests, in our opinion, some kind of naturalness attached to our electromagnetic-like
geometrical theory.

On our particular 1-jet space J* (R, M?), the t-deformed Berwald-Modr metric (3.1) and the
nonlinear connection (3.7) produce the electromagnetic 2-form

]F:zﬂo?zo.

In conclusion, our t-deformed Berwald-Modr electromagnetic-like geometrical model on the
1-jet three-dimensional time is trivial. In other words, in our jet geometrical approach, the
t-deformed Berwald-Moor electromagnetism (produced by (3.1) and (3.7)) leads us to null
electromagnetic geometrical components and to tautological Maxwell-like equations. In our
opinion, this fact suggests that the t-deformed Berwald-Mooér geometrical structure of the
1-jet three-dimensional time contains rather gravitational connotations than electromagnetic
ones. In such a perspective, it seems that we need to consider a similar geometrical study for
z-dependent conformal deformations of the Berwald-Modr structure, agreeing thus with the
recent geometric-physical ideas proposed by Garas’ko in [4].
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JIOKAJIbHAY PUMAHOBO-OVHCJIEPOBA 'EOMETPUA
CTPYN /1A TPEXMEPHOI'O BPEMEHU

I'. Atapacmy, M. Heary
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Ilenbio HacTosimeit pabOTHI SIBJISIETCsT PA3BUTHE 1-CTYHHOIO POCTPAHCTBA (PUHCIEPO-
no106Ho# reomeTprn (B cMbIciae orMedeHHol (d-) cBsa3nocTH, d-KpydeHns n d-KpUBU3HBI)
JIJIsE PEOHOMHOM MeTpuku Beppasbna-Moopa Tperbero nmopsijka (T.e. BpeMeHU-3aBUCAMbBIX
KOH(POPMHBIX Jedopmalnii 0ObIdHBIX cTpyit Bepsaibma-Moopa mim MeTpukm TPeTbero
nopsizika). TakzKe OPUBEIEHBI HEKOTOPBIE €CTECTBEHHBIE I'€OMETPUYECKHE TEOPUH MOJIsi
(rpaBuTAllsl ¥ 3JIETPOMATHETU3M) CIIEJYIOUIe U3 9TOii PeOHOMHON MeTpuku BepBasbia-
Moopa.

KuaroueBbie ciioBa: peoHomMHasg MeTpuka BepBasibiaa-Moopa TpeTbero mopsiaka, KaHOHU-
Jeckasi HeJIMHelHas CBI3HOCTb, KaHOHUYECKas CBA3HOCTH Kaprana, d-kpydenue u d-Kpu-
BHU3HA, F€OMETPUUIECKIE ypaBHeHUs DifHIITEHA.
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