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1 Introduction

It is a well known fact that, in order to create the Relativity Theory, Einstein used Riemannian
geometry instead of classical Euclidean geometry, the first one representing a natural mathema-
tical model for local isotropic space-time. Although the use of Riemannian geometry was indeed
a genial idea, there are recent studies of physicists that suggest a non-isotropic perspective of
space-time. For example, in Pavlov’s opinion [15], the concept of inertial body mass emphasizes
the necessity to study the local non-isotropic spaces. Obviously, for the study of non-isotropic
physical phenomena, the Finsler geometry is very useful as a mathematical framework.
The studies of Russian scholars (Asanov [1], Garas’ko [4] and Pavlov [5, 14, 15]) emphasize

the importance of Finsler geometry which is characterized by the total equality in rights of all
non-isotropic directions. For such a reason, Asanov, Pavlov and their co-workers underline the
important role played in theory of space-time structure and gravitation (as well as in unified
gauge field theories) by Berwald-Moór metric (whose certain Finsler geometrical properties are
studied by Matsumoto and Shimada in the works [6, 7, 16])

F : TM → R, F (y) =
(
y1y2...yn

)1/n
.

Because any of such directions can be related to the proper time of an inertial reference frame,
Pavlov considers that it is appropriate as such spaces to be generically called "multi-dimensional
times" [15]. In the framework of 3- and 4-dimensional linear space with Berwald-Moór metric
(i.e. the three- and four-dimensional time), Pavlov and his co-workers [5, 14, 15] offer some
new physical approaches and geometrical interpretations such as:
1. physical events = points in multi-dimensional time;
2. straight lines = shortest curves;
3. intervals = distances between the points along of a straight line;
4. simultaneous surfaces = the surfaces of simultaneous physical events.
According to Olver’s opinion [13], we consider that the 1-jet fibre bundle is a basic object in

the study of classical and quantum field theories. For such geometrical and physical reasons,
this paper is devoted to the development on the 1-jet space J1(R,M3) of a Finsler-like geometry
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(together with some gravitational-like and electromagnetic-like geometrical models) for the t-
deformation of the Berwald-Moór metric given by

F̊ : J1(R,M 3)→ R, F̊ (t, y) =
√
h11(t) ∙ 3

√
y11y

2
1y
3
1,

where h11(t) is a Riemannian metric on R and (t, x1, x2, x3, y11, y
2
1, y

3
1) are the coordinates of the

1-jet space J1(R,M 3).

Remark 1.1. If we take the particular local Riemannian metric

h11(t) = e
−2σ(t) > 0,

it follows that F̊ becomes a t-conformal deformation of the jet Berwald-Moór metric of
order three

BM3(y) =
3

√
y11y

2
1y
3
1.

The differential geometry (in the sense of Cartan linear connections, d-torsions, d-
curvatures, gravitational-like and electromagnetic-like geometrical models) produced by an
arbitrary jet Lagrangian function

L : J1(R,Mn)→ R

is now completely done in the second author’s paper [12]. We point out that the geomet-
rical ideas from [12] are similar (but however distinct ones) to those exposed by Miron and
Anastasiei in the classical Lagrangian geometry on tangent bundle [8]. More accurately, the
geometrical ideas from [12] (which we called the jet geometrical theory of relativistic rheonomic
(t-dependent) Lagrange spaces) were initially stated by Asanov in [2] and developed further in
the book [11] by the second author of this paper.
In the sequel, we apply the general geometrical results from [12] to the particular rheonomic

(t-deformed) Berwald-Moór metric F̊ , in order to obtain what we called the jet local Riemann-
Finsler geometry for three-dimensional time.

2 Preliminary notations and formulas
Let (R, h11(t)) be a Riemannian manifold, where R is the set of real numbers. The Christoffel
symbol of the Riemannian metric h11(t) is

κ111 =
h11

2

dh11

dt
, h11 =

1

h11
> 0.

Let also M3 be a manifold of dimension three, whose local coordinates are (x1, x2, x3). Let us
consider the 1-jet space J1(R,M3), whose local coordinates are

(t, x1, x2, x3, y11, y
2
1, y

3
1).

These transform by the rules (the Einstein convention of summation is used throughout this
work):

t̃ = t̃(t), x̃p = x̃p(xq), ỹp1 =
∂x̃p

∂xq
dt

dt̃
∙ yq1, p, q = 1, 3, (2.1)

where dt̃/dt 6= 0 and rank (∂x̃p/∂xq) = 3. We consider that the manifold M3 is endowed with
a tensor of rank (0, 3), given by local components Gpqr(x). This is totally symmetric in the
indices p, q and r. Suppose that the d-tensor

Gij1 = 6Gijpy
p
1,
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is non-degenerate, that is there exists the d-tensor Gjk1 on J1(R,M 3) such that Gij1Gjk1 = δki .
In this geometrical context, if we use the notation G111 = Gpqry

p
1y
q
1y
r
1, we can consider the

third-root Finsler-like function [16], [3] (this is 1-positive homogenous in the variable y):

F (t, x, y) = 3

√
Gpqr(x)y

p
1y
q
1y
r
1 ∙
√
h11(t) = 3

√
G111(x, y) ∙

√
h11(t), (2.2)

where the Finsler function F has as domain of definition all values (t, x, y) which verify the
condition G111(x, y) 6= 0 (i.e. the domain where we can y-differentiate the function F (t, x, y)).
If we denote Gi11 = 3Gipqy

p
1y
q
1, then the 3-positive homogeneity of the "y-function" G111

(this is in fact a d-tensor on the 1-jet space J1(R,M3)) leads to equalities:

Gi11 =
∂G111

∂yi1
, Gi11y

i
1 = 3G111, Gij1y

j
1 = 2Gi11,

Gij1 =
∂Gi11

∂yj1
=
∂2G111

∂yi1∂y
j
1

, Gij1y
i
1y
j
1 = 6G111,

∂Gij1

∂yk1
= 6Gijk.

The fundamental metrical d-tensor produced by F is given by formula

gij(t, x, y) =
h11(t)

2

∂2F 2

∂yi1∂y
j
1

.

By direct computations, the fundamental metrical d-tensor takes the form

gij(x, y) =
G
−1/3
111

3

[

Gij1 −
1

3G111
Gi11Gj11

]

. (2.3)

Moreover, taking into account that the d-tensor Gij1 is non-degenerate, we deduce that the
matrix g = (gij) admits the inverse g−1 = (gjk). The entries of the inverse matrix g−1 are given
by

gjk = 3G
1/3
111

[

Gjk1 +
Gj1G

k
1

3 (G111 − G111)

]

, (2.4)

where Gj1 = G
jp1Gp11 and 3G111 = Gpq1Gp11Gq11.

3 t-Deformation of the Berwald-Moór metric
Starting from this Section, we will focus only on the t-deformation of the Berwald-Moór metric
of order three which is the Finsler-like metric (2.2) for particular case

Gpqr =






1

3!
, {p, q, r} - distinct indices

0, otherwise.

Consequently, the t-deformation of the Berwald-Moór metric of order three is given by

F̊ (t, y) =
√
h11(t) ∙ 3

√
y11y

2
1y
3
1. (3.1)

Moreover, using preceding notations and formulas, we obtain the following relations:

G111 = y
1
1y
2
1y
3
1, Gi11 =

G111

yi1
,
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Gij1 = (1− δij)
G111

yi1y
j
1

(no sum by i or j),

where δij is the Kronecker symbol. Because we have

det (Gij1)i,j=1,3 = 2G111 6= 0,

we find

Gjk1 =
(1− 2δjk)
2G111

yj1y
k
1 (no sum by j or k).

It follows that we have G111 = (1/2)G111 and G
j
1 = (1/2)y

j
1.

If we replace the preceding computed entities into formulas (2.3) and (2.4), we get

gij =
(2− 3δij)
9

G
2/3
111

yi1y
j
1

(no sum by i or j) (3.2)

and
gjk = (2− 3δjk)G−2/3111 y

j
1y
k
1 (no sum by j or k). (3.3)

Using a general formula from paper [12], we find the following geometrical result:

Proposition 3.1. For the t-deformed Berwald-Moór metric (3.1), the energy action functional

E̊(t, x(t)) =
∫ b

a

F̊ 2(t, y)
√
h11dt =

∫ b

a

3

√
{y11y

2
1y
3
1}
2 ∙ h11

√
h11dt

produces on the 1-jet space J1(R,M3) the canonical nonlinear connection

Γ =
(
M
(i)
(1)1 = −κ

1
11y
i
1, N

(i)
(1)j = 0

)
. (3.4)

Proof. The Euler-Lagrange equations of the energy action functional E̊ are equivalent with the
equations

d2xi

dt2
+ 2H

(i)
(1)1

(
t, xk, yk1

)
+ 2G

(i)
(1)1

(
t, xk, yk1

)
= 0, yk1 =

dxk

dt
, (3.5)

where the local geometrical components

H
(i)
(1)1

def
= −

1

2
κ111(t)y

i
1

and

G
(i)
(1)1

def
=
h11g

ik

4

[
∂2F̊ 2

∂xj∂yk1
yj1 −

∂F̊ 2

∂xk
+
∂2F̊ 2

∂t∂yk1
+

+
∂F̊ 2

∂yk1
κ111(t) + 2h

11κ111gkly
l
1

]

:= 0

represent a semispray on the 1-jet space J1(R,M3). This semispray produces the canonical
nonlinear connection (for more details, see the papers [10], [12])

Γ =

(

M
(i)
(1)1 = 2H

(i)
(1)1 = −κ

1
11y
i
1, N

(i)
(1)j =

∂G
(i)
(1)1

∂yj1
= 0

)

.
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Generally speaking, a nonlinear connection Γ =
(
M
(i)
(1)1, N

(i)
(1)j

)
on the 1-jet space J1(R,M3)

is used for construction of distinguished vector fields (which have a classical tensorial behaviour)

δ

δt
=
∂

∂t
−M (j)(1)1

∂

∂yj1
,

δ

δxi
=
∂

∂xi
−N (j)(1)i

∂

∂yj1
. (3.6)

It is important to note that, in our present Finsler-like geometrization, there are a lot of ge-
ometrical local components (such as the components of Cartan linear connection, d-torsions,
d-curvatures etc.) whose geometrical construction involves the M -horizontal covariant deriva-
tives δ/δxi. In the case when the nonlinear connection Γ has the components N (i)(1)j equal to
zero (see (3.4), for instance), it follows that theM -horizontal covariant derivatives δ/δxi reduce
to the classical partial derivatives ∂/∂xi. Consequently, the above discussed geometrical local
components (e.g., which are dependent only by t and y) vanish in this case. For these reasons,
we will use on the 1-jet space J1(R,M3), by an "a priori" definition, the following non-trivial
local nonlinear connection:

Γ̊ =

(

M
(i)
(1)1 = −κ

1
11y
i
1, N

(i)
(1)j = −

κ111
2
δij

)

. (3.7)

Beside the non-triviality of the components N (i)(1)j, we have choosen the nonlinear connection
(3.7) such that its attached harmonic curves be straight lines (this is because the Euler-
Lagrange equations (3.5) also have as solutions only pieces of straight lines). In order to
be more clear, we recall that the equations of the harmonic curves of the nonlinear connection
(3.7) are given by [10]

d2xj

dt2
+M

(j)
(1)1

(

t, xk(t),
dxk

dt

)

+N
(j)
(1)m

(

t, xk(t),
dxk

dt

)
dxm

dt
= 0. (3.8)

It follows that the equations (3.8) are equivalent to

d2xj

dt2
=
3

4

1

h11

dh11

dt

dxj

dt
. (3.9)

Obviously, the equations (3.9) have the general solution

xj(t) = aj
∫ t

t0

(h11)
3/4 (σ)dσ + bj,

where aj, bj ∈ R. In other words, the equations (3.9) have as solutions only pieces of the
straight lines

x1 − b1

a1
=
x2 − b2

a2
=
x3 − b3

a3
.

Remark 3.2. We point out that the above terminology of harmonic curves (autoparallel
curves in Miron’s terminology [8]) comes from the particular form of equations (3.8) for the
particular global nonlinear connection

Γ̂ =
(
M̂
(j)
(1)1 = −κ

1
11y
j
1, N̂

(j)
(1)i = γ

j
imy

m
1

)
, (3.10)

where κ111(t) and γ
i
jk(x) represent the Christoffel symbols of the Riemannian manifolds

(R, h11(t)) and (M3, ϕij(x)). It is obvious that, for the particular nonlinear connection (3.10),
the equations (3.8) become the equations of harmonic maps (curves)

d2xi

dt2
− κ111(t)

dxi

dt
+ γijk(x)

dxj

dt

dxk

dt
= 0⇔

h11
[
d2xi

dt2
− κ111(t)

dxi

dt
+ γijk(x)

dxj

dt

dxk

dt

]

= 0.

(3.11)
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Remark 3.3. Note that the components N (i)(1)j of the nonlinear connection (3.7), which are
given in the local chart U by the functions

N̊ =

(

N
(i)
(1)j = −

κ111
2
δij

)

,

have not a global character on the 1-jet space J1(R,M3), but have only a local character. In
conclusion, taking into account the general transformation rules (see [10])

Ñ
(k)
(1)l = N

(j)
(1)i

dt

dt̃

∂xi

∂x̃l
∂x̃k

∂xj
−
∂xi

∂x̃l
∂ỹk1
∂xi
, (3.12)

it follows that N̊ has in the local chart Ũ the following components:

Ñ
(k)
(1)l = −

κ̃111
2
δkl +

1

2

dt̃

dt

d2t

dt̃2
δkl +

∂x̃k

∂xm
∂2xm

∂x̃l∂x̃r
ỹr1.

4 The Cartan Γ̊-linear connection. d-Torsions and d-curvatures
We use the nonlinear connection (3.7) for construction of dual adapted bases of d-vector fields

{
δ

δt
=
∂

∂t
+ κ111y

p
1

∂

∂yp1
,
δ

δxi
=
∂

∂xi
+
κ111
2

∂

∂yi1
,
∂

∂yi1

}

⊂ X (E) (4.1)

and d-covector fields
{

dt, dxi, δyi1 = dy
i
1 − κ

1
11y
i
1dt−

κ111
2
dxi
}

⊂ X ∗(E), (4.2)

where E = J1(R,M3). Note that, under a change of coordinates (2.1), the elements of adapted
bases (4.1) and (4.2) must transform as classical tensors. Consequently, all subsequent geomet-
rical objects on the 1-jet space J1(R,M 3) (such as the Cartan canonical Γ̊-linear connection,
torsion, curvature etc.) will be described in local adapted components.
Using a general result from [12], by direct computations, we can give the following important

geometrical result:

Proposition 4.1. The Cartan canonical Γ̊-linear connection, produced by the t-deformed
Berwald-Moór metric (3.1), has the following adapted components:

CΓ̊ =

(

κ111, G
k
j1 = 0, L

i
jk =

κ111
2
C
i(1)
j(k), C

i(1)
j(k)

)

,

where, if we use the notation

Aijk =
3δij + 3δ

i
k + 3δjk − 9δ

i
jδjk − 2

9
(no sum by i, j or k)

we have

C
i(1)
j(k) = A

i
jk ∙

yi1

yj1y
k
1

(no sum by i, j or k).

Proof. Via the t-deformed Berwald-Moór derivative operators (4.1), we use the general formulas
which give the adapted components of the Cartan canonical connection, namely [12]

Gkj1 =
gkm

2

δgmj

δt
, Lijk =

gim

2

(
δgjm

δxk
+
δgkm

δxj
−
δgjk

δxm

)

,

C
i(1)
j(k) =

gim

2

(
∂gjm

∂yk1
+
∂gkm

∂yj1
−
∂gjk

∂ym1

)

=
gim

2

∂gjk

∂ym1
.
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Remark 4.2. The Cartan canonical connection CΓ̊ has the metrical properties:

h11/1 = h
11
/1 = 0, h11|k = h

11
|k = 0, h11|

(1)
(k) = h

11|(1)(k) = 0,

gij/1 = g
ij
/1 = 0, gij|k = g

ij
|k = 0, gij|

(1)
(k) = g

ij|(1)(k) = 0,

where ”/1”, ” |k” and ”|
(1)
(k)” are the R-horizontal, M-horizontal and vertical covariant

derivatives produced by the Cartan Γ̊-linear connection CΓ̊. For more details upon the local
expressions of the above covariant derivatives applied to the components of d-tensors, see pa-
per [12]. Consequently, in our jet Finsler-like geometrization, the Cartan canonical connection
plays a similar role to that of Levi-Civita connection in Riemannian spaces.

Remark 4.3. The below properties of the vertical d-tensor Ci(1)j(k) are true (summation by m):

C
i(1)
j(k) = C

i(1)
k(j), C

i(1)
j(m)y

m
1 = 0, C

m(1)
j(m) = 0. (4.3)

For similar properties, see also the papers [3], [7], [9] or [16].

Remark 4.4. The coefficients Alij have the following values:

Alij =






−
2

9
, i 6= j 6= l 6= i

1

9
, i = j 6= l or i = l 6= j or j = l 6= i

−
2

9
, i = j = l.

(4.4)

Proposition 4.5. The Cartan canonical connection CΓ̊ of the t-deformation of the Berwald-
Moór metric (given by (3.1)) has three effective adapted local torsion d-tensors:

P
(k) (1)
(1)i(j) = −

κ111
2
C
k(1)
i(j) , P

k(1)
i(j) = C

k(1)
i(j) ,

R
(k)
(1)1j =

1

2

[
dκ111
dt
− κ111κ

1
11

]

δkj .

Proof. A general h-normal Γ-linear connection on the 1-jet space J1(R,M3) is characterized
by eight effective d-tensors of torsion (for more details, see [12]). For our Cartan canonical
connection CΓ̊ these reduce to the following three (the other five cancel):

P
(k) (1)
(1)i(j) =

∂N
(k)
(1)i

∂yj1
− Lkji, R

(k)
(1)1j =

δM
(k)
(1)1

δxj
−
δN

(k)
(1)j

δt
, P

k(1)
i(j) = C

k(1)
i(j) .

Proposition 4.6. The Cartan canonical connection CΓ̊ of the t-deformation of the Berwald-
Moór metric (given by (3.1)) has three effective adapted local curvature d-tensors:

Rlijk =
κ111κ

1
11

4
S
l(1)(1)
i(j)(k), P

l (1)
ij(k) =

κ111
2
S
l(1)(1)
i(j)(k),

S
l(1)(1)
i(j)(k) =

∂C
l(1)
i(j)

∂yk1
−
∂C

l(1)
i(k)

∂yj1
+ C

m(1)
i(j) C

l(1)
m(k) − C

m(1)
i(k) C

l(1)
m(j).
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Proof. A general h-normal Γ-linear connection on the 1-jet space J1(R,M3) is characterized
by five effective d-tensors of curvature (for more details, see [12]). For our Cartan canonical
connection CΓ̊ these reduce to the following three (the other two cancel):

Rlijk =
δLlij
δxk
−
δLlik
δxj
+ LmijL

l
mk − L

m
ikL

l
mj ,

P
l (1)
ij(k) =

∂Llij

∂yk1
− C l(1)i(k)|j + C

l(1)
i(m)P

(m) (1)
(1)j(k) ,

S
l(1)(1)
i(j)(k) =

∂C
l(1)
i(j)

∂yk1
−
∂C

l(1)
i(k)

∂yj1
+ C

m(1)
i(j) C

l(1)
m(k) − C

m(1)
i(k) C

l(1)
m(j),

where

C
l(1)
i(k)|j =

δC
l(1)
i(k)

δxj
+ C

m(1)
i(k) L

l
mj − C

l(1)
m(k)L

m
ij − C

l(1)
i(m)L

m
kj .

Remark 4.7. The vertical curvature d-tensor Sl(1)(1)i(j)(k) has the properties:

S
l(1)(1)
i(j)(k) + S

l(1)(1)
i(k)(j) = 0,

S
l(1)(1)
i(j)(j) = 0 (no sum by j).

Proposition 4.8. The expressions of the vertical curvature d-tensor Sl(1)(1)i(j)(k) are given by:

1. Sl(1)(1)i(i)(k) = −
1

9

yl1

(yi1)
2
yk1
(i 6= k 6= l 6= i and no sum by i);

2. Sl(1)(1)i(j)(i) =
1

9

yl1

(yi1)
2
yj1
(i 6= j 6= l 6= i and no sum by i);

3. Si(1)(1)i(j)(k) = 0 (i 6= j 6= k 6= i and no sum by i);

4. Sl(1)(1)i(l)(k) =
1

9yi1y
k
1

(i 6= k 6= l 6= i and no sum by l);

5. Sl(1)(1)i(j)(l) = −
1

9yi1y
j
1

(i 6= j 6= l 6= i and no sum by l);

6. Sl(1)(1)i(i)(l) =
1

9 (yi1)
2 (i 6= l and no sum by i or l);

7. Sl(1)(1)i(l)(i) = −
1

9 (yi1)
2 (i 6= l and no sum by i or l);

8. Sl(1)(1)l(l)(k) = 0 (k 6= l and no sum by l);

9. Sl(1)(1)l(j)(l) = 0 (j 6= l and no sum by l).

Proof. For j 6= k, the expression of the vertical curvature tensor Sl(1)(1)i(j)(k) takes the form (no
sum by i, j, k or l, but with sum by m)

S
l(1)(1)
i(j)(k) =

[
Alijδ

l
k

yi1y
j
1

−
Alikδ

l
j

yi1y
k
1

]

+

[
Alikδijy

l
1

(yi1)
2
yk1
−
Alijδiky

l
1

(yi1)
2
yj1

]

+

+
[
AmijA

l
mk − A

m
ikA

l
mj

] yl1

yi1y
j
1y
k
1

,
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where the coefficients Alij are given by relations (4.4).

5 t-Deformed field-like geometrical models constructed on 1-jet three-
dimensional time

5.1 Gravitational-like geometrical model

From a geometrical point of view, on the 1-jet three-dimensional time, the t-deformed Berwald-
Moór metric (3.1) produces the adapted metrical d-tensor

G = h11dt⊗ dt+ gijdx
i ⊗ dxj + h11gijδy

i
1 ⊗ δy

j
1, (5.1)

where gij is given by (3.2) and δyi1 is given by (4.2). This may be regarded as a “non-isotropic
gravitational potential” (see Miron and Anastasiei [8]). In such a "physical" terminology, the
nonlinear connection Γ̊ (used in the construction of distinguished 1-forms δyi1) prescribes, prob-
ably, a kind of “interaction” between (t)-, (x)- and (y)-fields (cf. Ikeda, Miron and Anastasiei).
We postulate that the non-isotropic gravitational potential G is governed by the Einstein

geometrical equations

Ric
(
CΓ̊
)
−
Sc
(
CΓ̊
)

2
G =KT , (5.2)

where Ric
(
CΓ̊
)
is the Ricci d-tensor associated to the Cartan canonical connection CΓ̊ (in

Riemannian sense and described in adapted bases), Sc
(
CΓ̊
)
is the scalar curvature, K is the

Einstein constant and T is the intrinsic stress-energy d-tensor of matter.
Thus, working with adapted basis of vector fields (4.1), we find the local Einstein geometrical

equations for the t-deformed Berwald-Moór metric (3.1). Firstly, by direct computations, we
find:

Lemma 5.1. The Ricci d-tensor of the Cartan canonical connection CΓ̊ of the t-deformation
of the Berwald-Moór metric (given by (3.1)) has the following effective adapted local Ricci
d-tensors:

Rij = R
m
ijm =

κ111κ
1
11

4
S
(1)(1)
(i)(j) , P

(1)
i(j) = P

(1)
(i)j = P

m (1)
ij(m) =

κ111
2
S
(1)(1)
(i)(j) ,

S
(1)(1)
(i)(j) = S

m(1)(1)
i(j)(m) =

3δij − 1
9

∙
1

yi1y
j
1

(no sum by i or j).
(5.3)

Remark 5.2. The vertical Ricci d-tensor S(1)(1)(i)(j) has the following expression:

S
(1)(1)
(i)(j) =






−
1

9

1

yi1y
j
1

, i 6= j

2

9

1

(yi1)
2 , i = j.

Remark 5.3. Using the last equality of (5.3) and the relation (3.3), we deduce that the following
equality is true (sum by r):

Sm11i

def
= gmrS

(1)(1)
(r)(i) = G

−2/3
111 ∙

1− 3δmi
3

∙
ym1
yi1
(no sum by i or m). (5.4)

Moreover, by a direct calculation, we obtain the equalities
3∑

m,r=1

Sm11r C
r(1)
i(m) = 0,

3∑

m=1

∂Sm11i

∂ym1
=
2

3
∙
1

yi1
∙G−2/3111 . (5.5)
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Lemma 5.4. The scalar curvature of the Cartan canonical connection CΓ̊ of the t-deformed
Berwald-Moór metric (3.1) is given by

Sc
(
CΓ̊
)
= −
4h11 + κ111κ

1
11

2
∙G−2/3111 .

Proof. The general formula for the scalar curvature of a Cartan connection is (for more details,
see [12])

Sc
(
CΓ̊
)
= gpqRpq + h11g

pqS
(1)(1)
(p)(q) .

Describing the global Einstein geometrical equations (5.2) in adapted basis of vector fields
(4.1), we find the following important geometrical result (for more details, see [12]):

Proposition 5.5. The adapted local Einstein geometrical equations, that govern the non-
isotropic gravitational potential (5.1), are given by:






ξ11 ∙G
−2/3
111 ∙ h11 = T11

κ111κ
1
11

4K
S
(1)(1)
(i)(j) + ξ11 ∙G

−2/3
111 ∙ gij = Tij

1

K
S
(1)(1)
(i)(j) + ξ11 ∙G

−2/3
111 ∙ h

11 ∙ gij = T
(1)(1)
(i)(j)

(5.6)






0 = T1i, 0 = Ti1, 0 = T (1)(i)1,

0 = T (1)1(i) ,
κ111
2K
S
(1)(1)
(i)(j) = T

(1)
i(j) ,

κ111
2K
S
(1)(1)
(i)(j) = T

(1)
(i)j ,

(5.7)

where

ξ11 =
4h11 + κ111κ

1
11

4K
. (5.8)

Remark 5.6. The Einstein geometrical equations (5.6) and (5.7) impose the stress-energy
d-tensor of matter T to be symmetric. In other words, the stress-energy d-tensor of matter T
must verify the local symmetry conditions

TAB = TBA, ∀ A,B ∈
{
1, i,

(1)
(i)

}
.

By direct computations, the adapted local Einstein geometrical equations (5.6) and (5.7)
imply the following identities of the distinguished stress-energy tensor (summation by r):

T 11
def
= h11T11 = ξ11 ∙G

−2/3
111 , T

m
1

def
= gmrTr1 = 0,

T (m)(1)1

def
= h11g

mrT (1)(r)1 = 0, T
1
i

def
= h11T1i = 0,

T mi
def
= gmrTri =

κ111κ
1
11

4K
Sm11i + ξ11 ∙G

−2/3
111 ∙ δ

m
i ,

T (m)(1)i

def
= h11g

mrT (1)(r)i =
h11κ111
2K

Sm11i , T 1(1)(i)
def
= h11T (1)1(i) = 0,

T m(1)(i)

def
= gmrT (1)r(i) =

κ111
2K
Sm11i ,
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T (m)(1)(1)(i)

def
= h11g

mrT (1)(1)(r)(i) =
h11

K
Sm11i + ξ11 ∙ G

−2/3
111 ∙ δ

m
i , where the distinguished tensor S

m11
i

is given by (5.4) and ξ11 is given by (5.8).

Proposition 5.7. The stress-energy d-tensor of matter T must verify the following conser-
vation geometrical laws (summation by m):






T 11/1 + T
m
1|m + T

(m)
(1)1 |

(1)
(m) =

(h11)
2

16K
dh11

dt

[

2
d2h11

dt2
−
3

h11

(
dh11

dt

)2]

∙G−2/3111

T 1i/1 + T
m
i|m + T

(m)
(1)i |

(1)
(m) = 0

T 1(1)(i)/1 + T
m(1)
(i)|m + T

(m)(1)
(1)(i) |

(1)
(m) = 0,

where (summation by m and r)

T 11/1
def
=
δT 11
δt
+ T 11 κ

1
11 − T

1
1 κ

1
11 =

δT 11
δt
,

T m1|m
def
=
δT m1
δxm

+ T r1 L
m
rm =

δT m1
δxm
,

T (m)(1)1 |
(1)
(m)

def
=
∂T (m)(1)1

∂ym1
+ T (r)(1)1C

m(1)
r(m) =

∂T (m)(1)1

∂ym1
,

T 1i/1
def
=
δT 1i
δt
+ T 1i κ

1
11 − T

1
r G

r
i1 =

δT 1i
δt
+ T 1i κ

1
11,

T mi|m
def
=
δT mi
δxm

+ T ri L
m
rm − T

m
r L

r
im =

κ111
2

∂T mi
∂ym1
,

T (m)(1)i |
(1)
(m)

def
=
∂T (m)(1)i

∂ym1
+ T (r)(1)iC

m(1)
r(m) − T

(m)
(1)r C

r(1)
i(m) =

∂T (m)(1)i

∂ym1
,

T 1(1)(i)/1
def
=
δT 1(1)(i)
δt

+ 2T 1(1)(i) κ
1
11,

T m(1)(i)|m
def
=
δT m(1)(i)
δxm

+ T r(1)(i) L
m
rm − T

m(1)
(r) L

r
im =

κ111
2

∂T m(1)(i)
∂ym1

,

T (m)(1)(1)(i) |
(1)
(m)

def
=
∂T (m)(1)(1)(i)

∂ym1
+ T (r)(1)(1)(i) C

m(1)
r(m) − T

(m)(1)
(1)(r) C

r(1)
i(m) =

∂T (m)(1)(1)(i)

∂ym1
.

Proof. The above conservation geometrical laws are provided by direct computations, using
the relations (4.3) and (5.5).
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5.2 Electromagnetic-like geometrical model

In the paper [12], using only a given Lagrangian function L(t, x, y) on the 1-jet space
J1(R,Mn), an electromagnetic-like geometrical model was also created. In the background
of our electromagnetic-like geometrical formalism from [12], we work with an electromagnetic
distinguished 2-form (the Latin letters run from 1 to n)

F = F (1)(i)jδy
i
1 ∧ dx

j,

where

F
(1)
(i)j =

h11

2

[
gjmN

(m)
(1)i − gimN

(m)
(1)j +

(
girL

r
jm − gjrL

r
im

)
ym1

]
.

The electromagnetic components F (1)(i)j are characterized by the following Maxwell geometrical
equations [12]:

F
(1)
(i)j/1 =

1

2
A{i,j}

{
D
(1)

(i)1|j −D
(1)
(i)mG

m
j1 + d

(1)(1)
(i)(m)R

(m)
(1)1j−

−
[
C
p(1)
j(m)R

(m)
(1)1i −G

p
i1|j

]
h11gpqy

q
1

}
,

∑

{i,j,k}

F
(1)
(i)j|k = −

1

4

∑

{i,j,k}

∂3L

∂yi1∂y
p
1∂y

m
1

[
δN

(m)
(1)j

δxk
−
δN

(m)
(1)k

δxj

]

yp1,

∑

{i,j,k}

F
(1)
(i)j|

(1)
(k) = 0,

where A{i,j} means an alternate sum,
∑
{i,j,k} means a cyclic sum and we have

D
(1)

(i)1 =
h11

2

δgim

δt
ym1 , D

(1)
(i)j = h

11gip

[
−N (p)(1)j + L

p
jmy

m
1

]
,

d
(1)(1)
(i)(j) = h

11
[
gij + gipC

p(1)
m(j)y

m
1

]
,

D
(1)

(i)1|j =
δD
(1)

(i)1

δxj
−D

(1)

(m)1L
m
ij , G

k
i1|j =

δGki1
δxj
+Gmi1L

k
mj −G

k
m1L

m
ij ,

F
(1)
(i)j/1 =

δF
(1)
(i)j

δt
+ F

(1)
(i)jκ

1
11 − F

(1)
(m)jG

m
i1 − F

(1)
(i)mG

m
j1,

F
(1)
(i)j|k =

δF
(1)
(i)j

δxk
− F (1)(m)jL

m
ik − F

(1)
(i)mL

m
jk,

F
(1)
(i)j|

(1)
(k) =

∂F
(1)
(i)j

∂yk1
− F (1)(m)jC

m(1)
i(k) − F

(1)
(i)mC

m(1)
j(k) .

Example 5.8. The Lagrangian function that governs the movement law of a particle of mass
m 6= 0 and electric charge e, which is displaced concomitantly into an environment endowed
both with a gravitational field and an electromagnetic one, is given by

L(t, xk, yk1) = mch
11(t) ϕij(x

k) yi1y
j
1 +
2e

m
A
(1)
(i) (t, x

k) yi1 + F(t, x
k), (5.9)

where the semi-Riemannian metric ϕij(x) represents the gravitational potential of the space
of events M , A(1)(i) (t, x) are the components of a d-tensor on the 1-jet space J

1(R,M) repre-
senting the electromagnetic potential and F(t, x) is a smooth potential function on the
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product manifold R ×M . It is important to note that the jet Lagrangian function (5.9) is a
natural extension of the Lagrangian (defined on the tangent bundle) used in electrodynamics
by Miron and Anastasiei [8]. In our jet Lagrangian formalism applied to (5.9), the electro-
magnetic components are given by (see [12])

F
(1)
(i)j = −

e

2m

(
∂A
(1)
(i)

∂xj
−
∂A
(1)
(j)

∂xi

)

,

and the second set of Maxwell geometrical equations reduce to the classical ones [12]:
∑

{i,j,k}

F
(1)
(i)j|k = 0,

where

F
(1)
(i)j|k =

∂F
(1)
(i)j

∂xk
− F (1)(m)jγ

m
ik − F

(1)
(i)mγ

m
jk.

This fact suggests, in our opinion, some kind of naturalness attached to our electromagnetic-like
geometrical theory.

On our particular 1-jet space J1(R,M3), the t-deformed Berwald-Moór metric (3.1) and the
nonlinear connection (3.7) produce the electromagnetic 2-form

F := F̊ = 0.

In conclusion, our t-deformed Berwald-Moór electromagnetic-like geometrical model on the
1-jet three-dimensional time is trivial. In other words, in our jet geometrical approach, the
t-deformed Berwald-Moór electromagnetism (produced by (3.1) and (3.7)) leads us to null
electromagnetic geometrical components and to tautological Maxwell-like equations. In our
opinion, this fact suggests that the t-deformed Berwald-Moór geometrical structure of the
1-jet three-dimensional time contains rather gravitational connotations than electromagnetic
ones. In such a perspective, it seems that we need to consider a similar geometrical study for
x-dependent conformal deformations of the Berwald-Moór structure, agreeing thus with the
recent geometric-physical ideas proposed by Garas’ko in [4].

Acknowledgements.
The authors of this paper express their gratefulness to the referee of Hypercomplex Numbers
in Geometry and Physics for his valuable comments and many useful suggestions.

References
[1] Asanov G.S. Finslerian Extension of General Relativity. Reidel, Dordrecht, 1984.

[2] Asanov G.S. Jet extension of Finslerian gauge approach // Fortschritte der Physik, 38, №8,
1990, pp. 571–610.

[3] Atanasiu Gh., Neagu M. On Cartan spaces with the m-th root metric K(x, p) =
m
√
ai1i2...im(x)pi1pi2 ...pim // Hypercomplex Numbers in Geometry and Physics, №2 (12),

Vol. 6, 2009, pp. 67–73.

[4] Garas’ko G.I. Foundations of Finsler Geometry for Physicists. Tetru Eds, Moscow, 2009
(in Russian).

[5] Garas’ko G.I., Pavlov D.G. The notions of distance and velocity modulus in the linear
Finsler spaces, "Space-Time Structure. Algebra and Geometry" (D. G. Pavlov, Gh. Atana-
siu, V. Balan Eds.), pp. 104-117; Russian Hypercomplex Society, Lilia Print, Moscow, 2007.



60 Hypercomplex Numbers in Geometry and Physics, 2 (14), Vol 7, 2010

[6] Matsumoto M. On Finsler spaces with curvature tensors of some special forms // Tensor
N. S., 22, 1971, pp. 201–204.

[7] Matsumoto M., Shimada H. On Finsler spaces with 1-form metric. II. Berwald-Moór’s
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ЛОКАЛЬНАЯ РИМАНОВО-ФИНСЛЕРОВА ГЕОМЕТРИЯ
СТРУЙ ДЛЯ ТРЕХМЕРНОГО ВРЕМЕНИ

Г. Атанасиу, М. Неагу

Университет "Трансильвания", Брасов, Румыния
gh_atanasiu@yahoo.com, mircea.neagu@unitbv.ro

Целью настоящей работы является развитие 1-стуйного пространства финслеро-
подобной геометрии (в смысле отмеченной (d-) связности, d-кручения и d-кривизны)
для реономной метрики Бервальда-Моора третьего порядка (т.е. времени-зависимых
конформных деформаций обычных струй Бервальда-Моора или метрики третьего
порядка). Также приведены некоторые естественные геометрические теории поля
(гравитация и элетромагнетизм) следующие из этой реономной метрики Бервальда-
Моора.
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ческая нелинейная связность, каноническая связность Картана, d-кручение и d-кри-
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