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CONFERENCE
"NUMBER, TIME, RELATIVITY" — 2004

B. O. I'maapimies, /. I'. ITaBoB

hypercomplex@mail.ru

On the 10—13th august of 2004 the International scientific conference "Number,
time, relativity"took place in MSTU n.a. N. E. Bauman.

The purposes of the conference were: to attract the attention of foreign and Russian
physicists to Finslerian generalizations of the relativistic theory, to gather the leading
specialists in the field of hyper-complex numbers, Finslerian geometry (that generalize
the Riemannian manifolds), and the specialists in the field of the relativistic theory.

The conference was devoted to 175th anniversary of MSTU n.a. N. E. Bauman. The
conference was performed by: the Bauman University’s cathedra of physics, the theoretical
physics cathedra of Moscow State University of M.V. Lomonosov and the United Physics
Society of Russian Federation. The main sponsor of the conference was the Fund of 175th
anniversary of MSTU n.a. N. E. Bauman.

Ha Top:kectBennom orkpbiTuu KoHdepeHInn ¢ MPUBETCTBUAMEI K YIaCTHUKAM BbI-
CTYIHUIN IPOPEKTOP 1o MekyHapoaabiM cBsa3sgM MSTU n.a. N. E. Bauman TI'.II. Ilas-
JIXuH, 3aBeaytonmii Kadeapoit dusukn A. H. Mopozos, nayunbrit corpymauk Jlabopa-
topun uM. OusmmBepa Jlomka dusnyueckoro dakyibrera JIMBEpIyILCKONO YHUBEPCUTETA
1. Poymanggc.

OcnoBuble Hampasienus: nporpammbl Kondepenrmn:

1. @uncieposa reomerpus.

2. I'umepKOMILJIEKCHBIE YHCJIa U CBA3AHHBIE C HUMU ITPOCTPAHCTBA.

3. Honmmaucia u MOJUIIPOCTPAHCTBA.

4. leomerpudecKre acueKThl OHITHST BPEMEHN.

5. OPuHC/IEpOBBI 0600IIEHNA TEOPUN OTHOCUTEIHHOCTH.

QDuncsiepoBa reoMeTpusi, Ha MPUHIUIHAIBHYIO BO3MOXKHOCTB MOCTPOEHUST KOTOPOit
obpaTuy BHUMaHUe erie PumMaH, U THIEPKOMILJIEKCHBIE YHC/a, Ubd UCTOPHUSA OEpeT CBOE
Havas1o B Tpyaax [ammibTona, BIUIOTH 70 KOHIA XX BeKa CYIIECTBOBAIN KaK ObI B He
nepecekaroruxcs 1maockoctsax. Opranuzaropsl Kondepennun craBusu mepei codoil 1eib
HAWTU MyTU CUHTE3a dTUX 00J/IacTeil 3HAHUS, YTO, BO3MOXKHO, IIPUBEJET K CO3/IAHUI0 HO-
BOI'O TEOPETHYECKOrO armapara, yJ00HOro Jiid 00Jjiee IMOJHOTrO OMMCaHUsl MHOTO0Opa3us
dusnveckux spiaennii. B cBasu ¢ atum psi qokaaaoB Ha KondepeHiun ObLI TOCBAIIEH
cobcrBenHO PUHCIEPOBOIT TeOMETPHUH, HEKOTOPBIE JTOKJIA bl OBLIN TOCBATIEHBI TUIEPKOM-
IJIEKCHBIM YUCJIaM, HO OCOOBIIl MHTEepeC BLI3BAJIU JOKJIA/IbI, HAIlEJEHHbIE HA O0be/InHEeHNe
MOHATHUIN YHUCJIa U TEOMETPHH.

Ha Kondepennun 6bumm mpecrapiersl cBbime H0 TOKIAI0B ¢ pe3yjibTaTaMi HC-
cnenoBanuii, npoogumbix B MSU n.a. M. V. Lomonosov, Uucruryre obmeit dhusukn
PAH, Nucruryre Mmexanuku crtonabix cpejl PAH, AkycrudeckoMm MHCTUTYTE UM. akKal.
H.H. Angpeesa PAH, Nncruryre Mmexannkn n mamunocrpoenust KasHIT PAH, O6benn-
HEHHOM WHCTUTYTE SJIEPHBIX UCCJIEJOBAHUN U B JPYTUX YHUBEPCUTETAX U AKAIEMIIECKUX
uncturyTax Poccun, cTpaH OJIMKHETO U JIAILHErO 3apyOerKbs.

Cpesn yaacTHUKOB — (pu3MKK U MareMaTuku u3 Poccun, Azepbaiiizkana, Akupa,
Banrnanem, Bpazuiun, Benmkoobpuranuu, ['perun, Nnann, Kazaxcrana, Kanamgwr, [Top-
ryraymn, CIIA, Ykpannsr, [1IBenun.
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OcnoBubimu si3bikavu Koudepenrun sBisuck pycckuit u anruiickuit. Pabora Kon-
bepennuu ocsemanach Ha Web-caiite http: //www.hypercomplex.ru. Dror caiit, co3aan-
wolii o wauImaTuse JI. I'. ITaBiioBa, cojepkut 00JIbIIOE KOJIMIECTBO UH(MOPMAIIUKA O Ha-
YUIHBIX paboTax, MOCBAIIEHHBIX CBI3U (DUHCICPOBOI T€OMETPUN U THIIEPKOMILJICKCHBIX aJl-
re6p, 0 HaydHBIX CEMUHAPAX U KOHKYPCaX 0 ITOH TeMaTuke (B TOM YUC/IE CTYIeHIECKUX ).

[Tepen magasiom paborsl Koudepenrun Obu1 u3gan cOOpHUKA TE3UCOB JIOKIAIOB
Ha DPYCCKOM M aHIyuiickoM si3bikax o penakmueii 1. I. Tlasiosa (mpemcemaress opr-
komurera, MSTU n.a. N.E. Bauman) u I C. Acanosa (compencemarens, MSU n.a.
M. V. Lomonosov). TlosiHble TekcTbl HanGoee HHTEPECHBIX JOKJIAI0B OyyT Omy6ImKo-
BaHbI B HACTOsIINEM KypHaJse "I'miepKoMIlieKCHbIE Yucia B reoMerpuu u dusuke” Ha
PYCCKOM U aHTJIUIICKOM S3bIKAX.

Pabora Kondepennnu npoxoamia B 3aje 3acemannii Ydernoro copera MSTU n. a.
N. E. Bauman. /Ina ygacraukos Kondepenun ObLIn OpraHn30BaHbl 9KCKYPCHS B My3eii
MI'TYV, skckypcun 1o 1ieatpy Mocksbl u B Ceprues [loca.

Kondepenrusi, mnocpsimneHHas obuaeio baymaHcKoro YHHUBEpPCUTETa, IO3BOJIIIA
yuacTHnKaM KoHdepeHIin Mo3HaKOMUTHCSI C UCTOPHUEH Pa3BUTUs HAYKU 1 TEXHUKU B CTa-
peiitiem PoccuiickoM TeXHUMECKOM YHUBEPCUTETE, B KOTOPOM pab0OTa/ Il TAKUE BBIIAIOIIIN-
ecs yuaenble Kak [I. 1. Mennenees, H. E. 2Kykosckunit, I1. JI. Hebnrmes, C. A. Yamibirum,
A. C. Epmos, /1. K. Coerkun, ®. M. JImurpues, A. B. Jleraukos, A. II. 'aBpuienko u
MHOI'HE JIpYTHe, a TaK¥Ke y3HaTh O TECHON MCTOPUIECKON U HAYIHON CBSI3U JIBYX IVIABHBIX
Yuusepcureros crpanbl (MSU n.a. M. V. Lomonosov u MSTU n.a. N. E. Bauman).

X ok ok

OcaoBHoI 3a1a4eii OprromureTa OBLIO cOOpPATh (PU3UKOB, MATEMATHKOB 1 (PIIOCO-
doB, mbITaOMUXCA B3IVIAHYTH Ha Hanbosee riryOoKre MpobieMbl eCTECTBO3ZHAHUS C CAMbBIX
O0IUX TO3UIINN, CPE/IN KOTOPBIX OJIHO W3 TEPBBIX MECT 3aHUMAET WJiesd CBA3U ajredpan-
YECKUX CTPYKTYP, TeOMETPUH U (DU3HUKU.

The recently ended century is marked out by two fundamental scientific revolutions.
One of them was made by the Einstein Special and General theory of relativity: changing
the concepts of the space-time they made possible the theory of gravitation.

Another revolution in physics happened to be less popular, but more radical for the

physical world view: Bohr, Heisenberg, and Dirac have created the quantum mechanics. As
a result of that, the fundament of the modern physics consists of two non-related bases, in
a sense, two whales, floating in the absolutely unknown sea. The theory of relativity have
satisfactorily described the picture of the world. The quantum theory have completely
and consistently described the material word for it’s circle of phenomena. In spite of the
fact that the there can be no two truths, in a modern nature science there are. Therefore
a lot of outstanding scientists seek after more general theoretical conception, since the
middle of the XX-th century.
To create the theory of relativity, Einstein had to exceed the traditional limits of the
classic Euclidean geometry, replacing it with the Riemannian geometry. We may suppose,
that the future physics development requires a new geometry. The same could be the
Finsler geometry, which is more general than the Minkowski one.

As is known, the point of a straight line and a plane are the geometrical images
of the real an the complex numbers. The points of the n-dimensional Finsler spaces in
many cases may be expressed as the hyper-complex numbers, the algebras with their own
specific properties.

B nociemaue 20 jeT aucao HaydHBIX TyOJIMKaIuii B 00J1aCTU MCCJICIOBAHUN THIIED-
KOMIIJIEKCHBIX 9HCEe/T PACTET 9KCIIOHEHITNAIBHO. Mexk tyHapoaaas HayaHast Koundepenrus
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"Yucsio, BpeMsl U OTHOCUTEILHOCTR' OblLia mpu3BaHa 0OCYIUTh HAMOO/Iee BayKHbIC U UH-
TepecHbIe Pe3y/IbTaThl MOCASTHUX JIET B 9TOH 00/1acTH.

Cpenu npejicraBienubix Ha Kordepenun 1oK/1a10B HANOOIBINIT HHTEPEC BBI3BAIN
nokstaael . I'. ITasiosa "Hucsto, reomeTpust IpoCTpaHCTBa BPEMEHN U OTHOCHTE/IHHOCTE"
I.C. AcanoBa "l'eomerpusi, ocHoBannas Ha duncaepouge", I 1. I'apacbko "Hopmaib-
Hoe compsizkerne Ha MHOXKecTBe moJmancen", I1. Poynansca (Bemukobpuranus) "Huib-
noreHTHbIN BakyyMm'", A. @. Typbuna "Aaredpsl rurtepKOMILIEKCHBIX 9HUCET: OT aJredpbl K
reomerpun u anamusy", @. Tonmana (Bpasuius) "Anre6pet ¢ Jesennem, 0000IIEHHbIE CY-
nepcuMMeTpun 1 OKToHHOHHAA M-teopus", 9. 1. Mbryeskuna "Hemsbe:KHOCTH aHTHCKA-
nspuoit rpaputanun, X. B. Anbmeiina (ITopryramus) "AsnbrepraruBrast hopMyInpoBKa
O61mieit Teopur OTHOCUTEILHOCTH B TEPMUHAX YETBIPEXMEPHON ONTUKM, HOBOE OIIpe/Iesie-
nne Bpemenn", P. B. MuxaitioBa "Ocobast posib 4eThIpeXMEePHBIX IIPOCTPAHCTB B TOIIOJIO-
run", FO. A. Peutosa "[Ipunnun nedpopmarumn Kak ocHOBa pu3ndeckoit reomerpun' u psiT
JIpYTUX.

[Tomumo HOBOTO B3IVISA/Ia HA OCHOBaHUS (DU3UKH, UCCIIEIOBAHIS TUIEPKOMIIIEKCHBIX
YUCesT MOTYT MPUBOJIUTD K BayKHBIM MIPUKJIATHBIM pe3ysbraraM. Tak, reodusuk uz Tiome-
uu B. KyTpyHoB 00HAPYKII, ITO € IIOMOIIBIO KBATEPHIOHOB MHOT'HE TeO(DpU3NIECKUE 3a-
Jladu, B TOM YUCJIe CTOJIb aKTyaJbHbIE, KaK ITOMCK HOBBIX He()TEra3oBbIX MECTOPOXKICHUI
Cubupu, pemaiorcs 3dpdeKTUBHE, YeM BEKTOPHBIMI MeTOoAaMu. IlepcrekTuBbl nccieno-
BaHUs IUIIEPKOMILIEKCHBIX dnces n OUHCIepoBOil reOMeTpun, KakK CaeayeT U3 JI0KJIa/I0B,
npo3By4dasiux Ha Kondepenun, npocMaTpuBaioTCs B TAKUX PA3HBIX 00JIACTSIX, KAK Pac-
YeT DJIEKTPUUECKUX TIeTeld, MIPeJICTABICHUE O PUPO/Ie IPABUTAIINN, U3yUeHHe (DEeHOMEeHa
BPEMEHH.

DTO CBUIETE/IBCTBYET, 9TO JAHHOE HAIIPABIEHUE B HAYKe MPOJIOJIKAT CBOE PA3BUTHE
1 3aBOIOCT NIPU3HAHUE HAYIHOTrO coobmiecTBa. OIHAKO B HACTOSAIIEE BPEMs OHO PA3BUBACT-
cd JIMIIb Os1arojiapsi SHTy3ua3My uccieosareseii. [losromy, kak oTMeTws mpejicesaresb
oprromutera Kondepenruu 1. I'. [TaBmoB, ocobeHHO BazKHO HOJIEPXKATDL MOJIOJIBIX yUe-
HBIX U CTYJ/IEHTOB, YUIPEIUTH CIEIUAJbHbIE CTUIICH/IUN, OPTaHN30BATh KOHKYPCHI PaboT,
obecrevnTb BO3MOXKHOCTE y4yacTus B KondepeHruax cTyaeHToB u acnupanTos. [lepsoie
IMarn B 9TOM HAIPABJIEHNN yXKe cjleJlaHbl. He ofuH roji mpoBOINTCH KOHKYPC HAyYHBIX
pabor mo mpobsemMaM, CBA3AHHBIM C (uHCIepOBOil reomerpueii, B 2004 romy BrepBble
npu nojyiepkke O0bemHeHHOr0 (hU3MIECKOro 00IIEeCTBa COCTOSIICH KOHKYPC pedepaToB
CTYJIEHTOB U IKOJIbHUKOB. 3a JIydninit pedepar 1Mo runepKOMILIEKCHBIM YUCIAM CTYICHT
n3 Caparoa A.B. Masbirua moryau BO3MOXKHOCTE TPUHATH yaactue B Koudepenun
U €2KEeMECIIHYIO CTHUIICHIUIO.

[Tonsonga nrorn Kondepennun, MoKHO cKa3aTh, 9YTO OHA MOJITBEPIUIA CYIIECTBOBA-
HUE TECHO CBA3U MEYKIy THMIIEPKOMILJIEKCHBIMU ajredOpaMu U HEKOTOPBIMU BbIJI€JIEHHBIMU
dunciiepoBbiMu npoctpancreamu. Opranuszaropam Koudepeniun ymaamoch moiepxarh
U, B MI3BECTHOM CMBICJI€, CTUMYJIHPOBAThH POCT MHTEPeca K 3Toit TemaTuke. [losTomy MOKHO
CYNTaTh, YTO OCHOBHaA 1e/ib Kondepeniun ObLa JOCTUTHYTA.
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NORMAL CONJUGATION
ON THE POLY-NUMBER MANYFOLD

G. 1. Garasko

Electrotechnical Institute of Russia
gri92@maal.ru

D. G. Pavlov

Moscow State Technical University n.a. N. A. Bauman
hypercomplex@mail.ru

The poly-number space is a linear space with several poly-linear forms. We introduce the
notion of the normal conjugation on the non-degenerated n-numbers manyfold. The normal
conjugation is an (n—1)-nary operation which is commutative for each argument but, in general, is
not associative. Such operation is equivalent to the usual conjugation for complex and hyperbolic
numbers. The normal conjugation may be applied to scrutinize the algebraic and geometric
structure of the n-numbers coordinate space. It is also useful to introduce the notions of the
scalar product and angular characteristics of two and more numbers(vectors).

Introduction

The poly-number spaces are the examples of vector spaces, where the poly-forms
of several arguments play the role of the fundamental metric forms. [1]. Such spaces are
principally different from the habitual Euclidian and pseudo-Euclidian spaces. Therefore
they demand the development of the notions of the angle, orthogonality, scalar product
etc. The necessity of the proper investigations is caused by the frequent attempts to
consider the Finslerian spaces (the poly-number spaces as a rule are the ones) as the
geometrical fundament of physics. [2, 3]. The physics progress strongly depends on the
adecuasy of it’s mathematical apparatus and geometrical ideas.

Surprisingly, the first known mention about such spaces belongs to Rieman. In 1854th
while entering the professor post of the Goettingen university he read a famous lecture, in
which he noticed that beside the usual quadratic metric forms the linear element may be
represented as a fourth degree root from the differential expression of the same degree [4].
Per se he described the particular case of the spaces which later were named the Finslerian
spaces.

Finslerian metric functions are very multifarious even for the linear spaces. Therefore
they require the individual approach for every single case. However, if the hypercomplex
numbers stand behind the Finslerian spaces it is possible to suggest the unified algorithm,
some elements of it are represented bellow.

The exclusive role of the poly-number spaces is beyond any doubt. Despite of it
they are very rarely mentioned in the modern geometrical literature. Obviously, it is
explained by the seaming simplicity of the poly-number algebraic structure. It does not
encourage neither the scrutiny of the poly-numbers them selves, nor the scrutiny of the
spaces related to them. However, even the thoroughly examined complex numbers recently
brought the surprise to the mathematicians. It turned out that the fractals may be built
on the ground of the complex numbers. This fact makes us think that we may expect
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something similar from others of the hypercomplex numbers. The simplicity of the fractal
construction algorithm underlines the potential variety hiding behind the most trivial
number structures.

Such notions as the scalar product, orthogonality, angle between two vectors are
the essential parts of the Euclidean space theory apparatus. These notions are naturally
generalized for the pseudo-Euclidean spaces. The approach given bellow allows the similar
generalization of the concerned notions for the poly-number spaces.

The poly-number spaces P, with n > 2 are not Euclidean or pseudo-FEuclidean. Thus,
if e1, eq, ..., €, € P, — the basis and

€i€; :pfjek, (1)

P,> X =za'e; + 2%y + ... + 2", (2)

than n-th degree of the number X norm may be expressed with the n-linear symmetric
form

(X7 Y, L) Z) = Wiliz.“in«rilyh...zin (3)

of one argument X. When n > 2 with two arguments X and Y we obtain (n —1) different
forms , therefore we can introduce the scalar product and the angle between two vectors
(numbers) in several ways.
Besides the metric form (3) we may take other invariant forms in the P,-space, the
bilinear for example.
(X,Y)) = qia'y’, (4)
where
@5 = Cplpis, (5)
C # 0 — some real number. For every concrete poly-number system this number may be
chosen according to the simplicity and symmetry of the obtained formulas. As it follows
from the definition, the given form is symmetric, i.e. ((X,Y)) = (Y, X)).
Thus, the P,-space is n-dimensional space with several poly-linear forms. Two of the
forms are dedicated: the metric form of the n-th order and the bilinear form.
The notion of the conjugated number is related (complex numbers, quaternions) with
the changing of the sign of imaginary (symbolic) units. This makes us introduce (n — 1)
conjugations in general and use the number itself and it’s (n—1) conjugations to construct
of them the poly-number (| X|* - 1+ Oe).

Normal conjugation

We shall call the n-numbers nondegenerated, if the matrix (g;;) (5) is nondegenerated,
ie.
det(g;) # 0. (6)
In this case, besides the two-times covariant tensor g;;, the two times contravariant tensor
q¥ is defined in the P,-space.
Let us define the (n — 1)-nary operation of the normal conjugation of a complex
{Xa), X(2); s X(n—1)} with the following way:

(X (1), X(2)s s Xino1)] = Wit i@ () ke (7)

It is obvious from this formula that the normal conjugation operation is commutative for
every argument, but, generally, is not associative. The constant C' in the formula (5) may
be chosen with the following condition: [1,1,...,1] = 1.
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We shall say that the number Z = [X(1y, X(2), ..., X(n—1)] is normally conjugated to
the complex of numbers { X1y, X(2), ..., X(n-1)}-

Let’s define the scalar product of the number X and the complex {Xq), X, ...,
Xn-1)} with the bilinear form

(X, 2)) = (X, X1y, X(2), s X(n—1))- (8)

Let us introduce the designation

X=[XX,..,X], (9)
than i
(X, X)) = | X]", (10)

If in the given poly-number system the n-th degree of the number X norm may be
expressed as

X" = (X, X, ..., X). (11)

According to the definition, the number X is normally conjuncted to the number X.
Now shall we illustrate the introduced notions with some examples.

Complex Numbers

Let’s take C' = %, than

(wind) = (1 0), (16)
0 —1

X =2! —ix?, (17)

i.e. the normal conjugation for complex numbers is the usual conjugation. The scalar
product of the numbers X and Y is

(X,Y)) =z'y" + 2%® = (X,Y). (18)

Thus ~
(X, X)) =|XP, (19)
X-X=|X*140-i. (20)

Hyperbolic numbers, H»

X =za'+j2*  j2=1, (21)
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(X’ Y) = xlyl - $2y2,

Let us take C' = %, than

(wirg™) = (1 O) ;
0 -1

X =zt — ja?,

(22)

(23)

(25)

(26)

i.e. the normal conjugation for hyperbolic numbers is the usual conjugation. The scalar

product of the numbers X and Y is

((Xv }7)) = ‘lel - x2y2 = (X’ Y)

Thus ~
(X, X)) = X]%,

X -X=|X*140-j

Hypercomplex Numbers Hg

The most easy way is to work in 1-basis:

X = 'y + 2%y + 233,

1, if i=j=k,

Pi; =

0, in all other cases,

(gij) = C - diag(1,1,1),

1
(X,Y,Z) = é(xlgfzs + 2ty + 2%yt 2B 2Pt 4 23yt 4 2By

Let us take C' = %, than

X.Y) = L@+ 2%+ (a9 + 2 o + (2 2%

[17 1] =1,

X = 22239, + 2tady + s,

(27)

(28)

(29)

(32)

(33)

(34)

(35)

(36)
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X -X=|XP-140-e¢, (37)
if the norm X € Hj is defined with

| X? = ota?a®, (38)
The scalar product of the complex {X, Y} and the number Z is the scalar
((Z,[X,Y])) = (X, Y, 2). (39)
The bilinear form (4) from two numbers X and Y looks like
(X,Y) = 5(9 + 2% + %), (10)
Lets fine all numbers of Hj, that satisfy the equation
X =X. (41)

Solving the system of three quadratic equations with three unknowns we have five
roots: (0,0,0), (1,1,1), (1,-1,-1), (=1,1,—1), (—=1,—1,1). The four latter numbers (if
we consider them radius-vectors) constitute the regular tetrahedron while the first number
is it’s center.

If X, Y € Hj are the divisors of zero for the normal conjugation (i. e. [X,Y] = 0, with
X #0, Y #0), they have to be the divisors of zero for the poly-number multiplication.

Any number Y € Hz may be represented as

V=12, e Z=(y+¢"+¢"y' —v*+v’ v +v*—v°). (42)
Let’s scrutinize the eigenvectors and eigenvalues problem that is
1,Y] = Y, (43)

where A\ — some real or complex number. All eigenvalues are real: \y = 1, o3 = —%,
because the matrix of the linear transformation in the right side of the formula (43) is
symmetric. Eigenvectors appropriate to the first eigenvalue constitute a straight line 1t,
where t — parameter along the straight line. The eigenvectors appropriate to the eigenvalue
(—%), constitute a plain, which is Euclid-perpendicular to the straight line along the unity
and contains the coordinate zero. I.e. this plain is strained on two radius-vectors. For
example: (2,—1,—1), (0,1, 1).

Formulas (30) - (40) may be automatically generalized for polynumbers ' H, with
replacement 3 — n, C' = %

The examples given above makes us suppose (while comparing the formulas (20),
(29) u (37) )that for the complex and H,, numbers the following formula is true.

X - X=|X["1+0-e (44)

It is also possible, that it is true for any non-degenerated poly-numbers, but this requires
further prove.
We may say that X is "orthogonal” for Y if

((X,Y)) =0. (45)

LH, — the hypercomplex numbers isomorphous to the real square diagonal matrixes algebra n x n.
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Notice that this notion in general is not symmetric for n > 2, i. e. the fact that X is
orthogonal for Y, does not mean that Y is orthogonal for X. Is these two are orthogonal
to each other than X and Y are mutually orthogonal.

If we have (n — 1)-number complex (some of numbers may coincide), and Z is a
normally conjugated for this complex, than X is "orthogonal” for the given complez, if

(X,2)) =0. (46)

Angular parameters of several numbers

In the poly-number spaces n > 2 we can introduce the angle between two
numbers (vectors) with several ways. In this paper we use the algebraic approach based
on the triangle-formula analog form the Euclid space.

Let us illustrate this on the Hs example. If X u Y are such that

>0, y'>0 i=1,23. (47)

In this case they are not the divizors of zero. Shall we find the expression for the
norm of the cube of their summ Z = X +Y

|ZP = (X +Y. X +Y, X +7) = | X+ 3(X, X,Y) + 3(X,Y.Y) + | V]". (48)

Let’s introduce two hyperbolic angles Gx, By according to the formulas:

(X, X,Y) (X,Y)Y)
cosh By = ~——~-"—=>, coshfy = ———2, (49)
| XY | X[Y]?
than
| Z)? = | X2+ | Y] + 3| X|*| Y| cosh Bx + 3| X||Y|* cosh By (50)

These two hyperbolic angles Gx, By we shall call the angular characteristics of the
pair of numbers X, Y.

Let us elucidate the meaning of the forms that appear in formulas (48), (49). For this
let us consider the complex {X,Y} and the normal conjugated number for this complex
W = [X,Y]. The form (X, X,Y) is a scalar product of X and complex {X,Y}, and the
form (X,Y.,Y) is a scaler product of Y and the same complex.

If X, Y are not divisors of zero, but also they do not satisfy the (47) conditions, than
the right sides of (49) may take negative values. If we want to preserve the formula (50),
than the angular characteristics Oy, By become, in general, complex numbers (x, Sy .
Opposite, if we want to have real angular characteristics, we have to change the formulas
(49) u (50). For example, if the right side in the first formula (49) is lesser than zero, than
we can replace cosh Sx by sinh fx in this formula and in (50).

Why do we need two angular characteristics for two numbers(vectors) in three-
dimensional Hj instead of one angle in the three-dimensional Euclid space? It is related
with the fact that Hs-space and all the poly-number spaces of the dimension greater than
two has marked out directions and planes., i.e. they are anisotropic.

Fractals

Over the last thirty years there was an impetuous progress of the direction of
the dynamic systems theory related with complex fractals. [5]. The most brilliant
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representatives of latter are the Julia and Mandelbrot sets. Lots of beautiful and useful
results have shaded the important fact that they all were obtained from the complex
numbers and the Euclid plane basis. Opposite, the construction of multi-dimensional
fractals based on quaternions was not impressive after all.

The deepest cause of the problems, appearing on this way, is the principal
impossibility to generalize the theory of analytical functions of the complex variable for
the quaternions. This impossibility is caused by the non-commutativity of quaternionic
multiplication.

The poly-numbers structure does not contain the difficulties that appear in non-
commutative or un-associative number algebras. Therefore we may expect that there is
a possibility to construct the fractals based on poly-numbers, and such fractals could
be much more interesting than the quaternionic ones. Turning to the H,-numbers for
example it is easy to see that it is impossible to construct interesting fractals using the
usual for Julia sets dependencies. For example:

it is related with the very simple structure of H,-numbers, H3 in particular. In the
special basis the analitical functions of H,-variable break up to n functions of one variable.
Therefore the iterative process may be turned to n independent one dimensional iterative
process, which is not very interesting. But there is a great possibility to introduce some
additional operations for the poly-numbers (one of them is the normal conjugation). These
new operations may be used to build more complicated non-breaking iterative processes.

Thus, we can propose several simple non-trivial iterative processes for Hj:
X/[:Jrl = F(X,L)

where C' € Hj. The initial numbers for these iterative processes were taken on the
planes which are perpendicular (in Euclid meaning) to the straight 1 -¢. The parameter
t indicates the point where the straight and the plane intersect. With ¢ = 0 the plain
contains the coordinate zero. It is interesting that with C' = 0, t = 0 processes 2,3,4 gives
the convergence area that looks like a round hexagon.

The scrutiny for the convergence of the process 1 gives some interesting in geometric
aspect three-dimensional convergence areas. Appropriate results for process 7 are even
more interesting.

Conclusion

The constructions proposed above, of course, may be generalized farther. So, we can
examine the n-dimensional linear space with poly-linear symmetric form (3), divide the
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arguments manifold on two complexes and say that this form is a scalar product of these
two complexes. This shall cause a further generalization of the notions introduced above.

It is undoubted that the normal conjugation has it’s own algebraic meaning. We
have proposed useful generalization algorithm for well-known from the Euclid and pseudo-
Euclid spaces geometrical objects and values, such as scalar product, orthogonality, angles
an so on.

The introduction of additional operations on the hypercomplex numbers turns them
into something more than linear algebras. These operations allow us to obtain the
geometries which have much more inner symmetries than the poly-numbers themselves
contain. It would be appropriate to introduce the term "linear geometry", besides the
usual "linear algebra". The new term contains the old one plus all possible independent
poly-linear linear operations which natural follow from some constructions of linear algebra
itself.

The construction of many-dimensional fractal sets is one of the perspective directions
of applying the potential of such linear geometries.

Probably, we should underline once again, that the fractal sets, constructed by the
mean of the introduced by authors specific (n — 1)-nary operation, are the objects of
poly-number, instead of arbitrary, space. This fact makes them perspective, unlike the
quaternion-based fractals. It is well known that the quaternionic multiplication is not
commutative. Therefore quaternions have poor mathematical perspectives. Thus, it is
impossible to create a complete analytical functions theory. Since there no such problem
with poly-numbers and taking into account the hypothetic possibility of the replacement
of the Minkowsky space with one of the poly-spaces [6], the proposed approach seems to
be very perspective.
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Some properties of generalized-analytical functions of poly-number variable are being
studied in this job. We can confront many spaces of affine connectedness with the { fi;Fi,j}
class of such functions. In each space the congruence of geodetic associated with the given class
of general-analytic functions is defined. If the vector field f is tangent to one of the geodetic
of congruence in each point of space there are certain restrictions for the generalized-analytical
function itself.

Introduction

Very impressive success of the theory of complex variable and it’s applications to
physics makes us to search for a generalization of this theory for spaces of more than two
dimensions. It is possible that the construction of poly-number variable [1] is one of such
generalizations. We have to put some additional conditions to allow automatically apply
such functions for theoretic physics models and some concrete physical questions.

Generalized analytical function (for further details see [1]) — is the pair {f%;~i}:

of

i Tk =Pl wm Vift=pi f7, (1)

where f?, fi - single-covariant vector fields in the space {My; Py}, My — n-dimensional
elementary manifold admissive of inter-single-valued correspondence M, < P, on n-
dimensional space of poly-numbers P,,, and the objects 4i while switching to another
frame of reference transform as the objects (F};j f%), where sz - objects of the affine
connectivity. We postulate that one of the necessary properties of the space {M,;P,}
is that it’s tangent space is isomorphous to the space of associative-commutative
hypercomplex numbers (poly-numbers) P,. in any point X € {M,;P,}. Due to the
presence of the inter-single-valued transformation M,, <+ P,, we may introduce the special
frames of references in the space {M,;P,}. In such frames of reference we define the
rules of poly-number multiplication, which does not depend on the concerned point. If
P, > ey,e9,...,6, —a basis, than

eiej = pfjek. (2)

Let €’ — the coordinates of a unity breakdown than
5ipi-“j = 5;?. (3)

Using this formulae and the formulae (1), we obtain an explicit stating for the
generalized derivative

fi=e"Vf (4)

and the Cauchy-Riemann correlations:

Vil = eV f? = 0. (5)
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We may juxtapose a manifold of the affine connectivity LH(FZJ.) to any generalized-
analytical function {f%;~:}. The objects of the affine connectivity F};j, are a solutions of
the equation set

ij 7= 7; (6)
Thus defined manifold of functions with a same object of connectivity forms a
manifold (a function class), noted {f*;T7};}.
In the space of the affine connectivity always exist a parameter 7, such that the
equation set of geodetic z* = (1) takes [2] form

pat L i .
dr? Kidr dr

If we replace the connectivity object I' };j with a different one:

= R i i
ki = L+ §(pk5j + pjor) + Si;s (8)

where p;, — an arbitrary single-covariant field, and S,ij — an arbitrary tensor, which is
antisymmetric by the down indexes, i.e. torsion tensor, than the geodetic remain the
same. (see, for example, [2]).

Congruence of geodetic, appropriate for
generalized-analytical function.

Let {f%~:i} - generalized-analytical function, and vector field f* defines the
congruence of geodetic with connection object (8), where the object F};j is related with
the concerned generalized-analytical function by the relation (6), moreover the tangent
vector along the geodetic z' = z*(7) is

de*
Wy o)

Than the differential equations (7) with F};j replaced by f}q become relations that define
generalized-analytical function

N A+ (™) =0, (10)
or
Fepigf' + (o f™) ' = 0. (11)
Thus, to define geodetics congruence by the way given above (or, as we speak farther,
to have X-property), the generalized-analytical function has to satisfy the relations (10),

(11).

We call generalized-analytical functions with X-property the X-functions.

The equation set (11) is a set of linear equations for n unknowns f* is consistent,
since there certainly is one solution.

fr=—=(pmf™)E" (12)
If the matrix ‘
(ai;) = f*pi (13)
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is non-degenerate in some area, than (12) is the only solution of system (11) in this area
of the space {My,; Py}
The n-th degree of "norm"in the poly-number X € P, space may be expressed in
terms of the form
QX) = det(xkpfcj). (14)

This form’s value does not depend on basis:
QY X)=2Y)Q(X) (15)

with any X, Y € P,; at last (1) = 1. Thus, we may define the n-th degree of
"norm" by
| X" = Q(X) (16)
or by
| X]" = QX)) (17)

On account of the said above we may expect that the solutions of the equation (10)
will strongly depend on X-function equal zero or not.
Let us demonstrate that for arbitrary poly-numbers the analytic function

F(X) = wX +V, (18)

(w — an arbitrary real number, and V) — an arbitrary poly-number) is namely a function
that define the congruence of the geodetics, i.e. an X-function.
If w # 0, than it may be written as

F(X) = w(X — Xp), (19)

where Xy — an arbitrary poly-number. Let us substitute (18) into (10) and, taking into
account that for analytic functions v, = 0, we obtain

filw+ (pnf™)] = 0. (20)

Since p,, — m for arbitrary functions-components, we may always construct such m
components, that (p,,f™) = —w. Which was to be proved.

Let us find out a kind of curves, defined by the function (18). To do it, we have to
find a general solution of the system of ordinary differential equations

daxt . .

di = wz' + vy. (21)
It has the appearance of ‘ . ,

' =T +a'e. (22)

We imply by the congruence of curves in some area of n-dimensional space the
(n — 1)-parametric family of curves. At that one and only one curve passes through every
point of this n-dimensional space.

There is (2n + 1) independent real parameters and the parameter along the curve in
the general solution (22). Therefore parameters v}, a’, w have to be expressible as (n — 1)
independent parameter for equations (22) to define the congruence. And the region of
variation of the parameter 7 may be limited according to the values of these (n — 1)
independent parameters. If we fix the direction of the parameter 7 changing (for example
— from lesser to bigger values), every curve gets a direction, i.e. it has a view of a current
line or a "field line".
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Despite of simplicity of appearance of the general solution (22), these formulas define
a great variety of congruences of curves. And not all of them are straight, i.e. geodetic.
Thus, the manifold of solutions of (10 includes the X-functions as a subset. This means
that the fulfilment of (10) is necessary, but not enough for the generalized-analytical
function to have the X-property.

In physics we often meet the condition V;f* = 0. The law of conservation of charge
and the 4-vector calibration of electro-magnetic field are expressed like that for example.

Let us calculate the same convolution product for the generalized-analytic function.
We obtain

Vift =i (23)
For X-function in case the condition (12) is satisfied we have
Vif' = =(pnf™), (24)
and for X-function (18), (19) o
Vif' = nw. (25)

Examples of analytic X-function

Complex numbers

Let us take up the analytic function
F(z) = u(z,y) +iv(z,y) (26)

of complex variable
z=x+iy, i*=—1. (27)

For first, let us write out the matrix(13)

(aij) = (jj ‘2) (28)

det(ai;) = u® +v*. (29)

and calculate it’s determinant
Thus, for complex numbers the following formulae(16) is true

det(a;;) = |F(2)|*. (30)

Let us solve the equation set (10). In this case it takes form

ut + v + (pru+ pav)u =0,

(31)
ul? + vg—z + (p1u + pav)v = 0.
Using the Cauchy-Riemann conditions
Ou _Ov Ou_ v (32)

or Oy Oy ox’
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From this equation set we have two sets:

(
(u® + %) [32 + (pru+p2v)] =0,
(33)
| (W + v?)5e =0,
and )
(u? +02) 2 =0,
(34)
(u® +0%) | G4 + (pru +p2v)] = 0.

\

Let us examine these equation set in the area u? +v? # 0. In that case, reducing by this
non-zero factor and writing the integrability conditions of the obtained equation sets, we
have

0
%(plu + pov) = a_y(Plu +pv) =0 = (piu+ pyv) = const, (35)

and the only solution in this case
F(2) = wz + wy, (36)

where w — an arbitrary real number, wg = uy + vy — an arbitrary complex number.
Let us calculate a convolution V;f* of two X-functions (36), we get

_Ou  Ov

V.f *a_a:—Fa—y

= 2w, (37)

which matches the formula (25).
So we have proven that all analytic X-functions of complex variable have the

appearance of (36). There is no analytic X-function of complex variable (excluding a
constant), for which V,f* = 0.

Hyperbolic numbers, Ha

Let us consider an analytic function

F(2) = u(z,y) + jv(z,y) (38)
of hyperbolic variable
c=z4jy, =1 (39)
Let’s calculate the matrix (13)
u v
(ai;) = ( ) (40)
vou
and it’s determinant
det(a;;) = u* — v (41)

Thus, if v = £u the matrix (a;;) is degenerate, and for hyperbolic numbers formulae (16)
is true (16)
det(aiy) = |F(2)]% (12)

if we take the square of norm in H, space as

|2 = 2% — ¢*. (43)
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The relations (10) for hyperbolic numbers have the same appearance as for complex
numbers, and the Cauchy-Riemann equations change a bit :

ou Ov ou B ov

- 2 _Z= 44
or Oy Oy Oz (44)

— therefore we only have to change the common factor in the equations (33), (34) to
(u? — v?). Doing that, we obtain not a single, but three qualitative different solutions:

Floy(2) = wz + w, (45)

where w - an arbitrary real number and wy — an arbitrary hyperbolic number;

Fuy(2) = foy(z +y) (1 + ), (46)

where f1)(§) — an arbitrary one real number function;

Fo)(2) = fioy(z —y)(1 =), (47)
where f2)(§) — an arbitrary one real number function. In the ¢-basis:
Y12 = %(1 ), b =1, Yathy = Yo, h1the =0,
(48)
x4 jy = (x+y)hr + (x — y)be = 1 + &2y

the two latter X-functions take the appearance of

F(l)(z> = 2f(1)(fl)¢1, F(2)(2) = 2f(2)(52)¢27 (49)

at that \F(l)(z)| =0, \F(g)(z)\ =0.

So, the analytic X-functions of H, variable are more multifarious than appropriate
functions of complex variable. It is related with the presence of the divisors of zero in Hs
algebra.

Let us calculate the scalar V, f* of three obtained X-functions:

Viflg =2w, Vifly =2fm@+y), Vifly=2fe(z—y). (50)

Note that there are no analytic X-functions of Hy variable (excluding a constant) for
which V;f* = 0.

Hyper-complex numbers H; These poly-numbers algebra is isomorphous to the algebra

of real diagonal square matrices 4 x 4. It is the most easy to work with such numbers in

qu_baSiS: ¢17 ¢27 ¢37 1/}47

1, ecm 1=j5=kFk,
by = Pk, P = (51)

0, in all other cases.

An arbitrary analytic function of Hy-variable has an appearance of:

F(z) = o' (€)1 + 0 (€02 + 9 (€7)1hs + ¢ ()0, (52)
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where ¢' — arbitrary even functions of a real variable , and £° — the coordinates of X € P,
in 1-basis. The matrix (13) has the appearance of

et 0 0 0
0 o> 0 0
(a)=| 7 . (53)
0 0 ¢ 0
0 0 0 ¢
and it’s determinant equal
det(aij) = p192903¢4. (54)
Thus, for hyper-complex numbers H, the formulae (16) is true:
’F|4 = det(aij), (55)
if the fourth degree of norm in H, space is
| X|*=¢glereiet. (56)
The equation set (10) after substituting (52) into it is written like: (52)
7 agol_ m

where ¢ = i_ (no summation). As we noted above, the qualitative difference of the equation
set (57) solutions is related with the presence of the divisors of zero in the poly-numbers
system. Let us classify poly-numbers X # 0 in H, space in the following way:
A) X is not a divisor of zero;
B) three coordinates &, &7, &8, i # 4§, i # j, j# k notequal zero, and the fourth
coordinate equal zero;
B) only two coordinates & and &7, ¢ # j differ from zero, and another two coordinate
equal zero;
I') only one coordinate £ is not zero.

According to this classification we classify the solutions of the equation set (57):

A) Fo)(X) = wX + Wy, (58)
where w — an arbitrary real number, a Wy — an arbitrary poly-number;
B) Fujn(X) = w(€i + &+ )+ Cbi + Gy + (59)
where w, (" — four arbitrary real numbers for each X-function of this kind;
B) Fiog(X) = w(€i + ;) + Guis + Gy, (60)
where w, (" — three arbitrary real numbers for each X-function of this kind;
I) Fiy(X) = ¢"(6 )i, (61)

where '(£'-) — an arbitrary flat function of a real variable for each X-function of this
kind;
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Let us calculate the scalar V,,™ of each obtained X-function.

AV, 0™ = 4w, B)V,,¢™ = 3w,
(62)
B)V¢™ = 2w, T)V,,0™ = ¢'(£-).

Thus, there are no analytic X-functions of H, variable (excluding a constant) for
which V,,0™ = 0.

Non-degenerate X-functions

Let us call X-function non-degenerate if it is not a divisor of zero, i.e. | F'(X)| # 0.
Than it follows from the above-stated that such generalized-analytic function has an
appearance of

i i i Of

{f 77]6} - {f ) 8xk
where f* — an arbitrary flat vector field, and a(z) an arbitrary scalar field. Thus, there
are non-degenerate X-functions for any poly-numbers, all of them have an appearance of

(63), at that

+ dta(z)}, (63)

fi = c'a(w), Vift = na(x). (64)

Formally the non-constant non-degenerate X-functions with V;f? = 0 do exist, but
they are trivial, since the scalar field a(z) at that identically equal zero. Mark that the
derivative of the non-degenerate X-function in the basis generally has an appearance of
er=1,e9,...,6, _
F(X) :a($)+0€2+063+...+€n. (65)

Let us find out the conditions for the product of two non-degenerate X-functions
F1)(X), Fl2(X) to be a non-degenerate X-function F3)(X) too. Since | F(1)(X)F2)(X)| =
| Ey(X)] | Flay(X)|,, the function F3)(X) is non-degenerate.

All we have to do is to check the fulfillment of the formulae (63) for it. From the
article [1] we take the formulae for the poly-number product of two generalized-analytical
functions:

{f(i1)§7f1)k}{f(iz)§ sz)k} = {f(ig)W(is)k}a (66)
where
Yo = P (T3 Ve + FibyYow): (67)
Let us demand all y-objects in the formulae (67) to have the appearance, defined by
the formulae (63). Than, after some transforms we obtain:

a)0;, = a(1)p2jf(32) + a(z)pijfgl)- (68)

These are the wanted conditions for two functi
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Conclusion

In this article have introduced the generalized-analytical functions of an arbitrary
poly-number variable, which have been called the non-degenerate X-functions and they
are the equivalent of function F(z) = z of complex variable z. While these functions are
not divisors of zero, they may define a congruence of geodetics in space {M,;P,}. At
that the derivative of such function is a poly-numeral unity multiplied by a scalar field.
Formally the non-constant non-degenerate X-functions with V;f? = 0 do exist, but they
are trivial, since the scalar field a(x) at that identically equal zero. Possible, namely the
non-degenerate X-functions shall play the very same fundamental role as the complex
variable z does in theory of analytical functions of complex variable, i.e. non-degenerate
X-function F(z) = 2.

Author expresses his thanks to I. N. Dhoulkin for his kind attention to his job, D.G.
Pavlov for the detailed discussion of results and L.M. Fisher for the serious technical
assistance.

References

[1] I. W. Tapacbko, O6obieHHO-aHAIUTHYECKHE (GYHKIUE HOJINIUCIOBON  [IePEeMEeHHOI],
Hypercomplex Numbers in Geometry and Physics, 1, 2004, cTp. 77-90 , 2004.

[2] TI. K. Pamesckuii. PumanoBa reomerpust u Tensopubiii anaaus. M., "Hayka", 1967.



Hypercomplex Numbers in Geometry and Physics, 2, 2004 23

ON THE NORM OF BIQUATERNIONS AND
OTHER ALGEBRAS WITH CENTRAL CONJUGATION
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The concept of central conjunction is introduced in this article. We apply it to algebras
of biquaternions and bioctaves. With the given analysis method of the conjunctions permitted
by algebra we derive some new results. Thus the alternative algebras with central conjunction
are proven to have the multiplicative norm of second degree (that is in general not real). The
consequence of this fact is that these algebras (biquaternions and bioctaves particulary) have the
multiplicative real norm of degree higher than 2. This norm has several different but equivalent
views. The quadrascalar and quadravector multiplications are introduced. Some results for
algebras of biquaternions, diquaternions and bioctaves are given in terms of isotropic basis. The
developed methods may be useful in the geometrical and physical usage of concerned algebras.

Introduction

Biquaternions is an prospective hyper-complex algebra, which is the natural language
of the relativistic physics. Many people, once charmed by the quaternions, were
subsequently impressed by the biquaternions. A good review of the known possibilities of
biquaternion applications is given in [1]. While studying the biquaternions ten years ago,
in 1994 year, the author have stated for himself some facts and formulaes. At that time he
considered them too trivial to publish. But it turned out that some of these facts are still
unknown, even to those, who work with biquaternions. As a result of this some questions
are still wrong covered in the literature. Most people think that: a) biquaternions possess a
real norm of the second degree and b) the norm of the biquaternions is not multiplicative.
(i.e. the norm of the multiplication not equal the multiplication of the norms). One may
meet this statement even in some encyclopedic reviews, [2]. Thus, this norm (which is
mechanically written as a sum and a difference of squares) does not coincide with the
biquaternion multiplication table and is really artificial for them. One rarely meets the
correct statement that the biquaternions possess a complex norm of the second degree
(and, consequently, a real norm of the fourth degree). And the author have not met a
pointing that this norm is multiplicative. It is possible that such inattention for the norms
of the degree higher than two is related with the fact that all the classic semisimple Lie
groups are the groups of invariance of some quadratic form. Since the geometries are
related with some groups (according to the Erlangen program of Klein), forms of the
degree higher than two seem to be superfluous.

This clause is based on two ideas: 1) the consideration of the set of conjugations,
specified in algebra, allows to prove a lot ofb facts with more simple and more general
way, than with the help of direct algebraic calculations; 2) it is more correct to scrutinize
the poly-norms, that naturally appear in algebra, instead of assigning a quadratic norm
to them.

The norms and scalar product of the degree higher than two on the hyper-complex
algebras were introduced by R. D. Schafer [5]-[7], who stated some fundamental facts in
this area. Nowadays in Russia, the idea of applying the poly-norms ofb hyper-complex
numbers in physics and geometry is actively popularized by D. G. Pavlov [9],[10].
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For the better understanding of the question, we scrutinize theb biquaternions,
diquaternions and bi-octaves at one time.

Algebras of biquaternions, diquaternions and bi-octaves

Quaternion is (see [2], for example) is a hyper-complex number

a=ag+ a1q + asqe + asqs, (1)

where a; — real numbers, and the orts q; are multiplied according to the rule

lay = qil = qy, 4k = =0kl + €jknQn, (2)

where 0, u €, — Kroneker delta and Levy-Civita tensor.(j, k,n = 1,2, 3).
Biquaternions are the quaternions defined over the complex numbers field.
Diquaternions — are the quaternions defined over the binary numbers field. In view

of the aforesaid we still may write down these numbers as (1), while a; are the complex

(dual) numbers. However, we shall use a more voluntary interpretation of biquaternions

(diquaternions). Namely, they are an 8-dimensional algebra over the field of real numbers,

consisting of two blocks:

a=a-+ k - io, (3)
or, in the unfolded view,
a = qap+ a1qq + azqs + azqs + koig + kiiy + kois + ksis, (4)

where a, k — the quaternions with the real coefficients. iy is an exterior unity, commuting
with quaternions a, k; i3 = —1 for biquaternions and +1 for diquaternions,b unities i; —
is a result of an exterior (tensor) product iy ® q;.(We use the same designation i, for both
algebras for a convenience, since they do not mix in this clause). From this it follows the
rule of the multiplication for biquaterions (diquaternions) in a block and a tabular style:

X1 ai g2 q3| Ip 1 1o 13

L'l a1 @@ q3| i & I i3
g -1 g3 —q i1 —ip i3 —i
Qq2 —q3 —1 q | 2 —i3 —ip 1
Qa3 92 —q —1| i3 i —ip —ig|- (T'ab. 1)
ip|lp 11 1 i3 | Fl Fai Fq2 Fas
i | —lp i3 —b2|Fa1 £1 Fqg3 £qo
ip |2 —i3 —lp I |Fq2 +q3 +1 Fqu

ig |1y i —i; —dp|Fas Fqo *qi *1

Duoquaternions are the quaternions defined over theb dual numbers field. They are
not scrutinized in this clause.
Octonions, or octaves, (see. |3] and [4]) are the hyper-complex numbers like

a=ap+ a1q; + axqs + azqs + Apey + Are; + Asep + Azes, (6)
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where the ort q;, e; multiplication rule is defined on the grounds of the duplication formula
of Cayley-Dickson for quaternions:

(a+ A-e))(b+ B-ey) =ab— BA+ (Ba+ Ab) - ey,

(a,b, A, B — quaternions, b — the conjugated quaternion b, see farther
we dismiss the difference between theb imaginary elements q;u e; (e;

multiplication rule may be expressed like this:

Q- q; = —0; -1+ Cyay,

i k=12 ..

T,

(7)

about it). If
= qj44), the

(8)

where the totally antisymmetric octonion structured constants Cj;, equal

C{123 = 0145 = C{176 = 0246 = C{257 = 0347 = C{365 =1

and turns to zero with other indices combinations.

Shall we give the octaves multiplication table for a convenience.

X1 a1 a2 g3 | e e e e3
Il a1 g2 q3 | e e e e
Qa1 —1 g3 —qz| e1 —ey —e; e
Q2|2 —q3 —1 a1 | e2 e3 —e —e
Q3|93 92 —q1 —1| e3 —e e —e.
€|€ —e —e —e3| -1 q 9 Q3
ejje; e —e; € (—q1 —1 —q; q
€€ e e —e€|—q g3 —1 —q
e;|e; —€ e € [—q3 —q2 q1 —1

(T'ab. 2)

Finaly, bioctaves (bioconions) are the octaves, defined over the complex numbers
field. Their multiplication rule in a blockb style follows from the definition:

(a+A-e+k-ig+ K- -fo)b+B-ey+1-ig+L-fy) =ab— BA—ki+ LK+
(Ba+ Ab— Lk — KI) - eq + (al — LA+ kb— BK) -ig + (La + Kb+ Bk + Al) - f, (10)

where fy = iy - €g. It may be written as ab symbolic table (also we give the complete form
of the multiplication table for a convenience.)

X b B - e [ -1 L-f

a ab Ba - eq al - ig La - f,
A-ey|Ab-ey| —BA Al-fy |—LA-1i,
k-ig | kb-iy | Bk -f —kl |—Lk-eg
K -fy|Kb-fy|—BK -ig|—Kl-ey| LK

and

(T'ab. 3)
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X'l a1 492 q3| e e e e3 Io ©h ip i3 fb £ £ f3
'l a1 92 q3| e e e e ip iy i i3 f £ L f3
darjdar —1 dq3 —q2| e —ey —e; e ip —ip i3 —ip| i —f —f3 D
Q2|92 —q3 —1 aqi| e e; —e —e ip —i3 —ip 1| b £ —f —f)
Q3|43 Q2 —q1 —1| e3 —ex e —g iz iy —ip —ip| f3 —ex 1) Mo
€€ —e —e —e3| -1 a1 q q3 fp - —H —f] - L iy i3
ejje; e —e3 e|—-q —1-q3 q fi fH —f5 H|-i1 -l —i; iy
&€ e e —e|—qQy q3 —1 —q H £ f £ - i3 —ip —iy
e;le3 —ex e €|—q3 —q q —1 £ —H £ fi|-i3 - I —io|-
ig| Ip g iy i) fo H £ f3] -1 —q1 —q2 —q3|—eyp —e; —ey —e;
i —ip i3 —ip| £ —fy —f3 fH|-q 1 —g3 qz2/—e1 e e3 —e
Ip| iy —i3 —lp Iy b f3 —fh —fi|-q2 a3 I —qi|—e2 —e3 € €
i3l i b - —do| 3 —fh £ —fH|-q3 —q@2 a1 1|—e3 e —e e
folfo -6 —fh —f3] —ip 1y Ip i3]—e e e e3 I —aq1 —q2 —qs
)6 fh —f3 fH| -1 —i —i3 i —e —ey e —e q 1 g3 —q
L f3 f —fi| —i iz —lp —i1|—e —e3 —ey €| Q2 —q3 I o
f30 6 —fh £ fo| -3 -2 L —ig|—e3 e —e —ey| Q3 Q@ —q 1
(T'ab. 4)

This table includes as fragments the multiplication tables of biquaternions and octaves.

Central conjugation

Algebras of biquaternions, diquaternions and bioctaves possess some wonderful
properties, which follow from the existence of a "very nice" conjugation in these algebras.

The accepted interpretation of conjugation is that they are linear involutional anti-
automorphisms:

C(Aa+ ub) = XC(a) + pC(b) (A, i — real numbers, linearity),
C(C(a)) =a (involution),
C(ab) = C(b)-C(a) (anti-automorphisms). (11)

Thanks to these properties, the expressions

R(a) =1/2(a+ C(a)) (real part a), (12)
N, =a-C(a) (right 2-norm a), (13)
N, =C(a)-a (left 2-norm a), (14)

do not change with conjugation (let us call them invariant or real for the given
conjugation):

CR(a)) =R(a),  C(N(a)) = N(a). (15)
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At that
R(C(a)) = R(a), but, in general N(C(a)) # N(a). (16)

Note that the invariant expressions are not necessary real numbers, in spite of they
are introduced by the same formulas, as for the classic quaternion and octave algebras.
However, so written norm seem to be more correct than the one with a sum and a difference
of squares, which has no algebraical ground.

Let us call a-C(a) and C(a) - a the natural 2-norms of the hyper-complex algebra
(right and left) to underline their compliance with the multiplication table.

Note that there are not so many "good" hyper-complex algebras with conjugation.
The quantity of the "bad" ones (without conjugation) is much greater.

We may introduce the quaternionic conjugation a according to the following rule:

a=ap— aiq; — aq2 — azqs. (17)

This conjugation may be expressed in terms of the operations of the given algebra (let us
call such conjugations complied with the algebraic multiplication):

a=—1/2(a+ qiaq; + qaq; + qsaqs), (18)

and as a consequence of that:
R(a) =1/2(a+a) = 1/4(a — q1aq; — qxaqs — gsaqs). (19)

It is easy to make sure that (18) is true, if we consider that the mapping a — —qiaq
Note that the complex numbers conjugation may not be expressed in terms of
summation and multiplication due to the commutativity of the complex numbers algebra.
Since that it has to be introduced by hand.
Taking in consideration that the bi- and diquaternions are the directly doubled
quaternions, the appropriate quaternionic conjugation a for them may be introduced
according to the obvious rule:

a = ap— ai1q; — a2qz2 — azqs,
(the writing with complex coefficients ),
a=ag— a;q; — azqy — azqs + kolp — k11 — kaly — ki,
(the complete writing with real coefficients),
a=a+k-ijg=a+k-ip (20)
(the brief writing).

Again, this conjugation is complied with the multiplication. For biquaternions (the upper
sign) and diquaternions (the bottom):

a—= —1/4(3 + qi1aq: + goaq2 + q3aq3) + 1/4(10&10 — ilail — igaig — igaig), (21)

(We consider that the mapping a — —qraq changes every component, excluding ay, ay,
ag, a;; the mapping a — —izai, does the same for diquaternions and the opposite for
biquaternions).

Thus, this conjugation is not enough for the scrutiny of the 4-norm and 4-scalar
product int the biquaternion and diquaternions algebras. Therefore we have to introduce



28 Eliovich A. A. On the norm of biquaternions and algebras with central conjugation

another one, the dual quaternionic conjugation according to the following rule: Bremem mo-
9TOMY BTODPOE, 0YaAbHOE KEAMEPHUOHHOE CONPANCEHUE TIO CJAECYIONEMY MPABIILY (3ammcu
B TOI 7K€ I10CJIe/IOBATEILHOCTH )

=~ * * * *

a=ap— a;q1 — axq2 — a3qs,

a=ag— a1qy — axqs — asqs — koio + k1iy + kois + ksis.

The conjugation a (22) is an involutional automorphism too. Therefore it deserves
the name of an conjugation. But it is not complied with the algebraic multiplication:
the ort iy commutes with the other orts and can it not be reflected by summation and
multiplication.

Remark 1. Let us consider the combination of conjugations a (writing down in
the same order):

a= ap + ajq; + ayqs + a3qs,

a=ag+ a1q; + asqz + azqs — kolo — kiii — koiy — kais,

a:a+k:-i0:a—k:-i0. (23)

In other words, the transformation a is a complex conjugation, exterior for the
quaternions a, k. Let us designate it with a*. It is an involution and an automorphism
(rather than an anti-automorphism):

a*=a u (ab)* = a*b". (24)

As a consequence, the expression aa* changes with the conjugation of it’s kind (i.e.
it is not real for it):
(aa™)* = a*a # aa™. (25)

In connection with that, the combined transformation (the complex conjugation) a* is

not a conjugation at all of this algebra. Furthermore, the complex conjugation a* changes
the sign of the ort iy, that commutes with all other orts of the algebras H.. Therefore it
is not complied with algebraic multiplication.

The most important advantage of the basic conjugation a over the dual conjugation
a is that the hyper-complex numbers which are real (invariant) relative to a, contain only
the orts 1 and ip, therefore they commute (like real numbers do) with any numbers of
the algebra. This property of the quaternionic conjugation is the very source of several
good qualities of the quaternions, biquaternions, diquaternions, octaves and bioctaves. It
is important that not all algebras do possess such a good conjugation.

More rigorously, the real (invariant) relative to the basal conjugation elements r:

1) are algebraically closed;

2) commute with each one of the algebra’s elements ar = ra;

3) their multiplication by any element of the algebra r - ab = ra - b.

In other words they belong to the commutative and , at one time, associative centers
of the algebra, i.e. to the algebra’s center in it’s ordinary sense. Thus, let us introduce

Definition. The conjugation, which real (invariant) numbers belong to the center of
the algebra, we name the central conjugation.
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The conjugations, which real numbers belong to the center of the algebra, we name
the central. Next, the algebras with the central conjugation we designate A.. In fact, all the
scrutinized algebras (including the infinite consequence of the Cayley-Dickson algebras)
with all their complexifications (and the hyperbolic duplications) are central.

Remark 2. Any algebra with a natural norm of the 2nd degree (i.e. the norm of the
kind aa, complying with the algebra’s multiplication table), ) is algebra with the central
conjugation (the center is reduced to real numbers at that). That is why the results good
for an algebra with the central conjugation, is good for an algebra with the square norm
too.

Remark 3. Due to the fact that the commutative center of the algebra A, is, in
general, a subset of the associative center, it is true that

riqn - TjqQm = il - qpQm-

This means that the algebra with the central conjugation A. represent by itself an exterior
(tensor) multiplication of it’s center Z by some sub-algebra Ay. Or, in other words, it is
an algebra Ag over it’s center Z.

As a matter of principle, all argumentation of this article is valid even in case of
more weak condition that the real (invariant) elements of the conjugation belong to the
alternative center of an algebra, rather than the associative one. In this case the algebra
A, can not be reduced to an exterior multiplication of it’s center Z by the sub-algebra
Ag. Still it is not clear enough whether such extension is informal indeed. Everywhere in
this clause it is assumed that algebras possess a unity and they are given above a field of
the characteristic 0.

Mono-associativity of algebras central with central conjunction

So then, for commutator [a, b] of the elements of algebras A, with the central
conjugation (including quaternions, biquaternions, diquaternions) it is true that:

[a,r] =0, 1He r=T, (26)
(a = C(a) — the algebra’s besic conjugation A.) and in particular
[a,b+ b] =0, [a,bb] = 0 (27)
from (27) it immediately follows

[av b] = [b7 a], (28)

since that
(29)

QI
|

QI
L

la,a] = [a,a] =0, that is  a

And so the following is true:
Lemma 1. In the algebras with central conjugation the right and the left 2-norms
coincide.

N,(a) = aa = N,(a) = aa. (30)

Since that the following is true too:

a-aa=a-r=r-a—aa-a—aa-a (r = aa € algebra’s center), (31)
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or, briefly
a-aa=aa-a. (32)

The straight consequence of the lemma 1 is the power associativity (mono-
associativity) of algebras A, — the associativity of the sub-algebra consisting of all
possible degrees of one element (a* - a® = a"**). Indeed, as is known, the algebra is
mono-associative, if two following identities are true:

a-aa=aa-a u aa-aa=(aa-a)a. (33)

The first one of them immediately follows from (32), since any element a of the
algebra A, may be represented as a sum of the imaginary and real (invariant) relative to
the basic conjugation parts q u s:

a=1/2(a—a)+1/2(a+a)=q+s; C(q+s)=—q-+s

and the multiplication of the real elements is associative (a-sa = as-a). In the same way
we may easy see that:

aa-aa=r-aa=ra-a= (aa-a)a,

The second property (33) follows from here since s = $(a) belongs to the associative
center. Thus, we have just proved the

Theorem 1. Fach algebra with the central conjugation is mono-associative.
And at the same time the

Theorem 1b. Any algebra, possessing a complied with the algebra square norm, is
Mono-associative.

In spite these results are simple (using the analysis of the acceptable conjugations)
provable, they seem to be new.

Other associative properties of the algebras A,

To simplify the farther calculations shall we introduce the associator:
{a,b,c} = (ab)c — a(bc). (34)

It is obviously linear by each element. In the associative algebras the associator identically
equal zero. In the alternative ones it is anti-symmetrical by each argument.

{a,b,b} =0 < {a,b,c} =—{a,c,b} (right alternativity), (35)

{a,a,b} =0 <« {a,b,c}=—{b,a,c} (right alternativity). (36)

As a consequence, the associator is cyclic:
{a,b,c} ={c,a,b}. (37)
The alternative algebras are obviously elastic:
a-ba=ab-a, since in them (38)

{a,b,a} = —{a,a,b} =0.
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But the opposite is wrong: not all elastic algebras are associative. Note that the elasticity
property is equivalent to:
{a,b,c} = —{c,b,a}. (39)

It is easy to demonstrate that any algebra obtained by the Cayley-Dickson
duplication (7) from an elastic algebra is elastic too. Thus, the whole infinite chain of
the Cayley-Dickson algebras, beginning from the real numbers, is elastic. As is easy to
show and as is known, the following identities are true in every elastic algebra:

{a,b,bc} = {a, b, c}b, {a,b,cb} = b{a, b, c}, (40)

From which the famous Moufang identities follow:

(ab - c)b = a(bcb) —  right,
(aba)c = a(b - ac) — left,
ab-ca=a(bc)a  — central (41)

By means of these correlations and their linearizations we may easily prove the
Artin’s theorem: in the alternative algebra any two elements generate an associative sub-
algebra.(During the linearization we make the identities linear by each variable. For this
we change the repeating element a with, for example, a + d. After that we reduce the
known identities with the repeating variables.)

We may demonstrate that for the central algebras the elasticity is equivalent to the
important for physical applications property : the jordanity:

a’b-a=a’-ba wm {a’ b,a}=0, (42)

But, in general, the jordanity is stronger (narrower) than the elasticity.
For the algebras with central conjugation the alternativity is equivalent to the useful
for calculations property (let us designate it the conjugated alternativity):

a-bb=ab-b and at the same time a-ab =aa-b, (43)
which means ~
{a,b,b} =0 nu {a,a,b} =0, (44)

or in other words
{a,b,c} = —{a,c, b} u {a,b,c} = —{b,a,c}. (45)

Note that the conjugated alternativity is in generally stronger than the alternativity:
if the real elements belong to the commutative, but not associative center of the algebra,
the conjugated alternativity means the alternativity, but not vice versa.

Let us sum up all the aforesaid in the form of the associative properties hierarchy
(the upper levels mean the bottom ones, but not vice versa) associativity

associativity: a-bc=ab-c {a,b,c} = 0;
alternativity: a-bb=ab-b {a/b,c}=—{a,c,b} {a,b,b}=0
together with a-ab=aa-b {a,b,c} =—{b,a,c} {a,a,b}=0;
jordanity: a’-ba=a’b-a {a?,b,a} = 0;
elastisity: a-ba=ab-a {a/b,c} =—{c,b,a} {a,b,a}=0;

n m

monoassociativity: ~ a” - a™ = a®t™ {a?,a,a} =0 {a,a,a} = 0;
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At last it is important for the farther that the associator of an arbitrary element of
the algebra’s center (in case of the A, algebra - of a real element) with any element equal
ZEro.

{r,a,b} =0. (46)

The multiplicativity of the A _-algebra’s 2-norm

The existence of the central conjugation (property (26)) in the A. algebras
together with the condition of their alternativity leads to the wonderful property of the
multiplicativity (complex, binary etc.) of the 2-norm in these algebras. (The norm of the
product equal the product of the norms.) Here is the line of reasoning (using the the
property of the conjugated alternativity):

Ny(ab) = ab - ba = a(bb -a) = a(a- bb) = aa- bb = Ny(a)Ny(b). (47)

The proof is based on the property ab-ba = a(bb-a). It is obviously fulfilled in the
alternative (therefore conjugated alternative) algebras. Indeed,

ab-ba —a(bb-a) = ab-ba —a(b-ba) = {a,b, ba}.
Due to the conjugated alternativity, this expression equal

{a,b,ba} = —{a,ab,b} = (a-ab)b —a(ab-b) =
= (aa-b)b —a(a-bb) = aa-bb —a(a-bb) = {a,a,bb} = 0.

And so, we have prooved

Theorem 2. Fach alternative algebra with central conjugation possess a
multiplicative (in general not real) 2-norm Ny = aa = aa.

Since it is enough for algebra to be alternative, rather than associative, the octave
(bi-, di-, bibi-, didi- etc.) algebras posses a multiplicative 2-norm (complex, binary etc.)
a well as the quaternion (bi-, di-, bibi-, didi- etc.) algebras.

But what can we say in case of an arbitrary non-alternative algebra with central
conjugation? It is easy to prove the following

Theorem 3. In any algebra with central conjugation the 2-norm of the square of
the element equal the square of the element’s 2-norm :

Nsy(aa) = No(a)Ny(a). (48)
Since so we have the
In any algebra with natural square norm the 2-norm of the square of the element
equal the square of the element’s 2-norm
Theorem 3b. In any algebra with natural square norm the 2-norm of the square of

the element equal the square of the element’s 2-norm.
Indeed, using the power associativity of the algebras A..:

Ny(aa) =aa-aa=(a-ad)a= (a-aa)a= (ada-a)a=aa-aa= Ny(a)Ny(a). O

And again, in spite this result is so easy obtained with our conjugation analysis
method, it seem to be new.
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2-scalar and 2-vector product in A,

Let us obtain some auxiliary results for first.

Lemma 2. For the conjugation of the associator it is true:
{a,b,c} = —{g,b,a} (49)

Indeed, _ ~ ~
{a,b,c} =C((ab-c—a-bc))=c-ba—cb-a= —{c,b,a}.

Using lemma 2 it is easy to prove the following two theorems:

Theorem 4. There are merely imaginary associators in the elastic algebras.
Indeed, according to (46), the associator of elements a, b, c in A, algebras may be
reduced to the associator of merely imaginary elements p,q, g . Since so,

C({a,b,c}) = C({p,q,g}) = —{8,a,P} = +{g,q,p} = —{p,q,8} = —{a,b,c}. O

Theorem 5. In each elastic algebra with central conjugation the multiplication of
three elements under the badge of real part is associative.:

R(ab - c) = R(a- bc). (50)

(Note it is not correct for an arbitrary quantity of elements.)
Indeed, this equality means that

R(ab-c—a-bc) =0, ie. R({a,b,c}) =0,
Which is true for the elastic algebras due to the theorem 4. O
Next, applying (28) two times we have:
a,b] = [a,B)]. (51)

This means that the commutator of two elements of A, algebra is neatly imaginary
relative to the central conjugation of this algebra:

[a,b] = (ab — ba) = ba — ab = —(ab + ba) = —[a,b] = —[a, b].

However, the anti-commutator {a, b} = ab + ba is not necessary real.

From (51) follows the
Theorem 6. A cyclic permutation under the badge of real part in elastic algebras

with central conjugation is possible.
Indeed,

ab—ba=ab—-ba = ab+ba=ab+ba,

i.e.

R(ab) = R(ab) = R(ba) = R(ba), (52)

and as a consequence, due to the theorem 5

R(a-bc) =R(ab-c) =R(c-ab) = R(ca-b) =R(b-ca). O (53)
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Let us introduce the left and the right 2-scalar product with the same formulas as in case
of quaternions and octaves. It is significant, that such product may be a non-real number
(because it does not posses the advantage of the algebraic compliance).

,b), = R(ab) = 1/2(ab + ba)

a,b); = R(ab) = 1/2(ab + ba). (54)

—~ —

Obviously, ~
(a7 b) = (ba a) u (57 b)p = (aa b)l

From (52) it follows
(a7 b)p = %(aB) = %(éb> = (5, E)p = (a7 b)l

In other words,the left and the right 2-scalar products coincide for A. algebras..
Furthermore,

(a,b) = (a,b). (55)
The 2-norm and the 2-scalar product are related with a simple formula:
N(a+b)= N(a)+ N(b)+2(a,b), (56)
and consequently,
1
(a,b) = 5(N(a +b) — N(a) — N(b)), (57)
and in particular,
(a,a) = N(a), (58)

That is why the coincidence of the left and the right 2-norms and the coincidence of the
left and the right 2-scalar products are directly related.

Lemma 3 The following is true for the alternative algebras with central conjugation.
(ab,cd) + (ad, cb) = 2(a, c)(b,d), (59)

(ab,cb) = (a,c)(b,b) = (a,c)Ny(b). (60)

These formulas are the more general expression of the property of multiplicativity of the
A, algebras norm. Since so they may be obtained by the linearization of the latter. (We
replace a and b with a+ ¢ and b + d and reduce the identities of the multiplicativity of
the norm by each variable in

Ng(ab) = Ng(a)Ng(b

~—

: ie. (ab,ab) = (a,a)(b,b).

Now, as is customary, let us introduce the left and the right vector products

(a,b), = %(élz) = 1/2(513 — ba)
(a,b), = ¥(ab) = 1/2(ab — ba) (61)
Obviously: B
(b,a) = —(a,b), (a,a) =0, (a,b),=(a,b). (62)

Note, for vector products

(a,b) # (a, b) or (a,b), # (a,b),.
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Instead, due to (46), in the elastic algebras with central conjugation:
(a,b)? = (a, b)?, i.e. (a, b>§ = (a,b)7, (63)
thus, the following equality is wrong:
({a,b) +(c,d))* # ((& b) + (€,d))*.

It is easy to show, that there is a formula, similar with (60) but for vector product.
This is related with the multiplicativity of A. alternative algebras.

(ca,da)’ = N;(a)(c,d)* = (ac,ad). (64)
We may strengthen this formula in the associative algebras A, to:
(ca,da), = Ny(a)(c,d), u (ac,ad); = Ny(a)(c,d);. (65)
In the elastic algebrasA.:
(b,a),a=a(a,b), u a(b,a); = (a,b); a. (66)
In the alternative algebras A. the following identity is correct:
Ny(a)Ny(b) = (a,b)? — (a, b)?. (67)

Farther, if there is no index p or [pointed, we consider the vector product is right.

Geometric aspect of the associative properties:
concerning the algebra directly related with the Minkowsky norm

We may easy demonstrate the importance of associative properties for geometry
naturally generated by an algebra. The following example is simple, but vivid.

Let us ask ourselves, which hyper-complex algebra is appropriate for the Minkowsky
metric:

L e (68)

We may construct several fitting algebras, basing on the quaternion algebra. They
belong to two classes, which properties some differ from each other. Let us consider two
multiplication tables for example:

x| 1 a1 g qs |1 a q dqs
1|1l a1 a2 g 1Nl a1 Q2 a3
ajar 1 a4 —qf- (Tab. 5a)  Jai|ar 1 —qs —qa|-  (Tab. 5b)
Q@qa —a3 1 a Q2|92 a3 1
Q3|93 92 —aq1 1 Q3|43 92 —q1 1

There is a conjugation in such algebras and it is given with the usual way (each ort is
imaginary, excluding 1):

a=ap-1—aq; — axqz — asqs.
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Since the real part of the argument is a real number, we have the algebras with
central conjugation. The natural square norm is a real number too and does coincide with
the Minkowsky’s metric:

aézag—a%—ag—ag.
The concerned algebras are obviously non-associative and, furthermore, they are not
alternative:

4393 - 91 = g1, but qs-qsq1 = qs3(—q2) = —q.

The second algebra is not even elastic (although, according the Theorem 1b it is
mono-associative as an algebra with the natural square form). This fact is not as obvious
as in case of the non-alternativity. The products of the orts will always satisfy the elasticity
property (it is related with the fact that the square of an ort equal the real number +1).
Using (46), we may reduce the elasticity to the elasticity of the multiplication of imaginary
parts p, q of the elements a, b:

qa-pq—qp-q=0 or

q-pqa+q-pq=2R(q-pq)=0. (69)

Thus, we have a useful elasticity criteria:

The algebra with central conjugation is elastic if the expression of imaginary elements
q - pq does not contain real members.

And, as we may easy see, in the concerned algebra

3%(01 : p(I) = GS(Cllbz - a251) # 0.

At last, as in all algebras with square norm, the norm of the square of an element
equals the norm of the square:

Nsy(aa) = Ny(a)Ny(a).
This identity may be checked directly. Since the norm
aa = (a3 +a? + a3 +al) - 1+ 2apa1q; + 2apa2qs + 2apasqs,

this identity may be written as

2 2 2 o2 _ 2 2 2 2\2 2 2 2
(ag —a] — a3 —a3)” = (a5 + aj + a5 + a3)” — daga] — 4aga; — 4apas.

Now let’s explore the firsthand geometric consequences of all these algebraic
properties.

1)Since all these algebras are non-associative, the movement in them may not be
given by means of inner automorphisms:

a =u-au’, (70)
Because the following, which is good for the associative algebras, does not work here:
a-b'=(u-au!)-(u-but)=u-a-(u'-u)-bul=u-ab-u!=(ab).

2) Since all these algebras are non-alternative, the movement in them may not be given by
means of multiplication by the elements of a unit norm. The norm of the multiplication
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in alternative algebras does not equal the multiplication of the norms, therefore the norm
of the image does not equal the norm of the pre-image.

Ns(ea) # Ny(e)Ny(a) = No(a).

Since the second algebra is mnon-elastic, we have the problem of defining the
orthogonality of merely imaginary elements (which are supposed to be equivalent to the
usual 3-d space vectors). Indeed, in the elastic algebras, according to (52) and (69)

3) Since the second algebra is non-elastic, we have the problem of defining the
orthogonality of merely imaginary elements (which are supposed to be equivalent to the
usual 3-d space vectors). Indeed, in the elastic algebras, according to (52) and (69)

R(gp-q) = R(q-qp) = 0.
Consequently,
O=R(qp-q+9q-9qp)=qp-q—q-pq+q-qp —pq-q =
=q(gp—pq)+ (ap —pa)a=q<p,g>+<p,g>q=(q,<q,p >).

Thus, we have

Theorem 7. In the elastic algebras with central conjugation the vector product of
three arbitrary imaginary vectors is orthogonal to each one of them:

(a,<q,p>)=0. (71)

In the second algebra it is not so, therefore the notion of orthogonality is algebraically
undefined.

All this shows that the demand to generate "the good geometries" is quite active
constraint. The excessive moving away from the associativity leads to the superficial
geometries.

2-norm, 2-scalar and 2-vector multiplication

for the algebras of the biquaternions, diquaternions and bioctaves

2-scalar product for the biquaternions (upper sign) and di-quaternons (lower sign)
is easy to calculate. For the orts it is

(qk7 qs) == 5ks (CIk; is) - i05k87 (ika is) - :F6k3 (72)

In the component-wise and in the brief form the scalar product is:

(a, b) = aobo + a1b1 + a2b2 + (Igbg F (k‘olo + k’lll + k’glg + k3l3)+
+ (aolo —f- a1l1 =+ a2l2 —|— a3l3 —f- kobg + klbl + ]{fgbg + ]{73b3> . i(), (73)

(a,b) = (a,b) F (k,1) + ((a,1) + (k,b)) - io. (74)

From here or basing on (20) it is easy to calculate the 2-norm Nj(a) = (a,a) of
biquaternion and diquaternion algebras in the brief:

Ny(a) =aa = (a+k-ip)(@a+k-ig) = aa F kk + (ak + ka) -ip, wnm

Na(a) = Ny(a) F Na(k) + 2(a, k) - io, (75)



38 Eliovich A. A. On the norm of biquaternions and algebras with central conjugation

and in the component-wise form:
No(a) = aj + a3 + a5+ a3 F (kg + ki + k3 +k3) + 2(aoko + arky + asks + asks) -ip (76)
In the same way, the 2-scalar product for the bioctaves algebra is:
(ar: as) = (ex,e5) = 0ps (i, 1s) = (b, £s) = Fors, (A, is) = (e, £s) = iodps.  (77)

The rest pairs of orts give 0. From here the 2-norm for the bioctave algebra in the brief::

Ng(a):<a+Aeo+ki0+Kf0>(a—Aeo+l_€i0—Kf0):
=aa+ AA —kk — KK + (ak + ka+ KA+ AK) -ig+0-ey+0-fy, =
= Ny(a) + Na(A) — No(k) — No(K) + 2((a, k) + (A, K)) - i, (78)

and in the component-wise form:
Ny(a) = aj+ai+a3+a3 +AS+ A2+ A5+ A — ki —ki—ky—k; —Ki— K —K; — K3
+ 2(&0]%'0 + a1k1 + (ng'g + ngg + A()KO —+ AlKl + AQKQ + AgKg) . io (79)

Let us also give the 2-vector and for biquaternions and diquaternions in the brief
form:

(a,b) = (a +igk,b+1ipl) = (a,b) F (k,1) + ({a,1) + {k,b))io, (80)

and in the component-wise form:

<a, b> = (—aobl + albo — a2b3 + a3b2 + (—k’oll + /{,’1[0 - k2l3 + k3l2)) 1 +

(—aoba + arbs + azbo — asby F (—kola + kils + kolo — kslh)) - g2 +
(—aobs — arby + azby + asby F (—kols — kila + koly + kslo)) - qs +
+ (—aoll + (11[0 — a2l3 + &3[2 — k’obl + klbo — k’gb;g + kﬁgbg) : il +

+ (—aolg + a113 + aglo - &3[1 - k’obg + klbg + k’gbo - k‘gbl) : iQ +
+ (—aolg — allg + a2l1 + aglo — kobg — k’le + kzbl + k’gbo) . i3. (81)

Multi-norm and multi-scalar product for the A. algebras

Which algebras do posses the multiplicative norm of the second degree? This question
was thoroughly considered and solved in XIX-th century (see [3], [11], [12]).

According to the Gurvitz theorem, any algebra with unity and possessing a
multiplicative positive-defined norm is isomorphous either to real or complex numbers,
quaternions or octaves.

The generalized Frobenius theorem claims that any alternative algebra with division
is isomorphous to one of the algebras from the same list

The generalized Frobenius theorem claims that any alternative algebra with division
is isomorphous to one of the algebras from the same list. According to the Albert’s
theorem, the algebras with unity, which real elements are real numbers, and which posses
the non-degenerated multiplicative square form, are the algebras of the complex and dual
numbers, quaterinions and anti-quaternions, octaves and anti-octaves.

According to the Pontriagin’s theorem, only the real and the complex numbers,
quaternions and octaves are the associated locally compact alternative topological bodies.
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Consequently, the spaces of biquaternions, diquaternions and bi-octaves are not simply
connected.

Finally, as it follows from the Tsorn’s theorem, the only simple alternative non-
associative algebras are octaves, anti-octaves and bi-octaves.

In the 50-60ths year of XX century the problem of the multilicativity of more than
2 degree forms was stated and solved by R.D. Shafer [5] (7] (with Kevin McCrimmon’s
supplements|8]).

The meaning of the forms of the n degree is following. Let us have the vector space
V', possible infinite-dimensional, over the field F' of the characteristic 0 or p > n (real and
complex numbers have the characteristic 0). Than the mapping u — N(u) V to F' is
called the form of the n degree over V if

N(Au) = A"N(u) forany Ae F,uelV.

The result of that time’s researches is the following theorem.

May U — an algebra with unity, in general infinite-dimensional, over the field F' of
zero or p > n characteristic. A non-degenerated form N permitting a composition over U
do exist if and only if U is an alternative separable algebra U =U; & ... 4 U,, U; — the
simple algebras of the m; degree, where

n=myfi+...+mfr, (82)
is satisfied for in case of the positive whole numbers f;(i = 1,...,r). Furthermore, the
form N over U is given with

N(u) = [na(u)* - [ (u,))7, (83)

, where n;(u;) - a form over the simple algebra U;.

Sharfer’s theorem. May U — an algebra with unity, in general infinite-dimensional,
over the field F' of zero or p > n characteristic. A non-degenerated form N permitting a
composition over U do exist if and only if U is an alternative separable algebra U = U; &
...®U,, U; - the simple algebras of the m; degree, where

n=mifr +...+m.f, (84)
is satisfied for in case of the positive whole numbers f;(i = 1,...,r). Furthermore, the
form N over U is given with

N(u) = [na(u)* - [ (u,))7, (85)

where n;(u;) - a form over the simple algebra U;.

The notion of the non-degenerated norm of the n-degree is important in this theorem.
Here is the meaning of that. To each n-norm we naturally connect the n-linear form of
the n-scalar product of n hyper-complex numbers according to the Sharfer’s formula:

The notion of the non-degenerated norm of the n-degree is important in this theorem.
Here is the meaning of that. To each n-norm we naturally connect the n-linear form of
the n-scalar product of n hyper-complex numbers according to the Sharfer’s formula:

1 - .
(ul,ug,...,un):E[N(ul—l—...—kun)—ZN(u1+...+ui+...+un)
i=1

+Y N+ ) — L (-D)Y N ()], (86)

1<j
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where 11; means that u; is left out. It is easy to see that

n—1
No(u) = (w,u,...,u),  since » (=1)*Ci(n—k)" =n
k=0
It is obvious that the form (uj,us,...,u,) has all properties, which may naturally

be expected from the generalization of the scalar product. It is real, symmetric over each
permutation of the involved vectors, linear over each one of them (and, in particular, it
turns out to be zero, if one of the vectors is zero).

According to the Shafer’s definition, the form of the n degree is called non-degenerated
if from (uy,uy,...,u,) =0 for all uy,...,u, € V follows u; = 0.

The alternative algebras with central conjugation do satisfy Shafer theorem’s
condition (if their initial 2-norm is non-degenerated). Since so, the real non-degenerate
multiplicative norm of the n degree exist in them. The Shafer’s theorem does not provide
us with the direct algorithm of constructing such norm in general case. But for the algebras
with central conjugation this algorithm is clear enough, since we already know 2-norm,
which is multiplicative, according to the foresaid. It is especially simple to construct
n-norm if the concerned algebra may be obtained with the help of the chain of duplications
(not necessary Cayley-Dickson’s) from the real numbers, i.e. it is sequentially graduated
and it has the 27 dimensionality (almost all actually important hyper-complex algebras
belong to this class). All we have to do is to get rid of the half of the algebra’s center
members using the conjugation set while duplicating the norm’s degree. We use the
following identity here: (a? + b*)(a® — b*) = 0 (a and b commute with each other, since
they belong to the algebra’s center). This process is to be repeated till there is only real
number left. As a result, if the algebra’s center consist of r = 2¥ elements, the norm of
the algebra has the n = 2r = 2¥+! degree.

The multiplicativity of the obtained n-norm follows from the 2-norm’s
multiplicativity. Let us prove it using the induction method. Indeed, it is true that

NQ(UV) = NQ(U)NQ(V),
may it be correct and for the m = 2* degree:
Ny (av) = Ny (a) Ny, (V).

But N,,,(u) in the A, algebras belongs to the closed associative commutative algebra
with unity, which is the sub-manifold of the algebra’s center.

If this algebra (let us designate it +++ ) coincides with 1, the prove is complete.
If no, we consider the algebra generated by 1 and some element r; of A,. If we do not
obtain A, again, we add an element 5 of A, and consider the algebra constituted by all
multiplications 1,7, ry (with any real coefficients) an so on.

In the end we shall obtain the algebra A, from the set {1,7,...,7,}, and from the
set {1,71,...,7,_1} we get the A, 1 —it’s "half" sub-algebra. Each element of A, may be
written as

t=s+r.S,

where s, S belongs to the sub-algebra A, ;. Let us introduce the involution now:

Cls+r.,S]=s—r,S, u B gactooctn  C(r,) = —C(r,).
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Than C[r?] = r? and, considering the commutativity of A, algebra, we obtain:
C[I‘lrg] = C[(Sl -+ rZSI)(SQ + I'ZSQ>] = C[Slsz + I'zslsg + (8182 -+ Sgsl)rz] =
S1S9 + I'gslsQ — (8182 + stl)rz = (Sl — I'zsl)(Sg — I‘ZSQ) = C[I‘l]C[I‘Q].
Now we may introduce the 2k degree norm according to the rule:
Nag(u) = Ni(u)C[Ng(u)]
and we may prove it’s multiplicativity:
No(uv) = Nig(uv)C[Ni(uv)] = Ni(u) Ng(v)C[Ng(u) Nk (v)] =
Ny, () N (V) C[Ng (w)|C[Ng (v)] = Nip(u) C[Nip () [Ny (v)C [Ny (v)] = Nog () Nop(v).

so, the given method of the constructions of n-norm also proves the

Theorem 8. Fach alternative sequentially graduated algebra with the central
conjugation and non-degenerated 2-norm possesses the non-degenerate multiplicative norm
of n-th degree, which may be expressed with the help of the conjugations set via the initial
2-norm. At that the norm’s dimensionality is twice higher then the dimensionality of the
algebra’s center (invariant relative to the basal conjugation) n = 2r.

Since the n-norm is constructed on the ground of 2-norm, it automatically has many
of 2-norm’s properties. Do does the n-scalar product. Thus,

N, (@) = N,(u),
(ﬁ17ﬁ27"'7ﬁn) = (u17u27-"7un)7

(vug, vug,...,vu,) = Ny(v)(ug,ug, ..., u,). (87)

4-norm for the biquaternions, diquaternions and bioctaves

It is especially easy to obtain a real norm of the biquaternions, diquaternions and
bioctaves. It’s of the fourth degree. The algorithm is obvious: 2-norm is a complex or
double number; having multiplied it by the conjugated, we obtain a real number.

Ni(a) = Ny(a)Ny(a)" (88)
Taking into consideration (24), we have:
Ny(a) = aa(aad)" = aaa*a”. (89)
In the block form for biquaternions and diquaternions:
Ny(a+ ki) = (Na(a) F Na(k))? £ 4(a, k)?, (90)
and for the bioctaves:
Nyla+A-eg+k-ig+K-£)) = (No(a)+No(A)— Na(k) — No(K))*+4((a, k) + (A, K))2 (91)
In the component-wise form for biquaternions and diquaternions:

Ny(a) = (ag + a% + a% + ag T (kg + kf + kg + kg))Q + 4(apko + arky + agks + a3k3)2, (92)
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And for bioctaves:

Ny(a) = (ag+aj+a3+a3 + A2+ AT+ AS+AS —kg—ki—ki—ki —Kj—K;—K;—K3)?
+ 4(a0k0 + a1ky + asko + asks + AgKy+ A1 K| + Ay Koy + A3K3)2. (93)

Obviously, all norms are non-negative. But they are not positive defined (and they can
not be ones, due to the Frobenius theorem): Ny(a) = 0 doesn’t mean a = 0. Indeed, in
case of quaternions it is enough to take a = A for the 4-norm to be zero:

Ny(a +a-ip) = (Na(a) + Na(a))? — 4(a, a)* = 4Ny(a)? — 4Ny(a)?* = 0.

For the biquaternions the situation is some more complex. To make the 4-norm we
have to take A with the norm equal the norm of a, A has to be perpendicular to a also.
For example: a = 3i; — 2i3, A = 2iy + 3is.

The formula of the multiplicativity of the 4-norm of the bioctaves in the quaternionic
form (using some simple, but some lengthy transforms, we may prove it directly) looks
like:

(Na(a) + Na(A) = Ny(k) — No(K))* + 4((a, k) + (A, K))*
(Na(b) + Na(B) = No(l) — No(L))* +4((b, ) + (B, L))" =
(Na(ab — BA — kl + LK) 4+ Ny(Ba + Ab— Lk — K1)
—Ny(al — LA+ kb — BK) — Ny(La + Kb+ Bk + Al))”
+4((ab— BA—kl+ LK, al — LA+ kb — BK)
+(Ba+ Ab— Lk — KI, La+ Kb+ Bk + Al))’ (94)

We give here the identity of the multiplicativity of the 4-norm for bioctave algebra
rather for the illustrative purpose.

[(a3+ a3+ a3 +af + A3+ A3+ A3+ A3 — K3 — ki — k3 — K3 — KZ — K} — K3 — K3)?
+ 4(aoko + ark1 + a2kz + agzks + AgKo + A1 K1 + A2K2 + A3K3)2]-
[GB+v2+03+03 + B3+ B+ B3+ B} —3 -3 —13—13 — 13— L3 - L3 - L3)?
+ 4(bolo + b1l + bala + b3l3 + BoLo + B1L1 + BaLa + 33L3)2] =

(aobo — a1by — agby — agbs — AgBo — A1B1 — A2Ba — A3 B3 — kolo + k1l1 + kala + kals + KoLo + K1L1 + KoLz + K3L3)?
+(apb1 + a1bo + azbs — aszba + AgB1 — A1Bg — AaBs + AsBa — koli — kilo — kals + kska — KoL1 + K1Lo + KoLz — K3Lo)?
+(aobe — a1bs + azbo + azby — kolz + k1ls — ko Bo — k3 B1 + AgB2 + A1 B3 — AsBo — AsBy — KoLa — K1L3 + KoLo + K3L1)?
+(aobs + a1ba — azby + azbo — kols — kila + kaly — k3l + AgBs — A1Ba + A2By — A3Bo — KoL3 + K1La — KoLy + K3Lg)?
+(aoBo — a1 B1 — a2Ba — a3 B3 + Agbo + A1by + A2bs + Agbs — koLo + k1 L1 + kaLa + ksLs — Kolo — K111 — Kala — K3l3)?
+(aoB1 + a1 By — a2Bs + azBa — Agby + A1bg — A2bs + Agba — koL1 — k1Lo + kaLs — ksLa + Koly — Kilo + Kalz — K3l2)?
+(aoBz 4+ a1B3 + a2 By — a3 B1 — Agba + A1bz + Aabo — Azby — koLa — k1L3 — kaLo + k3L1 + Kola — K1l — Kalo + K3l1)?
(aoB3 — a1Ba + a2 By + a3 Bo — Agbz — A1ba + Aab1 + Azbo — koL + k1La — kaL1 — k3Lo + Kols + Kila — Kal1 — K3lg)?
—(aolo — a1ly — aaly — azlz + kobo — k1b1 — kaba — k3bs — AgLo — A1Ly — AsLa — A3L3 — KoBo — K1B1 — K2 By — K3B3)?
—(aol1 + a1lo + asls — azla + kob1 + k1bo + kabs — ksba + AgL1 — A1Lo — AsLs + AsLo + KoB1 — K1Bog — KoBs + K3B2)?
—(
—(
—(
—(
—(

+

)
apla — a1l + aslo + asly + koba — k1b3 + kabo + ksb1 + AoL2 + A1L3 — AoLo — AsL1 + KoB2 + K1B3 — K2By — K3B1)?
apls + a1ly — asly + aslo + kobs + k1ba — kaby + ksbo + AoLs — A1 Lo + AsL1 — AsLo + KoBs — K1B2 + K2B1 — K3Bp)?
aoLo —a1L1 — asLa — agL3 + Aolo + A1ly + Asls + Asls + koBo — k1B1 — ka B2 — k3 Bs + Kobo + K1b1 + Kabs + Ksbz)?
aoL1 +a1Lo —asLs + agLo — Agly + A1lg — Asls + Asls + koB1 + k1Bo — kaBs + ks Ba — Kby + K1bo — Kabs + Ksb)?
aoL2 +a1Ls +asLo — agLy — Aol + A1l + Aglg — Asly + koB2 + k1Bs + kaBo — ks B1 — Kobe + K1b3 + Kabg — K3b1)?

—(aoL3z —a1L2 +az2L1 + a3Lo — Aglz — A1l + Aaly + Azlo + koB3 — k1 B2 + k2 B1 + k3 Bo — Kobz — K1b2 + Kaby + K3b0)2]2
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+4[(aobo —a1br —agby —azby — AgBo — A1B1 — A2 By — A3Bs — kolo + k1l1 + k2l2 + k3ls + KoLo + K1L1 + KaLa + K3L3)-
(aolo — a1li — a2la — asls + kobo — k1b1 — kaba — ksbs — AgLo — A1L1 — ALy — AzLs — KoBo — K1B1 — KBy — K3B3)
+(apb1 + a1bo + a2bs — azbas + AgB1 — A1Bo — A2Bs + A3Bo — kol1 — kilo — kals + kska — KoL1 + K1Lo + KoL3 — K3Lg )-
(aolt + a1lo + a2l3 — asla + kob1 + k1bo + kabs — kaba + AoL1 — A1Lo — AaL3 + A3Ly + KoB1 — K1Bo — K2B3 + K3B2)
+(aob2 — a1bs + a2bo + azbi — kola + kils — kaBo — k3B1 + AoB2 + A1B3 — A2Bo — A3B1 — KolL2 — K1Ls + KoLo + K3L1)-
(aolz2 — ails + azlo + asly + koba — k1bs + k2bo + ksb1 + AoL2 + A1Ls — AsLo — AsL1 + KoB2 + K1Bs — K2Bo — K3B1)
+(aobs + a1ba — azb1 +aszbo — kols — kila + koli — kslo + AoBs — A1B2 + A2B1 — A3Bo — KoLs + K1L2 — KaL1 + K3Lo)-
(aols + a1lz — azli +aslo + kobs + k1ba — kob1 + kabo + AoLs — A1La + A2L1 — AzLo + KoBs — K1B2 + K2B1 — K3Bo)
+(aoBo — a1B1 — a2 B2 — azgBs + Aobo + A1b1 + A2ba + Azbs — koLo + k1L1 + k2L + ks L3 — Kolo — Kili — Kala — K3sl3):
(aoLo —a1Ly —azLa —a3L3 + Aolo + A1l + Azlz + A3l3 + koBo — k1 B1 — ka B2 — k3 B3 + Kobg + K1b1 + K2ba + K3b3)
+(aoB1 + a1Bg — a2 B3 + a3 Bz — Agby + A1bg — Agbz + Azba — koL1 — k1Lo + ko L3 — k3La + Kol1 — K1lo + Kalz — K3la)-
(aoL1 +a1Lo —a2L3 + az3La — Apli + A1lo — Aalz + Asla + koB1 + k1 Bo — ka2 B3 + k3Ba — Kobi + K1bo — Kabs + K3b2)
+(aoB2 + a1 B3 + a2 By — azB1 — Agba + A1b3 + Aabg — A3by — koLa — k1L3 — ko Lo + k3L1 + Kola — K113 — Kalg + K3ly)-
(aoL2 +a1L3 + a2Lo — a3zl — Aol2 + A1ls + Azlp — Asly + koB2 + k1 B3 + k2 Bo — ks B1 — Kobz + K1bs + Kaby — K3b1)
+(aoB3 — a1 B2 + a2 By + azBo — Agbs — A1ba + Aaby + A3bg — koL3 + k1L — ko L1 — k3Lo + Kols + K1l — Kali — K3lp)-
(aoLz —a1La 4+ aaL1 + a3Lo — Aglz — A1la + Aaly + Aslo + koB3s — k1 B2 + k2B + k3 Bo — Kobs — K1b2 + Koby + Ksbo)] 2‘
(95)
This elephant-like identity is a direct generalization of the famous eight squares identity.
Furthermore, we assume this identity maximal and extraordinary. Since the bioctaves,
according to the Tsorn’s theorem, are the maximal simple alternative (non-associative)
algebra, all the identities of the greater dimensionality are reducible to this one. Like the
formulas of the squares sum, this identity reveals the existence of the bioctaves algebra,
depite of the fact that it is random from the position of the real numbers.
The knowledge of the 4-norm allows us to introduce the inverse element for the
bi(di)quaternions and bioctaves (and, after all, for any 4-norm algebra with central
conjugation). Since

Ny(a) = Nx(a)N; (a) = aaN;(a), Ni(a) = aaN; (@), Ni(@) = Na(a),
then it is clear how to introduce the left and the right inverse element:

_, aNj(a) a-a*a* 4 Ny@a
a = = , & = —"F=a, . 96
P Ny(a)  Nu(a) l Ny(a) — 7 (96)

Since Ny(a) = Na(a), then the left and the right inverse elements coincide in any algebra
with central conjugation — with any degree of the norm, since the argumentation is simply
generalizable. the fact that (96) really give the inverse element:

aa)' =a;'a=1. (97)

follows from the associativity of the multiplication of real 2-norm and any element of the
algebra. (the property (46)).
Thus, each element of algebra A, with non-zero 4-norm has an inverse element.

Dual 4-norm for the biquaternons and diquaternons

The unexpected fact is that there is an absolutely different way to obtain the 4-norm
for the biquaternons and diquaternons. In other words — to obtain a real number for an
arbitrary element with the help of multiplications and conjugations.

If we take the dual conjugation a (22) as a basal one instead of a, than there will be
only invariant (real) members in the product aa. These members are proportional to the
orts 1,1y, ig, i3.
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Since these ort anti-commutate with each other, we may multiply aa by it’s complex
conjugation aa)* (all members with orts iy, iy, i3 will change the sign) and obtain a real
number.

So, we may introduce the 4-norm for bi(di)quaternions with the following way:

NP(a) = aa(aa)*. (98)

Since the dual conjugation is a = a — igk (22),
than the alternative 2-norm (i3 = F1) for the bi(di)quaternions in the block form is

NP2(a+k-ig) = (a+k-ig)(a— k- ip) = No(a) £ No(k) + 2(k, a)ip. (99)
Farther, Nj¥(a) = NS (a)[Ns°(a)]*. But, since
(m+q-ig)(m—q-ig) =m* £ ¢

for a real m and neatly imaginary quaternion q, than in the block form the second
4-norm for the bi(di)quaternions is

NE(a+ k- i) = (Na(a) £ Na(k))? £ 4(k, a). (100)

The alternative norm contains a vector product of the quaternions instead of the scalar
product.
Since for the purely imaginary quaternion g = — 3", g3, than in the componentwise
form we have ((i2 = —1,+1)):
NP(a) = (a2 + a4+ a2+ a2 + (k2 + k2 + k2 +£2))” T 4(arko — aoky + asky — agks)”
2 2
+ 4(@2]€0 - (Iok’g + alk'g — agk’l) + 4(&3]{30 — aok'g + G,le — alk’g) . (101)

Thedual 4-norm is absolutely dislike the first 4-norm. Nevertheless, shall we prove
their equivalence. Considering (24) and that a = a*, we obtain:

NP(a) = aaa*a* = aaa*a = a(aa)*a.
But aa, with it’s modification (aa)* belong to the algebra center. Consequently,
NP(a) = a(aa)*a = aa(aa)" = Ny(a).

Just as expected. This fact in the quaternion form for the biquaternions (for the
diquaternions we have the same, but in inverse order):

(Ny(a) — No(k))? + 4(a, k)* = (Ny(a) + No(k))* + 4(k, a)?, (102)
And, after some evident transformations we have the identity: (67)
Ny(a)No(k) = (a, k) — (k,a)?.
In the real numbers form it looks pretty good too:

(ag +ai + a5+ a3)(AZ + AT + A3 + A3) =
(CLOAO + a1A1 + CLQAQ + CL3A3)2 + (CLlAO - a0A1 + (I3A2 - CL2A3)2
+ (CLQAO — a0A2 + CLlAg — (13141)2 + (CL3A0 — a0A3 + CLQAI — 0,1142)2. (103)
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4-scalar product for the biquaternions, diquaternions and bioctaves

In case of n = 4 the Shafer’s formula +++ looks like this: (86):

(a,b,c,d) = i[N4(a+b+c+d) — Nya+b+c)—Nya+b+d)— Nya+c+d)
— Ny(b+c+d) + Ny(a+b)+ Ny(a+c)+ Ny(b+c)+ Ny(a+d)
+ Ny(b+d) 4+ Ny(c+d) — Ny(a) — Na(b) — Ny(c) — Ny(d)]. (104)

Having considered (88),(56) after some calculations we obtain the formula of 4-scalar
product in the A, algebras with 4-norm:

(a,b,c,d) = é[(a, b)(c,d)" + (a, ¢)(b,d)" + (a,d)(b, c)"
+ (c,d)(a,b)* + (b,d)(a,c)* + (b,c)(a,d)"], or  (105)
(a,b,c,d) = %[(a, b)(c*,d*) + (a, c)(b*,d*) + (a,d)(b*, c")

+ (c,d)(a*,b*) + (b,d)(a*,c*) + (b,c)(a*,d")]. (106)

It is easy to get some useful consequences from this formula. Thus, to solve the geometrical
questions the real 4-forms of two vectors are important. Basing on 4-form of 4-vectors we
may introduce two such forms:

(a,a,b,b) = é[Nz(a)Ng(b) +4(a,b)(a,b)* + Na(b)N; (a)], (107)
(a,a,a,b) = £ [Na(a)(a, b)* + (a,b) N (a)], (108)

and it is usefull to remember the third one:
{a,b} = (a,b)(a,b)". (109)
We note the symmetric form too:
ach = (a,a,2,b)+(a, b,b,b) = = [(Na(a)+ Na(b))(a, b)*+(a, b)(N3 () + N5 (b))] (110)
Using it, the formula of the 4-norm of the sum

Ny(a+b)=(a+b,a+b,a+ba+b)=
= Ny(a) +4(a,a,a,b) +6(a,a,b,b) +4(a,b,b,b) + Ny(b) (111)

looks like:
Nyi(a+b) = Ny(a) + Ny(b) + No(a) N5 (b) + Na(b)N5(a) + 4{a,b} + daob  (112)

The properties of the forms (a,a, b, b) and (a, a, a, b) really differ from each other.
True, the symmetric form (j,, jp,jq.J,) for the bioctaves (octaves, bi(di)quaternions)
is

(jp’jpajqajq) =1 with pP=4q,
(prdprdgrdg) = £1/3  with p#q. (113)
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Opposite, j, o j, equals zero not only in case of (j,,j,) = 0, but in all cases if j, u j,
are different:

(jpajpvjpvjq) =0 if p 7é q, (114>
and that’s why
Jp g = 0pgs (115)

Thus,the relation aob = 0 may be assumed as the generalization of the orthogonality
of vectors in case of the 4-norms
It is usefull to remember while the calculations that

aa” = a*a that’s why ab*+ ba" = b*a+ a*b. (116)

4-vector product for the biquaternions and bioctaves

It worths to go farther than Shafer and to generalize the vector product, not only
the scalar. For the biquaternions and bioctaves and the similar ones we may propose the
following 4-vector multiplication:

(a,b, c,d) = é[(a, by(c,d)* + (a, c)(d, b)* + (a,d) (b, c)"
+ (c,d)(a,b)* + (d,b)(a,c)* + (b, c)(a,d)*], wim  (117)
(a,b,c,d) = é[(a, b)(c*, d*) + (a,c)(d*,b*) + (a,d)(b*, c*)

+ (c,d)(a,b)* + (d,b)(a,c)" + (b,c)(a*,d")]. (118)

This 4-vector product is absolutely anti-symmetric by the permutations of any pair
of vectors. As the 2-vector product, it is not a real number, but a hyper-complex vector.
It is interesting that unlike 2-vector product (which is neatly imaginary), the 4-vector
product is real relatively to the basal conjugation T (therefore it contains only 1 and iy
orts). If the half of the norm’s degree is an even number, than the n-vector product will
be real. If n/2 is an odd number — imaginary (so the 2-vector product of the quaternions
is imaginary).

If we formally create the 4-vector product of the quaternions (which are the
algebra with the 2-norms, rather than 4-norms), we obtain a real number with an
evident geometrical meaning. The 4-vector product equals the determinant of the matrix,
composed from the coordinates of the vectors involved:

ag by co dy

a; by ¢ dy

(a,b,c,d) = (119)

az by co dy

asz bs c3 ds

Thus, it equals the 4-volume of the parallelepiped, strained over four vectors, i.e. it
coincides with the parallelepipedal product of the 4 order.

The norm and the scalar product of the quaternions in the isotropic basis
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The structural properties of the algebra may be better understood in terms of the
isotopic basis, which is constituted of the vectors with zero norm. As is known, the ideal
in the semi-simple associative rings are generated by the idempotents. Let us take two
isotropic idempotents (e? =€) uy u vy in the biquaternion algebra and obtain with their
help an isotropic basis {u;, v }:

u =1+1i3, w=qi(l+i3), uy=q(l+iz), uz=qs(l+is),
vo=1—1i3, vi=qi(l—1i3), vo=qu(l—1i3), v3=qs(l—is), (120)

or, in the evident form:

u=1+13, u=q;—1, uy=qe+1;, uz3=qs— l,

vo=1—13, vi=gq;+1iy Vva=qy—1;, V3=qsz+io. (121)

Here is the multiplication table of the biquaternion algebra in the isotropic basis:

X g U1 U9 us (Vg Vi V9 V3

up|ug O 0 ug |0 vi  vo 0

u;ju; 0 0 —ue| 0 —vg v3 0
us|uy O 0 wu |0 —vy3 —vg O
uslu; 0 0 —-ug|0 vo —vi 0 |. (T'ab. 6)
vol0O u; wu 0 |[vg O 0 wv3
vi| 0 —ug ug 0 [(vi O 0 —vy
vo|l 0 —uz —uy 0 |vo O 0 wv
vz3|0 uy —u; 0 |vy O 0 —vqo

We may see, that the set of vectors u, m vy constitute left ideals in the biquaternion
algebra. (The left multiplication of any element by an arbitrary element of this set gives
the element of this set). The ideals may not be two-suede due to the simplicity of the
biquaternion algebra). The 2-scalar product table for isotropic basis:

(X)|ug wg uy uz | vy vy vg v3
u |0 0 0 0|1 0 0 i
u ([0 0 0 0|0 1 —ig O
u |0 0 0 00 i 1 O
us |0 0 0 0 |—ipg 0 0 1 (Tab. 7)
vo|ll 0O O —ip| 0 0O 0 O
vi|0O 1 i 0[O0 0 0 O
va|0O —ig 1 0|0 O O O
vylip, 0 O 1|0 O O O

From here we have the appearance of the 2-norm in the isotropic basis ug, vi. Let
us write down a in the isotropic basis:

a=qap+ aiqq + axqs + azqs + koig + kiiy + kois + ksis,

a = rgUg + 11Uy + roUg + 13Uz + SoVg + S1V1 + SaVo + S3V3, (122)
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where the real numbers 7y, s;.:

o = 1/2(@0 -+ ]{Zg), r = 1/2(@1 — ]{ZQ), To = 1/2(&2 + ]{?1), r3 = 1/2(@3 — k(]),

so = 1/2(ag — k3), s1=1/2(ay + ka), s2 = 1/2(az — k1), s3 = 1/2(a3 + ko). (123)
Than the two norm in the isotropic basis is
Nsy(a) = (a,a) = roso + 1151 + 1282 + 1383 + 10(roS3 — 1380 + 7281 — 1152) (124)
From here we have the 4-norm in the isotropic basis:
Ny(a) = (roso + 1151 + rasy + 1353)% 4 (ros3 — 1189 + 7951 — r380)%. (125)

The norm and the scalar product of the diquaternions if the isotropic basis

In the diquaternion case the situation with the isotropic basis is a bit more comlex,
but the result is more simple.

As it follows from the table 5, the 2-norm on a square ground can not turn to zero.
Thus, the situation changes on the ground of norm of the 4 degree, which may be turned
to zero evidentially. Let us take two idempotents and pick the 4-isotropic basis like this:

u =1+ip, w=q(l+iy), uy=q(l+ig), wuz=qs(l+ip),
Vo = 1-— ig, Vi = Q1(1 - io), Vo = q2(1 - io), V3 = q3<1 - ig), (126)

or in the evident form:

u =1+1i, w =q;+1i;, uy=qe+iy uz3=qs+tis,

vo=1—1p, vi=q;—1i, Vva=qy—1iy, Vv3z=q3—1i;s (127)

Here is the multiplication table of the biquaternion algebra in the isotropic basis:

X|lug w3 Uz u3 |vg Vi Va2 V3

uplug u; us uz [0 O 0 0

ujju; —ug uz —u2| 0 O 0 0

ulug —uz3 —ug u; |0 0 0 0

uz|u; uy —u; —up|0 O 0 0 (T'ab. 8)
vol 0O O 0 0 |[vo vi v2 V3

vi|0 O 0 0 |vi —vg V3 —Vo

vo| 0O O 0 0 |vog —vg —Vvg Vi

vy 0 O 0 0 |vy voa —Vvi —Vvg

The vector sets u; and vy, constitute the two-sided ideals in the diquaternion algebra,
which may be expanded into their direct sum.

In other words the diquaternion algebra is not simple, but semi-simple. That is why
the scalar product of the diquaternions in the isotropic basis is very simple:

(U-z',uk) = d;,Uo, (Vszk) = 0ik Vo, (uz‘,Vk) =0, (128)
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Let us write down a in the isotropic basis:

a=ay+ aiqq + axqe + aszqs + koig + kiiy + kois + ksis,
a=rgug + riu; + reus + r3u3 + SgVg + S1Vy + S2Vay + S3Vs,

where the real numbers r, s;:

ro = 1/2(@0 + ]{?0)7 r = 1/2(@1 + k?l), To = 1/2(@2 + kg), s = 1/2(&3 —f—kg),
So — 1/2(@0 - k‘o), S1 = 1/2(@1 - kl), SS9 = 1/2(@2 - /Cg), S3 = 1/2(@3 - ]{?3)

shall we obtain the 2-norm in the isotropic basis:
No(a) = (a,a) = (1+1io)(rg + 71 + 15 +73) + (1 —o)(s5 + 51 + 53 + 53)
Since for the double numbers (1 +ip)(1 — i) = 0, than
(r(1+ip) +s(1 —1ip))(r(L —ip) +s(1 +1ip)) = 2rs.
Since so, the 4-norm breaks into the multiplication of two 2-norms:

Ny(a) = Ny(a)Ny(a)* = (15 + 1] + 75 +73)(s5 + 55 + 85 + 53).

Conclusions

(129)

(130)

(131)

(132)

The method of the algebra’s scrutiny, based on the analysis of the permitted
conjugations, allows to obtain not only already knownb results, but some interesting new.
In particular, the working with the forms of higher than square degree becomes more

simple.

Although, since already the 2-norm for the biquaternion and bioctave algebras is
multiplicative, and since the 4-norm is unambiguously expressible via it, it is not clear,
whether this movement from complex (double) 2-norm to real 4-norm does create some
newb possibilities. The same is not clear in case of the 4-scalar and 4-vector products,
since they are expressible via their 2-prototypes too. In any case it seems interesting to

give this objects some geometrical or physical meaning.
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ON SOME DISTRIBUTIVE UNIVERSAL ALGEBRAS

Solovey L. G.

The examined type of sets, that are not rings, but in some sense are close to them. These
sets are called "Hyper-rings’. They consist of several additive groups, that intersect each over
at the zero only. Yet, they are multiplicative groupoids (or groups, excluding the zero). The
distributive laws are fulfilled.

Rings (and in particular the bodies and the fields) are the special case of the concerned
sets. The given examples witness that such sets are highly disseminated. So, the idea that the
real physical values may be "layed"in the ring is wrong, because they are subset of hyper-ring.

The real hyper-rings with unity can not be reduced to rings. Their additive groups are vector
spaces, and they may be treated as a generalized Hyper-complex systems, in which we include
the real binary (provided with summation and multiplication) distributive algebraic structures
with neutral element, where the number of included vector spaces is more than one and finite.

The example of hyper-rings, suggesting that scrutiny of them is worth-able, are the second
order matrices, that are mostly like unitary matrixes, but normalized not by unity. They are
normalized by an arbitrary non-negative number. The complex numbers and the quaternions
may be represented with such matrixes while they are the ones subspace.

§1. Hyper-body (hyper-field, hyper-ring) of the k-th order
by additive groups

Universal algebras [1] are the objects of more general type than bodies, fields and
rings. This article concerns the universal algebras class that includes bodies, fields and
rings.

Let us name hyper-body (accordingly ,hyper-ring) of the k-th order by additive groups
the manifold M, which possesses the following properties:

1) It constitute k a non-zero additive groups which intersect each other in zero only;

2) It constitute , except the zero, a multiplicative group or loop[l] ( a multiplicative
groupoid |q], accordingly, including the zero);

3) Among the multiplications of a;, a; from fixed additive groups A; u Ay there are
non-zero ones for any 7 and k.

4) If we multiply two elements of some two additive groups (that may coincide with
each other), we obtain some element from a fixed additive group which depends on the
efficients (and their queue, maybe) only. This means that the additive groups A; u Ay are
the elements of a groupoid:

A A=A

if 7 and k are fixed, [ is fixed as well. Let us name this groupoid the factor-groupoid of the
manifold M by additive groups.

5) the left and the right distributive laws are in operation.

We shall denominate the hyper-body of the k-th order by additive groups with the
commutative multiplication the hyper-field of the k-th order by additive groups.

Let us call the hyper-rings, which additive groups are the n-dimensional vector spaces
over the field P, and at that the n is same for every additive group, the hyper-algebras of
the k-th order n-th rank over the field P if the following relations are true:

(wa) -b=a-(ab) = a(a-b),
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where « is an element of the field P, and a, b- the elements of the hyper-ring.

The same hyper-algebras, which elements (except the zero) constitute a
multiplicative group or a loop, we shall denominate hyper-algebras of the k-th order n-th
rank with division over the field P

Thus, the usual bodies (fields, rings) are appear to be the hyper-bodies (hyper-
fields,hyper-rings) of the first order by the whole manyfold M - the only additive group
in this case.

There can be only one body(field) among the additive groups, because the unit may
not belong to more than one additive group, according to item one. If the concerned
manyfold is a hyper-body or a hyper-field, than the additive group with unit is a body
or a field itself. Indeed, the product of the unit e on an element of this group is the same
element and therefore belongs to this group. Then in that case, according to the item 4,
the product of any two elements of this additive group belongs to the same additive group.
Farther, there is an inverse element for every element a of the concerned additive group,
and this inverse element belongs to the same additive group.Indeed, if the inverse element
a~! belonged to any other additive group, than, according to the item 4, a~'a would
belong to the same additive group; but, in this case, a~ta could not be equal to e. Thus,
the additive group, that includes the unit, is (excluding the zero)a multiplicative group
or a loop.Consequently, it is a multiplicative group or a loop of a body or a field!. The
concerned additive group (excluding the zero) in case of associative hyper-body (hyper-
field, in particular) is a multiplicative sub-group of the whole multiplicative group and
the normal divisor of the latter [1,3].

Indeed, for each element b of manyfold M (excluding the zero) the following
correlation is true:

b= leb =e.

Consequently ,according to the item 4, if hy # 0 belongs to additive group with unit,
than

b_lhlb - hg,

where hy belongs to the same additive group too, quod erat demonstrandum.

Any additive group of an associative hyper-body (hyper-field) (excluding the zero)
is adjacent class by the normal divisor.

Indeed, element a # 0 of some additive group satisfies the correlation ae = a;
therefore, according to the item 4, ah; = b, where h; - any other element of the normal
divisor H, and b is an element of the same additive group with a.

This means that the whole adjacent class, appropriate for a, belongs to the concerned
additive group A;.

Let us take an arbitrary element o' # a, o’ € Aj, so that a’ # 0. The following
correlation is true for o’ and for a: «’H € A;. If h; - an arbitrary element of H, than

a'h; = aa"td'h;.

but
ala=ce H.

I Additive group with unit of associative hyper-algebra with the division of the finite rank over field of
real numbers is a associative algebra with the division of the finite rank over field of real numbers. And,
according to the Frobenius theorem, it is isomorphous to real number, complex numbers, or quaternions

1.
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Consequently, according to the item 4, a='a’ € H; let a~'a’ = hs. Than da’h; =
ahsh; = ahy, where hy = hsh; € H, i.e. a’ belongs to the same adjacent class with a,
quod erat demonstrandum.

It worths reminding now that right adjacent classes by the normal divisor coincide
with the left ones[1, 3]. Consequently, all additive groups of an associative hyper-body
(excluding the zero) constitute a factor-group of it’s multiplicative group [1,3] by additive
group comprising the unit (excluding the zero).

Lets make a note of some other properties of hyper-rings (hyper-bodies, hyper-fields):

a)Lust like for rings it is proven [1]| that the product (left or right) of the zero on any
element is equal to zero.

b)We saw that the additive groups of the hyper-ring constitute a multiplicative
groupoid - it’s factor groupoid by this additive groups. It’s easy to see that additive
groups A; are the only elements of the additive groups with the additive groups with the
following addition law:

A+ Ay = Ay,

so that A; is the zero 0; of such additive group, and it’s opposite element. But not the
common zero of all these additive groups.

In conclusion let us remark that hyper-rings (hyper-bodies, hyper-fields) are not, in
general, rings (bodies, fields). But they may be the ones.

Hyper-rings (hyper-bodies, hyper-fields) by additive groups may be both of the finite
and infinite order.

§2. Unnormalized to unity unitary and orthogonal matrices

Before to pass to examples, we shall consider the necessary for farther statement
unnormalized to unity unitary and orthogonal matrices.
As is well known, the complex matrix of the n — th order A refers to unitary if

AAT = ATA =1, (1)

where A' — the Hermitian-conjugated matrix for A. Matrix A refers to orthogonal,

if
AA=AA=1, (2)
where A — the transposed A (if A is real-valued, the unitary matrix is orthogonal[4]).

Let us concern a complex matrix A of the n-th order, which satisfies the following
condition:

AA*T = A (3)

where A\ - some number, a [ - identity. A is real and non-negative. Indeed, for any
index 7
A= (AAY); = Au(AN ) =) Andl =) |Aul* > 0. (4)
k k k

(equals sign takes place in case of A = 0).
Let us denote that if condition (3) is satisfied than

AAY = AYA = AL (5)

Indeed, with A # 0
A(AT/N) =1, (6)
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i.e. AT/ = A~! — the matrix, inverse for A. But, as is well known, for inverse matrices
ATTA=AA" =1, i.e. (AT/NA=AAT/N)=1.

Consequently, (5) is true. For zero-matrix (5) is true too(with A = 0).

Let us name the matrix, satisfying the condition (3) and, consequently, (4) (5), the
unnormalized to unity unitary or quasi-unitary.

If A — a real matrix n-th order, than alongside with orthogonal matrices we may
concern the matrices, satisfying the condition:

AA = A (7)

Let us name such matrices unnormalized to unity orthogonal or quasi-orthogonal.

It is obvious A — real number. It is non-negative. It follows from the fact that in the
real area quasi-unitary matrixes are quasi-orthogonal. Just as for quasi-unitary matrices
the following correlation may be proved:

AA = AA = )\ (8)

It easy to show that the real second-order and fourth-order matrices, which are
isomorphous to the real and complex numbers accordingly, are quasi-orthogonal. And the
complex matrix of the second order, that is isomorphous to quaternions, is quasi-unitary.

Let us show now that quasi-unitary matrices of the n-th order (excluding the zero)
constitute a multiplicative group.

Indeed, the identity is quasi-unitary and represents the unity of the system. Farther,
as we have seen, there is an inverse quasi-unitary matrix for every quasi-unitary matrix
A (excluding the zero):

ATt = AT/

Let’s examine the product of AB of quasi-unitary A u B. We have:

AB-(AB)* = ABBYA" = A\g(AAT) = A\ghs,  where Ay = AA*, Ay = BB*. (9)

Consequently, the AB is a quasi-unitary matrix too. Thus, all the conditions that turn
quasi-unitary matrices of the n-th order (excluding the zero) into the group by the
multiplication, are satisfied. Let us name the product

AAT =Xy = |A]? (10)
the square of modulus of the quasi-unitary matrix, and

Al = VAAT (11)

— it’s modulus or absolute value.
As it follows from the formulae (10), for the determinant of A we have:

|det A2 = |A]™,

from which

|det A] = |A]" (10')

(n — matrix’s order).



Hypercomplex Numbers in Geometry and Physics, 2, 2004 55

In the real area quasi-orthogonal matrices of the n-th order (excluding the zero)
constitute a multiplicative group.
Modulus or absolute value of a quasi-orthogonal matrix is

A] = VAA (12)

Naturally, the formulae (10’) is true for real quasi-orthogonal matrices of the n-th
order also.

According to (9)—(12), the modulus of the product of quasi-unitary (quasi-
orthogonal) matrix is equal to the product of the modules of the efficients.

Let’s designate QU (n) the group (by the multiplication) of quasi-unitary matrices
of the n-th order (excluding the zero). And, accordingly, QO(n) — the group (by the
multiplication) of quasi-orthogonal matrices of the n-th order (excluding the zero).

Let’s designate QU + (n) the group of quasi-unitary matrices of the n-th order with
positive determinant. The same for quasi-orthogonal matrices — QO™ (n).

Note that the totality of quasi-unitary and quasi-orthogonal matrixes of the n-th
order may include the zero-matrix, which is not true for unitary and orthogonal matrixes.

§3. Examples of hyper-bodies, hyper-fields or hyper-rings

1) Quasi-orthogonal real matrizes of the second order, constituting (excluding the
zero) multiplicative group QO(2).

Let’s consider a real matrix of the second order.

A:<$ Y > (13)
2{:(% G21>‘ (14>
Y a2

We are interested in quasi-orthogonal matrixes. The quasi-orthogonality conditions (7)
give:

Transposing A, we get:

(A = 2? + 97, (15)

(AA)1y = zas; + yag = 0, (16)
(AZ)Ql = a9 X + a9y = 0, (16")
(AA)y = (AA)y, = a2, + a2y = 22 + 42 (17)

Due to the coincidence of (16) with (16"), we have the equations set (16),(17) for
unknown asq, ags:
Tag + Yaz = 0, (16)
ahy + ay = 2° 4y, (17)
Equation (16) gives:

Q21 = —% a22. (16”)
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Substituting (16”) B (17), we get:

(1'2 + g2>a%2 — 132 + y2 (17/>
x

With z # 0 we have:

a5y =
from where:

agy = *1. (17")
Substituting (17") B (16”), we get:

a2 = FY. (18)

Consequently, we have two solutions:

/ /
A2:<Qfl y/). (20)
Yy —x
With 2 = 0,y # 0 equations (16) u (17) give:

99 = O, (21)

ag1 = FY. (22)

A1:< 0 y) (19)
—y 0

[0y .
e (0) -

Matrixes (19) n (20') are the particular case of the matrices A; and A, ((19) u (20)). At
last, with z = y = 0 wi have, according to (17):

For matrix A we have:

agl + (132 = 07 (23)

from where:
921 = A92 — O, (24)

A1:A2:<00>. (25)
00

But the matrixes (25) are the particular case of the matrices A; and A, ((19) and (20) )
Thus, quasi-orthogonal matrices of the second order, in general, may be reduced to
matrices A; and Ay, which are defined by formulas (19) and (20).
Matrices A; and A, are defined by independent variables z,y; 2, y'. As is known [2],
the matrices A, defined by (19) are isomorphous to complex numbers, so that the matrix
modulus is equal to the modulus of the complex number.

and we get the zero matrix.
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It easy to see, that matrices A; (complex numbers) constitute (excluding the zero)
a multiplicative group QO™ (2).

As is known, giving = and y various values and adding matrices of A; type (complex
numbers), we get:

1+ 22 Y1+ Y2
Al’fflzyl + A1|:L“2,y2 = < ) ) (26)
—Y1 — Y2 T1+ X2

i.e. we have quasi-orthogonal matrices (complex numbers) again. In exactly the same way
an adding of of Ay type matrices give the matrices of the same type. The sum A; + A,
does not belong neither of the two types, i.e. it is not quasi-orthogonal matrix. The
totalities of A; and Ay matrices cross crossing each other nowhere except the zero matrix.
Consequently, they are two additive groups, crossing each other at the zero only.

A product of two matrices of the A; type (complex numbers), as is known, is a matrix
of the same type (i.e. complex numbers)

Farther we have:

x/ y/ x/ y/
Az = (A2|a::z’1,y:y’1) ) (A2|93:z'271/:2/2) - ( ,1 1, ) ( /2 2/ -
Y1 —I Yo —Ty

:<%%+M%a%—m@>‘@n
1Ty — ThYy YhYs + 242
We can see that Az is a matrix of the A; type, i.e. complex number, though it depends

on the efficients sequence.
Finally,

o ’ ’ R
A=A - Ay = vy v = S L ) (28)
_y T y/ _l,/ _yl,/ + :,Cy/ _yy/ _ :L,:L,/

A5=A2-A1:<“‘J y’)(l‘ y>:<x’x—y’y x’y+y’x>‘ (29)
y —a —y yr+a'y yy—az

Thus, AjAy # A3 Ay, but Ay = A1As and A5 = Ay A; are the matrices of the As
type. Thus we have made sure of the following:

a) Quasi-orthogonal real matrixes of the second order are not bodies, they are not
rings even. They represent a hyper-body of the second order;

b) the matrices of A; typre (excluding the zero-matrix) represent the normal divisor
of the multiplicative group, so that additive group A, (excluding the zero) is a adjacent
class by the normal divisor Ay;

c¢) Due to the easy provable fact that the additive groups A; and A, — vector two-
dimensional spaces over the real-numbers field, Quasi-orthogonal real matrixes of the
second order represent a hyper-algebra of the second order of the second rank with the
division by additive groups over the field of real numbers.

2) Quasi-unitary real matrizes of the second order, constituting (excluding the zero)
multiplicative group QU (2).

a) Now, let A — a complex matrix of the second order. As in the previous example,

let us assume
A= ( vy ) . (13)
Q21 Q22
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Let us define the matrix elements ag; and ags for quasi-unitary matrix. For AT we obtain:

At — (l’* ag1+ >
y* as
Let’s sign out the quasi-unitarity condition:

(AA ) = [ + ]yl

(AA+)12 = Ia;l +yay, =0,
(AA+)21 = anx” + any” =0,

(AAT )92 = |asi|* + |aze|? = |z]* + |y

By solving the set of equations (33), (34), we obtain:

as2y”
a1 = ——»
x

2 2

+ |z
|a22|2(‘y’ ‘ ’ ) — |I|2+ |y|2
[
For x # 0 formulae (36) gives:

|aza| = |z|.

Preserving the commonality, we may write:
Ao = €.
Substituting (38) into (35), we have:

* 1
as = —y'e'’.

A= * Y
_y*eicp I*eiga

For x = 0, y # 0 accordingly to (33), (34), we obtain:

Consequently,

az =0,

laa1| = |yl

from where, preserving the commonality,
as = —y*e'’.
With z =0, y = 0 we get, according to (34):

a91 = Q929 = 0.

Thus, the general appearance of quasi-unitary matrix is given by formulae (40).

(37)

(38)

(43)

Let us name ¢ in the formulae (40) the angular parameter of quasi-unitary matrix of
the second order. It easy to notice, that all the matrix with the same angular parameter

© constitute an additive group.
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Let us consider two quasi-unitary matrices with angular parameters ¢, and ¢s:

A = 21 n 7 (44)
_yi’fezwl xi‘e'ﬂol
L2 Y2
Ay = , 45

lmzm&=< 12 %2>, (46)

ok Lip12 * 1012
Yy12€ T9€

where A
Tia = T1T9 — Y1Yae'??, (47>
Y12 = T1Yy2 + ywéei‘”, (48)
©12 = 1 + Yo + 2k (k — integer). (49)

The product Ajs, as it should, is described by the formulae (46), so that it’s angular
parameter equals to the sum of the angular parameters of the efficients (to 2km).
It is easy to see from formulae (40) , that:

det A = |det Ale"®. (40")

Generally, for matrices of the n-th rank it is obvious that the equality (40’) is true, where
¢ is some angle. Let us name the ¢ in the formulae (40’) the angular parameter of the
quasi-unitary matrix of the n-th order. It is obvious that and in the general case of
quasi-unitary matrix of the n-th order the correlation (49) is true.

With ¢ = 0 quasi-unitary matrix of the n-th order (excluding the zero), constitute
a multiplicative group QSU(n) — the sub-group QU (n).

Matrices
A= * Y (50)

with zero angular parameter, as it well known [4], isomorphous to quaternions. They
represent (excluding the zero) a normal divisor of the whole multiplicative group, due
it includes the identity. Thus, from the formulas (44)-(50) it follows that quasi-unitary
matrices of the second order represent a hyper-body of the infinity-order. b) As a particular

case let us examine the matrix of the such type:

apﬂmo=<“y», (44')

—yi T}
s

Agy = Ag|per = ( i 92*> _ (45')
Yy —Ty

The matrices A; are of the type Ay (see.(50)) and, consequently, isomorphous
to quaternions. The matrixes like A, and As( represent, according to the above, two
additive groups. We have:

/ / r_ /% / I
A10,10' :ALOA,LO _ ( T yl) ( T N > _ ( 1Ty — Y, Ty T Ty ) (51>
—y 7] —yy —TY) — YiTy T — Yy,
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— matrices like A o;

/ / / /% /_ 1%
Asg = Aoy = ( ” ) (l“ ” )z (Wﬁyzyf T yf) (52)
Ys —T3 Yo —Ty YsTy — T5Ys Ysls + THT5

— matrices like A, o;

T1T2 + Y1Ys  T1Y2 — Y1T5
A1o,2o=A1,oA2,0= ( 1T2 T Y1Ys 1Y2 — Y1Xy ) (53)

* ¥ K * * %
Y172+ XYy —YiY2 — 11T

— matrices like Aj o;

Tol1 — ¥ Toyy + Yot
Ao = AzoAro = ( S TR TR ) (54)
Yo 1 + ToYy YolY1 — Ty

— matrices like Ajo; it easy to show, that the matrices, inverse for A; o and Ay, are the
matrices of the same type accordingly. Matrices of the A; o and A, kind constitute, thus,
hyper-body of the second order, at that matrices A (excluding the zero) — a normal
divisor of the multiplicative group.

3) Quasi-unitary matrices of the second order with quaternionic matriz elements and
abrogated multiplication law

Let us examine a product of the matrices of the n-th order Ay u Ay with abrogated
multiplication law:

D = (Apy o Aw))ie = Z AyaPa,iA@)ik, (55)
!

where P ;;, — operator,

1 for Aqyy 1 Ay, which do not permute,
il Ik = ] (56)
p for Aqyy 1 Ak, which permute,
i.e.
AwyuprAeu = AeuiAnyi- (57)

It is easy to show, that the concerned abrogation of the matrix multiplication law does
not violate the distributive law. Also we obtain the conditions for the rule of conjugation
of matrices to be true:

D+ = (A(l) o A(g))+ = AEE) @) Aa), (D = A(l) o A(g)) (a)
We have:

Dy, = (Aqy o A))ir = Z AwaPaAeuk, Dri = Z Ayri Praii A@)ii-
I 1

Inasmuch (D), = D}, we get:

(D )ik = (A o A(Q))+)ik = Z(A(2)li)+Pkl,1i(A(l)kz)+- (58")
!
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On the other hand,

(A% 0 Am) ) = Z(Aa))ilpil,lk(Aa))lk = Z(A(2)li)+Pil,lk:(A(1)kl)+- (58”)
I .

Comparing the right sides (58') and (58”), we obtain (a):
Pk = Py (58)

Let us investigate matrices of the second order (40), but with x,y - quaternions. If we
demand zte’” to be quaterions too, than e¥ has to be a real number, which is possible
only with ¢ = 0 and ¢ = 7. Thus, we consider that ¢ takes only two values, at that

e'™ = 7™ = —1. At the same time ¥ permuting with quaternions. For A;j we have:
Tt _ye—w
(7). "
Yy oxe '
Farther,
v _ jz]* + [yl (—ay +yx)e ¥
Apdy = T 2 2 ' (60)
(—ytat + a2ty e lyl* + ||

Due to non-commutative property of x and y, and *,y™ non-diagonal elements of
A@A; do not turn into zero, so A, is not quasi-unitary with the usual multiplication law.
Let us introduce operators Py i into the multiplication law of matrices (40), having
selected them thus matrix A, become quasi-unitary. Let’s sign out coefficients Py j; in a

matrix form:
p_ (Pn,n Piao1 P12 Pra2o ) ‘ (61)

P11 Pasor Poii2 Pazoo

There are eight values of matrix P, at which the matrices A are quasi-unitary and
constitute a quasi-unitary groupoid. For these variants matrices P

H::<111p>’ %::<11p1>’ %::<p11p)7_azz<p1p1>’

Ippp plpp Ippl plpl

P — Iplp P Ippl P pplp D= pppl . (62)
1plp pllp 1pll1 plll

In all cases, as it follows from formulas, given in the supplement, the quasi-unitary
matrices represent hyper-rings. These hyper-rings consist of two additive vector-spaces,
represented by matrices A‘SO:O and Ato:ﬂ. Also they are hyper-algebras of the second
order of the eighth rank over the field of real numbers. It is easy to check the following
condition is true:

(Agr 0 As@2>+ = A;2A;1 (63)

for each case. In the sixth case matrices A{@:o represent the Kelly algebrall] (A}wzm are

alternative [1], which is not true for matrices of the second order with quaternionic matrix
elements and the multiplication law (55))
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Matrices A, in this case represent the hyper-algebra of the second order of the eighth
rank over the field of real numbers with division. We may show that not only for Kelly
algebra, but for whole hyper-algebra of A, the following correlation is satisfied:

[Agr 0 Age| = A - [Apa]. (64)
In the rest seven case |Ay 0 Apa| # |Ap1| - |Ap]-

4) a. Quasi-orthogonal real matrices of the third order kind of

Ty x 0
Ap=| —y z 0 (a), A= ¢ —o 0 (b), (65)
0 0 ya*+y? 0 0 x? 4 y?
x// y// O " y/// O
AOl — _y// " 0 (a)’ All — y/// - 0 (b) (66)

0 0 — /x”2+y”2 0 0 _ /IIIIQ +y”’2

Matrices (65)—(66) themselves are quasi-orthogonal. But this property vanishes if
we add this matrices to each other (even of the same type) using the usual rules. This
Situation may be fixed if we change the summation rules.

To shorten the calculations, let us write down the matrices (65)—(66) in a compact
form

by U 0
A= | (=1)*ty, (=1)iz 0 . (1,k=0,1). (67)

0 0 (=D"Vai+yf

Now, shall we define the summ of two matrices of one type A}, and A% in the
following way:

T+ X9 Y1 + Yo 0
AY = AR ()AL = | (=1 (yy +y2) (—1)i(21 + 22) 0
0 0 (—1)k\/($1 + 22)? 4 (y1 + 12)?

(68)
The summation law, defined by the formula (68) is associative. The result is an
quasi-orthogonal matrix too. There are inverse matrices for (65)—(66) due to their quasi-

orthogonality.
The product of the matrices kind of (65)—(66) or (67) is a matrix of the same type.
We may write the following multiplication table.

— | Ao | Alo | Aor | ATy
Ao ANOO A~10 Aoy Ay
Al A~10/ A~00/ A~11/ A~o1/ Table Ne 1

A61 AOl All AOO AlO

~ o~ o~

Al LAY | Aoy | Avo' | Ago

(Note. First efficient is from the first column, the second — from the upper string. The
product is in their crossing. For example: A}, - A, = Ay etc.)
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Consequently, the matrices kind of (65) — (66) or (67) (excluding the zero) constitute a
group, matrices kind of (65a) (excluding the zero) — is a normal divisor of this group (since
they include a identity);matrices kind of (65b)—(66b) (excluding the zero) — adjacent
classes by the normal divisor. Together (without zero) they represent (see the table 1) the
elements of a commutative factor-group — [1,3]. Table 1 gives a law for multiplication of
a normal divisor kind of Ay and adjacent classes kind of Ay, Agy 1 Ajy.

Matrices kind of (67) represent by themselves additive groups according to the
summation rule (68) since the sum of two matrices is a matrix of the same type; there is
a 0 (zero matrix) and an inverse matrix

Now let us show, that the distributive law acts for the matrices kind of (67) with
(68). Indeed,

1 Y1

Azlk = (—1)i+1y1 (—1)i.’/€1 0 ’ (69)
0 0 (=DFat+yi
x2 Y2 0

AZ = | (=1 lyy (—1)ias 0 : (70)
0 0 (=1)"/a3+y3

1+ T2 Y1+ Yo 0

Ai(H AL = | (=1 (g1 +52) (=1)(x1 +72) 0 . (1)
0 0 (*1)16\/(951 +x2)% + (y1 + y2)?

x3 Y3 0

Aby = | (c1) s (<1)as 0 : (72)

0 0 (-D"™Vai+wd

(A (+) AG) A, =

(z1 4 z2)x3 + (y1 + y2)yz(—1)!*! (z1 + 22)ys + (Y1 + y2)z3(—1)"
(=) (y1 + y2)zs + (=) (2 + 22)ys (1) g1 + y2)ys + (z1 + 22)z5(—1)
0 0

(73)

(=DF /(@ +22)2 + (y1 +y2)? (23 + y3)
Farther,

(xrx3 + yr?/B(_l)l+1 Try3 + 3/1”333(_1)1
(*1)i+1y7“373 + (*1)i+l+1y31‘r (*1)“_13/33/7‘ + (*1)i+l$7”1:3 0
0 0 (=DM /(a2 + y2) (23 + v3)

(74)
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(r=1,2). After some simple calculations we obtain:

A Al (D ARAL, =
(z1 + z2)w3 + (y1 + y2)ys (1) (1 + x2)y3 + (y1 + y2)w3(—1)"
(1 + x2)ys (= 1) + (y1 + y2)as (1) (21 + 2223 (1) + (1 + y2)ys(=1)"F!
0 0
0
0 - (75)

(=DF /(21 + 22)? + (y1 + y2)? (23 + 43)

From (73) u (75) it follows:
A A (F) AR AL, = (AR (H)AR) A, (76)

lm>

i. e. the right distributive law. The left one may be proved in the same way.

We may see now, that quasi-orthogonal A;; matrices with fixed represent additive
groups, and their totality (excluding the zero) represents a multiplicative group.

At that Agy are isomorphous to complex numbers, if we use the sign (+) while
summating, not the sign +. The matrices A;,, concerned separately with i,k fixed,
represent two dimensional vector spaces over the field of real numbers. Thus, if we
use (68) summation rule, the totality of the matrices of the third order A;; represent
a hyper-algebra of the fourth order of the second rank with the division over the field of
real numbers.

b. It is easy to show with help of table 1, that each of the totalities
Aoo, Aro; Ao, Aor; Aoo, A1 Tepresents hyper-sub-algebra of the second rank with division.
(Tables 2,3,4 — the multiplication tables for these totalities, at that the factor-groups of
multiplicative groups of each one of three hyper-sub-algebras are isomorphous.)

— | At | Ao — | Ao | Aty — | Ao | AT
Al | Ago | Ao Al | Ago | Aoy Al | Ago | Ay Tables 2—4

~ 7|~ ~ ~ ~ 1|~

Allo AlO AOO A61 AOI AOO A/11 All AOO

In view of the aforesaid we should remark the isomorphism of all finite groups of the given
second order.[1]

If we assume i, k in Aj;; are elements of a finite field Z, [2], that take values 0, 1, at
that 0+40=0,04+1=140= 1,141 = 0 (mod2), than the aggregate i,k is a two
dimensional vector over this field.

From tablers 1 and 2,3,4 we may see that the following condition is always true:

Ai kAt = Aivt, ketm- (77)
Consequently, if we constitute a direct sum of A, j
A‘“: AVOO EB Avl() EB Av[)l S5, 12[117

and perform multiplication of it’s elements A according to distributive law and (77),we
obtain a standard graduated algebral5].

5) Hyper-algebra with division over the field of real numbers, corresponding to a ring
of formal real power series.
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Let us examine a ring of formal real power series M [1]:

M = Z apx”, (78)
k=0

where a; — the real numbers.
The totality of additive groups A; with elements a,x"* represents a hyper-algebra of
the infinite order with the division over the field of real numbers.

6) Hyper-algebra with division over the field of complex numbers, corresponding to a
ring of formal complex Fourier power series kind of

F(z)= > fue™, (79)
k=—o00
where fr — complex numbers, k& — whole numbers, x — real argument. The totality of
additive groups Fj, with elements f,e’*® represents a hyper-algebra with division over the
field of complex numbers of the first rank.

7) Real and imaginary azes on a standard group hyper-complex system of the n-th
rank represents a hyper-algebra of the first orderwith division over a field of real numbers
by these axes.

8) a) Straight lines on a complex plane, that pass through the point of origin.
Let us take up a totality of straight lines:

2= + iy = pe'¥rEm), (80)

k —whole, 0 < o <7, p=+/x2+y>%
With even k& we have a beam ‘
2 = pe'? (81)

with odd — a beam '
5 = —pe. (50

Every straight line (¢ is predetermined) represents an additive group. The real axe
z = pettT (82)

represents a field of real numbers, due it is (excluding the zero) a normal divisor for
all straight lines that include the zero, excluding the zero.

Thus, we may see, that the complex plane is a hyper-algebra of the infinite order of
the first rank over the field of real numbers by the straight lines, that pass through the
point of origin. And, of course, the algebra of the second rank with division over the field
of real numbers).

Real and imaginary axes of the complex plane. b) Real and imaginary azes of the

complex plane.
These straight lines equations are:

2 = preT — (83)

real numbers
2y = p2€1(7r/2+k27r) _ (84)
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an imaginary number (k; and ko — whole numbers).
Each one of these straight lines — an additive group.
Farther we have:

R 35)

real numbers,
2y - 2y = paphye’ T ETRIT] — ) pf pilhatho )T _ (86)

real numbers,
2129 = 29+ 21 = prpoel™FHIITRIT (87)

imaginary numbers. Besides, an inverse numbers for real case are:
1/2 = 1/pie*m — (88)
real numbers; the inverse for imaginary numbers are

1/2,2 _ 1/p26i(7ﬂ-/27k2ﬂ-) _ 1/p2€i[7r/27(k2+1)7r] . (89)

imaginary numbers.

Purely real and purely imaginary numbers (excluding the zero) represent a
multiplicative group, and real numbers are a normal divisor of this group.

Thus, real and imaginary axes jointly represent a hyper-algebra of the second order
of the first (by these axes) with division over the field of real numbers.

9) Real and imaginary azxes of quaternions represent hyper-algebra of 4-th order of
the 1-st rank with division over the field of real numbers.
Manifolds of nominate (measuring) real numbers, used in physics and geometry.

10) Manifolds of nominate (measuring) real numbers, used in physics and geometry.

Numbers without dimension are a particular case of such numbers. As is known we
may summate only numbers with equal dimension (or no measuring at all). Numbers with
equal measuring, thus, represent additive groups that intersect each other at zero only.
And all real numbers (excluding the zero) represent a multiplicative group. Dimensionless
real numbers (excluding the zero) represent a normal divisor of the multiplicative group.
Consequently, dimension and dimensionless real numbers represent a hyper-algebra of the
infinite order of the first rank with division over the field of dimensionless real numbers.
Thus, physical magnitudes are "beyond of" rings.

11) The totality of dimension and dimensionless whole numbers represent a hyper-
ring of the infinite order [1], due they may not always be divided one by each other.
three dimensional real vector space with the cross product as a product of two vectors.

12) Three dimensional real vector space with the cross product as a product of two
vectors|1]. Vector spaces of polar and axial vectors represent additive groups of manifold
M. Due these vectors, as usual, are not straightly summated, their sum is not a ring. The
product of two polar vectors is an axial vector; The product of two axial vectors is also
an axial vector. A product of an axial vector and a polar one (in any queue) is a polar
vector. Consequently, the concerned manifold is a hyper-algebra of the second order of
the third rank over the real numbers field. The space of axial vectors is a ring. Thus, the
idea that cross product is a product in a ring is not complete.

Note that in all examples given above the factor-goupoids and factor-groups are
commutative. Also note that the factor groups in examples 1,2b,7b are isomorphous as
groups of the simple (second) order.
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The list of hyper-bodies (hyper-fields, hyper-rings) could be continued. As is known,
hyper-complex systems represent real algebras of the n-th rank with unity, n > 2 and
finite. If we include the binary (with summation and multiplication) distributive algebraic
structures with unity over the field of real numbers comprising more than one vector space
in the hyper-complex systems than it is true that hyper-rings with unity are a generalized
hyper-complex system if they are not reducible to rings.

Conclusion

The notions of hyper-ring, hyper-ring, hyper-field, hyper-algebra are direct
generalizations of ring, ring, field, algebra, where two binary operations are introduced —
the summation and multiplication, which are left- and right-distributive.

It important for physical applications to note the importance of that:

1) Physical values do not constitute the subset of a ring.

2) The cross-product is not, in general, a ring-multiplication in the manifold of polar
and axial vectors.

The supplement

The product of quasi-unitary matrices of the second order A, - A,e with quaternion
matrix elements and the abrogated multiplication laws.
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Physical geometry studies mutual disposition of geometrical objects and points in space,
or space-time, which is described by the distance function d, or by the world function o = d?/2.
One suggests a new general method of the physical geometry construction. The proper Euclidean
geometry is described in terms of its world function og. Any physical geometry G is obtained
from the Euclidean geometry as a result of replacement of the Euclidean world function og by
the world function o of G. This method is very simple and effective. It introduces a new geometric
property: nondegeneracy of geometry. Using this method, one can construct deterministic space-
time geometries with primordially stochastic motion of free particles and geometrized particle
mass. Such a space-time geometry defined properly (with quantum constant as an attribute of
geometry) allows one to explain quantum effects as a result of the statistical description of the
stochastic particle motion (without a use of quantum principles).

Introduction

A geometry lies in the foundation of physics, and a true conception of geometry is very
important for the consequent development of physics. It is common practice to think that
all problems in foundations of geometry have been solved many years ago. It is valid, but
this concerns the geometry considered to be a logical construction. Physicists are interested
in the geometry considered as a science on mutual disposition of geometrical objects in the
space or in the space-time. The two aspects of geometry are quite different, and one can
speak about two different geometries, using for them two different terms. Geometry as a
logical construction is a homogeneous geometry, where all points have the same properties.
Well known mathematician Felix Klein [1] believed that only the homogeneous geometry
deserves to be called a geometry. It is his opinion that the Riemannian geometry (in
general, inhomogeneous geometry) should be qualified as a Riemannian geography, or a
Riemannian topography. In other words, Felix Klein considered a geometry mainly as a
logical construction. We shall refer to such a geometry as the mathematical geometry.

The geometry considered to be a science on mutual disposition of geometric objects
will be referred to as a physical geometry, because the physicists are interested mainly
in this aspect of a geometry. The physical geometries are inhomogeneous, in general,
although they may be homogeneous also. On the one hand, the proper Euclidean
geometry is a physical geometry. On the other hand, it is a logical construction,
because it is homogeneous and can be constructed of simple elements (points, straights,
planes, etc.). All elements of the Euclidean geometry have similar properties, which
are described by axioms. Similarity of geometrical elements allows one to construct
the mathematical (homogeneous) geometry by means of logical reasonings. The proper
Euclidean geometry was constructed many years ago by Euclid. Consistency of this
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construction was investigated and proved in [2|. Such a construction is very complicated
even in the case of the proper Euclidean geometry, because simple geometrical objects
are used for construction of the more complicated ones, and one cannot construct a
complicated geometrical object O without construction of the more simple constituents
of this object.

Note that constructing his geometry, Fuclid did not use coordinates for labeling of the
space points. His description of the homogeneous geometry was coordinateless. It means
that the coordinates are not a necessary attribute of the geometry. Coordinate system
is a method of the geometry description, which may or may not be used. Application
of coordinates and of other means of description poses the problem of separation of the
geometry properties from the properties of the means of the description. Usually the
separation of the geometry properties from the coordinate system properties is carried out
as follows. The geometry is described in all possible coordinate systems. Transformations
from one coordinate system to the another one form a group of transformation. Invariants
of this transformation group are the same in all coordinate system, and hence, they
describe properties of the geometry in question.

At this point we are to make a very important remark. Any geometry is a totality of
all geometric objects O and of all relations R between them. Any geometric object O is a
subset of points of some point set €2, where the geometry is given. In the Riemannian
geometry (and in other inhomogeneous geometries) the set Q is supposed to be a
n-dimensional manifold, whose points P are labelled by n coordinates = {x!, 22, ...2"}.
This labelling (arithmetization of space) is considered to be a necessary attribute of
the Riemannian geometry. Most geometers believe that the Riemannian geometry (and
physical geometry), in general cannot be constructed without introduction of the manifold.
In other words, they believe that the manifold is an attribute of the Riemannian geometry
(and of any continuous geometry, in general). This belief is founded on the fact, that
the Riemannian geometry is always constructed on some manifold. But this belief is a
delusion. The fact, that we always construct the physical geometry on some manifold,
does not mean that the physical geometry cannot be constructed without a reference to
a manifold, or to a coordinate system. Of course, some labelling of the spatial points
(coordinate system) is convenient, but this labelling has no relations to the construction
of the geometry, and the physical geometry should be constructed without a reference to
coordinate system. Application of the coordinate system imposes constraints on properties
of the constructed physical geometry. For instance, if we use a continuous coordinate
system (manifold) we can construct only continuous physical geometry. To construct a
discrete physical geometry, the geometry construction is not to contain a reference to the
coordinate system.

Here we present the method of the physical geometry construction, which does not
contain a reference to the coordinate system and other means of description. It contains
a reference only to the distance function d, which is a real characteristic of physical
geometry.

If a geometry is inhomogeneous, and the straights located in different places have
different properties, it is impossible to describe properties of straights by means of axioms,
because there are no such axioms for the whole geometry. Mutual disposition of points in
a physical (inhomogeneous) geometry, which is given on the set €2 of points P, is described
by the distance function d (P, Q)

d: QxQ—>R, d({PP)=0, VPeQ (1)

where R denotes the set of all real numbers. The distance function d is the main
characteristic of the physical geometry. Besides, the distance function d is an unique
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characteristic of any physical geometry. The distance function d determines completely
the physical geometry, and one does not need any additional information for determination
of the physical geometry. This statement is very important for construction of a physical
geometry. It will be proved below. Any physical geometry G is constructed on the basis of
the proper Euclidean geometry Gg by means of a deformation, i.e. by a replacement of the
Euclidean distance function dg by the distance function of the geometry in question. For
instance, constructing the Riemannian geometry, we replace the Euclidean infinitesimal
distance dSg = +\/grixdxidz® by the Riemannian one dS = +/ggdridx*. There is no
method of the inhomogeneous physical geometry construction other, than the deformation
of the Euclidean geometry (or some other homogeneous geometry) which is constructed
as a mathematical geometry on the basis of its axiomatics and logic. Unfortunately,
conventional method of the Riemannian geometry construction contains a reference to
the coordinate system. But this reference can be eliminated, provided that we use finite
distances d instead of infinitesimal distances dS.

For description of a physical geometry one uses the world function o [3], which is
connected with the distance function d by means of the relation o (P,Q) = 1d* (P, Q).
The world function o of the og-space V = {o,Q} is defined by the relation

o OxQ—R, o(P,P)=0, VP € (2)

where R denotes the set of all real numbers. Application of the world function is more
convenient in the relation that the world function is real, when the distance function d is
imaginary and does not satisfy definition (1). It is important at the consideration of the
space-time geometry as a physical geometry.

In general, a physical geometry cannot be constructed as a logical building, because
any change of the world function should be accompanied by a change of axiomatics. This
is practically aerial, because the set of possible physical geometries is continual. Does
the world function contain full information which is necessary for construction of the
physical geometry? It is a very important question. For instance, can one derive the space
dimension from the world function in the case of Euclidean geometry? Slightly below we
shall answer this question in the affirmative. Now we formulate the method of the physical
geometry construction.

Let us imagine that the proper Euclidean geometry Gg can be described completely
in terms and only in terms of the Euclidean world function og. Such a description is
called o-immanent. [t means that any geometrical object O and any relation Rg between
geometrical objects in Gg can be described in terms of o in the form O (0g) and Rg (o).
To obtain corresponding geometrical object O and corresponding relation R between the
geometrical objects in other physical geometry G, it is sufficient to replace the Euclidean
world function og by the world function o of the physical geometry G in description of

OE (CTE> and RE (O’E)
OE (O'E) — OE (O’), RE (O'E) —>RE (U)

Index 'E’ shows that the geometric object is constructed on the basis of the Euclidean
axiomatics. Thus, one can obtain another physical geometry G from the Euclidean
geometry Gg by a simple replacement of og by o. For such a construction one needs no
axiomatics and no reasonings. One needs no means of descriptions (topological structures,
continuity, coordinate system, manifold, dimension, etc.). In fact, one uses implicitly the
axiomatics of the Euclidean geometry, which is deformed by the replacement o — o.
This replacement may be interpreted as a deformation of the Euclidean space. Absence
of a reference to the means of description is an advantage of the considered method of
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the geometry construction. Besides, there is no necessity to construct the whole geometry
G. We can construct and investigate only that part of the geometry G which we are
interested in. Any physical geometry may be constructed as a result of a deformation of
the Euclidean geometry.

The geometric object O is described by means of the skeleton-envelope method [4].
It means that any geometric object O is considered to be a set of intersections and joins
of elementary geometric objects (EGO).

The finite set P* = { Py, Py, ..., P,} C § of parameters of the envelope function fpn
is the skeleton of elementary geometric object (EGO) € C €. The set £ C Q of points
forming EGO is called the envelope of its skeleton P". For continuous physical geometry
the envelope £ is usually a continual set of points. The envelope function fpn, determining
EGO is a function of the running point R € 2 and of parameters P" C (2. The envelope
function fpn is supposed to be an algebraic function of s arguments w = {wy, wy, ...ws},
s = (n+2)(n+1)/2. Each of arguments wy = o (Qk, Ly) is a o-function of two arguments
Qx, L, € {R,P"}, either belonging to skeleton P™, or coinciding with the running point
R. Thus, any elementary geometric object £ is determined by its skeleton and its envelope
function.

For instance, the sphere S(Fy, P;) with the center at the point P, is determined by
the relation

S(Py, Pr) = {R|fpp, (R) =0}, frop, (R) = /20 (Po, P1) — \/20 (Po,R)  (3)

where P, is a point belonging to the sphere. The elementary object £ is determined in
all physical geometries at once. In particular, it is determined in the proper Euclidean
geometry, where we can obtain its meaning. We interpret the elementary geometrical
object &, using our knowledge of the proper Euclidean geometry. Thus, the proper
Euclidean geometry is used as a sample geometry for interpretation of any physical
geometry.

We do not try to repeat subscriptions of Euclid at construction of the geometry.
We take the geometrical objects and relations between them, prepared in the framework
of the Euclidean geometry and describe them in terms of the world function. Thereafter
we deform them, replacing the Euclidean world function og by the world function o of
the geometry in question. In practice the construction of the elementary geometry object
is reduced to the representation of the corresponding Euclidean geometrical object in
the o-immanent form, i.e. in terms of the Euclidean world function. The last problem
is the problem of the proper Euclidean geometry. The problem of representation of the
geometrical object (or relation between objects) in the o-immanent form is a real problem
of the physical geometry construction.

It is very important, that such a construction does not use coordinates and other
methods of description, because the application of the means of description imposes
constraints on the constructed geometry. Any means of description is a structure St
given on the basic Euclidean geometry with the world function og. Replacement o — o
is sufficient for construction of unique physical geometry G,. If we use an additional
structure St for construction of physical geometry, we obtain, in general, other geometry
Gs:, which coincide with G, not for all o, but only for some of world functions . Thus, a
use of additional means of description restricts the list of possible physical geometries. For
instance, if we use the coordinate description at construction of the physical geometry,
the obtained geometry appears to be continuous, because description by means of the
coordinates is effective only for continuous geometries, where the number of coordinates
coincides with the geometry dimension.
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Constructing geometry G by means of a deformation we use essentially the fact
that the proper Euclidean geometry Gy is a mathematical geometry, which has been
constructed on the basis of Euclidean axiomatics and logical reasonings.

We shall refer to the described method of the physical geometry construction as
the deformation principle and interpret the deformation in the broad sense of the word.
In particular, a deformation of the Euclidean space may transform an Euclidean surface
into a point, and an Euclidean point into a surface. Such a deformation may remove
some points of the Euclidean space, violating its continuity, or decreasing its dimension.
Such a deformation may add supplemental points to the Euclidean space, increasing its
dimension. In other words, the deformation principle is a very general method of the
physical geometry construction.

The deformation principle as a method of the physical geometry construction
contains two essential stages:

(i) Representation of geometrical objects O and relations R of the Euclidean
geometry in the o-immanent form, i.e. in terms and only in terms of the world function
OE.

(ii) Replacement of the Euclidean world function og by the world function ¢ of the
geometry in question.

A physical geometry, constructed by means of the only deformation principle (i.e.
without a use of other methods of the geometry construction) is called T-geometry
(tubular geometry) [5, 4, 6]. The T-geometry is the most general kind of the physical
geometry.

Application of the deformation principle is restricted by two constraints.

1. Describing Euclidean geometric objects O (o) and Euclidean relation R (o)
in terms of og, we are not to use special properties of Euclidean world function og.
In particular, definitions of O (og) and R (og) are to have similar form in Euclidean
geometries of different dimensions. They must not depend on the dimension of the
Euclidean space.

2. The deformation principle is to be applied separately from other methods of
the geometry construction. In particular, one may not use topological structures in
construction of a physical geometry, because for effective application of the deformation
principle the obtained physical geometry must be determined only by the world function
(metric).

Description of the proper Euclidean space in terms of the world function

The crucial point of the T-geometry construction is the description of the proper
Euclidean geometry in terms of the Euclidean world function og. We shall refer to this
method of description as the o-immanent description. Unfortunately, it was unknown for
many years, although all physicists knew that the infinitesimal interval dS = +/gg.dxidzF
is the unique essential characteristic of the space-time geometry, and changing this
expression, we change the space-time geometry. From physical viewpoint the o-immanent
description is very reasonable, because it does not contain any extrinsic information. The
o-immanent description does not refer to the means of description (dimension, manifold,
coordinate system). Absence of references to means of description is important in the
relation, that there is no necessity to separate the information on the geometry in itself
from the information on the means of description. The o-immanent description contains
only essential characteristic of geometry: its world function. At first the o-immanent
description was obtained in 1990 [5].
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The first question concerning the o-immanent description is as follows. Does the
world function contain sufficient information for description of a physical geometry? The
answer is affirmative, at least, in the case of the proper Euclidean geometry, and this
answer is given by the prove of the following theorem.

Let o-space V' = {o,Q} be a set  of points P with the given world function o

o OxQ—R, o(P,P)=0, VP € (4)

where R denotes the set of all real numbers. Let the vector PoP1={F,, P, } be the ordered
set of two points Py, P;, and its length |PoP;| is defined by the relation |P0P1|2 =
20 (Po, P).

Theorem

The o-space V = {0,} is the n-dimensional proper Euclidean space, if and only
if the world function o satisfies the following conditions, written in terms of the world
function o.

[. Condition of symmetry:

c(P,Q)=0(Q,P), VPQeQ (5)
II. Definition of the dimension:
IP" ={Py, P, ..P,}, F, (P™) # 0, Fy (25 =0, k>n (6)
where F), (P") is the Gram’s determinant
F, (P") = det||(PoP;.PoPy)|| = det ||gi (P™)]], i,k=1,2,..n (7)
The scalar product (PyP1.QoQ;1) of two vectors PoP; and QQ; is defined by the relation

(PoP1.QoQ1) = 0 (P, Q1) + 0 (P1, Qo) — 0 (Py, Qo) — o (P, Q1) (8)

Vectors PoP;, ¢ =1,2,...n are basic vectors of the rectilinear coordinate system K, with
the origin at the point Py, and the metric tensors g, (P"), ¢* (P"), i,k =1,2,..nin K,
are defined by the relations

k=n

S g (P gw (PP =6, ga(P")= (PP PP, il=12.n (9

k=1
III. Linear structure of the Euclidean space:

i,k=n

7 (P.Q) =3 3 " (P (@i (P) — Q) (e (P) ~ (@), YP,Qen (10

ik=1

where coordinates x; (P), i = 1,2,...n of the point P are covariant coordinates of the
vector PoP, defined by the relation

IV: The metric tensor matrix g, (P™) has only positive eigenvalues

>0, k=12 ..n (12)
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V. The continuity condition: the system of equations
(P()P,P()P) =1Y; € ].:{7 1= 172, ...n (13)

considered to be equations for determination of the point P as a function of coordinates
y ={v:}, i =1,2,...n has always one and only one solution. Conditions I — V contain a
reference to the dimension n of the Euclidean space.

As far as the o-immanent description of the proper Euclidean geometry is possible,
it is possible for any T-geometry, because any geometrical object O and any relation R
in the physical geometry G is obtained from the corresponding geometrical object O and
from the corresponding relation Rg in the proper Euclidean geometry Gg by means of
the replacement og — o in description of Og an Rg. For such a replacement be possible,
the description of O and Rg is not to refer to special properties of og, described by
conditions IT — V. A formal indicator of the conditions II — V application is a reference to
the dimension n, because any of conditions II — V contains a reference to the dimension
n of the proper Euclidean space.

If nevertheless we use one of special properties II — V of the Euclidean space in the
o-immanent description of a geometrical object O, or relation R , we refer to the dimension
n and, ultimately, to the coordinate system, which is only a means of description.

Let us show this in the example of the determination of the straight in the
n-dimensional Euclidean space. The straight 7p ¢ in the proper Euclidean space is defined
by two its points Py and Q (Fy # @) as the set of points R

Trq = {R | PoQ||PoR} (14)

where condition PyQ||PoR means that vectors PyQ and PR are collinear, i.e. the scalar
product (PyQ.PoR) of these two vectors satisfies the relation

PyQ||PoR : (PoQ.PoR)* = (P;Q.PyQ) (P\R.P(R) (15)

where the scalar product is defined by the relation (8). Thus, the straight line 7p is
defined o-immanently, i.e. in terms of the world function o. We shall use two different
names (straight and tube) for the geometric object 7p,o. We shall use the term "straight”,
when we want to stress that 7p g is a result of deformation of the Euclidean straight. We
shall use the term "tube”, when we want to stress that 7p,¢ may be a many-dimensional
surface.

In the Euclidean geometry one can use another definition of collinearity. Vectors PyQ
and PyR are collinear, if components of vectors PyQ and PyR in some coordinate system
are proportional. For instance, in the n-dimensional Euclidean space one can introduce
rectangular coordinate system, choosing n + 1 points P"* = {Fy, Py, ...P,} and forming n
basic vectors PoP;, i = 1,2,...n. Then the collinearity condition can be written in the
form of n equations

P()QHP()R : (P0P1P0Q> =a (P0PZP0R> > 1= 1, 2, ...n, (16)

where a is some real constant. Relations (16) are relations for covariant components of
vectors PyQ and PyR in the considered coordinate system with basic vectors PoP;, 1 =
1,2, ...n. Let points P" be chosen in such a way, that (PyP;.P¢Q) # 0. Then eliminating
the parameter a from relations (16), we obtain n — 1 independent relations, and the
geometrical object

Torn = {R | PoQ|[PR} =[S, (17)
=2
L (PoP;.PyQ) _ (PoP;.PoR) } .
S, {R’ PP P.Q) - BB DR) = (18)
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defined according to (16), depends on n+ 2 points @), P". This geometrical object Topn is
defined o-immanently. It is a complex, consisting of the straight line and the coordinate
system, represented by n + 1 points P" = {Fy, P,...P,}. In the Euclidean space the
dependence on the choice of the coordinate system and on n + 1 points P" determining
this system, is fictitious. The geometrical object 7gpn depends only on two points F,
and coincides with the straight line 7p . But at deformations of the Euclidean space the
geometrical objects Tgpr and 7p g are deformed differently. The points Py, Ps, ... P, cease
to be fictitious in definition of 7gpn, and geometrical objects 7gpn and 7p,g become to be
different geometric objects, in general. But being different, in general, they may coincide
in some special cases.

What of the two geometrical objects in the deformed geometry should be interpreted
as the straight line, passing through the points F and () in the geometry G? Of course, it
is Tp,q, because its definition does not contain a reference to a coordinate system, whereas
definition of 7gp» depends on the choice of the coordinate system, represented by points
P". In general, definitions of geometric objects and relations between them are not to
refer to the means of description.

But in the given case the geometrical object 7p ¢ is, in general, (n — 1)-dimensional
surface, whereas 7Topn is an intersection of (n—1) (n—1)-dimensional surfaces, i.e. Zgpn is,
in general, a one-dimensional curve. The one-dimensional curve Zgpn corresponds better
to our ideas on the straight line, than the (n — 1)-dimensional surface 7p,q. Nevertheless,
in physical geometry G it is 7p , that is an analog of the Euclidean straight line.

It is very difficult to overcome our conventional idea that the Euclidean straight line
cannot be deformed into many-dimensional surface, and this idea has been prevent for
years from construction of T-geometries. Practically one uses such physical geometries,
where deformation of the Euclidean space transforms the Euclidean straight lines into one-
dimensional lines. It means that one chooses such geometries, where geometrical objects
Tp,o and Zgpn coincide.

Trq = Topr (19)

Condition (19) of coincidence of the objects Tp,¢ and Zgpn, imposed on the T-geometry,
restricts list of possible T-geometries.

Let us consider the metric geometry, given on the set €2 of points. The metric space
M = {p,Q} is given by the metric (distance) p.

\V)

p . QxQ—[0,00) CR (20)
p(P,P) =0,  p(P,Q)=p(@F), VPQe (21)
p(P,Q) > 0, p(P,Q) =0, iff P=0Q, VP, Q €} (22)

(23)

>
<

0 3

IO(P7R)+p(R7Q>_p(P>Q>7 VP7Q7REQ

where R denotes the set of all real numbers. At first sight the metric space is a special
case of the o-space (4), and the metric geometry is a special case of the T-geometry with
additional constraints (22), (23) imposed on the world function o = 1p*. However it is not
so, because the metric geometry does not use the deformation principle. The fact, that the
Euclidean geometry can be described o-immanently, as well as the conditions (6) - (13),
were not known until 1990. Additional (with respect to the o-space) constraints (22), (23)
are imposed to eliminate the situation, when the straight line is not a one-dimensional line.
The fact is that, in the metric geometry the shortest (straight) line can be constructed
only in the case, when it is one-dimensional.
Let us consider the set EL (P, Q,a) of points R

EL (P, Q, CL) = {R|fP,Q,a (R) = O} ) fP,Q,a (R) = p(P, R) + p(R7 Q) —2a (24)
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If the metric space coincides with the proper Euclidean space, this set of points is an
ellipsoid with focuses at the points P, () and the large semiaxis a. The relations fpg ., (R) >
0, froa(R) =0, fpoa(R) < 0 determine respectively external points, boundary points
and internal points of the ellipsoid. If p (P, Q) = 2a, we obtain the degenerate ellipsoid,
which coincides with the segment 7(pq) of the straight line, passing through the points P,
Q. In the proper Euclidean geometry, the degenerate ellipsoid is one-dimensional segment
of the straight line, but it is not evident that it is one-dimensional in the case of arbitrary
metric geometry. For such a degenerate ellipsoid be one-dimensional in the arbitrary metric
space, it is necessary that any degenerate ellipsoid EL (P, @, p (P, Q) /2) have no internal
points. This constraint is written in the form

fraprqy2 (R)=p(P,R)+p(R,Q) — p(P,Q) >0 (25)

Comparing relation (25) with (23), we see that the constraint (23) is introduced to
make the straight (shortest) line to be one-dimensional (absence of internal points in the
geometrical object determined by two points).

As far as the metric geometry does not use the deformation principle, it is a
poor geometry, because in the framework of this geometry one cannot construct the
scalar product of two vectors, define linear independence of vectors and construct such
geometrical objects as planes. All these objects as well as other are constructed on the
basis of the deformation of the proper Euclidean geometry.

Generalizing the metric geometry, Menger [7] and Blumenthal [8] removed the
triangle axiom (23). They tried to construct the distance geometry, which would be a
more general geometry, than the metric one. As far as they did not use the deformation
principle, they could not determine the shortest (straight) line without a reference to the
topological concept of the curve £, defined as a continuous mapping

L. 0,10 (26)

which cannot be expressed only via the distance. As a result the distance geometry
appeared to be not a pure metric geometry, what the T-geometry is.

Conditions of the deformation principle application

Riemannian geometries satisfy the condition (19). The Riemannian geometry is a
kind of inhomogeneous physical geometry, and, hence, it uses the deformation principle.
Constructing the Riemannian geometry, the infinitesimal Euclidean distance is deformed
into the Riemannian distance. The deformation is chosen in such a way that any Euclidean
straight line 7gp,q, passing through the point Fp, collinear to the vector PyQ, transforms
into the geodesic 7p,q, passing through the point Fy, collinear to the vector P¢Q in the
Riemannian space.

Note that in T-geometries, satisfying the condition (19) for all points @, P™, the
straight line

To0rq = {R | PoQ|QoR} (27)

passing through the point )y collinear to the vector PyQ, is not a one-dimensional
line, in general. If the Riemannian geometries be T-geometries, they would contain
non-one-dimensional geodesics (straight lines). But the Riemannian geometries are not
T-geometries, because at their construction one uses not only the deformation principle,
but some other methods, containing a reference to the means of description. In particular,
in the Riemannian geometries the absolute parallelism is absent, and one cannot to
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define a straight line (27), because the relation PyQ||/QoR is not defined, if points P
and )y do not coincide. On one hand, a lack of absolute parallelism allows one to go
around the problem of non-one-dimensional straight lines. On the other hand, it makes
the Riemannian geometries to be inconsistent, because they cease to be T-geometries,
which are consistent by the construction (see for details [9]).

The fact is that the application of only deformation principle is sufficient for
construction of a physical geometry. Besides, such a construction is consistent, because the
original Euclidean geometry is consistent and, deforming it, we do not use any reasonings.
If we introduce additional structure (for instance, a topological structure) we obtain a
fortified physical geometry, i.e. a physical geometry with additional structure on it. The
physical geometry with additional structure on it is a more pithy construction, than the
physical geometry simply. But it is valid only in the case, when we consider the additional
structure as an addition to the physical geometry. If we use an additional structure in
construction of the geometry, we identify the additional structure with one of structures
of the physical geometry. If we demand that the additional structure to be a structure of
physical geometry, we restrict an application of the deformation principle and reduce the
list of possible physical geometries, because coincidence of the additional structure with
some structure of a physical geometry is possible not for all physical geometries, but only
for some of them.

Let, for instance, we use concept of a curve £ (26) for construction of a physical
geometry. The concept of curve L, considered as a continuous mapping is a topological
structure, which cannot be expressed only via the distance or via the world function. A
use of the mapping (26) needs an introduction of topological space and, in particular, the
concept of continuity. If we identify the topological curve (26) with the "metrical” curve,
defined as a broken line

Ty = U,]IPiPiH]? ,T[Pz‘Pz'Jrl] = {R|\/2U (Pla Pi-H) - \/20 (sz R) - \/20 (R7 Pi-H)}

(28)
consisting of the straight line segments 7(p,p,, ,; between the points F;, Py, we truncate
the list of possible geometries, because such an identification is possible only in some
physical geometries. Identifying (26) and (28), we eliminate all discrete physical geometries
and those continuous physical geometries, where the segment 7(p, p,, | of straight line is a
surface, but not a one-dimensional set of points. Thus, additional structures may lead to
(i) a fortified physical geometry, (ii) a restricted physical geometry and (iii) a restricted
fortified physical geometry. The result depends on the method of the additional structure
application.

Note that some constraints (continuity, convexity, lack of absolute parallelism),
imposed on physical geometries are a result of a disagreement of the applied means of
the geometry construction. In the T-geometry, which uses only the deformation principle,
there are no such restrictions. Besides, the T-geometry accepts some new property of a
physical geometry, which is not accepted by conventional versions of physical geometry.
This property, called the geometry nondegeneracy, follows directly from the application
of arbitrary deformations to the proper Euclidean geometry.

The geometry is degenerate at the point F, in the direction of the vector QyQ,
|QoQ| # 0, if the relations

QQTTPR:  (QQPR)=+[QQ|-[PR|,  [PoR[=a#0 (29

considered as equations for determination of the point R, have not more, than one solution
for any a # 0. Otherwise, the geometry is nondegenerate at the point F, in the direction
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of the vector QyQ. Note that the first equation (29) is the condition of the parallelism of
vectors QpQ and PyR.

The proper Euclidean geometry is degenerate, i.e. it is degenerate at all points in
directions of all vectors. Considering the Minkowski geometry, one should distinguish
between the Minkowski T-geometry and Minkowski geometry. The two geometries are
described by the same world function and differ in the definition of the parallelism. In the
Minkowski T-geometry the parallelism of two vectors QeQ and PoR is defined by the
first equation (29). This definition is based on the deformation principle. In Minkowski
geometry the parallelism is defined by the relation of the type of (16)

Q()Q TT P()R : (P()PZQ()Q) =a (POPzPQR) y 1= ]_, 27 . a>0 (30)

where points P" = { Py, P, ...P,} determine a rectilinear coordinate system with basic
vectors PoP;, ¢ = 1,2,..n in the n-dimensional Minkowski geometry (n-dimensional
pseudo-Euclidean geometry of index 1). Dependence of the definition (30) on the points
(P, Py, ...P,) is fictitious, but dependence on the number n + 1 of points P" is essential.
Thus, definition (30) depends on the method of the geometry description.

The Minkowski T-geometry is degenerate at all points in direction of all timelike
vectors, and it is nondegenerate at all points in direction of all spacelike vectors. The
Minkowski geometry is degenerate at all points in direction of all vectors. Conventionally
one uses the Minkowski geometry, ignoring the nondegeneracy in spacelike directions.

Considering the proper Riemannian geometry, one should distinguish between the
Riemannian T-geometry and the Riemannian geometry. The two geometries are described
by the same world function. They differ in the definition of the parallelism. In the
Riemannian T-geometry the parallelism of two vectors QeQ and PoR is defined by the
first equation (29). In the Riemannian geometry the parallelism of two vectors QpQ and
PoR is defined only in the case, when the points Py and @)y coincide. Parallelism of remote
vectors QoQ and PgR is not defined, in general. This fact is known as absence of absolute
parallelism.

The proper Riemannian T-geometry is locally degenerate, i.e. it is degenerate at
all points Py in direction of vectors PyQ. In the general case, when Py # )y, the proper
Riemannian T-geometry is nondegenerate, in general. The proper Riemannian geometry is
degenerate, because it is degenerate locally, whereas the nonlocal degeneracy is not defined
in the Riemannian geometry, because of the lack of absolute parallelism. Conventionally
one uses the Riemannian geometry (not Riemannian T-geometry) and ignores the property
of the nondegeneracy completely.

From the viewpoint of the conventional approach to the physical geometry the
nondegeneracy is an undesirable property of a physical geometry, although from the
logical viewpoint and from viewpoint of the deformation principle the nondegeneracy is
an inherent property of a physical geometry. The nonlocal nondegeneracy is ejected from
the proper Riemannian geometry by denial of existence of the remote vector parallelism.
Nondegeneracy in the spacelike directions is ejected from the Minkowski geometry by
means of the redefinition of the two vectors parallelism. To appreciate this, let us consider
an example.

Simple example of nondegenerate space-time geometry

The T-geometry [4] is defined on the o-space V = {o,Q}, where Q is an arbitrary
set of points and the world function ¢ is defined by the relations

o: Qx0Q—R, o(P,Q)=0(Q,P), o(P,P)=0, VP,Q € (31)
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where R denotes the set of all real numbers. Geometrical objects (vector PQ, scalar
product of vectors (PyP1.QoQ;1), collinearity of vectors PoP;||QoQ1, segment of straight
line 7ip,p,), etc.) are defined on the o-space in the same way, as they are defined o-
immanently in the proper Euclidean space. Practically one uses the deformation principle,
although it is not mentioned in all definitions.

Let us consider a simple example of the space-time geometry G4, described by the
T-geometry on 4-dimensional manifold M ,3. The world function o4 is described by the
relation

oM+ d if o9 < oM
UdIUM+D(UM)I (1—|—%> oM ifOSO'MSO'O (32)
oM if0M<O

where d > 0 and o9 > 0 are some constants. The quantity oy is the world function in
the Minkowski space-time geometry Gy. In the orthogonal rectilinear (inertial) coordinate
system x = (t,x) the world function oy has the form

1
o (w,a) = 5 (At =1) = (x=x)’) (33)
where ¢ is the speed of the light.

Let us compare the broken line (28) in Minkowski space-time geometry Gy; and in the
distorted geometry Gq. We suppose that 7y, is timelike broken line, and all links 7jp,p,,
of 7y, are timelike and have the same length

|PiPi+1’d = 20'(1 (IDi;P7L+1) = Uq > O, 1= O, :I:l, :|:2, (34)

where indices "d” and "M” mean that the quantity is calculated by means of o4 and oy
respectively. Vector P;P, ., is regarded as the momentum of the particle at the segment
Tip,p,,,]» devided by the speed of the light ¢ (we take for simplicity that ¢ = 1). The
quantity |P;P; 1| = u is interpreted as its (geometric) mass. It follows from definition (8)
and relation (32), that for timelike vectors P;P;,; with u > /209

PiPigaly = pd = e +2d,  piy > 200 (35)
(Pi1PiPiPiy1)y = (PioiPiPiPiy)y +d (36)
Calculation of the shape of the segment 7jp, p) (04) in Gq gives the relation
( Td 2
2,2 (1‘m) T2 pdoo 2(o0+d)
T Ha I_Zg) - (Uoid)’ 0<7< Hd
Hd
2 -1 2o0+d) /2(c0+d)
r2(r) =4 F+2d(r-1/2) <1—%> : Voo— < <1- Y2 (37)
(1—7)d 2
2 2 (1’2<o +d>) o 2(o0+d)
(1 - 7_) Hq <102d> - (goid) , 1= T <Tt<l1
\ I

where 7 (7) is the spatial radius of the segment 7[p p;j (04) in the coordinate system, where
points Py and P; have coordinates Py = {0,0,0,0}, P, = {11q,0,0,0} and 7 is a parameter
along the segment 7(p p(04) (7 (Fy) = 0, 7(P,) = 1). One can see from (37) that the
characteristic value of the segment radius is v/d.

Let the broken tube 7y, describe the "world line” of a free particle. It means by
definition that any link P, ;P; is parallel to the adjacent link P;P;.4

P,_P; 1T PPy, : (Pi_1PiPPiyy) — [PiiPy| - PPy =0 (38)
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Definition of parallelism is different in geometries Gy and Gq. As a result links, which are
parallel in the geometry Gy, are not parallel in G4 and vice versa.

Let Ty, (o) describe the world line of a free particle in the geometry Gy. The angle
Yy between the adjacent links in Gy is defined by the relation

P_,Py,PP

hdy = —
oM [PoP1y - [P_1Poly

The angle ¢\ = 0, and the geometrical object Ty, (o)) is a timelike straight line on the
manifold M 3.

Let now 7y, (0q) describe the world line of a free particle in the geometry Gq. The
angle Y4 between the adjacent links in Gy is defined by the relation

(Pi 1 PiPiPiy), 1 (40)
|PiPi+1|d : |Pi—1Pi|d

coshdy =

The angle ¥4 = 0 also. If we draw the broken tube 7y, (04) on the manifold M, 3, using
coordinates of basic points P; and measure the angle ¥4, between the adjacent links in
the Minkowski geometry Gy, we obtain for the angle ¥4\ the following relation

(Pio1P. PPy _ (Pi1P. PP ) —d
PPy [Pic1Pily |PZ-Pi+1|(21 —2d

Substituting the value of (P,_P;.P;P;1),, taken from (40), we obtain for the case, when
d < i

coshdqym = (41)

pi—d ~ d 2
COSh’lng— mw 1+u—3, d<<[1,d (42)
Hence, Yqu ~ \/ﬁ/ ia- It means, that the adjacent link is located on the cone of angle
V/2d/ 114, and the whole line 7y, (04) has a random shape, because any link wobbles with
the characteristic angle \/ﬁ/ itq- The wobble angle depends on the space-time distortion
d and on the particle mass jq. The wobble angle is small for the large mass of a particle.
The random displacement of the segment end is of the order pq¥am = v2d, i.e. of the
same order as the segment width. It is reasonable, because these two phenomena have the
common source: the space-time distortion D.

One should note that the space-time geometry influences the stochasticity of particle
motion nonlocally in the sense, that the form of the world function (32) for values of
oM < % 12 is unessential for the motion stochasticity of the particle of the mass pgq.

Such a situation, when the world line of a free particle is stochastic in the
deterministic geometry, and this stochasticity depends on the particle mass, seems to
be rather exotic and incredible. But experiments show that the motion of real particles
of small mass is stochastic indeed, and this stochasticity increases, when the particle
mass decreases. From physical viewpoint a theoretical foundation of the stochasticity is
desirable, and some researchers invent stochastic geometries, noncommutative geometries
and other exotic geometrical constructions, to obtain the quantum stochasticity. But in
the Riemannian space-time geometry the particle motion does not depend on the particle
mass, and in the framework of the Riemannian space-time geometry it is difficult to explain
the quantum stochasticity by the space-time geometry properties. Distorted geometry Gy
explains the stochasticity and its dependence on the particle mass freely. Besides, at proper
choice of the distortion d the statistical description of stochastic 7y, leads to the quantum
description (Schrodinger equation) [10]. It is sufficient to set

h
d=— 43
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where A is the quantum constant, ¢ is the speed of the light, and b is some universal
constant, connecting the geometrical mass p with the usual particle mass m by means of
the relation

m = bu (44)

In other words, the distorted space-time geometry (32) is closer to the real space-time
geometry, than the Minkowski geometry Gy;.

Statistical description of stochastic world tubes

Statistical description of world lines cannot be a probabilistic statistical description,
because the number of world lines may be negative. Indeed, the density of world lines in
the vicinity of the space-time point x is defined by the relation

dN = j*dS, (45)

where dN is the flux of world lines through the spacelike 3-area dS;. The 4-vector j* =
4* (x) describes the world-lines density in the vicinity of the point x. The quantity d N may
be interpreted as the number of world lines in the vicinity of the point z. This number
may be negative.

In the nonrelativistic case the relation (45) turns into the relation

dN = j°dSy = pdV (46)

where the particle density j° = p > 0, and p may be a ground for introduction of the
probability density. In the relativistic case one cannot introduce the probability density,
because the world line density is described by the 4-vector j*.

For statistical description of stochastic world lines we use the dynamical conception
of statistical description (DCSD), which does not use the concept of the probability [11].

Let Sy be stochastic particle, whose state X is described by variables {X, ‘Zl—’; , where
X is the particle position. Evolution of the particle state is stochastic, and there exist
no dynamic equations for Sg. Evolution of the state of Sy contains both regular and
stochastic components. To separate the regular evolution components, we consider a set
(statistical ensemble) £ [Ss| of many independent identical stochastic particles Sg. All
stochastic particles Sy start from the same initial state. It means that all Sy are prepared
in the same way. If the number N of S is very large, the stochastic elements of evolution
compensate each other, but regular ones are accumulated. In the limit N — oo the
statistical ensemble & [Sy] turns into a dynamic system, whose state evolves according to
some dynamic equations.

Let the statistical ensemble &4 [Sq] of deterministic classical particles Sq be described
by the action Ag,[s,(p), where P are parameters describing Sy (for instance, mass, charge).
Let under influence of some stochastic agent the deterministic particle Sy turn into a
stochastic particle Sy¢. The action Ag,(s,,) for the statistical ensemble E [Sst] is reduced
to the action As,_,s,) = Ae,[s.,] for some set S;eq [Sa] of identical interacting deterministic
particles Sq. The action As, (s, as a functional of Sy has the form Ag,s,(p.q), Where
parameters P.g are parameters P of the deterministic particle Sq, averaged over the
statistical ensemble, and this averaging describes interaction of particles Sy in the set
Sred [Sa]- It means that

As15a] = ASpalsa(P) = Acalsa(Pur)] (47)
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In other words, stochasticity of particles Sy in the ensemble & [Sy] is replaced by
interaction of Sy in Syeq [Sq], and this interaction is described by a change

P — Pg (48)

in the action Ag,s,(p)-
The free particle has the unique parameter - its mass m, and the action Ag, for the
free deterministic particle has the form

Si: As x| = / > (‘;—’t‘)zdt (49)

where x = x (t) = {x' (t),2% (t), 23 (t)}, and the time ¢ is the independent variable.
The action Ag,s,(py for the pure statistical ensemble &£ [Sq] of free deterministic
particles Sq has the form

EalSal:  Asysy[x] = / % (Cfl—’;>zdtdf (50)

where x = x(t,€) = {2 (,€), 2% (t,€) ,23 (t,€)}. Independent variables & = {&1, &, &3}
label elements Sy of the statistical ensemble & [S4]. The variables ¢ are known as
Lagrangian coordinates. Statistical ensemble &;[S4] is a continuous dynamic system,
having infinite number of the freedom degrees, whereas the particle Sq is the discrete
dynamic system having six degrees of freedom.

If the particles are stochastic, the action Ag,s,] for the pure statistical ensemble
Est [Sst] of free quantum stochastic particles Sy, has the form

dx\’ h
gst [Sst] : Ac‘fsc[Sst] [Xa 11} = / {% (d_)t() + %UQ - §vu} dtdf (51)

where u = u(t,x) is a vector function of arguments ¢,x (not of ¢,&), and x = x(¢,€)
is a vector function of independent variables ¢,£. The 3-vector u describes the mean
value of the stochastic component of the particle motion, which is a function of the
variables ¢, x. The first term % (‘2—’;)2 describes the energy of the regular component of the
stochastic particle motion. The second term mu?/2 describes the energy of the random
component of velocity. The components ‘fl—’t‘ and u of the total velocity are connected with
different degrees of freedom, and their energies should be added in the expression for
the Lagrange function density. The last term —hAVu/2 describes interaction between the

regular component % and the random one u. Note that mu?/2 is a function of ¢,x. It

dt
influences on the regular component ‘2—1‘ as a potential energy U (t,x,Vx) = —mu?/2,
generated by the random component.

The dynamic system (51) is a statistical ensemble, because the Lagrange function
density of the action (51) does not depend on £ explicitly, and we can represent the action

for the single system S

2
Syt - As, [x,u] = / {% <(fl—>;) + %112 _ gLVu} dt (52)

Unfortunately, the expression for the action (52) is only symbolic, because the differential
operator V = {0/0z*}, o = 1,2, 3 is defined in the continuous vicinity of the point x,
but not only for one point x. The expression (52) ceases to be symbolic, only if # = 0. In
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this case the last term, containing V vanishes. Variation of (52) with respect to u gives
u = 0, and the action (52) coincides with the action (50) for Sy. If i # 0, the expression
for the action (52) is not the well defined, and dynamic equations for Sy are absent.

Dynamic equation for u is obtained from the action functional (51) by means of
variation with respect to u. If the quantum constant A = 0, it follows from the dynamic
equation for u, that u = 0, and the action (51) reduces to the form (50). In the general
case h # 0 we are to go to independent variables x, because u is a function of ¢, x. We
obtain instead of (51)

dx\ 2 h
EalSul:  Asysaxul = / {%(d—’t‘) +%u2—§w}pdtdx (53)

= 8(51752753) — (a<xlﬂx27‘x3))_l (54>
0(1‘1,91:2,363) 8(51752753)
Variation of (54) with respect to u gives
0As., (8., h
?u[& I _ mpu—i—EVp =0 (55)
Resolving dynamic equation (55) with respect to u in the form
h
=-——VI
u 2mV np (56)
we can eliminate the mean stochastic velocity u from the action (53). We obtain instead
of (53)
m [dx\’
Est [Sst] - Aesa) [x] = S\z) Y (p, Vp) ¢ pdtdx (57)
where , ) ,
e (Vp I
pU (p,Vp) = SN N (58)

8m p 4m
and p is defined by (54). Eliminating divergence, we obtain instead of (58)

B2 S |

Ulp,Vp) = 2 dm

(59)
The last term in (59) does not give a contribution into dynamic equations, and it may be
omitted. The action (57) turns into

dx\*  h?* (Vp)*
Sst [Sst] : Ac‘:st[sst] [6] = / {% (d_)t(> - %( p{:) }pdtdx (60)

where variables t,x are independent variables, and variables ¢ are considered to be
dependent variables. The quantities p and (fi—’t‘ are functions of the dependent variables
¢ derivatives with respect to ¢t and x

o (9(51752753)
p= O (zt, 22, x3)
dz® - 8($a7€17€2>€3) _18(xa7€1>£27£3)

dt (&1, &) - O (t,xt, a2 x3)’ a=123 (62)

(61)
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Dynamic equations, generated by the action (60), are rather complicated. However,
in terms of the wave function the action (60) takes a more simple form [12].
In terms of the two-component wave function v

b= {1, 9}, wz{Z} p= UM = Yt + Y, (63)
2

the action (62) takes the form

b
gst [Sst] : Agst[Sst} W%W] = / {Z : (¢*80¢ 6077ZJ 77Z)) 0 V¢ V¢

B~ s =P
— o - dtdx, 64
+8m QE:1<VS )p+ S (Vp) X (64)
where i}
Sq = v Zal/}, a=1,2,3, (65)

and o, are the Pauli matrices

(o1 (o~ 1o
Ul_(m)’ ’ (z 0)’ (0—1) (66)

Here the constant by is an arbitrary constant. We transit from the action (60)
to the action (64) by means of the change of variables, accompanied by the
integration of dynamic equations and by the appearance of three arbitrary functions

g(&)=1{9"(8),9°(&).d* ()}

The change of variables, connecting dependent variables £ and 1, has the form (see
Appendix A or [12])

wa - \/ﬁei%’ua(é‘)’ w: = \/ﬁe_i@uZ(g)v Q= 17 27 RN (67>
VP =D Yo, (68)
a=1

where (*) means the complex conjugate. The quantities u,(§), « = 1,2, ...n are functions
of only variables ¢, and satisfy the relations

L Ou,  Oul ) =
—— = ¢°(¢), p=1,23, Uy = 1. (69)
Z ( "¢ 06 ;

Here ¢ is the new dependent variable, appearing from the fictitious temporal Lagrangian
coordinate &, and by is an arbitrary constant. The number n is such a natural number
that equations (69) admit a solution. In general, n depends on the form of the arbitrary
integration functions g = {¢°(€)}, 3 = 1,2, 3.

The meaning of the wave function 1 is not clear, and interpretation is produced on
the basis of the action (53) or (60), where meaning of all quantities is quite clear. The
action (53) describes the flow of some fluid with the density p, determined by the relation
(54), and the flux density

dx

— 70
i=prg (70)
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In terms of the wave function ¢ these quantities have the form

P, G= -2 VY- Ve 9) ()
m
The functions g determine vorticity of the fluid flow. If g = 0, equations (69) have
the solution w1 = 1, u, = 0, a = 2,3,...n. In this case the function @ may have one
component (other components vanish), and the fluid flow is irrotational. The function v
has the form

=P, = pe (72)
and the fluid velocity
j b
v=1_yX¥ (73)

p m

has the potential byp/m.
In the partial case of the irrotational fluid flow

Yroat
P

= const, a=1,2,3 (74)

Sa

and the action (64) turns into the action

b 02 b2 — I
As, o.w) = [ {70 A R e (A v <Vp>2} didx,  (75)

If we choose the arbitrary constant by in the form by = A, the action (75) turns into the
action

h h?
As, [, 9] = / {% (V00 — Optp™ - 1) — %W*W} dtdx, (76)
having the Schrodinger equation
. n_,
ihdgp = —5 V) (77)

as the dynamic equation. Expressions (71) for the density and the particle flux turn into
the conventional expressions
. ih
p=u, §= =g (VY= VU y) (78)
m
Interpretation of all quantities is obtained on the basis the fact, that the quantum
description in terms of the Schrodinger equation is the special case of the statistical
description in terms of the statistical ensemble (51).
Can we obtain the statistical ensemble (51) from the statistical ensemble (50) by
means of the change m — meg? It is possible, if we represent the nonrelativistic action
(50) as the nonrelativistic approximation

Ealsi: Assalx = | {—mc2 + 2 (Z—’j)g} dtd (79)

of the relativistic action

falSil: Ass = [ me \/ 1o (%) e (50)
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The action (51) is obtained from the action (79) as a result of the change

2
m—>meﬁc:m(1—u——|— h Vu) (81)

Practically, the change is produced only in the first term of the action (79), because the
change in the second term gives additional term of the order of ¢~2, which is small in the
nonrelativistic approximation. Another version of the change in the action (79) has the

form
h? (VP)Z R 1,
T et = 1 (1 S sm2 p? 4771262;v g (52)
or ,
n (Vp)
m—>meﬁ:m<1+m p2 (83)

The relation (82) is obtained from (81) after substitution of (56). Producing the change
(83) in the action (79), we obtain in the nonrelativistic approximation the action (60).
In the relativistic case instead of the change (81) we have

m? = m&p =m® (1+wu' + '), A=— (84)
me
where the variables u* = u* () = u* (t,x), k = 0,1,2,3 are new dependent variables,
describing the mean value of the stochastic component of the particle 4-velocity. The
change (84) in the action (80) for the statistical ensemble of free relativistic particles
leads finally to the action [13]

A = [{rowos -t @s) @) o e s9)

where 1 is the two-component wave function (67) - (69). The variables p, s, are defined
by the relation (71) and, besides, the constant by = k. The action (85) is the action for the
statistical ensemble of free stochastic relativistic particles. In the case of irrotational flow,
when the wave function ¥ may be one-component, s, =const, and the dynamic equation
for the action (85) is the Klein-Gordon equation.

h20,0% +m2c*h =0 (86)

Determination of the effective mass

We are going to show, that the change (83) follows from the form of the world function
(32). In reality in [10] the inverse problem has been solved. What is the geometry of the
uniform space-time, if the statistical description of free nonrelativistic particles leads to the
quantum description in terms of the Schrédinger equation? Having solved this problem,
we obtained the world function (32). Now we show that the effective mass meg of the
nonrelativistic particle is determined by the relation (83).

Mathematical formalism of theoretical physics is suited for application in the
Minkowski space-time. Mathematical formalism for work in the distorted space-time Vg
with the world function (32) is absent now. We are forced to work in the Minkowski
space-time, using conventional technique and taking into account distortion of the
space-time by means of some corrections.



88 Rylov Y. A. Deformation principle as foundation of physical geometry...

Let introduce the notion of the adduced vector p= p'(a, Py, P1) as a totality of a real
or imaginary number a and two points {Fy, P, }

p=p(a, Py, P) = a(PP1) = aPoPy (87)

The number a is called the gauge of the adduced vector. The vector PoP; is a partial case
of the adduced vector aPyP; with the gauge a = 1. The scalar product of two adduced
vectors a1 PoP1 and a2QoQ; is defined by the relation

(G1P0P1'G2Q0Q1) = 103 (P0P1-Q0Q1) (88>

We shall consider statistical ensemble of relativistic particles, described by the action
(80) with the oriented mass m,, defined by the relation

me = bilo, to = (PoP1.14 (R)) (89)

where @ = 1 (R) is the unit adduced vector of the 4-velocity at the point R € Tp,py,
PyP; is the momentum vector, divided by the speed of the light ¢. The quantity m, is
called the oriented mass because it depends on the mutual orientation of the momentum
vector and of the 4-velocity. The oriented mass m, has different sign for the particle and
for the antiparticle.

The 4-velocity @ = @ (R) is the unit adduced vector inside the segment 7[p p,) in the
space-time Vjy

7(R) = |PoR|;' PR = (PRPoR); "’ PR, R € Tipp, (90)

(@ (R).@ (R)), = 1 (91)

The particle mass, defined by the relation (89), is different in V4 and in V. As far
as R € Tjp,p,) and, hence, PoR 11T,PP;.

(PoP1.PoR), = |PoP4|, - |PoR|,, (92)
we obtain for meyq

Mea = b(PyP1.@(R)), = b|PoR|;' (PoP1.PoR),
= b[PoR|;" - [PoPyy - [PoR|; = b[PoP1|y = bua (93)

where b is the constant, defined by (44).

If the point R on the segment 7p, p,) is not close to the ends P and P, (i.e. IPoR/% >
200, [PoP1|2 > 200) and relation (36) is satisfied, we obtain for the oriented mass moy
in VM

mon = b(PoP1.@(R))y = b|PoR|;" (PoP1.PoR),,
= b[PoR/|;" ((PoP1.PoR), — 2d)
2bd

=b ’POPIId — 2db ’P()R‘(;l = b/Ld — W
0t%lq

(94)

Thus, the particle mass mgy, defined by the relation (89) and calculated in Vjy
depends on the point R on the surface of the segment 7jp p,;. We use in the action (80)
some effective mass meg, calculated in accordance with (94) in the Minkowski space-time

VM by means of the relation
Mes = b (P(]Pl.l_l:eff)M (95)
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where the adduced vector g is the mean 4-velocity inside the segment 7ip, p,].
Let the point P be the center of the segment 7|p p,), as it shown in figure 1. The
points P" and P” are centers of segments T[P(; P’ T[P(g’ Py of adjacent world tubes of the

statistical ensemble. We consider nonrelativistic case, and the vectors PPy, P{P/, P{PY
may be considered to be parallel in Vj;. Let segments 7ip, p,], T[P(g Pl T[Pg,’ Py be placed
in such a way, that P € ,T[Pé P P € ,T[Pé’ Py The 4-velocity of the segment T[P(; P

determined by the vector PP, and the 4-velocity of the segment T[ E determined by

P(;/PIH
the vector PGP, make a contribution in the effective 4-velocity g of the segment 7ip p,).
We suppose that the origin of the effective 4-velocity vector u.g is placed at the point P.

Let the spatial distance between the points P, P’ and P, P” be I. According to the relation

(37) we obtain
o B n2 B m2 . 3d_ 3h
L=/~ IPPP = = PP = (05) =[5 =/ (96)

P P P!

Fo P, P

Puc. 1:

We choose the coordinate system with the origin at the point P and with the time
axis directed along the vector PyP;. In the space-time Vj in this coordinate system we
have covariant components of PyP;

(PoP1);, = {#ac, 0, } (97)

The contravariant coordinates of the 4-velocity of the segment ’T[ x have the form

PyP]

u* = {u’ u} = vV=——2c (98)

A%
2’_ 2 ’ o /"L
/ v d
- 5 C 1—6—2

where x are the spatial coordinates of the point P’. The effective 4-velocity at the point
P is a sum of contributions of all segments ’T[ PyP]
0" 1

ug = A / p(x)6 (I —x%) u° (x) dx, (99)
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- \/% (100)
ueH:A/p(x)a(ﬂ—x?) ——A/ *)

where the quantity p is the density of world lines in the statistical ensemble, and the
quantity A is determined from the condition of normalization of g (P)

(101)

A (ul)? —uZp =1 (102)

Supposing that p (x) changes slowly and expanding p (x) in a series over x, we obtain

from (99), (101)

21 Apl
ep (103)

4 APV p
—cdx =

U = —A/ -
\/ Z: Bpay/1 = <Hd>

where p is the value of the density at the point P. Substituting (103), (104) in (102) and
using (100), we obtain
(%)
Ha

A= (105)

27Tlp\/1 — (277'?0

Substituting (105) in (103), we obtain

(104)

uly = (106)

It follows from (95), (97) and (106)
1

\/1—<2m -Vinp)

This result coincides with the relation (83).

We admit that there are another methods of calculation of the value of meg, which
give another result. In this case we should choose another world function of the space-time
Va, which leads to the result (107), because we know that the effective mass, determined
by the relation (107) agrees with the experimental data. We know about the distorted
space-time geometry only that it generates stochastic motion of free particles. Information
on its world function is obtained from the demand that the world function leads to the
effective mass, which is determined by the relation (107).

Further development of the statistical description of geometrical stochasticity leads
to a creation of the model conception of quantum phenomena (MCQP), which relates to
the conventional quantum theory approximately in the same way as the statistical physics

0
Meff = MyCUg = T1g
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relates to the axiomatic thermodynamics. MCQP is the well defined relativistic conception
with effective methods of investigation [14], whereas the conventional quantum theory is
not well defined, because it uses incorrect space-time geometry, whose incorrectness is
compensated by additional hypotheses (quantum principles). Besides, it has problems
with application of the nonrelativistic quantum mechanics technique to the description of
relativistic phenomena.

The geometry Gq is a homogeneous geometry as well as the Minkowski geometry,
because the world function o4 is invariant with respect to all coordinate transformations,
with respect to which the world function oy is invariant. In this connection the question
arises, whether one could invent some axiomatics for Gq and derive the geometry G4 from
this axiomatics by means of proper reasonings. Note that such an axiomatics is to depend
on the parameter d, because the world function o4 depends on this parameter. If d = 0,
this axiomatics is to coincide with the axiomatics of the Minkowski geometry Gy;. If d # 0,
this axiomatics cannot coincide with the axiomatics of Gy, because some axioms of Gy
are not satisfied in this case. In general, the invention of axiomatics, depending on the
parameter d and in the general case on the distortion function D, seems to be a very
difficult problem. Besides, why invent the axiomatics? We had derived the axiomatics for
the proper Euclidean geometry, when we constructed it before. There is no necessity to
repeat this process any time, when we construct a new geometry. It is sufficient to apply
the deformation principle to the constructed Euclidean geometry written o-immanently.
Application of the deformation principle to the Euclidean geometry is a very simple and
general procedure, which is not restricted by continuity, convexity and other artificial
constraints, generated by our preconceived approach to the physical geometry. (Bias of
the approach is displayed in the antecedent supposition on the one-dimensionality of
any straight line in any physical geometry, which reminds the statement of the ancient
Egyptians that all rivers flow towards the North).

Thus, we have seen that the nondegeneracy of the physical geometry as well as
non-one-dimensionality of the straight line are properties of the real physical geometries.
The proper Euclidean geometry is a ground for all physical geometries. Although it is a
degenerate geometry, it is beyond reason to deny an existence of nondegenerate physical
geometries.

Thus, the deformation principle together with the o-immanent description appears
to be a very effective mathematical tool for construction of physical geometries.

1. The deformation principle uses results obtained at construction of the proper
Euclidean geometry and does not add any additional supposition on properties of
geometrical objects.

2. The deformation principle uses only the real characteristic of the physical geometry
— its world function and does not use any additional means of description.

3. The deformation principle is very simple and allows one to investigate only that
part of geometry which one is interested in.

4. Application of the deformation principle allows one to obtain the true space-time
geometry, whose unexpected properties cannot be obtained at the conventional
approach to physical geometry.

Transformation of the action for the statistical ensemble



92 Rylov Y. A. Deformation principle as foundation of physical geometry...

To transform the action (60) to the description in terms of the wave function, we
rewrite it in the form

dx\? R (Vp)’
gst [Sst] : Agst[sst] [X] = / {% (d_)tc) - %< p/;) }dtdé (108)

= 8(51762763) — (a<x17x27x3))_1 ( 109)
8(1’1,1’2,$3) 8(517527&3) ’

We introduce the independent variable &, instead of the variable t = 2° and rewrite the

action (.108) in the form

mi®i®  h? (Vp)? I

where

where £ = {&,¢} = {&), £=0,1,2,3, 2 = {mk (5)}, k =0,1,2,3. Here and in what
follows, a summation over repeated Greek indices is produced (1 — 3).

Let us consider variables £ = £ (x) in (.110) as dependent variables and variables x
as independent variables. Let the Jacobian

_ 0(66.6.8)

0 (29, zl, 22 x3)

J :det’|€7«,k|’7 gi,k Eakgw iak:0717273 (111)

be considered to be a multilinear function of &; ;. Then

i oz _ a(mi,£17£2’§3) —J! 9J

d¢ = Jd'e, @

i=0,1,2,3  (.112)

8 9 (Eo, 61,6, E3) Do

After transformation to dependent variables £ the action (.110) takes the form

[ fmoor a1 oI\ B (V)| .
Agst[SSt] [5] = / {3860,01 8&)@ <a§070) — 8—mT d X, (113)

Here the dependent variable & is fictitious
We introduce new variables

oJ
k= , k=0,1,2,3, =4 114
7= 56, p=] (.114)

by means of Lagrange multipliers p

g B2 (Vp)? a.J
Ae.iis. €, 7,0 —/{T‘i _(—p)+pk< j’“)}d‘*m, (.115)

2 40 © 8m P 3fo,k_

Here and in what follows, a summation over repeated Latin indices is produced (0 — 3).
Note that according to (.112), the relations (.114) can be written in the form

oJ oJ aJ oJ \ ! dx® aJ
ke _ ’ J ! ) (Jl > = { , —}, = 116
J {850,0 90,0 ( 00,0 90,0 PPt P 00,0 ( )

It is clear from (.116) that j* is the 4-flux of particles, with j° = p being its density.
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Variation of (.115) with respect to &; gives

§A€St[sst] < 82J ) 82J
—— = =0, | px =—
0&; 080,10 080,10

alpk :O, i:O,l,Q,g (.117)

Using identities

2
0] EJl( 9 9  0J aJ) )
080.x08i; 080,k 0% 0%, 0%k
o0J » 0%J
=J5i,  9—2 =9 119
g, o = 0% Ogeae (-119)

one can test by direct substitution that the general solution of linear equations (.117) has
the form

b
ph= Okt g ()0&),  k=0123 (120)

where by # 0 is an arbitrary constant, ¢* (§), « = 1,2,3 are arbitrary functions of
¢ ={&,&,&}, and ¢ is the dynamic variable &y, which ceases to be fictitious. It is the
conceptual integration, which allows one to introduce the wave function. Let us substitute
(.120) in (.115). The term of the form 0Op0.J/0& ) is reduced to Jacobian and does
not contribute to dynamic equation. The terms of the form &, ,0J/0& ; vanish due to
identities (.119). We obtain

. mjee n? (Vp)* .
Asifu] [w,é,J]z/{ —J’“pk——ﬂ d'z, j'=p (.121)

Ejo 8m p

where quantities p;, are determined by the relations (.120)
Variation of the action (.121) with respect to j* gives

mjoje B [ (Vp)? (Vp)
= —— — 2V—~— 122
Po 2 2 + 3 ( P + 2V P (-122)
jﬁ
P = m?, 6=1,2,3 (.123)

Now we eliminate the variables j = {j', 52, 73} from the action (.121), using relation
(.123). We obtain

m? (Vp)®
Asyisa o, €l = / {—po _ Dol _ —ﬂ} pd'z, (.124)

2m  8m  p?

where py, is determined by the relation (.120).

Now instead of dependent variables p, p, & we introduce the n-component complex
function 1), defining it by relations (67) — (69)

The function 1 is constructed of the variable ¢, the fluid density p and the Lagrangian
coordinates &, considered as functions of (¢,x), as follows [12]. The n-component complex
function ¥ = {1}, a=1,2,...,n is defined by the relations

Yo = \/ﬁeiwua(g)7 1/); = \/ﬁe_iwuz(g)’ a=12,...n, (125)

VP =D Yo, (.126)
a=1
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where (*) means the complex conjugate. The quantities u,(£), « = 1,2, ..., n are functions
of only variables £, and satisfy the relations

- —ua) =4°¢), B=123 D uu,=1 (.127)
a=1

The number n is such a natural number that equations (.127) admit a solution. In general,
n depends on the form of the arbitrary integration functions g = {¢?(£)}, 8 =1,2,3. The
functions g determine vorticity of the fluid flow.

It is easy to verify that

by

p=U ppo(9,8) = = (U700 — ¥ - U) (-128)
17
PPa (9075) = —170(1?* aw - 8a¢* ’ ¢)7 Q= 17 27 37 (129)

The variational problem with the action (.124) appears to be equivalent to the variational
problem with the action functional

b
Agst[sst][w7¢*] = / {170(1?*801# — Opp™ - W

+

b5
8mp

2 2
(Y*Vip — Vp* - )2 — h—@} diz. (.130)
8m p
We hope that in the case n = 2 equations (.127) have a solution for any functions g,
because in this case the number (four) of real components of ) coincides with the number
of hydrodynamic variables j* (k = 0,,2,3). (But this statement is not yet proved). For
the two-component function ¢ (n = 2) the following identity takes place

a=3

(Vp)? = (6"Vih = V9™ - ) = 4pVi" Ve — p* 3 (Vsa)’, (-131)
a=1
p=P*,  s= ¢*Z¢, o={o.}, a=123 (.132)

where o, are the Pauli matrices. In virtue of the identity (.131) the action (.130) reduces
to the form

b b2
Et [Sst] Agisa) [0, 0] = / {Z O (4 Op — Bop* - ) — ﬁw*vw

2
B = o =1 o
N (Vsa 'z, 133
+8 Oéﬂ(Vs )p+ S5 (Vp) x ( )

where s and p are defined by the relations (.132). Thus, we prove the relation (64).
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A fermionic state vector which is a nilpotent or square root of zero appears to be the most
convenient packaging of the fundamental physical parameters space, time, mass and charge into
a single unit. It also has the advantage of being a supersymmetric quantum field operator, which
uniquely and simultaneously specifies both amplitude and phase for any fermionic state, and
incorporates all the specific aspects required in BRST field quantization into a single package.
The mathematical structure of the state vector immediately generates vacuum terms relevant
to all four fundamental interactions, and explains the symmetry-breaking between them. By
incorporating the vacuum aspects into our understanding of the fermion, we generate a ’string
theory without strings’. The nilpotent vacuum operators suggest links with many well-known
vacuum phenomena, including the Casimir effect and zero-point energy.

1. The nilpotent state vector

DepMUOHHOE COCTOsIHUE sIBJIgeTCs Hambosiee 3hdeKTuBHON HopMoil 00beInHeHns
I YIIAKOBKY B OJIHY BEJUUUHY YeThIpeX (DyHIAMEHTAIbHBIX ITapaMeTpoB (hU3UKHI: Bpe-
MEHH, MPOCTPAHCTBA, MacChl U 3apsijia. B mporecce yImakoBKH COOTBETCTBYIOIINAE ICEB-
JTIOCKaJISTPHBIE, BEKTOPHBIE U CKAJISIPHBbIE €IMHUIIBI ITEPBBIX TPEX BEIUYUNH O0beIMHAIOTCS
[OCPEJICTBOM IIPUMEHEHUsI OJIHOM U3 Tpex KBAaTePHUOHHBIX ejuHul (quaternion charge
units) 1mo oTAEILHOCTH K KaxK10ii apyroit. Takum obpazom,

BpeMsi  [IPOCTPAHCTBO  Macca  3aps/l

1 ij, k 1 1,7,k

CTPOATCA KaK HOBBIE IICEBJIOCKaJIAPHBIC, BEKTOPHbIC U CKaJApHbIC BEJMYUHBI, SHEPIusd,
UMITYJIbC U Macca 1mokost (F, p,m):

ik it jo ki 17
E P m.

B To ke BpeMs, cuMMeTpus MKy KBATCPHUOHHBIMU €ITMHUATIAMEI HAPYIIACTCS JIJIsI CO3/1a~
HUs CJIADOTO, CHJIBHOTO U 9JIEKTPUYIECKOTO 3apsijioB (W, S, €) ¢ COOTBETCTBYIOMIUME 1CEB-
JOCKAJISIPHBIMHI, BEKTOPHBIMHA U CKAJISIPHBIMI XapaKTEePUCTUKAMH.

w S €

Orcroza ciiejryer, 9To cocTaBHoe AupakoBckoe cocrositue (+kE +iip +ijm) (rie wieHbt
HOBCIOJIY YCJIOBHO YMHOYKEHBI Ha 1) JIOJI?KHO BBIPAXKaThCs KaK Yepe3 3apsijIoBOe COCTOSTHIE
depMuoHa, TaK M Yepe3 ero SHEePreTudecKoe COCTOsHME. B AeficTBUTEIbHOCTH, IIPOIECC
YIIAKOBKH OJTHOBPEMEHHO CO3/IAeT 3apsiIoBOe IIPOCTPAHCTBO (W — § — €), KOTOPOe JyaJIbHO
dazoBomy mpocrpancTBy (E —p —m).

CocraBroe (bepMUOHHOE WM TUPAKOBCKOe cocrosinne (£kE + iip + ijm) saBiser-
CA HMJIBIIOTEHTHBIM, WX KBaJApPaTHbIM KOPHEM M3 HYJId, BBUIY TOI'O 9YTO COOTHOIIIEHUE
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(tkE +iip+ijm)(£kE +iip+ijm) = E? —p? —m? = 0 — 370 mpocTo cTanjapTHoe pe-
JIATUBUCTCKOE COOTHOIIIEHUE ME2KIY SHepFHeﬁ, UMITYJIBCOM U MaCCO IIOKOSI. B,HGCB BEKTOP
UMITYJIbCA P PACCMATPUBACTCA KAK MHOTO3HAYHBIN, YIUTBHIBad UJICI0 ciimHa. B aTom cirydae
pp = pp+ip x p = (0.p)(0.p) = pp = p?. Cozanue HUILIIOTEHTHOIO COCTOAHUA KaK
OJIHOr'O IakeTa TpedyeT OJHOBPEMEHHOIO MOPOXKAeHUS (yHIaMEHTAILHLIX KOHCTAHT /1, ¢ 1
G, 4T00BI O6eCIIeYnTh MOAXOSIee MacITabHOe COOTBETCTBIE YieHoB. Ha mene, HubIo-
TEHTHas CTPYKTypa TpedyeT OIHOBPEMEHHOI'O yJacTHsl CIelnalbHONl OTHOCUTEIbHOCTH U
KBaHTOBAHUSI, a TaKyKe UX B3aMMHON HEOOXOINMOCTH, — 3TO €JIMHCTBEHHBIN CII0c00 T0CTH-
JKEHUS JIaHHOM ne. YseHsl £ 1 p B COCTOSHMN MOTYT IPEICTABIATE MO0 COOCTBEHHBIC
3HaYeHUsd, JUOO OIIEPaTOPDLI, B 3aBUCUMOCTH OT TOT'O, BBIOMPAEM JIM Mbl KOHCEPBATHB-
HOE WJIM HEKOHCEPBATUBHOE IPECTABICHUE COCTOAHNUS. VICIOIb3Ysl OIepaTOPHYIO BEPCUIO
COCTOSHUS (:l:k% + 99V + ijm), MBI MOXKEM BBIIHCATH YKBUBAJICHTHYIO CONPAHCEHHYIO
mempury (£kt +iir +ij7), Tae T — coberBerHOEe BpeMsi. B KiraccudaeckoM Ipejiesie 3To
IPEBPAIACTCA B ONPEACJCHNAE CIEINAJIbHON OTHOCUTEILHOCTH B HUJILIOTEHTHOH dhopme.

HunbriorenT B onepaTopHoii ¢hopMe 3a/1aeT COCTOSHUE B TEJIOM, U aMILTUTYLY U da-
3y, BBUJLY TOI'O, YTO (pa30BbIil WICH OJHO3HAYHO 33/1aeTCd TPEOOBAHUEM HUJIBIIOTEHTHOCTHU
COOCTBEHHOTO 3HAYEHUsI (UM AMILIUTY/IbI). DTO JOMOJHUTEIbHOE OMPAHUYUBAIOIIEE YCII0-
BHE BO3HUKAET JIUIIb B HUJILIOTEHTHON (POPMYIUPOBKE U ITPUBOJIUT K TOMY, UTO JIJIsl OIIH-
CaHUsi COCTOSTHUS He HYKHO HU ypaBHeHue /upaka, Hu Kakoe-1nbo JIpyroe. DTo 0COOEHHO
BasKHO B CJIydae, KOIJa OepaTopbl I/ U p 3aMEHSIOTCS KOBAPUAHTHBIMU ITPOM3BOIHBIMU,
TN TTIPOU3BOTHBIME, COJIEPKAIIMHI TOJIEBbIE YJI€HBI, BBU/IY TOTO, YTO IMPUMEHSETCSI TOT
»Ke camblit mpunIuIl. Pemrerne ypasuennd /lupaka B JIaHHOM cilydae 3aMeHsIeTCA MPOIec-
COM HaXOK/JleHusi pa30BOI0O UiIeHa, KOTOPBIi JIeJIaeT aMILIUTYILY JTUPAKOBCKOTO COCTOSTHUS
HUJIBIIOTEHTHON. B 4yacTHOM cilydae TOUYEYHOro 3apsija Joboro poja, co cdeputueckoit
CUMMeTpuell KaK MUHUMAJILHBIM TpeOOBaHneM, TpeOOBaHNE HUJILIOTEHTHOCTH TTPUBOIUT
K MHHUMAJIbHOMY YCJIOBHIO, SKBUBAJIEHTHOMY 0OPATHOMY JTMHEHHOMY (KYJIOHOBCKOMY ) O~
TEHITUAJTY.

Buraromapst BKJIFOUEHUIO JIOTIOTHUTETbHBIX CUMMETPHIA, BO3HUKINNAX U3-32 HUJIBIIOTEH-
THOCTH, (DEPMHUOHHOE COCTOSTHIE CTAHOBUTCS aBTOMATHIECKH BTOPUIHO-KBAHTOBAHHBIM, C
BCTPOEHHO# cynepcuMMerpueil. AMuTyaa u dasza 3a1al0TCsd 0JIHO3HATHO TEM XK€ Olle-
PATOPOM, U TeM K€ CIIOCODOOM SABJIAIOTCS KBAHTOBAHHBIMHU. 3HaKU + mepej dieHamu kE
U (1P TMPEJCTAB/ISIOT YeThbIpe OJIHOBpeMeHHbIX 'perenus" st JIUPaKOBCKOTO (hepMu-
oHHOTO cocrosinus: (epmuon / antudepmuon (+kFE), cima BBepx / cruH BHEU3 (+iip),
— ¥ TOJIHOE MPEJICTaB/IEeHIe HUJIBIIOTEHTHOIO OIle€paTopa sBJgeTcs 4-KOMIIOHEHTHBIM
BEKTOPOM-CTPOKOI WJIH CTOJIOIIOM, TAKUM 2Ke 00pa30M, KaK M CTAHJIAPTHBIA JTUPAKOB-
ckuit cinuHOp. OTCI0/Ia MBI MOYKEM OIIPEJIETUTh aHTU(MEPMUOHHOE COCTOSTHUE, KaK COCTO-
staue, umeroriee Gopmy (FEE £ itp + igm). PepMuOH ¢ IEpeBEpHYTHIM CIUHOM Oy-
ner (£kE F iip + igm); 6030 co ciuroMm 1: (+kE £ iip + igm)(FkE + iip + igm)
u 6oszon co cumnom 0: (£kE =+ iip + ijm)(FkE F iip + igm). Kongencuposanmnoe
cocrogane Boze-Ditnmreiina, mapa Kymepa, wim nx "6ozouublii" 1BYydhEpMUOHHBIH K-
BuBajieHT npumyT dopmy (£kE + iip + igm)(£kE F iip + ijm). B ciydae Gapu-
OHOB, MBI OCOOBIM 0OpPA30M HCIOJIB3YyeM BEKTODHYIO CTPYKTYpPY OllepaTopa P U CTPO-
uMm cmermanaoe (entangled) cocrosiHue, B KOTOPOM IEPBBIN Psiji B CIIMHOPE MMEET B/
(kE+tiip,+ijm)(kE+iip,+ijm)(kE+tiip,+ijm). Bapuonnoe cocrosiane, Takum obpa-
30M, MIMeeT TPU KOMIIOHEHTHI (yCJIOBHO OMUCHIBaeMble Kak "KBapku"), mpecTaB/Isionie
mecTh BO3MOXKHBIX "dasz" ysmaBaemoit SU(3) cuMMmeTpun, B KOTOPBIX P €CTh COOTBET-
CTBeHHO *iip,, +iip,, +iip,. Tpu KoMIOHEHTHI cocTaBHOrO HGapmoHa OyJIyT TOTJa UMETb
OOBIYHBIE CBOMCTBA, COOTBETCTBYIONINE KOMIIOHEHTAM BEKTOPOB, ¥ MOI'YT OBITH Pa3be -
HEHBbI He B OOJIbIIEH Mepe, YeM pasMEepHOCTH IPOCTPAHCTBa WM MMITyJbca. Kagmmbpo-
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BOYHO MHBAPUAHTHBIN HeJOKaJbHBIN "mieperoc" p mexiy dazamu OyierT MpOUCXoInuTh
C TIOCTOSTHHON CKOPOCTBIO, HE3aBUCUMO OT JIIOOON KOHIENIINU (DU3UIECKOTO PA3/IE/TCHUS.
Takast MOCTOSTHHAST CKOPOCTH M3MEHEHUsT MMITY/IbCa SKBUBAJEHTHA ITOCTOSIHHOW CHJIe WJIN
MOTEHIIUAJTY, JTMHEHHOMY 10 PACCTOSTHUIO.

HusibiorenTHOE COCTOSTHIE €CTEeCTBEHHBIM O0OPA30M TOIIUHSIETCS TPUHITUITY HECOB-
mectroctu [laymu, BBuiy rtoro, uro (£kE +iip +ijm)(LkE Lt iip +ijm) = 0, u HeJo-
KaJIbHOCTD sBJIIeTCs APYTruM apromMaTudeckum ciiecrsueM. KO, KX I, KO/I BerBogrMbI
HETIOCPE/ICTBEHHBIM 00pA30M, MPUYEM ITPOMATraTOPhI, Olpee/IeHHbIe Yepe3 HUJIbIIOTEHT-
HBIE COCTOSTHUSA, YCTPaHSIOT HHppaKpacHble pacxoumocti [3]. Ocoboe KBaHTOBaHME MOJIsT
CTAHOBUTCSI HEHYZKHBIM, BBU/Ly TOTO YTO HUJIHIIOTEHTHBIE WJIEHBI YK SIBJIAIOTCS BTOPUTHO
TPOKBAHTOBAHHBIMHI TTOJIEBBIMU ortepaTopaMu. OHE ABJISIOTCS TaKyKe TOTHO CYTIePCUM-
MeTpHYHbIMU, ¢ oneparopamu Q = (£kFE +iip +ijm) u Q1 = (FkE + iip + ijm),
obpamammumu 6030HbI B (hepMuoHbl, u (HepMUOHbI B 6030HBI Wi O030HBI B aHTU(EP-
MUOHBI COOTBETCTBEHHO. TOYHAsI CylnepCuMMeTpHsl O3HAYaeT OTOXKJICCTBJICHUE YACTHUIL C
UX COOCTBEHHBIMU CYIEPCHMMETPUIHBIME TAPTHEPAMHU, 9TO IPE/NOIAraeT BaKyyMHYIO
cBs13b. [IpeobpazoBanuss C, P, T MOryT OBITH IIPEJICTABIEHBI KaK:

— J(KE +iip +ijm)j = (—kE — iip + ijm);
i(kE + iip + ijm)i = (kE — iip + ijm);
k(KE +iip + ijm)k = (—kE + iip + ijm),

¢ C'PT-uHBapuaHTHOCTHIO, KaK JIETKO BBIBOAUMBIM ciiesicTBueM. [losrymenocts ciimua dep-
MHUOHOB MOXKET OBITh TOJIyYeHa CTAaHIAPTHBIM (POPMaJIbHBIM IIyTeM, HallpUMeD:

[0, H] = [—1,—j (ip1 + jpo + kp3) + ikm] = 2ij1 X p
[L,H] = —ki[r,1.p] x p= —j[r,1.p] x p= —ijl x p,

tak Kak [r,1.pJYy = i1¢. Torma [L 4 6/2,H] = 0, aro memaer L + 6/2 xoncTanToi
JIBUZKEHUSL.

O/1HaKO, 3HAYEHHUE [IOJIYIeIOr0 CIUHA B GU3HIECKOM CMBIC/IE [IPEJICTABIIAETCS TAKHIM,
KAaK 3TO MOJIPA3yMEBAETCsl €CTECTBEHHON TOYHOM CyIepCUMMETpHEl: IucTO PepMUOHHOE
COCTOSIHUE B HEKOTOPOM CMBICJIE MOYKET PACCMATPUBATHCHA KaK HENOJIHOe Ge3 CBOEro Ba-
KYYMHOI'O HAPTHEPA.

2. OnepaTopsbl AMPAKOBCKOTO BaKyyMa

YeThbIPEXKOMIIOHEHTHBIN CIIMHOD, IPEJICTABIAIONINN HUJIBIOTEHTHOE JTUPAKOBCKOE
COCTOSTHUE, BKJIIOYAET B ce0sl YeThIPE OlEPATOpa POXKICHUS | yHUITOKEHUST:

cozJianne pepMHUOHa CO CIIMHOM BBEPX =
yHIUTOXKeHne anTudepMmuona co cnuaom Bau3  (kKE + iip + ijm),
co3janue pepMrUoOHa, CO CIIMHOM BHHU3 =
YHUYITOXKEHNE aHTH(hEPMIOHA cOo cinHOM BBepx (kKE — iip + ijm),
co3/lanre aHTU(GEPMUOHA CO CIIMHOM BBEpPX —
yHUUTOXKeHNe (bepMuoHa co cnuaoM BHU3 (—kE — iip + ijm),
co3JlaHre aHTU(GEPMUOHA CO CIIMHOM BHU3 =

yHIUYTO)KeHne (bepMuoHa co CImHOM BBepX  (—kE +iip +ijm).
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B3zgaB 1100011 13 3TUX OMEpaTOpOB, MBI MOYKEM TaKyKe YKa3aThb BaKyyMHbBIE OIEPATOPHI,
KOTOpBIe (IIpejrosiaras MOIXOMSIY0 HOPMAJIN3AINIO) OCTABJSIIOT COCTOSHIE HEM3MeH-
ubiM. Hampumep, (EKE + iip + ijm) ocraercsi HEM3MEHHBIM IOC/Ie MEPEMHOYKEHUS Ha
k(kE + iip + ijm) moboe daucio pas:

(KE + iip + ijm)k(kE + iip + ijm)k(kE + iip + ijm) . ..

Onnaxko, k(kE +iip + ijm)k unenruden oneparopy poxkjierus anrudepmuona (—kFE +
iip +ijm), HOITOMY MbI MOYKEM TAKKe 3aIUCATH TO BBIPAYKEHUE C aJIbTEPHATUBHBIME
YJIEHAMH, COOTBETCTBYIONMME POKJIEHUIO (DEPMUOHOB/aHTUHEPMUOHOB:

(KE + iip + ijm)(—kE + iip + ijm)(KE + iip + ijm)(—kE + iip + ijm) . . .,

00 KaK MPOIECC aJIbTePHATUBHOIO POXKJIeHUsT (hepPMUOHOB/OGO30HOB Yepe3 OnepaTophbl
cynepcummerpun QQTQQT ... Cocrosune poxkjaenns anTUdEpMHUOHA 371€Ch JIeHCTBYeT
Kak BakyyMHoe "orTpaxkenme' cocTosiHusI pOXKJeHUsi (bepMHOHa W OOpaTHO, B TO Bpe-
MsI KaK HACTOSIINI (DepMUOH U €ro BUPTYaJ bHBIH JBOWHUK B KOMOWHAITUH CO3JIAIOT Cy-
[EPCUMMETPUIHOrO DO30HHOT'O MAPTHEPA, YTO UJIEHTUIHO OPUTUHATIHLHOMY (DEPMUOHHOMY
poxtennto. MbI MOKeM PaCIIUPUTD JTAHHOE PACCYKICHUE JI0 YTBEPKICHUS, 9TO JeHCTBI-
TeJIbHOE COCTOSIHIE POXKJIeHus1 6030Ha, Takoe Kak (kKE + iip + ijm)(—kE + iip + igm),
Oy1eT MOPOXK/IATH OJJHOBPEMEHHO CYTIEPCUMMETPUIHBIE BUPTYaIbHbIe aHTU(DEPMUOHHDBIE 1
(bepMUOHHBIE COCTOSTHIST KAK COOTBETCTBYIOIINE BAKYyMHBIE OTPAKEHUsT KOMIIOHEHT OIle-
paropoB poxjenusi (KE + iip + ijm) u (—kE + itp +ijm).

Beipaxkenune k(kE + iip + ijm), oJHaKo, He €JIMHCTBEHHO [T ONpeJie/eHus 'Ba-
kyymHoro" cocrosiaust: ¢(kE + iip + igm) u j(kE + iip + ijm) obiagaror TeMu ke
CaMBIMU CBOMCTBAMU, U TaKKe JOJIKHBI OBITH PACCMOTPEHBI KAK BaKyyMHBIE OIEPATOPDI.
B cayuae 1(kFE + iip + ijm) Bakyymuoe "orpaxkenue" TpebyeT nu3MeHEHUs OPUEHTAIINN
ciura. B ciayuae xe j(kE + iip + igm), depMuoH oTparkaercss Kak aHTH(MDEPMUOH C
JIOTIOJTHUTE/IbHBIM U3MEHeHHeM crinHa. KaXKplifi U3 9TUX TPeX C/IydaeB HMOPOXKJAeT Cy-
[IEPCUMMETPUIHBIE COCTOSIHUSI OO30HHOTO THIIA, KOTOPbIe ABJSIOTCS cruH 1, crma 0 u
KoHleHcanuelr Bose-Ditammreiina, 1ia kosdduruentos k,j u ¢ coorBerctBento. OHAKO,
He CyIIecTByeT JuckpemHtozo BakyyMHOro skBusajienta st 1(kE + iip + ijm), noromy
9TO ITO UCKJIOUaeTcs npunimnom [layu:

(kE + iip + ijm)1(kE + iip + ijm) = 0.

B To ke Bpems, /IBa Pa3IMIHBIX BaKYYMHBIX COCTOSHHUS MOTYT JIUITH KOMOMHAIIMOHHBIM
00pa3oM €o3/1aTh TPEThe MOCPEICTBOM (BU3MIECKON JacTu KOI(PDUIMEHTOB, TO ecTh F, p
wia m.

Orpeiesienne BaKyyMHBIX COCTOSTHUN uepe3 Ko duriuerTs! k,j U ¢ MIPUBOIUT K HO-
BOMY IIOHUMAHUIO YeThIpex "pernennit”, xapaKTepusyoIx JHPakoBcKoe coctosaue. [lep-
BBII s CIITHOPa, TIpeJIcTaB/sger hbepMUOHHOE/ aHTH(DEPMUOHHOE COCTOSTHUE, B TO BPEMsI
KaK OCTaJIbHBbIE TPU PAJa ABJSIOTCS TPEMs JIMCKPETHBIMH OTPaKeHUAMU BakyyMma. 1pu
K03 duImeHTa MOryT Tak»Ke pacCMaTPUBATHCS KaK MOCJIEICTBUS KOHIEIIUU JTUCKPETHO-

ro (TouedHoro) 3apsija.
kE(kE +iip +igm) wm ikE(KE 4 iip +ijm) cnabblii BakyyMm,
t(kE +iip+ijm) wm ip(kE 4 iip +ijm) CHIbHBIA BaKyyM,
j(kE+iip+igm) wm jm(kE 4 iip 4 ijm) 5JeKTpUUeCKUil BAKYyM.
Bapsij B JaHHOI MHTEpIpPETAlnE ABISETCA MPOABICHUEM BAKyyMa, U KakK B CJIydae 3a-

PsIJIOB, TpU BaKyyMa (vacua) COBEPIIEHHO HE3aBUCHMBI JIPYT OT JIPYTa, HUYEro He 3Hasl O
CYIIIECTBOBAHUS OCTAJIbHBIX.
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BekTop HUJIBIIOTEHTHOTNO COCTOSIHUSI BKJIIOYAET B ce0sl JIEHCTBUTE/ILHYIO U BHUPTY-
aJIbHbIe KOMIIOHEHTBI, TAKMM K€ 00pa3oM, KaK OH BKJIIOYaeT B ceOs Maccy W 3apsijl, U
zitterbewegung! MozkeT GBITH WHTEPIPETHPOBAH KaK IEPEK/IIOYeHNe MEYKIY HUMH. JTO
SIBJISICTCS TIPUYUHOM TOTO, 9TO BEKTOPHI COCTOSHUS CylepcuMMerpudnbl. JleiicTBuTeb-
HBIT (DEPMHOH M MHOYKECTBO €ro JIyaJIbHBIX BaKyyMHBIX 00Opa30B B KOMOWHAIIUH JAIOT
OJTHO3HAYHOE COCTOsTHIE DO30HHOTO CITMHA, AaHAJIOTUIHOE KOHCEPBATHBHON (DU3MIECKOiT CH-
cTeMe, OJHOBPEMEHHO BKJIIOUAOIIE B ce0st JIefiCTBIE U TPOTHBO/IEHCTBIE TPETHEro 3aKOHa,
HproToHa min BUpuaabHOE YJIBOEHHE KMHETUYECKOH SHEPIUU B MOTEHIIUAJIBHON SHEPTHN.
[To sToit mpuunne dbepMuOHHBIE U AHTU(MEPMUOHHBIE BEKTOPHI COCTOSHUN MMEIOT UJICH-
TUYHDbIE KOMIIOHEHTHI, ¢ €IMHCTBEHHBIM OTJIUIHEM — KAKOe M3 COCTOSHUN, ¢ sueprueit +F
win —FE| 1eiicTBUTEIbHO pean3yeMo.

Poxnenne "npeiicrBurenbaoro" depMmuoHa OTINIAETCsI CBOUM JAefiCTBUTE/IHLHBIM KO-
sddurmentom (1) or "obpasHbix" BaKyyMHBIX COCTOSTHHI, KOTOPBIE HHIYIIUPYIOTCS CJla-
OBbIMU, SJIEKTPUICCKUMHU U CHJILHBIMH JIEMEHTAMHU, U OIMCHIBAIOTCH MOCPEJICTBOM KBa-
TepHUOHHBIX KO3 durmenToB. [losTomy mepBbIil WieH TUPAKOBCKOTO 4-CIIMHOpPA MMEET
UHOW CTaTyc, 9eM OCTaJIbHbIe, KAK W BPEMEHHAs KOODJMHATA MMEET WHOW CTATyC, dIeM
[IPOCTPAHCTBEHHBIE KOOPJUHATHI, B cTaHIapTHOM 4-BekTope Munkosckoro. B ciaydae cBo-
6orOro hepmuona (nm 6030HA), ITOT cTATyC 0000 BaskeH. BaKyyMHBIE W/IeHBI TO/A He
JIAIOT BKJIAJIa B SHEPIUIO YACTHUIIBI, YIUTHIBAas, ITO PEHOPMAJIU3AINS HE ABJIACTCS HEO0O-
XOJIMMO#i, KaK MOKA3bIBAET HUJIBIIOTEHTHAs BepCUs KBAHTOBOW 3jieKTpojuHamukn. [Ipn
PEHOPMAJIN3AINN YHIHITOXKAETCST BO3/eiicTBre Jnib "0Opa3HbIX" UjIeHbl, BO3/EHCTBHE
"neficrBuTEebHOTO" dieHa 0CTAeTCA HEM3MEHHBIM.

3. BPCT-kBanToBanue

HuibnorentHsiit  oneparop /[lupaka, SBJISIONUICA aBTOMATHYECKA BTOPUIHO-
KBaHTOBAHHBLIM, yKe BKJIIOUAeT B ce0s IOJIHOe IIPeJICTaB/IeHrne KBAHTOBOIO Iojisd. Tem
He MeHee, DoJiee CTaHJAPTHBIE IMMOJXO/bI K KBAHTOBAHUIO IOJIEHl MOI'YT OBITH HMCIIOJIB30-
BaHbI JIISI UJITIOCTPAIINE CBSI3W MEXKJIy OllepaTopaMy 3apsijia U Hepruu, HeoOXOIMMOit
JIUTST TTIOCTPOEHUST HIJTBITIOTEHTHOTO (popMasin3Ma. YCIOBHO, B3aNMOJIEHCTBUST COBEPITIAIOTCS
IIOCPE/ICTBOM IOTJIOIIEHNS U UCITYCKAHUs BUPTYaTIbHBIX OO30HHBIX KBAHTOB CJIA0BIX, CUIb-
HBIX U 3JIeKTpudecKkux mosieii. [Iporeccor pacimmpsiiores 10 6ECKOHETHOCTH B BaKyyMe, C
OEeCKOHEUYHOI oC/Ie/I0BATEIbHOCTRIO "meTieBbix guarpamm’ B deffHMaHOBCKOM (hopMa-
yim3Me. BeckoHeuHbIe TTPOIECChl TOPOKIAIOT PACXOXKIEHUsI, KOTOPhIE MOT'YT OBITH yCTpa-
HEHBI TIOCPEJICTBOM PEHOPMAJIN3AIINN, C TIepeolpeie/ieHneM 3HaYeHniT MacChl U 3apsijia B
COOTBETCTBUU € MOITHOCTHIO B3auMo/eiicTeus. OHAKO, B HUIBIIOTEHTHON (hOpMYIHPOBKE
CBOOO/IHBIN HEB3AUMOJIEHCTBYIONIHI (hDePMUOH HEe MMeeT OIpPEJIeJIeHOro 3HAaUeHUs 3aps/ia,
1 OeCKOHEYHAsl T0C/IeI0BATEILbHOCTh TOTHO CYIIEPCUMMETPUIHBIX OO30HHBIX MJIN (hepMIU-
OHHBIX IIETEJIh ABTOMATHYIECKH obparaercs B HyIb [3]. "Penopmanuszanus" npeacraer kak
pocto MexaHu3M "mepecdera yrst puKcanuy 3HAYEHNN TPU PA3HBIX MOIHOCTSAX B3a-
MOJICHCTBHil, KOTOpPBIE IPU BBIYUC/JIEHHN BO3MYIIEHU OIPaHUYeHbI SHeprueii oope3anus,
PABHOM ILJTAHKOBCKON Macce.

HuibniorenTHbie onepaTopbl CHEUAJIbHOIO BUA UCIOJIL3YIOTCS M B CTAHIAPTHOM
KBaHTOBOI T€OPUU T0JIsA, U OBLIO ObI TIOJIE3HO MIPEJICTABUTD CBSI3b MEXKLY HUMU U LJICHAMUI
dbopmbr (£kE £ iip + ijm), pacCMOTPEHHBIME KaK ONEPATOPBI SHEPTUH U OJJHOBPEMEHHO
3apsa. Kanonnmdeckoe KBaHTOBaHME JIEKTPOMATHUTHOTO TI0JIS UCTIOIB3YeT KYJIOHOBCKYIO
KaJINOPOBKY, HO 3TO BJIeYeT HapyIlleHue JopeHieBoit maBapuanTaoctu. [logxon nnrerpa-
JIa TIO TyTAM IT03BOJIET HAM HCIOJIL30BATH JIIOOYIO KAJIMOPOBKY, U IMIOITOMY COXPAHITH

! Zitterbewegung — 6yxs. "myrmmsoe, apokamee jgpuzKenue" (mem.) — TepmuH, BBejeHHbIH [Ipemm-
repoM JIJIst OO03HAYEHHS CIIEIU(MUIECKOrO IBUKEHNA MUKPOYACTHIL.
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nHBapuaHnTHOCTHL JlopeHna, HO mpobjeMa Tenepb COCTOUT BO BBEJEHUU HE(DUIMIECKUX
win "dukruBubix" moseit gyxoB PaseeBa-llonosa. Bepcus, ucrnonb3lyemass B Teopun
crpyn (BPCT), yerpanser ayxoBbie moJisi HOCPEICTBOM O0beIMHeHNsT Beeit mHMOpMAIn
B eJWHBIN oneparop, nmpuMeHeHnblii K jarpamxkuany. Cymecrsenno, uro BPCT omnepa-
TOp (0prsT) SABIAETCS HUJIBIOTEHTHBIM. DTOT OIEPATOP MOYKET OBITH UCIIOJB30BAH JIJIst
CO3/IaHUs HETEPOBOIO TOKa (J,), COOTBETCTBYIOIIEIO COXPAHSIONIEMYCsl HUJIBIIOTEHTHOMY
BPCT depmvuonnomy 3apsiny (Qprsr). YeaoBue Jjis onpeeaenus: (hu3naecKoro cocTost-
HUsT IPUHIMAET BT

QBrsr|t) = 0.

B aupakoBckoii HuiboTeHTHO# hopmysuposke orneparop (tkFE + iip + ijm), Ko-
TOPBIl TIPUMEHSIETCST TOJBKO K (DU3MYECKHM COCTOSTHUAM (Ha MAaccoBOH 060JIOUKE), yiKe
SIBJITETCSI BTOPUYIHO MMPOKBAHTOBAHHBIM W HUJIBIIOTEHTHBIM OIEPATOPOM (POPMBI dBRST-
OHn TakKe ABJIATCS HIJIBIIOTEHTHBIM OIIEPATOPOM 3apsada, hopMbl () grsT, HO PACITHPEH-
HBIM JIJIS BKJIIOYEHUS He TOJILKO JIEKTPOMArHUTHBIX, HO U CJIa0BIX, CHJILHBIX 3apsiioB. B
KOHEYHOM MTOTe, OH B (pOopMe COOCTBEHHBIX 3HaUeHuil njenTnyeH |¢). Takum obpasom, Tpu
BO3MOKHBIX OHUMAaHNUsT Beipaxkenus (+kFE+iip+ijm), IpUMEHSAIOTCS COOTBETCTBEHHO K:
E u p, uaTepupernpyeMbiM Kak JuddepeHuaabHbie OIepaTOpbl BO BpeMeHH U TPOCTPAH-
ctBe; B, p 1 m Kak K Ko3dbduinmenTam, onpeIesdioniM TPUPOLy 3apsaoB, 3aJaHHBIX
nocpeactBoM k,t u J; F u p, HUHTEepIpeTUPYEMbIM KaK COOCTBEHHBIE 3HAUEHUsT SHEPTUU
u umiysbca. [losromy HubIOTEHTHBIN OnlepaTop /lupaka jgocTaBiisgeT OJHOBPEMEHHO BCe
XapaKTEPUCTUKHU, KOTOPBIE HY?KHBI jij1st pa3ieiabHbix BPCT-wrenos dgrsr, Qprsr 1 |1).

4. CnabbIii BaKyym

Mpbr MOKEM paccMOTpeTh (DYHKIHIO 3apsijia Kak 'pasdumenne' HempepbIBHOIO Ba-
KyyMa, KOTOpOe Mbl HUKOTJIa HEIOCPEJICTBEHHO He HabJIoJaeM, B OTJIUYIHE OT JINC-
KPETHOI'O CjIy4asi. 3apsiji CTAHOBUTCS BHUJOM BaKyyMHOI'O COCTOsIHUs, COOTBETCTBYIOIIE-
o KBAHTOBO-TIOJIEBOI MIPUPOJIE BEKTOPA COCTOsSTHUSI. Pasjimanbie 3apsi/ibl COOTBETCTBYIOT
KaJIeCTBEHHO Pa3HBIM BaKyyMHBIM COCTOSTHUSIM ITOCPEICTBOM UX COOTHECEHUS C MICEBIOCKA-
JIAPHBIMU, BEKTOPHBIMU M CKAJIAPHBIMU KodddurmernTamu. Tpu JUCKpeTHbIE BAKYYMHbIE
crpykTyphl (discrete vacua) onmmchbIBAIOT TOJILKO 9aCTh BAKyyMa, KOTOPYIO BOCIIPHHUMAET
TOJIBKO COOTBETCTBYIONINN THUII 3apsIIa.

[TostaBIl BakyyM, KOTOPBII IOPOXK/JAET 3apsi/IoBOe pa3dMeHne, eCTh BbIPAXKEHUe
HEIPEPBIBHOM MJIM HECYETHOH MPUPOJIbI SHEPTUU-MACChl. HelmpephIBHOCTh HEM30EeKHO e-
JIAET MAaCCy-dHEPTHIO OJIHOMEPHBIMU U OJIHOIOJISIPHBIME, U, BBUJY JIEHCTBUTE/IHHOCTH,
OTPAHUYMBAECT €e OJHUM MaTeMaTHIeCKUM 3HAKOM, KOTOPBIH dYallle Bcero Oepercs Io-
JIOXKUTEJIbHBIM. MBI MOKEM MHTEPIPETUPOBATH 3TO KaK CJIEJICTBHE HECUMMETPUIHOCTHU
OCHOBHOT'O COCTOSIHUSI, MJIM 3aIIOJTHEHHOTO BaKyyMa, KOTOPBIi MPEICTABIISICTCS HETaTUB-
Hoit sHeprueit wian antudepmuonamu. PuU3MIECKH 3TO NMPOABJIAeT cedd B 10Jie XUITca,
KOTOPOE HAPYIIAET CUMMETPHIO 3aPSI0BOTO CONPSKEHUS I CJIa0bIX B3aUMOJIEHCTBUN 1
JIaeT Maccy IMOKosi (pepMUOHAM U CJIA0BIM KaJHMOPOBOUHBIM OO30HAM.

Ucnonb3oBanne winena kE gad ciaboro BakyyMma o0ecrednBaeT TO, UTO MBI JIJIs
BCEr0 BaKyyMa BBIPA3UM HEIPEPBIBHOCTb SHEPIUU-MACCHI M OJHOBPEMEHHO HEOOpaTH-
MocTh BpeMenn. Hukakoe dusmaeckoe COCTOsSIHUE HE MOXKET OBITh COOTHECEHO ¢ —F|
XOTsI 3apPsII0BO-COIPSKeHHOe cocTogHne —ikFE MoXKeT OBbITh OIpeIesieHO M3MeHEHHeM
3HakKa oreparopa tk. B npunIiuie, 3To NPUBOJUT K HAPYIICHUIO CJIA0OTO 3apsI0BOTO
COIIPsIZKEeHNs, 9TO O3HAYAEeT, 9TO cjaboe B3amMmoJjeiicTBue 6e3pa3jmdHO K 3HAKY CJ1abo-
ro 3apsjia, U MOXKET Pa3/indaTh JInilb (hepMUOHbI U aHTHdepMuonsl. [y coxpanenus
C PT-cuvmmverpun JinOO Y€THOCTD, JTUOO CUMMETPHsS OOPAIEHUST BPEMEHH TAKKe JTO0JIZKHBI
OBITH HAPYIIIEHBI.
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Beugy Toro, uro omneparop k mensier 3apsibl pepMuOHA Ha AHTU(MDEPMUOH, CJIa-
Oblii BAKyyM — €JMHCTBEHHBIN, KOTOPbIil CBsI3aH C YHUYTOXKEHUEM /PO ieHneM (hepMuo-
Ha/anTudepmuona. [IceBIocKaIsIPHBIN ACIIEKT O3HAYAET, YTO BaKyyMHOE WU 3apsiIoBOe
COCTOSIHUE, VJTH TOTEHITNAJI, MOTYT ObITH KOMIIJIEKCHBIMU, 9YTO HEOOXOMMO JIJIs HAPYIIIEHUS
CP. llceBmockayissipHOe MIPEJICTABICHIE TaKXKe eCTECTBEHHBIM 00Pa30M Ipe/ioaraeT ou-
MOJITPHOCTD, BBUJTY (DYHIAMEHTAIHLHON MAaTEeMATHIECKOH TBOMCTBEHHOCTH 14, U HEPa3JIH-
YUMOCTHU 3HAKOB TIPU HAPYIIIEHNH ¢JIa00TO 3aPsII0BOTO COIIPSI?KEHMs. ITO 0c000€e CBOHCTBO
c1aboro B3amMMOJIEHCTBIS BO3HUKAET KaK KOHEYHasl MPUINHA PA3JINIHBIX (a3 MaTepun
1 (ha30BbIX MTEPEXOJIOB, KOI/Ia HEPAa3IMINMOCTh 3HAKa JIOIMycKaeTcs st 3(PdeKTUBHOTO
ycTpaHeHus ¢/1aboii KOMIIOHEHTDI B (hepMUOH-(HEPMUOHHBIX KOMOMHAIIMAX, M TAKUM 00pa-
30M IIPEO0/I0JIEBAET ACIIEKTHI IPUHIINIIA HecoBMecTHOCTH [layn.

[Ipeanosiaras, 4ro TpeboBaHUe HEIIPEPBIBHOCTU SHEPTUM BaKyyMa obecrieunBaeT hu-
3UYEeCKOe MpeodJialaHne MaTepuy HaJl aHTUMAaTePHeil, Mbl ITOJIy9aeM, YTO BAKyyM J0JIZKEH
00713/1aTh CJIabbIM JIUTTOTLHBIM MOMEHTOM, IPOSIBJIAIONINMCH KaK OJJHOCTOPOHHEE Bparlie-
HIe, [IpeJIcTaBIisieMoe Kak 1/2hw Moja KosiebaHus HyJIeBOrO ypOBHs SHepruu. B npunmnuie,
Ha 9TO MOYKHO B3IVISHYTh KaK Ha MPUYNHY MOsIBJICHUS JIEBO-OPUEHTUPOBAHHBIX (DEPMUOH-
HBIX CIIUHOB, I7ie (hPePMUOH CO3/1aeTCsl OTHOBPEMEHHO CO CBOMM BaKyyMHBIM OTPAKEHUEM.
Ecnn ciabbrit BakyyM HaXoJUTCS B HEPEPBIBHOM COCTOSTHWUW, WJIM B COCTOSTHUU, OObSB-
JIEHHOM 3allOJIHEHHBIM, MOCPEJICTBOM POXKJIEHUs CJIA0BbIX JIAIOJIel, KOTOpble UMEIOT JiH-
MOJIBHBIT MOMEHT WJIN CIIeNU(PUIECKYI0 OPUEHTAIIUIO, TO MbI MOYKEM TaKKe OXKHJIATh, ITO
"baykryaruu" B 3TOM Bakyyme OyJIlyT COOTBETCTBOBATH POXKJIEHUIO WM YHUITOKEHUIO
csaboil umosibHOl (hepMIOH-aHTH(hEPMUOHHON Maphl, KAaXK/Iblii co ciiuHOM 1/2, mocpes-
CTBOM TapPMOHUYIECKOTO OCIMJIISITOPHOTO MEeXaHW3Ma, POKIeHUs-YHUITOX)KeHns1. DryKTy-
Al TAaKOro BHJIa COOTBeTCTBYIOT cmie Kasmmupa miam Ban jaep Baasibca ¢ sneprueit
HYJIEBOI'O YPOBHSI, B COOTBETCTBUU C ITOTEHITUAJIOM JIJIst PJIYKTYAIUHA U0 b~ IATIOJTEHOTO
B3aUMOJIEACTBUSA.

Hamomrenusrit cabbiit BakKyyM, HEOOXOIUMBIHN JIJIsT HEIIPEPBIBHOTO COCTOSIHUS HEP-
TUH, TPUBOJUT K MEeXaHN3My XUITCa, MOCPEICTBOM KOTOPOro (hepMHUOHBI U CJ1a00 B3aNMO-
JieficTByIoIIe OO30HBI MIPHOOPETAIOT Maccy. ducThblii crabblit 3apsi/l, MOXKeT ObITh, B Iie-
JIOM, JIEBO-OPUEHTUPOBAHHBIM, HO MepPa IIPOTUBOIO/IOKHON OPUEHTAIINN TTOSIBUTCS, KOT/Ia
Oy/IyT IPUMEHEHBI JIDYTUe YCIOBUS, KOTOPBIE TIPU COXPAHEHUH JIOPEHI-MHBAPUAHTHOCTH,
SKBUBAJIEHTHBI TTOSBIEHUIO MaCChl MOKOsI. THUIUYIHOE yCIIOBUE MOSABJISIETCS, KOT/Ia BO3HM-
KAIOT HEe TOJIBKO cjialbble 3apsibl. 3apsi/i U WHEPIHaIbHAsd Macca ABIAI0TC 3bDMOEKTUBHO
PA3JIMYHBIMY JIOKAJTU3AIUAMI BAKYyMA.

5. CunbHBIl BakyyM

CutbHOE B3aMMOJIEHCTBIE, KAK MBI €10 3HAEM, ITPOSIBJIAETCS TOCPEICTBOM HEJIOKAIb-
HOT'O I'TIOOHHOT'O MOP#, C TIepeKJIIoYeHeM KOMIIOHEHT UMITY/IhCa B YJIeHaX KaK 3HaKa, TaK 1
HAIIPABJIEHU, YTO BKJIIOYAET MIECTh (a3. ITO B TOYHOCTU TO, IYTO OOECIIEUNBAETCS LIIEHOM
+i1p B BEKTOPE COCTOSTHUS. 3aMEUEHO, ITO DapUOHHAs CTPYKTYPa SIBJISICTCS, IO CYIIECTRY,
acddbuHHOI, paciiaiasicb Ha KOMIIOHEHTBI IVIFOOHOB U KOMOWHAIIMKA BUPTYaJIbHBIX Oapuo-
#oB ad infinitum?. DTo B TOUHOCTH TO, YTO MBI MOKEM OKUAATH OT adpDUHHOH TPHPOJILI
orneparopa P, KOMIOHEHTBI KOTOPOIO MOTYT ObITh pasbejuHeHbl (min 3abUKCHPOBAHbI)
He 6oJiee, YeM COOTBETCTBEHHO PAa3MEPHOCTH POCTPAHCTBA. BeKTopHas Mpupo/ia CHILHO-
ro oreparopa TakyKe O3HA4YaeT, YTO CUJIbHBIN BaKyyM — €JIMHCTBEHHBI, KOTOPBII NMeeT
ompejie/IeHHbIe OTHOCUTEIbHBIE (ha3bl. B cHIbHO B3aMMOJIEHCTBYIONMNX CUCTEMaX, (a3bl

2 Ad infinitum — (;1a1.) 10 GeckoHeuHOCTH.
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CBSI3aHDbI C HAJUYUEM WU OTCYTCTBHEM KOMIIOHEHT 3JIEKTPUYECKOTO MIn cJiaboro 3apsi-
na. Tam, rioe das3bl, acCONUUPOBAHHBIE C STUMH KOMIIOHEHTAMM, COBIAJIAIOT HE OCTAETCs
BO3MOXKHOCTH JIJIs pasjimdeHusd (a3, a cjie/I0OBaTeJbHO, HET CUJILHOIO B3aUMOJIEHCTBUS.

6. DyeKTpUIecKuii BaKyyM

DepMUOHHBIE COCTOSHUST OTHOCATCA K COCTOSAHUAM CO cj1abbivu 3apsigamu. OmgHako,
CYIIECTBYIOT JiBa THITA DYHIAMEHTAIbHBIX (PEPMUOHHBIX COCTOSHMIT: KBAPK 1 JIerToH. [ s
KBapKOB (ha3bl P ONPEJIETCHBI, U § 3apsi/Ibl HAJIMIECTBYIOT; JjIsd JIEIITOHOB OHU HEOIIPE,1e-
JIEHHBIE, & § 3apsi/ibl OTCYTCTBYIOT. Kak pa3/imaHble TUIIBI 3apsiJIOB 1 BAKYYM CyIIECTBYIOT
[IOJTHOCTBIO HE3aBUCUMO JIPYT OT JIPYTa, CJIa0bIi 3apsi/1 He JTOJXKEH OTIMIaThCs B 3aBUCHMO-
CTU OT MPUCYTCTBUS WM OTCYTCTBUSI CUIBLHOTO 3apsa. Takum o6pa3oM, pacipeieeHus
c1abbIX U JEKTPUICCKUX 3apsJIOB I KBAPKOB U (DEPMUOHOB JIOJIZKHO CJICTOBATH TOMN
JKe MOJIEJIH; TT09TOMY, JIPOOHBIE SJIEKTPUIECKUE 3apsijibl, PACIPEIe/IEHHBIE TI0 KBAPKAM,
SIBJISIIOTCSL TIPOCTO BBIPAYKEHUSIMU COBEPIIEHHON KaJIuOPOBOYHON MHBAPUAHTHOCTH CHUJTh-
HOT'O B3aMMOJIEHICTBUsI, aHAJIOTUYIHO IPOTIECCY CO3aHUs JPOOHOTO 3apsija B KBAHTOBOM
s dexte Xosna, — 1 He ABJIAIOTCI COOCTBEHHBIMH aCIIEKTAMK CTPYKTYPbI KBapka. B To
JKe BpeMs, cJIalblil 3apsij] JO2KeH ObITh HE3aBUCUM OTHOCUTEIBHO IPUCYTCTBUS WJIH OT-
CYTCTBHS €.

DepMUOHHBIE COCTOSIHUS C SJIEKTPUIECKUM 3apsi/IoM U 6€3 Hero, CTaHIapTHO OIMHUCHI-
Batorcst Kak SU(2)y, cocrostust (BBepX / BHU3, HEHTPHUHO, SJIEKTPOH, U T. J1.); OHH JIOJIZKHBI
BO3BHHUKATh KaK AGHO HEpas3JIMYMMble OTHOCHTEIBHO cJiaboro B3ammojeiicTBusi. OOBIYHO
MBI HCIOJIB3YeM TPETHIO KOMIIOHEHTY cyaboro msoctuHa (t3), no anagoruun ¢ SU(2) con-
Ha, KaK KBAHTOBOE YUCJIO JJId PA3IUdHd ITUX cOCTosdHuil. [Ijisd 1BYyX M30CHMHOBBIX CO-
crosiuuit, t3 = +1/2, HO TOJIBKO J|Isi TIOJIOBUHBI [TOJIHOIO YUCJIA COCTOSTHUINA (TOJIBKO JIJIsT
JIEBO-OPHEHTUPOBAHHBIX ). [[J1s1 cBOOOHBIX (DEPMUOHOB, KBAHTOBOE YHUCJIO JJIEKTPUIECKON
CUJIBI IPUHUMAET 3HadeHne () = — 1, TJie mpe/IcTaB/IeH 3JIeKTpuIecKuii 3apsiy (—e) (u B3,
KaK 0ObIYHO, C OTPHUIIATEIbHBIM 3HAKOM ), CHOBA JIJIs MTOJIOBUHBI YHCIa COCTOAHUN (XOTS 1
JUTs IpYTOii 1oJioBuHBL). Ecmu ciiaboe n 9JIeKTpUIecKoe B3auMOJIEHCTBUsT OIMICAHBI HEKO-
TOpoil KambpoBouHOiT rpymmoit Bemukoro O6begaunennst, OpTOrOHAJIBHOCTD U YCIOBHS
HOpMaJIH3aIui TPeOyIOT CMEIIAHHOIO COOTHOIICHUS, BBOJUMOrO KakK sin’fyy, onpeese-
moro nocpecteom Tr(t3)/Tr(Q?), u pasHoro B gannoM ciay4ae 0.25.

OHako, COOTHOIIIEHNE HE MOYKET ObITH IPUMEHEHO TOJIBKO K CBOOOTHBIM (hepMUOHAM,
ecyi cjaabble B3aUMOJICHCTBUSA HE3aBUCUMBI OT IPUCYTCTBUS WJIM OTCYTCTBHUSA CUJIHLHOTO
sapsaia. TakuM o0pa3oM, B TOYHOCTH Ta ¥Ke IPONOpLUd cMemenus, ¢ sin?fy = 0.25,
JIOJIZKHA CYIIECTBOBATh W JIJIsi KBAPKOBBIX COCTOSHUI, U IO OTIAEJBHOCTH JIJIs KaXKJIoii
"mBeroBoit" das3bl, WK HAIIpABJIEHHUS UMIIY/IbCA; TaK UTO cIaboe B3aMMOIeiCTBIE HE MO-
J)KeT oOHapyKuBaThcs mmocpeacteoM "tBera'. MaTepnperarusa "nBera" wepes daszbr uin
HAITPABJICHUST UMITYJIbCA JOMYCKACT MIHOBEHHOE CYIIECTBOBAHUE JIUID OJIHOM KBapKOBOM
daszbr B Tpex. Takum obpazom MbI mojydaeM, 9To Bapuarus 3apsja 0 0 — e Jo/KHA
OBITH B34Ta B IIPOTUBOIIOJIOKHOCTD KaK IyCTOMY (POHY, WIn "9JIeKTPUIECKOMY Bakyymy'"
(0 0 0), Tak u 3anosaHEeHHOMY (DOHY (€ € €), TaK UTO JiBa COCTOSIHUS CJabOro M30CIUHA B
Tpex IBeTaX CTaHOBSTCS:

e e 0

— €.

Hamnbosiee sicHOE TposIBIEHUE JIEKTPHIECKOTO BaKyyMa JIOJZKHO, CJIeI0BaTeIbHO,
BxoguTh B SU(2); ms craboro s3anmomeiicTeusi. Coiabblil BaKyyM, KOTODBIi TIOJIOH 1
HE MOXKeT OBITb oOpaTuM, 3(H@PEKTUBHO KOHTPACTUPYET C JIEKTPUUECKHM BaKyyMOM,
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KOTODPBIA MOXKET ObITH 3AI0JHEH WJIM OIyCTOIINEH, JTUOO OOpalleH Jjisi aHTU(EPMUOHOB.
OpnHako, B To BpeMst Kak cTpyKTypbl SU(3) u U(1) mpsiMo BO3HHKAIOT U3 BEKTOPA P U
CKAJISIDHBIX M YJIEHOB B JIMPAKOBCKOM COCTOSIHUHM, cTPYKTypa SU(2) mst ciaboro B3au-
MOJIEHCTBHSI CBsI3aHa JIUIh ¢ SU(2)-ClMH CTPYKTYPOIi, OTHOCATIIEHCST KOCBEHHBIM 06pa3oM
K TCEBJIOCKAISPY F. DTO MPOUCXOJUT MOTOMY, YTO UieH F, BXOJAIIMI B ypaBHEHUE, HE
peJcTaBiisier acuMMerpuio dusndeckoro E mosHbiM obpazom. SU(2) mist E siBisiercst u
SU(2) anst cimpasibHOCTH, U ¢Bst3aHO ¢ SU(2), /y1st ¢1aboro n30CHIHA, JIUIIH TOCPEJICTBOM
matputpl (mogobuoit C'K M wmaTpuiibl), BKIIOYAONEH MacCcy MOKOsS. DTO 3aBUCHMOCTH
MAacCChl, CBI3aHHAsI C 3aIIOJHEHHOW MPHUPOJION BaKyyma B MeXaHU3Me XWITca, KOTOPBIi
npespaiaer SU(2) — SU(2).

CwsenmBanue 4ieHOB E u p, WM OpaBo- U JIEBO-OPUEHTUPOBAHHBLIX KOMIIOHEHT B
HUJIBIIOTEHTHOM BEKTODE COCTOSIHUsI, TaKyKe SKBUBAJEHTHO CMEIIUBAHUIO € W W 3apsi-
JIOB, WU 3JIEKTPUYECKUX U CIaObIX BaKyyMHBIX CTPYKTYP, HO 9TO CMeIIMBaHUE HE MO-
JKeT, TI0 CYIECTBY, BJIUATH Ha cJ1aboe B3amMOJEHCTBHE, KOTOpOe He 00JaaeT MpPaBo-
OPUEHTHPOBAHHBIMU KOMIOHEHTaMHU J1jist (hepMuoHOB. Takum obpaszom, ciaboe B3auMoieii-
CTBUE JIOJI?KHO ObITH OJIHOBPEMEHHO JIEBO-OPUEHTUPOBAHHBIM J1J1si (PEPMUOHHBIX COCTOSTHU
U HE3aBUCUMBIM OTHOCHUTEJILHO CYIIECTBOBAHUS UM OTCYTCTBUS JIEKTPHIECKOTO 3aps/Ia,
KOTOPBLII BBOJAUT IIPABO-OPUEHTUPOBAHHBIN 3J1€MEHT.

7. I'paBuTalinoHHbIil BaKyyM

Tpu unena 1UpakoBCKOTro 4-CIIMHOPA MPEJICTABISIOT TPH €r0 JIUCKPETHBIE BAKYYMHbBIE
"orpaxkenus" QepMuOHa; YeTBepThIil Ke (CTaHJAPTHO Pa3MeIlaeMblii B IIEPBOM DSy ),
[IpEJICTaB/IsSIeT caMO CO3J/IaHHe YacTHUIbl. BBUIY TOTOo, 9TO TpHM BaKyyMHBIE OTparKeHUsI
MTOPOKIAIOTC UJIEHAMU, KOTOPBIE SABJISIOTCS TaKKe OlepaToOpaMu 3apsijia, €CTeCTBEHHO
BaKJIFOUNTD, ITO 3aPsil SBJIIeTC PyHIaAMEHTAIbHBIM BaKyyMHBIM TeHepaTopoM. B 1o xe
BpeMsi, Macca (PepMHUOHA U COOTBETCTBYIONIAS SHEPIUA BaKyyMa MOT'YT OBbITh PACCMOTPEHBI
kak "mopoxenubie" oneparopom "maccer" (1). Tak, Mbl MOXKEM PaccMOTPETh IPDABUTA-
IO, CHJIY, HIOPOXKIECHHYIO MacCO, KaK IIPeACTaB/IsieMOil BAKYYMHBIM OIIEPATOPOM (DOPMBI
1(+ik E+ip+jm). Omuako, 6ojiee BEPOSITHO, 4TO I'PABUTAIMOHHBIN BAKyyM HMeeT (popMmy
—1(kE + iip + ijm), wieH, aHHYIUPYIOMHUI TUPAKOBCKOE COCTOSTHHE.

Muorue mojiarajim, 9To TPaBUTAINS sIBJISETCs JIUCKpeTHON cmitoit. OgHaKko, OHA BO3-
HUKAaeT U3 HeIIPEPBIBHOI'O BaKyyMa U SBJIsI€TCs €JIMHCTBEHHBIM CEPhe3HbIM KaHIMIaTOM Ha
POJIb HEJIOKAJIBHOCTH JIJIsi MI'HOBEHHOM KBaHTOBOW KOPPEJIAINH JUPAKOBCKOI'O COCTOSTHUSI,
U JIJIsi UICTOYHUKA OECKOHEYHOI'O CIeKTpa HyJsb-sHepruu. Vcnosnb3oBanue Kosdpuiimenta
1 MoKeT OBITH B3ATO KaK SKBUBAJEHT yTBEPK/IEHUIO O TOM, UTO TPABUTAIMOHHBIN BaKy-
yM He MOXKeT OBITh IMPOKBAHTOBAH HEMOCpeacTBeHHO. OHUM M3 IMyTeil mpecTaB/IeHust
9TOr0 COCTOUT B TOM, YTOOBI OIPEJIECUTH I'PABUTAIMOHHYIO SHEPIUI0 KaK OTPUIATEh-
HYIO (BBHJLY CHJIBI OTTAJIKUBAHUSI) U COOTHECTH 3allOJIHEHHBIN BAKYYM C OTPHUIIATETHLHBIM
COCTOSIHUEM SHEPruu, KakK IpeJjlaraeTcsd B OPUTHMHAJILHONI Teopun no3urpoHa Jlupaxa,
U KaK OObsICHSIETCS OTCYTCTBUE aHTUMATEPUM U3 OCHOBHOIO cocTosiHus Bceesnennoit. Tem
He MeHee, CYIIEeCTBYeT JUCKPETHOE BaKyyMHOe ITPEeJICTABIeHNe, CBA3aHHOE C MACCOi. DTO
MHEPIIMOHHAasT KOMIIOHEHTA, CBA3aHHASA C JIMCKPETHON Maccoil MOKOsI, KOTOpas IMPOSBJIACT
cebst B cTpyKType pepMUOHHOTO 1 O030HHOTO 3apsijia. B Mexanm3me Xwurrca 5T0 3HaMe-
HYeTCsI HEJIOKAJbHBIM KOHEYHBIM yPOBHEM HEPIuu i cjaadoro Bakyyma. Mueprnon-
Has KOMIIOHEHTa MOXKeT ObITh PACCMOTPEHA KaK JUCKPETHAs JIOKAJIbHAST PEAKITHS, 38/ IaH-
Hag nocpesctBoM 1(£ikE 4+ ip + jm) Ha HENPEPbIBHYIO HEJIOKAJIbHYIO IPABUTAIIMOHHY O
SHEPIHIo, 3ajanuyio nocpeacrBoM —1(kE + itp + ijm). MoxKHO cKazaTh, 4TO MOJIHAs
HyJIb-3HEprust "BeesieHHO#" MOsIBJISETCsT KAK KOMOMHAIIUS [TOJIOXKUTETHHOIO HIJIBIIOTEHTa,
(MHEpIMH, CYMMBI 3apsIJIOB) C HETATHBHBIM (TpaBUTAIHEN ).
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8. Cdhepuyecku cuMMeTpPpUYIHbIE MOTEHINAJIBI,
NMpUMeHeHHbIe K (PepPMUOHHOMY COCTOSIHUIO

Eciin MbI omipejiesisiemM 3apsijibl KAK TOYEYHbIE HCTOYHUKY, OHHU, 110 OIPEJIETICHHUIO, IMe-
10T cepudeckyto cuMmMeTpuio. Beeienne cdhepraeckoil CiMMETPUN TPOCTPAHCTBA, HECO-
MHEHHO, ABJIFAETCA SKBUBAJICHTHBIM ITYTEM BbIpazKC€HHA COXPaHEHMUA YIJIOBOT'O MOMEHTa, U
MBI MOXKEM TI0Ka3aTh, YTO TPU I'PYIIIOBbIE CUMMETPHUH, OTHOCAIINECH K CJIabOMY, CHJIbHO-
MY U 3JIEKTPHYECKOMY B3aUMOJEHCTBHSIM, CBSI3aHBI C TPEMsI HE3aBUCUMBIME aCHEeKTaMU
cepudeckoii CMUMMETPUI W COXpaHeHneM yriaoBoro MoMenta. SU(2) cummerpus (cia-
Hast) 03HAUAET HE3ABUCHMOCTD COXPAaHEHUsI OT Hanpas/enus spaiienus:; SU(3) cummverpust
(cuibHAs) O3HAYAECT ee He3aBUCHMOCTh OT BbiOopa oceit; U(1l) cummerpusi (ss1eKTpude-
CKas) O3HAYAeT ee He3aBUCUMOCTb OT JUIMHBI PaJmyc-BeKTOopa. Ha mese, TUpakOBCKMit
HUJIBIIOTEHT MOYKET OBbIThb BBIODAH Kak BbIDarKeHHe, cojieprKaliee BCIO HeOOXOJIUMYIO WH-
bopMaIyio Jyist TIOJIyYeHUsT [IOJTHOIO YIJIOBOIO MOMEHTa, KOTOPbIii OIICHIBAET COCTOSTHUE.
Tpu cummerpun, U TpU pa3Ie/IbHBIX 3aKOHA COXPAHEHUsI YIJIOBOIO MOMEHTA BBITEKAIOT U3
oiHOTO (hakTa, YTO TP YACTH BEKTOPa (hePMUOHHOTO COCTOSHUS OIPEJIEISIIOTCST COOTBET-
CTBEHHO TICEBJIOCKAISIPHBIM, BEKTOPHBIM M CKAJIIPHBIM OIIEPATOPAMMU.

Vcnosb3yst moJisipable KOOPMHATBI, Mbl MOYKEM 3allicaTh BEKTOP HUIBIIOTEHTHOTO
cocrostaust (hbepMUOHA, HAXOISIIErocs Mo, BozeiicTBueM notenrwasia V () Toaednoro mc-
TOYHUKA B (hopMe:

(kB V) i -2 T2

or ) +1ij m) 5
rae j + 1/2 — nonuerit yriosoit Mmoment. Llesbio Temepn siBiisiercst HaiiTi (a30BbIil WieH,
K KOTOPOMY MOKeT ObITh IIPUMEHEH JIAHHBII olepaTop, YTo0bl ¢AeIaTh aMILIATY/Ly HUTh-
MOTEHTHOM’, Jist BceX THUIOB noreHnuasa V (r). GakTuaeckn, Mbl yzKe 3HAEM TUIBI TOTEH-
[IUAJIOB, KOTOPBIE JIOJIZKHBI TTPUMEHSITHCSI JIJIsI CJIA0BIX, CUJIBHBIX U JIEKTPUIECKUX CUJI, U
TaKzKe MOYKEM TI0Ka3aTh, 9TO 9TO UMEHHO T€, KOTOPbBIE JIOIYCKAIOT HUJIBLIIOTEHTHBIE pellie-
aus 1], [6].

MuHUMAaTBHBIM YCIOBAEM IS C(DEPUYECKOl CUMMETPHUH SBJIA€TCS OOpPATHBIN JIN-
HefiHplil (KysoHoBCkmil) morenmmarn, Vo = —A/r, ceasanubiii ¢ kE. D1o coorHOCHTCS
co ckaysipom U(1) KommoHeHTBI. B ducroM cirydae, 5T0 COOTHOCHTCS € 3JIEKTPHYECKUM
B3aMMOJIEHCTBUEM U JIA€T HAM XapakTepHoe perenne "BojgopoaHoro atoma". OHako, Ky-
JIOHOBCKUII 9JICH SIBJISIETCS HEOTHEMJIEMBIM ACIEKTOM KaK CHJIBHOMW, Tak W CJIaboil CUJIbI,
BBU/Iy TOTO, 9TO KarKJIbIil 3apsi/] ¢ HEOOXOIMMOCTHIO UMEET CKAISIPHYIO KOMIIOHEHTY — 9K-
BUBAJICHT KOHCTAHTHI CBs3U. HUKaKoe HUIBIIOTEHTHOE PENieHIe He SIBJISIeTCS BO3MOXKHBIM
6e3 Hee, TaK KaK OOpaTHBbIE JIMHEHHBIE UJEHBI, ACCOIMUPOBAHHBIE C % KBATEPHUOHHBIM
OIepaTopoM, TPeOYIOT MPUCYTCTBUS UICHA TOTO K€ CAMOTO THIIa, ACCOIMUPOBAHHOTO ¢ k
KBATEPHUOHOM. (DTO sIBJISIETCS JIOMOJHUTETBHBIM TpeboBarueM st U(1) wiena B cia-
6OM B3aMMOJIEHCTBIN, U €r0 CBsI3b ¢ Maccoii, kKotopas 3¢ dexruro MeHseT rpymmy SU(2)
cimna Ha SU(2), caaboro m3ocmuia. )

B jionosiHeHnn K KYJIOHOBCKOMY HYJIEHY, CHUJIbHOE B3aMMOJIeHCTBHE TPeOyeT, KaK MbI
BUJIE/IN, 9TOOBI JIMHEHHDI moreHnuala (—Br) pomyckaa Obl MepeKIIUeHne MKy KOM-
HOHeHTaMu F12p,, £itp,, £iip, BeKTOpa UMIlyJbca. [Ipumenenne jJaHHOrO NpUHIMIA K
BEKTOPY COCTOSIHUSI JAeT HAM HUJIBIIOTEHTHBIE PEIeHUsl, UMerolne (hpa3soBbIME ICHAMU
TONBKO 4ienbl Busia exp(FiEr £ iqBr?/2)rT 941 Jlng Maabix r 9To MPUBOIAT K ACHMII-
TOTHYECKON ¢BOOOIE, a TIPU OOJIBIUX 7" — K HHPPAKPACHOMY 3aK/I09eHno. " AKTUBHBII"
“JIeH B KOH(MANHMEHTE SIBJIsIeTCS BEKTOPHOMN YaCThIO MOTEHIMaIa B3anMozeiicrsust (—Br),
B TO BpeMsl Kak CKaJjsipHas Jacth (—A/r) ocraercs "nmaccuBHoit".

JLJ1s1 TICEeBIOCKAISIPHOTO CJ1aO0T0 B3aNMOJIEHCTBIST HEOOXOINM JUITOIbHBII MJIH MYJTh-
tunosbHeil wren (—Cr®), rae —3 > S, B HOTEHIWAJE B JIONOJHEHNE K KYJIOHOBCKOMY
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Bbipazkenuo. OjiHako, Jiobasi 3aBUCUMOCTD TTOJIMHOMUAIBLHOIO TUIA T JIJIsl IIOTEHIINAJIA,
oTamuHag oT § = =+1, mocjie KOMOMHUPOBAHUSA ¢ OOPATHBIM JIMHEHHBIM YJIEHOM, HE0O-
XOJIUMBIM JIjI C(HePUUIeCKOil CUMMETPUH, JIAET PeIIeHne TapMOHUYECKOr0 OCIUJLIATOpPA,
0e30THOCUTENIHHO K cHeluduKe 7 3aBUCUMOCTH. 1. 0., COCTOsIHAE SHEPTUU TPUHUMAET BU/T

m
EF=|— +iA+n
FEYD E=) n'),

rie n' — nenoe. beps MunnMasbHoe yeiaosue Ha A, pasoBblii wieH, HeoOXOIUMBII st cde-
PUYECKO#l CHMMETPUH, WK CJIydaiiHoe HallpaBieHre (DePMUOHHOTO CITMHA, KAK IOJTIYIIE/T0i
BesinauHbl +1/2i, osrydaem perenue:

E= YD) (1/24+n").

EcrecTBenno, ciraboe B3anMOIEHCTBIAE NMEET B TOYHOCTH STH XapPaKTEPUCTUKU, CO-
3/1aBasi U YHUUITOXKAs U3 BaKyyMa mapbl (pepMuoH /aHTH(EPMIOH crinHa 1/2; UCIob3yst
MTOJIXOIATIIAE OIEPATOPHI CO3JIAHUS MJIM YHUITOXKEHUS, CIIOCOOOM, NMPHUCYIIUM T'apMOHU-
YeCKOMY OCHMJLIATOPY. MBI J1ake MOXKeM IIPeJICTaBUTh BO3JIEHCTBHE CJIa00r0 JUIOJIbHO-
0O MOMEHTa KaK NpuyuMy MOABJIeHIA KOMOMHAINI (DepMUOH-aHTU(DEPMUOH U3 BaKyyMbl
MM KaK OOpaTHBIA IPOIEcC B3AMMHON aHHUTUIAIINN. B I0moIHe e, pelleHne I03BOJIAeT
YJIEHaM B BBIPAXKEHUM MTOTEHITHAJIA ObITh KOMILJICKCHBIMU, YTO ITPUBOIUT K BO3MOXKHOCTHU
napytreans C' P, K KOMILJIEKCHOW KOHCTAHTE CBA3U WJIM IOTEHITUAJTY, BBOIAIIINX KOMILIEKC-
HOCTDb B JIarpaH:KuaH, U, ciegoBareabno, B CK M marpuiry.

Hunbniorentnas npuposa oneparopa /lupaka Ha camom jese TpeOyeT, 4ToObI OJINH
U3 Tpex 3apsijioB win £ — p — m 4ieHOB ObLI KOMILIEKCHBIM; TaKUM 006pa3oM, cruH 1/2,
WM HUJBIIOTEHTHOE COCTOSIHUE, HEBO3MOXKEH B IPHUHIINAIE 0e3 BBEJIEHUsI KOMILIEKCHOTO
acrekTa. KOMILIEKCHOCTD “JIeHa, B 9TOM CMBbICJIE, IIPUBOJUT K POXKJICHHUIO JIUIIOJIAPHOIO
10JIs1, ajredbpwl, TPeOyoIeil OJHOBPEMEHHO OJIOKUTEIBLHBIX M OTPUIATEILHBIX PEIeHIi
U HUKAKUX Ipejrnodrennit. JIpyrumu ciioBaMu, Mbl MOXKEM PACCMOTPETH CJIaObIil 3apsi,
KaK MPOU3BOJIAIIII He TOJBKO (Da30BbIil YIEH C JBYMS PEIIEHUsIMHU, HA OJIHO U3 KOTOPbBIX
HE MMeEeT IPUBUJICITHPOBAHHOIO IOJIOKEHUsI ¢ MATEMATUIECKON TOYKM 3PEHUsi, HO U Me-
XaHU3M OCIUJLIAIINNA MeK1y HuMU. [loaToMy aunossipHast CTpyKTypa c1aboii CHIbI CyIIe-
CTBEHHBIM 00pa30M CBsi3aHa C KOMILIEKCHBIME aclieKTaM# cJiaboro 3apsija. KomiiekcHbie
qKcJIa He NMEIOT IPUBMJIErii B CMBIC/IE 3HAKA, U CJIA0BIA 3apsi MMEeT TEeHEHITNI0 BECTH
cebsi HE3ABUCUMO OT 3HaKa: B TO BpeMs Kak (DepMUOH U aHTH(MEPMHUOH Pa3/JIUudUMbl, +w
U —w He pasjauduMbl. KOMILIEKCHbIE ypaBHEHUS C HEOOXOIMMOCTBIO UMEIOT JIyaJibHbIe
(KOMILIEKCHO-COTIPSI?KEHHBIE ) PEIIeHMsI, U Mbl MOXKEM PacCMaTPUBATh CJIa0BIN 3apsij], Kak
HeCyImii BMecTe ¢ cOOOl M 3apsii ¢ APYIUM 3HAKOM B KadecTBe BaKyyMHOI'O oOpasa.
CozmaBaeMbIil TAKIM 00PA30M JIUIIOJIbHBIN MOMEHT YCTAHABINBAET OPUEHTAITNIO, KOTOPasT
obecreunBaeT KupaabHOCTh. OaHAaKO, pu3nIeckne cooOpazkeHus TpeOYIOT IIPENnMyIIeCTBa
MaTepHUabHBIX YCJIOBHI HaJI 3all0JIHEHHBIM CJIa0bIM BaKyyMOM, UTO OOECIIEUNBAETCSA CO-
OTBETCTBYIOIINM 3/IEKTPOMATHUTHBIM BaKyyMOM, KOTOPbIH JIMOO sIBISIETCS IIYCTBIM, JTUOO
3aIl0JHEHHBIM B OJTHOM U3 JIBYX JomyctuMbix SU(2) cocrostauii.

9. Teopus cTpyH 6e3 cTpyH

Mogenn cynepcTpyH u MeMOpaH MMO3UIMOHUPYIOTCA B (bU3KMKe Kak HamboJiee ImpaB-
JIOIIOIO0HBIE KaHIUIATHI Ha POJIb TeOpHil BeJMKOro oobemumHeHusi. OIHAKO, CYIIECTBYET
pacIpocTpaHeHHOe MHEHIE, YTO TeOPHUs BEJIUNKOTO 00bEINHEHNsI He COBIAIET HU C OIHIIM
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U3 TSTU U3BECTHBIX KJIACCOB TEOPHUU CTPYH, HO IIPEJICTaHET Kak OoJiee PyHIAMEHTAb-
Hag, 00beIMHAIONIAas TeOPUsd, JIJIT KOTOPOW 9TH M3BECTHBIE KJIACCHI OKAXKYTCA MOJECTHHO-
3aBUCUMBIMU TTPUOJTUKEHUSAMU TIPU JIOTIOJIHUTETHHBIX ITpeIno/iozKennax. [losromy B ujie-
AJIBHOI TEOPUH CTPYH WJIM MeMOPAH JIOJI?KHBI NCUE3HYTH MOJIETLHO-3aBUCHMBIE ITPE/IITOIO-
JKeHus, PaKTUIeCKN OHa JIOJI2KHA CTAaTh CTPYHHOI Teopueit 6e3 ctpyH. lecars nuzmepenuit
[IPOCTPAHCTBA-BPEMEHH, [T0-BUIUMOMY, HEOOXOIMMBI JIJIs IIOCTPOEHUs] KBAHTOBOI 110J1€BOIT
TEOPUHU CYIIEPCTPYH, B KOTOPOI COKPAIAIOTCS BCe aHOMAJINHU, B TO BpeMs KaK pacliupe-
HUEe JI0 OJIMHHAJIIATOrO M3MEPEHUs HEOOXOIMMO JIJIsi BJIOXKEHHS B CyllepMeMOpaHbl BCEX
KJIACCOB Teopwu cTPyH. HuabmoreHTHas IUPaKOBCKas TEOPUs Y/IOBJIETBOPSET STUM Tpe-
boBanusam. Kax it Huibnorent npejcrasiisieT 10 cCOXpaHAIOMUXCA BEJIMINH U, TIOITOMY,
MOZKeT ObITh MOCTPOeH B 10-Tu MepHOM JyasbHOM (Da30BOM /3apsiIOBOM IIPOCTPAHCTBE:

SHEPIrust c1a0bIit 3apsi
3 KOMIIOHEHTBI UMITYJIbCa 3 KOMIIOHEHTBI CUJIBHOI'O 3apd1a

Macca MoKos JIEKTPUIECKUI 3apsi/I.

910 muoxkectBo 10 "paszmepnocreit" coemunsier B cebe byHIAMEHTANIBHYIO JIya/lb-

HOCTB, BKJIFOUAIOIIYI0 BakyyM. Bce 4acTwilpl JyajbHBl BAaKyyMy U CYIIECTBYIOT TOJIBKO
B COOTHOIIIEHNN ¢ HUM (zitterbewegung cTaHOBUTCSI AMHAMUYIECKUM TIPOSIBJICHHEM 5TOTO),
[I03TOMY HaM TpelyeTcs JecATh JacTeil mH(MOPMAIUK OJJHOBPEMEHHO JIJId ITOJTHOTO OIIU-
CaHMsI COCTOSHMS YacTUIbI. KOMIIOHEHTBI SHEPIUU U 3apsijia MOSB/IAIOTCI KaK B3AMMHO
UCKJTIOYATOIINE 3aTI0JTHUTE/ I BAKYyMa UJIU ACIIEKThl MaTepun. B 1e/1oM, 0IHO MHOZKECTBO
U3 MATH KOMIIOHEHT OIHMCHIBAET YaCTHUILy, & JIPYroe — JIyaJbHOe BaKyyMHOE COCTOsIHUE,
WJIA OJTHO MHOYKECTBO IPEJICTaB/IeT aMILIUTY LY, a apyroe — dasy. OgHaKo, /st 33 aHusT
COCTOSIHUST HEOOXOJIMMBI BCE JIECITh KOMIIOHEHT, a JIjIsd Ipeobpa3oBanus u3 (ha3z0oBOTo Mpo-
crpaHcTBa B "peasbHoe" IPOCTPAHCTBO MBI MOXKEM IIPOCTO MCIOJIB30BATH COMPAXKEHHYIO
MeTpuky tkttiir—+ij7). CymecTBeHHbIM SIBJISIETCST TO, YTO miecThb "pasmepuocreii” (Bce,
3a MCKJIIOUeHneM F u p) gBistiorcst (DUKCHPOBAHHBIME MM KOMIAKTAMDUITNPOBAHHBIMI,
B TOYHOCTH B COOTBETCTBUU C TPEOOBAHWAME TEOPHUH CTPYH. TakKe OHU OrpaHUIEHBI
CUMMETPUSAME, KOTOPBIE 110 CBOEH TPHUPOJE SBIAIOTCH CHEPUIeCKUME, KaK, HaIpuMep
U(1)-cummerpust B Teopun Kamyrer-Kiteitra, Koropasi cOOTBETCTBYET 3/1€Ch YaCTHOMY
CJIyYal0 3JIEKTPUIECKOTO 3aps/ia.

O munaanaroe, win "MemOpanHoe" m3MepeHue SIB/IsIeTCs KOMMYTATHBHBIM THIBOEp-
TOBBIM ITPOCTPAHCTBOM, CBSI3BIBAIOIINM BCE HUJIBIIOTEHTHI, KOTOPOE CYIIEeCTBEHHBIM 00pa-
30M CBSI3aHO C I'DaBHUTAIMEl 1 MI'HOBEHHBIMU KOpPpEJIANUAMU. TeM He MeHee, MbI JIOJI2KHBI
0oco3HaTh, UTO 00e Mojiesn, 10-tu u 11-Tu MepHas, ABIAIOTCA B JAefICTBUTEILHOCTU IIPO-
siBJIeHusIMI OoJiee (byHIaMeHTAIbHON 3-MEPHOCTH, 3aJaHHON ITOCPEJICTBOM TPeX KBaTep-
HUOHHBIX omepaTtopoB k,t,7. KBaHTOBass HUIBIIOTEHTHAsT CTPYKTYpa BCErJa MOKET ObITh
3a/laHa 3-MEPHBIM IIpeJiCTaB/IeHIneM, depe3 adpGUHHYO IPUPOLY P Win s oneparopa. Tob-
KO OJIHO HAIIPABJIEHUs CITMHA W TOJIBKO OJHO COCTOSHHUE JIJIA I[BETHOT'O 3apsjia sABJISICTCS
KOPPEKTHO-33/IaHHbIM. JlaHHOE TOHNMaHNe MTO3BOJIIeT HaM ITIOCTPOUTH PEHOPMaJIN3yeMYyTO
TEOPUIO KBAHTOBOI I'DaBUTAIIMHU WJIM KBAHTOBOI I'DABUTAIMOHHONW MHEPIINH.

Teopuu cTpyH, 110 ONPEIETCHUIO, SIBJISIOTCS TAKXKe CYIEePCUMMETPUIHBIMU. JTO, KO-
HEYHO K€, HeHAPYIIEHHAS CYIePCUMMETPHS JTUPAKOBCKOTO HIUJIBIIOTEHTA, KOTOPasi O3B0~
JISIET 3aJIaTh COCTOSTHUSI SHEPTUU U 3apsijia OJHOBPEMEHHO. B npuHInie, HeHapyIIIeHHAST Cy-
[IepCUMMETPHS TPeOyeT HYJICBOI TOJIHON SHEPIUN BaKyyMa, 9TO MbI ¥ OXKUJIAEM, €CJIU CBsi-
3aHHAas ¢ MaTepueil MoJTHas SHEPrus KOMIIEHCUPYETCsl OTPUIATE/IHHON IpaBUTAIIMOHHOMN
sueprueit. CrioHTaHHOE HAPYIIIEHHE CUMMETPUN B JIAHHON MHTEPIIPETAIlUU BbI3BAHO HE 00-
IIIIM COCTOSTHHEM BaKyyMa, a CJIabbIM JTUCKPETHBIM BaKyyMOM, KOTOPBIN B CUTy MEXaHU3-
Ma npaka-Xurrca mpeainoanuTaeT cocTossHus +F cocrosanam —F duckpemnoti MaTepum.
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CyIIecTBEHHO, UTO CYNEPIPOCTPAHCTBO, HEOOXOIMMOE JIJIsl CYIIEPCUMMETPHUH, TOCTY/IUDY-
eT YeTblpe aHTUCUMMETPUYHbIE KOOPJAUHATHI KaK CyllepllapTHEPHI IPOCTPAHCTBAa-BPEMEHU;
3/1eCh OHU CTAHOBSATCS MacCOl U TpeMs 3apsiaMu. BMmecTe BoceMb KOOD/IMHAT COCTABJISIIOT
CYTEPIIPOCTPAHCTBO, KOTOPOE B JIAHHOM (popMasiu3Me IPUHIMAET XapaKTep HUJIbIIOTCHT-
Hoit ayire6pnl Jlupaka.

10. Hynb-3aeprusa u sdpdekr Kasumupa

OsHoit u3 mHTepHpeTanuii BakyyMma siBagercs "MoKoil (HemoIBUKHOCTD) BCeJIeHHOM "
"peaknnonHas" 4acThb TpeThero 3akoHa HeoToHa. D9T0 MOKA3BIBAET, KAK MBI MOXKEM OIIpe-
JIEJINTH BaKyyM CChLIasch Ha "oOpasubiit" 3aps mim "orpaxkenne" JUCKPETHOrO UCTOY-
Huka. /lJst IucKpeTHoro ¢aaboro, CHIBHOIO WK SJEKTPHIECKOIO BAKyyMa, 9TO 03HAYAET,
YTO YaCThb IIOKOSI BCEJIEHHO PACIIO3HAETCS TOCPE/ICTBOM OJIXOISAINEr0 3apsijia, 1 9TO sBJIsi-
ercst 93 PEeKTUBHBIM OTPUIAHAEM JTAHHON KOMITOHEHTHI. O ITHAKO, TIOJTHBII BAKYYM SIBJISIE€T-
sl HENPEPLIEHDbIM BAKYYMOM, MTPOM3BOJANMBIM TIOCPEJCTBOM JIEHCTBUTEIbHOI (TpaBUTAILN-
OHHOM) KOMIIOHEHTBI, U JIJIs1 JII0OOr0 3a/IaHHOTO (DEPMUOHA, OH CO3/Ia€T BEKTOP COCTOSIHUS,
srBuBasieHTHbIH —1(kKFE + iip + ijm), ¢ orpunareabHoii sHeprueii. Kombunanus dbepmu-
OHa W TOJHOI'O BaKyyMa IOPOXKIAET HYJIb-TOTAJBLHOCTH W HYJIEBOH BEKTOD COCTOSTHS.
"HempepsiBHOCTE" B JJAHHOM KOHTEKCTE MOXKET O3HAYATH JIUIIh OTCYTCTBUE JIUCKPETHBIX
YPOBHEl SHEPTHUH, U IMEHHO 9TO CBOWCTBO IIPUBO/IAT K BOSHUKHOBEHNIO OECKOHETHOM TII0T-
HOCTU BUPTYAJILHON SHEPIUU U BUPTYAJTLHON sHeprun 1/2fw mjis Bcex BO3MOXKHBIX MO/
KOJIeOAaHU, TaK HA3BIBAEMOTO HYJIEBOI'O YPOBHS dHepruu. HemnmpepbIBHBIN BAKyyM MOITO-
MY COCTABJISIETCS 3€PKAJBLHBIME OOPa3HBIMU COCTOSHUSIMU BCEBO3MOXKHBIX (DEPMUOHHBIX
COCTOSIHUI, ¥ MMEHHO TaKON HEIPEePBIBHBII BaKyyM JiejlaeT BO3MOYKHBIM HEJTOKAIHHYIO
CBsI3b, TIPeJIIoIaraeMyto npuaiumnom 3ampeta [laymm. Kaxmoe Bo3MOXKHOE COCTOSTHUE JTaeT
BUPTYaJbHYIO BAKYyYMHYT0 9Hepruto 1/2hw, KaK OCHOBHOE COCTOSIHIE TAPMOHUIECKOTO 0C-
[UJIIATOPA, KOTOPBIM, KOHEYHO, B TOYHOCTHU U sABJjsgeTcs. s co3manust aeiicTBUTEILHOTO
bepmuoHHOrO COCTOsIHUST MBI BO30OY2KjIa€M BUPTYaJIbHOE BaKyyMHOe cocrostHue —1/2hw
J10 ypoBHs 1/2hw, UCIO/IB3Ysl KBAHT TOJIHON sHepruu fuw. HenpepbiBHBI BaKyyM, 0JJHAKO
’Ke, HUKOTJIa He MOYKeT OBITh IOJBEPIHYT HPSMOMY TOIHOMY HaOJIFOJIEHUIO, BBUJLY CBO-
eff HeNpepBIBHOCTU, U TIOTOMY, MOHATHE HEIPEPBIBHOCTA C HEM30EKHOCTHIO OCTAHETCH
"moreHnMAaBHBIM" | I BUPTYAIbHBIM.

[IposiBieHre HENPEPBIBHOCTU BaKyyMa, KOTOPOe MbI HAOIIOIAeM, SIBJISIETCS IMUPOKO
n3BecTHON cmyioit Kasumupa oTTaJKuBaHUsT MEXKy He3apsiKeHHBIMU TIIACTUHKAMEI Me-
TaJuia mwiomaam A, Ha MAJOM PACCTOSHUN d:

B mwhcA
©480d4°

Beujty sasucumoctn ot 1/d*, sta cuna npogsiser cebst BHe obgacTu 1 pm Kak JUIO/b-
JIUTIOJIbHOE B3aMMOJIENICTBUE, B TOYHOCTU TOTO Ke Tulla, 4To u cuia Ban nep Baasbca
CIIETJIEHUS MOJIEKYJI. DTa HHTEPIPETAIlUs TPEIIoJaraeT HyIb-(PJIyKTyalluu BUPTYaIbHBIX
dOTOHOB B IPOCTPAHCTBE MEXKJTy IJIACTUHKAMU WJIU MOJIEKYJIaMH; HO TAKON Ke pe3yJib-
TaT BO3MO2KHO IIOJIYIUTDL, MCIIOJIb3YyA Hyﬂb—(bﬂ}/'KTyaH‘I/H/I 9JIEKTPOHOB B METaJIJIMYECKHUX
noBepxHOCTAX [7]. B aHHOM Ciy9ae 9TO CTAHOBUTCsI JIOHJOHCKUM JIUCIIEDCUOHHBIM B3a-
nmojeitcreuem. Cornacho jpyroit kaprune (Xesuivana-®eiinvana), objiaka KBAHTOBBIX
3apsJI0B Ha JIBYX IJIACTUHAX, MOJIEKYJ/IAX WU JPYTUX 00bEKTaX [0 Mepe UX MPUOJIMKEHUs
CTaHOBATCA ,HerOpMI/IpOBaHHbIMI/I B COOTBETCTBUH C U3MCHEHUEM 3HaYCHHNA BEPOATHOCTU
UX paclpejiesieHus 3apsjia. B 9roM ciiydae, cuia WISHTUIHA TPUINHE XUMUTIECKOTO CO-
eJINHEHNs], BBI3BAHHOIO KJIACCHIECKOI 3JIEKTPOCTATHIECKON CHIIO [ 7).



Hypercomplex Numbers in Geometry and Physics, 2, 2004 109

Beuy Boimmeckazannoro, cuia Kazumupa sBiisgeTcs He OT/IeIbHbIM (hDeHOMEHOM, & ac-
[IEKTOM KJIACCHIECKOTO 9JIEKTPOMATrHUTHOIO B3anMojleiicTBus. B To Bpems kak [lerepcon
u Metsrep |7] uCHONB3YIOT 9TO B KadecTBe CPeJCTBA YCTPAHEHUs M3 BBIBOJA (DOPMYJIBI
TAKUX HEOCMBICIMMBIX BeIlell KaK KBAHTOBBbIE (DJIYKTYAIIUU, MBI MOXKEM IMTOBEPHYTH XO/I
paccyzKieHuit TakuM 00pa3oM, 9To OObITHAS JIEKTPOMATHUTHAS CHJIa CTAHET BaKyyMHON
npoekmueii. Ob6paTHO TPOIOPIUOHATBLHAT YETBEPTOMY MOPsIKYy cuia Kasumupa Mexry
o0beKTaMU, KOTOPhIE TJIODATBHO IJEKTPUIECKU HEHTPaJIbHBI, HO JIOKAJIHLHO 0OPA30BAHBI
9JIEKTPOCTATUIECKUMI JIUTIOJISIMU, JIOJIZKHA, TIPEIIoIaraTh OOpaTHBIN KBaIPAT CHJIbI MEXK-
Jly OTJEJTbHBIME 3apPsi?KEHHBIMU YACTUIAMU, U3 KOTOPBIX 00pa30BaHbl 3TH OObEKTHI. U
pojictBeHHBIE 3 HEKTH KOHICHCUPOBAHHON MATEPUH, TAKUE KAK SI/ICPHBIC CUJIBI, JTOJIZKHbBI
OIUCHIBATHCA B TEX K€ TEPMHUHAX, UTO U IMPOSIBJICHUSA Ka3UMMHUPOBCKOTO THIIA (hEePMHUOH-
HBIX WM OO30HHBIX BaKyyMHBIX (DJIYKTyaIruil, Tak ke, KaK U B3AUMOJCHCTBUS MEXKLy
JIMCKPETHBIME 3aPSIJIAME, OIIPeIe/ITeMble BEPOSITHOCTHBIMU PACIIPEICICHISMHE.

Ecyin MbI onmchbIBaeM CHJIbI, BBI3BAHHbBIE JTHUCKPETHBIMU 3apsIaMU (3JIEKTPUIECKHU-
MU, CUJTHHBIME, CJIAObIMK), KaK Ka3UMUPOBCKOIO THUIIA MPOSIBJIEHUS BAKyyMa, Mbl I0-
JIydaeM MpsSMYI0 (DU3UUIECKYI0 MHTEPIIPETAINIO IS COOTBETCTBYIOIIEr0 MUCIIOTH30BAHUS
KBaHTOBBIX OIEPATOPOB J,%,k Kak I 9TUX TPeX 3apsjioB, TaK W JJI OIEPAIUUA CO-
OTBETCTBYIOIIETO 3JIEKTPUYECKOr0, CUJIBHOIO U caaboro Bakyyma (vacua) IoCpeicTBOM
J(HikE £ ip + gm), i(L£ikE + ip + jm), k(+ikE £ ip + jm). Beumy roro, uro ore-
PATOPBI IPUKPEILIEHBI COOTBETCTBEHHO K TICEBJOCKAJISIPY F| BEKTOPY P U CKaJspy m B
BEKTOpE COCTOsIHUSI, UX BAKyyMbI Oy/IyT PA3HBIMU, U CUJIbI TaKKe OYyIyT BecTu ceds pas-
JuaHbIM 00pasoM. OIHaKO, K/TIOYEBBIM MEXaHIM3MOM BO BCEX KA3UMUPOBCKUX BBIYUC/ICH-
SIX ABJIAETCS TO, UTO OHU IPEJICTAIOT KaK PE3YJIbTAT BBIIACICHUS JUCKPEMHbLL OOBHEKTOB
U3 HENPEPuIEHOT CPEJIbI, U UMEIOT CMBIC/ JIMIIb B KOHTEKCcTe mnap o0bekToB. Cozmanue
Hapbl JUCKPETHBIX 00bEKTOB HA HEKOTOPOM KOHEYHOM PAaCCTOSTHUU, TOPOYKIAET CUJIY, 10-
CKOJIbKY CO3/IaeTCsl IIPOCTPAHCTB, 3AIUIIIEHHOE OT HEKOTOPBIX MO/ BAKYYMHBIX KOJIe0aHUT
BHE 9TOr0 MIPOCTPAHCTBA. B mpuHIHIIe, cjie0BaTe/bHO, BCe B3ANMOIEHCTBIAST MEXK Ty JTIC-
KPETHBIME 3apPs’KEeHHBIMU O0BEKTAMU U JIaKe BEJUIUHBI KOHCTAHT CBS3U MOTYT OBITH
PACCMOTPEHBI KaK Pe3yJIbTaT CYIECTBOBAHUS MOKOS BCEJIEHHON KaK BaKyyMHOI'O COCTOsI-
HUsl, B HAIIPABJICHUN MIPUHIIUIIA PeHOpMasn3anuu u npunnuna Maxa s napasiiebHoro
cJIydasi MHEPIIMOHHBIX MACC.

B nannoit mHTEpIIpETAIINT, KASUMUPOBCKUI U CBA3aHHBIE ¢ HUM 3(DMEKThI CTAHOBSIT-
csl TIyTeM, Ha KOTOPOM JIMCKPETHBII 3aps?KEHHBI BaKyyM IPOSIBJIAET UX B COOTHOIEHUN
C HEIPEPBIBHBIM ITOJTHBIM BaKyyMHBIM (POHOM; OHU IIPEJICTAB/ISIOT Pa3/ecHue BaKyyMa
B COOTBETCTBUU C TPEMsl TUITAMU 3aPSIIOBBIX COCTOSHUI. YMC/I0 3amoHeHnsT 3apsI0BBIX
COCTOSIHUHN (TO €CTh, MMEIOT JIN 3apsijibl €JIMHUIHbIE MJIN HyJIeBble 3HAUEHUsI) yCTaHAB/IBa-
eTcs Ha OCHOBE OTHOCUTEIHHBIX (ha3 MEKY KOMIIOHEHTAMHI BEKTOPA COCTOSHUSI. DTO OIpe-
JIeJIsIeT TUIl YaCTHUIlbl ¥ BO3MOXKHBIE B3anMojieiicTBusi. BakyyM, OJlHAKO Ke, CTAHOBUTCS
MEXaHU3MOM, [TOCPE/ICTBOM KOTOPOTO JIAHHBIH TIPOIiece mposiisgercs. Co3aanne JTuCKpeT-
HBIX €IMHUI] ¢ HEHYJIEBbIM YHCJIOM 3aIl0JHEHHS IOPOXKIAaeT "McKaykeHns1" BaKyyMa, KO-
TOPBIE MBI HA3BIBAEM B3aMMOJICHCTBUAMU, TAK K€, KaK HAJTUIHE JIUCKPETHBIX HCTOYHUKOB
MOPOK/IA€T BAKYyMHBI OTKJIMK WU MCKAYKEHUE OJIHOCBS3HOTO MPOCTPAHCTBA, KOTOPOE
nopoxk gaer apderr Aaponosa-boma u dpazy Beppu.

References

[1] P. Rowlands: arXiv: quant-ph/0301071.

[2] P. Rowlands: arXiv: physics/0106054.

[3] P. Rowlands and J. P. Cullerne: arXiv: quant-ph/0109069.

[4] M. Kaku: Quantum Field Theory, Oxford University Press, 1993.



110 Rowlands P. The Nilpotent Vacuum

[5] 1. J. R. Aitchison and A. J. G. Hey: Gauge theories in partical physics, Adam Hilger,
1989.

[6] P. Rowlands: AIP Conference Proceedings (in press).
[7] R. Peterson and R. M. Metzger, Int. J. Chem., 7, 1-4, 2004.



Hypercomplex Numbers in Geometry and Physics, 2, 2004 111

DIVISION ALGEBRA,

GENERALIZED SUPERSIMMETRIES
AND OCTONIONIC M-THEORY

Francesco Toppan

CBPF-CCP, Rio de Janeiro, Brazil
toppan@cbpf.br

This is the report of the talk given at the conference "Number, Time and Relativity",
held at the Bauman University, Moscow, August 2004, concerning the recent research activity
of the author and his collaborators about the inter-relation of the concepts of division algebras,
representations of Clifford algebras, generalized supersymmetries with the introduction of an
alternative description of the M-algebra in terms of the non-associative structure of the octonions.

Introduction.

The unification program aiming at a unified description of the known interactions as
well as a consistent quantum formulation for gravity, nowadays mostly points towards
higher-dimensional supersymmetric theories. At present the most promising, however
still conjectural, candidate should live in eleven dimensions and goes under the name
of M-theory [1|. The theoretical (and phenomenological) consistency requirements put
on any possible candidate for unification necessarily lead to a systematic investigation
of the properties of Clifford algebras and spinors in space-times of arbitrary dimension
and signature. The generalized supersymmetries going beyond the standard HLS scheme
[2] admit the presence of bosonic abelian tensorial central charges associated with
the dynamics of extended objects (branes). It is widely known since the work of [3]
that supersymmetries are related to division algebras. Indeed, even for the generalized
supersymmetries, classification schemes based on the associative division algebras (R, C,
H) are now available. For what concerns the remaining division algebra, the octonions,
much less is known due to the complications arising from their non-associativity.
Octonionic structures were, nevertheless, investigated in |4, 5] in application to superstring
theory.

Octonions are not just a curiosity. They are the maximal division algebra. This
fact alone already justifies that they should receive the same kind of attention paid to,
let’s say, the maximal supergravity. However, their importance is more than that, they
are at the very heart of many exceptional structures in mathematics and can be held
responsible for their existence. Among these exceptional structures we can cite the 5
exceptional Lie algebras and the exceptional Jordan algebras. Indeed, the G5 Lie algebra
is the automorphism group of the octonions, while Fj is the automorphism group of
the 3 x 3 octonionic-valued hermitian matrices realizing the exceptional J3(O) Jordan
algebra. Iy and the remaining exceptional Lie algebras Fg, E;, Eg are recovered from
the so-called “magic square Tits’ construction"which associates a Lie algebra to any given
pair of division algebras, if at least one of these algebras coincides with the octonionic
algebra [6].

It has been pointed out several times, |7, 8] that the exceptional Lie algebras fit
well into the grand-unification scenario. Moreover, the Eg Lie algebra enters, through the
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Eg x Fg tensor product, the anomaly-free heterotic string, while the G5 holonomy of seven-
dimensional manifolds is required, on phenomenological basis, to produce 4-dimensional
N = 1 supersymmetric field theories by compactification of the eleven dimensions. This
partial list of scattered pieces of evidence has brought to suggest, see e.g. [8], that for some
deep reasons, Nature seems to prefer exceptional structures. In this context it deserves to
be mentioned the special role of the exceptional Jordan algebra J5(O), not only associated
to the unique consistent quantum mechanical system (in the Jordan framework, see [9])
based on a non-associative algebra, but also leading to a unique matrix Chern-Simon
theory of Jordan type, see [10].

In this talk I will discuss the investigations presented in [11, 12| concerning the
possibility of realizing general supersymmetries in terms of the non-associative division
algebra of the octonions. In particular in [11] it was shown that the M algebra which
supposedly underlines the M-theory comes in two (and only two, due to the absence of
the complex and of the quaternionic structures) variants. Besides the standard realization
of the M-algebra which involves real spinors and makes therefore use of the real structure,
an alternative formulation, requiring the introduction of the octonionic structure, is also
possible and can be exploited. This is made possible due to the existence of an octonionic
description for the Clifford algebra defining the 11-dimensional Minkowskian spacetime
and its related spinors. The features of this second variant, the octonionic M-superalgebra,
are puzzling. While it is not at all surprising that it contains fewer bosonic generators, 52,
w.r.t. the 528 of the standard M-algebra (this is after all expected, since the imposition
of an extra structure always puts a constraint on a theory), what really came as an
unexpected surprise is the fact that new conditions, not present in the standard M-theory,
are now found. These conditions imply that the different brane-sectors are no longer
independent. The octonionic 5-brane alone contains the whole set of degrees of freedom
and is therefore equivalent to the octonionic M1 and M2 sectors. We can write this
equivalence, symbolically, as M5 = M1 + M2. This result is indeed very intriguing.
It implies that quite non-trivial structures are found when investigating the octonionic
construction of the M-theory. It is quite tempting to think that the exceptional structures
that we mentioned before should be better understood from this octonionic variant of the
M-algebra, rather than the standard real M-algebra.

The next passage consists in defining the closed algebraic structure which realizes the
octonionic superconformal M-algebra. It turns out that the OSp(1,64) superconformal
algebra of the real M-theory is replaced in the octonionic case by the OSp(1,8|0)
superalgebra of supermatrices with octonionic-valued entries and total number of
7+ 232 = 239 bosonic generators.

On Clifford algebras.

The classification of generalized supersymmetries requires the preliminary
classification of Clifford algebras and spinors and of their association with division
algebras.

To make this paper self-consistent, in this section we review the classification of the
Clifford algebras associated to the R,C, H associative division algebras, following [13]
and [14].

The most general irreducible real matrix representations of the Clifford algebra

TATY 4+ TV TF = 2, (1)

with n*¥ being a diagonal matrix of (p,q) signature (i.e. p positive, +1, and ¢ negative,
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—1, diagonal entries)® can be classified according to the property of the most general
S matrix commuting with all the I'”s ([S,I'*] = 0 for all u). If the most general S is a
multiple of the identity, we get the normal (R) case. Otherwise, S can be the sum of two
matrices, the second one multiple of the square root of —1 (this is the almost complex,
C case) or the linear combination of 4 matrices closing the quaternionic algebra (this is
the H case). According to [13] the real irreducible representations are of R, C, H type,
according to the following table, whose entries represent the values p — ¢ mod 8

R|C | H
0,2 4,6 (:2)
1 13,7] 5

The real irreducible representation is always unique unless p—q mod 8 = 1, 5. In these
signatures two inequivalent real representations are present, the second one recovered by
flipping the sign of all I''s (I'* — —I'*).

Let us denote as C(p, ¢) the Clifford irreps corresponding to the (p, ¢) signatures. The
normal (R), almost complex (C) and quaternionic (H) type of the corresponding Clifford
irreps can also be understood as follows. While in the R-case the matrices realizing the
irrep have necessarily real entries, in the C-case matrices with complex entries can be
used, while in the H-case the matrices can be realized with quaternionic entries.

Let us discuss the simplest examples. The C-type C(0, 1) Clifford algebra can be

expressed either through the 2 x 2 matrix with real-valued entries ( 01 ) or through
-10

the imaginary number 1.

The H-type Clifford algebra C'(0,3), on the other hand, can be realized as follows:
i) with three 4 x 4 matrices with real entries, given by the tensor products 74 @ 71, 74 @ T2
and 15 ® 74, where the matrices 74, 71 and 7 furnish a real irrep of C'(2,1)

(TA:< 0 1>,ﬁ:<0 1)772:(1 0 >),
~10 10 0 -1

it) with three 2 x 2 complex-valued matrices given by ( 01 ), (0 ! ) and ( 0 ),
—10 1 0 01

iii) with the three imaginary quaternions e; (see for more details the section 3).

The formulas at the items i) and 4i) provide the real and complex representations,
respectively, for the imaginary quaternions. They can be straightforwardly extended to
provide real and complex representations for the H-type Clifford algebras by substituting
the quaternionic entries with the corresponding representations (the quaternionic identity
1 being replaced in the complex representation by the 2 x 2 identity matrix 1, and by the
4 x 4 identity matrix 1, in the real representation).

It is worth noticing that in the given signatures p —q mod 8 = 0,4, 6,7, without loss
of generality, the I'* matrices can be chosen block-antidiagonal (generalized Weyl-type

matrices), i.e. of the form
n
=07 (.3)
ot 0

3Throughout this paper it will be understood that the positive eigenvalues are associated with space-
like directions, the negative ones with time-like directions.
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In these signatures it is therefore possible to introduce the Weyl-projected spinors, whose
number of components is half of the size of the corresponding I'-matrices?.

A very convenient presentation of the irreducible representations of Clifford algebras
with the help of an algorithm allowing to single out, in each arbitrary signature space-time,
a representative (up to, at most, the sign flipping I'* < —I'*) in each irreducible class
of representations of Clifford’s gamma matrices has been given in [14]. We recall and
extend here the results presented in [14], making explicit the connection between the
maximal-Clifford algebras in the table (.6) below and their division-algebra property.

The construction goes as follows. At first one proves that starting from a given D
spacetime-dimensional representation of Clifford’s Gamma matrices, one can recursively
construct D + 2 spacetime dimensional Clifford Gamma matrices with the help of two
recursive algorithms. Indeed, it is a simple exercise to verify that if 7;’s denotes the
d-dimensional Gamma matrices of a D = p + ¢ spacetime with (p, q) signature (namely,
providing a representation for the C(p,q) Clifford algebra) then 2d-dimensional D + 2
Gamma matrices (denoted as I'j) of a D + 2 spacetime are produced according to either

() () ()
Yi 0 _1d 0 0 _1d
(r,q) — (p+1,q+1). (-4)

or

() () ()
—%i 0 1d, 0 0 _]-d
(p,q) — (¢+2,p). (:5)

It is immediate to notice that the three matrices 74, 7, 7o introduced before and realizing
the Clifford algebra C'(2,1) are obtained by applying either (.4) or (.5) to the number 1,
i.e. the one-dimensional realization of C'(1,0).

All Clifford algebras of R-type are obtained by recursively applying the algorithms
(.4) and (.5) to the Clifford algebra C'(1,0) (= 1) and the Clifford algebras of the series
C(0,7 + 8m) (with m non-negative integer), which must be previously known. Similarly,
all Clifford algebras of H-type are obtained by recursively applying the algorithms to
the Clifford algebras C(0,3 + 8m), while the C-type Clifford algebras are obtained by
recursively applying the algorithms to the Clifford algebras C'(0,148m) and C(0,5+8m).
This is in accordance with the scheme illustrated in the table below, taken from [14]. We
get

Table with the mazimal Clifford algebras (up to d = 256).

4This notion of Weyl spinors, which is convenient for our purposes, is different from the one usually
adopted in connection with complez-valued Clifford algebras and has been introduced in [14].
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1 * 2 * 4 * 8 * 16 * 32 * 64 * 128 * 256
R (1,0) = (2,1) = (3,2) = (4,3) = (5,4) = (6,5) = (7,6) = (8,7) = (9,8)
(1,2) — (2,3) — (3,4) — (4,5) — (5,6) — (6,7) — (7,8)
e
[e] (0,1)
N
(3,0) — (4,1) — (5,2) — (6,3) — (7,4) — (8,5) — (9,6)
(1,4  — (25 - (3,6) - (4,7) - (5,8) - (6,9)
e
H (0,3)
N
5,0 —- G - (72) - (83 - (99 — (10,5
(1,6) — (2,7) — (3,8) — (4,9) — (5,10)
e
c (0,5)
N
(7,0) — (8,1) — (9,2) — (10,3) — (11,4)
(1,8)  — (2,9) - (310 = (411) = (512)
e
R/O 0,7
N
(9,00 — (10,1) — (11,2) — (12,3) — (13,4
(1,10) —  (2,11) —  (3,12)
e
c (0,9)
N
(11,0) — (12,1) — (13,2)
(1,12) — (2,13)
e
H (0,11)
N
(13,00 —  (14,1)
(1,14)
e
C (0,13)
N
(15,0)
(1,16)
e
R/O (0,15)
N
17 0)
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(-6)

Concerning the above table some remarks are in order. The columns are labeled by
the matrix size d (in real components) of the maximal Clifford algebras. Their signature
is denoted by the (p, q) pairs. Furthermore, the underlined Clifford algebras in the table
can be named as “primitive maximal Clifford algebras". The remaining maximal Clifford
algebras appearing in the table are the “maximal descendant Clifford algebras". They
are obtained from the primitive maximal Clifford algebras by iteratively applying the two
recursive algorithms (.4) and (.5). Moreover, any non-maximal Clifford algebra is obtained
from a given maximal Clifford algebra by deleting a certain number of Gamma matrices
(this point has been fully explained in [14] and will not be further elaborated here).

The maximal Clifford algebras generated by the C(0,7 + 8m) series are associated
to both the real (R) and octonionic (O) division algebras, since (.1), for the (0,7 + 8m)-
signature, can be realized either associatively (in the normal, R, case), or non-associatively
through the octonions (see [14] and [16]).

The primitive maximal Clifford algebras C'(0, 3) and C'(0,7) can be explicitly realized
through, respectively, three 4 x 4 matrices (as already recalled) and seven 8 x 8 matrices
given by

TA & T,
C(0,3) = TA®7—27 (7)
12®TA.

and

TA® T & 1a,
TA® T & 1o,
1, @74 @ 71,
1, @ 74 ® 7y, (-8)
71 ® 1y ® 7a,
To ® 1o ® 74,

TAKTA O Ta.

C(0,7)

The complex primitive maximal Clifford algebras C(0,1) and C(0,5) can be obtained
from C(1,2) and C(0,7), respectively, by deleting two gamma-matrices. From C(0,7) we
can, e.g., consider the last tensor-product column, eliminate the two terms containing 7,
and 7 and replacing 15 — 1, 74 — ¢, to get

TA & T1,
TaA & Ta,
C0,5) = in® 1,, (.9)
1Ty ® 1o,
1TA ® Ta.

It is worth pointing out that the C'(0, 1) and C(0, 5) series were correctly considered
as “descendant"series in [14] due to the fact that they can be obtained from C(1,2),
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C'(0,7) after erasing extra-Gamma matrices. We find however convenient here to explicitly
insert them in table (.6) and consider them as “primitive", since they admit a different
division-algebra structure (they are almost complex, C) w.r.t. the normal (R)-type
maximal Clifford algebras they are derived from.

The remaining primitive maximal Clifford algebras C'(0, z+8m), for positive integers
m = 1,2,... and x = 1,3,5,7, can be recovered from the mod 8 properties of the
Gamma-matrices. Let 7; be a realization of C(0,z) for x = 1,3,5,7. By applying the
(.4) algorithm to C(0,7) we construct at first the 16 x 16 matrices realizing C'(1,8) (the
matrix with positive signature is denoted as 79, 792 = 1, while the eight matrices with
negative signatures are denoted as v;, j = 1,2...,8, with 7,2 = —1). We are now in the
position [14] to explicitly construct the whole series of primitive maximal Clifford algebras
C(0,x 4 8n), through the formulas

14®’Yj®116®... ...... ®116;
C(O,x+8n)z 14@79@’}/]‘@)116@... ...... ® 146, (10)

14®79®’)/9®’7j®116® ......... ® 146,

1i®y®... o @Y ® 5,

Please notice that the tensor product of the 16-dimensional representation is taken n
times.

On division algebras.

In the previous section we furnished a simple algorithm to explicitly construct any
given Clifford irrep of specified division-algebra type. It is convenient to review here the
basic features of division algebras which will be needed in the following.

The four division algebra of real (R) and complex (C) numbers, quaternions (H)
and octonions (O) possess respectively 0, 1, 3 and 7 imaginary elements e; satisfying the
relations

€€ = _61']' + C’ijkek, (.11)
(1,7, k are restricted to take the value 1 in the complex case, 1,2,3 in the quaternionic
case and 1,2,...,7 in the octonionic case; furthermore, the sum over repeated indices is
understood).

Cijr are the totally antisymmetric division-algebra structure constants. The
octonionic division algebra is the maximal, since quaternions, complex and real numbers
can be obtained as its restriction. The totally antisymmetric octonionic structure
constants can be expressed as

Chag = Crar = Clgs = Cagg = Cas7 = Uy = Cgr = 1 (.12)

(and vanishing otherwise).

The octonions are the only non-associative, however alternative (see [17]), division
algebra.

Due to the antisymmetry of Cjjy, it is clear that we can realize (.1) by associating the
(0,3) and (0, 7) signatures to, respectively, the imaginary quaternions and the imaginary
octonions.
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For our later purposes it is of particular importance the notion of division-algebra
principal conjugation. Any element X in the given division algebra can be expressed
through the sum

X = ZTo + ZTi€q, (13)

where xy and x; are real, the summation over repeated indices is understood and the
positive integral ¢ are restricted up to 1, 3 and 7 in the C, H and O cases respectively.
The principal conjugate X* of X is defined to be

X" = x9 — 365 (.14)

It allows introducing the division-algebra norm through the product X*X. The normed-
one restrictions X*X = 1 select the three parallelizable spheres S!, S$® and S7 in
association with C, H and O respectively.

Further comments on the division algebras and their relations with Clifford algebras
can be found in [14] and [17].

On fundamental spinors.

In section 2 we discussed the properties of the Clifford irreps, presenting a method
to explicitly construct them and mentioning their division-algebra structure. It is worth
reminding that the division-algebra character of fundamental spinors does not necessarily
(depending on the given space-time) coincide with the division-algebra type of the
corresponding Clifford irreps.

Fundamental spinors carry a representation of the generalized Lorentz group with a
minimal number of real components in association with the maximal, compatible, allowed
division-algebra structure.

The following table, taken from the results in [18] and [13], see also [14], presents the
comparison between division-algebra properties of Clifford irreps (I') and fundamental
spinors (¥), in different space-times parametrized by p = s —t mod 8. We have

p| T | W
0/ R R
1R |R
2 R|C
3/C|H (-19)
4 H H
5| HH
6| H|W C
7TIC|R
It is clear from the above table that, for p = 2,3, the fundamental spinors
can accommodate a larger division-algebra structure than the corresponding Clifford
irreps. Conversely, for p = 6,7, the Clifford irreps accommodate a larger division-

algebra structure than the corresponding spinors. In several cases this mismatch of
division-algebra structures plays an important role. For instance in [11] a method was
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introduced to construct superconformal algebras based on the minimal division algebra
structure common to both Clifford irreps and fundamental spinors. This method can be
straightforwardly modified to produce extended superconformal algebras based on the
largest division-algebra structure. The price to be paid, in this case, would imply the
introduction, for p = 2, 3, of reducible Clifford representations and, conversely, for p = 6,7
of non-minimal spinors.

The reason behind the mismatch can be easily understood on the basis of the
algorithmic construction of Section 2 and of table (.6). Indeed, all the maximal, descendant
Clifford algebras appearing in table (.6) have all block-antidiagonal Gamma matrices with

: : o 1 .
the exception of a single Gamma matrix given by 0 ) . Therefore, all non-maximal

0 -1
Clifford algebras which are produced by erasing this extra Gamma matrix (a detailed
discussion can be found in [14]) are of block-antidiagonal form. We recall now that
the fundamental spinors carry a representation of the generalized Lorentz group whose
generators are given by the commutators among Gamma matrices, [I';,I';]. For the
non-maximal Clifford algebras under considerations these commutators are all in 2 x 2
block-diagonal forms, allowing to introduce a (generalized, in the sense specified in [14])
Weyl projection for fundamental spinors, with non-vanishing upper or lower components.

It is convenient to explicitly discuss the simplest Minkowskian cases where the
mismatch appears (the general procedure can be straightforwardly read from table (.6)).
In the ordinary (3,1) space-time the (R) Clifford irrep is obtained as the non-maximal
Clifford algebra (3,1) C (3,2), obtained from the maximal (R) (3,2) after erasing a
time-like Gamma matrix. On the other hand, the fundamental complex spinors are
obtained from the reducible Clifford representation (3,1) C (4,1), obtained by erasing
a space-like Gamma matrix from the (C) Clifford irrep (4,1).

In the other Minkowskian cases we get

i) (4,1): T coincides with the maximal Clifford (4, 1) (C), while ¥ is constructed in
terms of the reducible, non-maximal Clifford representation (4,1) C (6,1) (H),

ii) (7,1): T coincides with the non-maximal Clifford (7,1) C (7,2) (H), while ¥ is
constructed in terms of the reducible, non-maximal Clifford representation (7,1) C (8,1)
(C)a

iii) (8,1): T' coincides with the maximal Clifford (8,1) (C), while ¥ is constructed
in terms of the reducible, non-maximal Clifford representation (8,1) C (10,1) (R).

Generalized supersymmetries: the M and F' algebra examples

Three matrices, denoted as A, B, C', have to be introduced in association with the
three conjugations (hermitian, complex and transposition) acting on Gamma matrices
[3]. Since only two of the above matrices are independent we choose here, following [14],
to work with A and C. A plays the role of the time-like I'Y matrix in the Minkowskian
space-time and is used to introduce barred spinors. C', on the other hand, is the charge
conjugation matrix. Up to an overall sign, in a generic (s, t) space-time, A and C' are given
by the products of all the time-like and, respectively, all the symmetric (or antisymmetric)
Gamma-matrices®. The properties of A and C' immediately follow from their explicit
construction, see [3] and [14].

®Depending on the given space-time (see [3] and [14]), there are at most two charge conjugations
matrices, Cg, C4, given by the product of all symmetric and all antisymmetric gamma matrices,
respectively. In special space-time signatures they collapse into a single matrix C'.
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In a representation of the Clifford algebra realized by matrices with real entries, the
conjugation acts as the identity, see (.14). In this case the space-like gamma matrices are
symmetric, while the time-like gamma matrices are antisymmmetric, so that A can be
identified with the charge conjugation matrix Cly.

For our purposes the importance of A and the charge conjugation matrix C' lies
on the fact that, in a D-dimensional space-time (D = s + t) spanned by d x d Gamma
matrices, they allow to construct a basis for d x d (anti)hermitian and (anti)symmetric
matrices, respectively. It is indeed easily proven that, in the real and the complex cases

- o D . .
(the quaternionic case is different), the < > antisymmetrized products of k¥ Gamma
k

matrices ATl#1#+] are all hermitian or all antihermitian, depending on the value of k < D.
Similarly, the antisymmetrized products CT#1-##] are all symmetric or all antisymmetric.

For what concerns the M-algebra, the 32-component real spinors of the (10,1)-
spacetime admit anticommutators {Q,, @} which are 32 x 32 symmetric real matrices
with, at most, 32 + &231 = 528 components. Expanding the r.h.s. in terms of the
antisymmetrized product of Gamma matrices, we get that it can be saturated by the
so-called M-algebra

{Qa, @} = (AT), P* + (AT(w),, 2" + (AT(y.p)),, 21040 (.16)

Indeed, the k = 1,2, 5 sectors of the r.h.s. furnish 114554462 = 528 overall components.
Besides the translations P*, in the r.h.s. the antisymmetric rank-2 and rank-5 abelian
tensorial central charges, ZI* and Z#1-#5] respectively, appear.

The (.16) saturated M-algebra admits a finite number of subalgebras which are
consistent with the Lorentz properties of the Minkowskian eleven dimensions. There are
6 such subalgebras which are recovered by setting either one or two among the three
sets of tensorial central charges P*, ZI] 7zl -#s] identically equal to zero (a completely
degenerate subalgebra is further obtained by setting the whole r.h.s. identically equal to
7€ero).

The fact that the fundamental spinors in a (10,2)-spacetime also admit 32
components is due to the existence of the Weyl projection. This implies that the saturated
M-algebra admits a (10, 2) space-time presentation, the so-called F-algebra, in terms of
(10,2) Majorana-Weyl spinors Qs,a=1,2,...,32.

In the case of Weyl projected spinors the r.h.s. has to be reconstructed with the help
of a projection operator which selects the upper left block in a 2 x 2 block decomposition.

Specifically, if M is a matrix decomposed in 2 x 2 blocks as M = M Mo , wWe can
Ms My
define

PM) = M,. (.17)

The saturated M-algebra (.16) can therefore be rewritten as

[0 G} = P(Alu) 2094 P (A, ) 7000, (18)

where all tilde’s are referred to the corresponding (10,2) quantities. The matrices in the
r.h.s. are symmetric in the exchange @ < b. This time the rank-2 and selfdual rank-6
antisymmetric abelian tensorial central charges, ZI# and respectively ZlE1-#sl appear.
Their total number of components is 66 + 462 = 528, therefore proving the saturation of
the r.h.s.. The saturated equation (.18) is named the F-algebra.
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Real, complex and quaternionic generalized supersymmetries.

For real n-component spinors (),, the most general supersymmetry algebra is
represented by

{Qm@b} = Z(lb7 (19)

where the matrix Z appearing in the r.h.s. is the most general n X n symmetric matrix

with total number of @ components. For any given space-time we can easily compute
its associated decomposition of Z in terms of the antisymmetrized products of k-Gamma

matrices, namely

Zip = D (AT ) 20, (:20)
k

where the values k£ entering the sum in the r.h.s. are restricted by the symmetry
requirement for the a < b exchange and are specific for the given spacetime. The
coefficients Z#1-#+] are the rank-k abelian tensorial central charges.

When the fundamental spinors are complex or quaternionic they can be organized
in complex (for the C and H cases) and quaternionic (for the H case) multiplets, whose
entries are respectively complex numbers or quaternions.

The real generalized supersymmetry algebra (.19) can now be replaced by the most
general complex or quaternionic supersymmetry algebras, given by the anticommutators
among the fundamental spinors @, and their conjugate Q*, (where the conjugation refers
to the principal conjugation in the given division algebra, see (.14)). We have in this case

{Qa @} = 2w {Q, Q%) = 27, (:21)

together with

{Qa, Q") = W, (:22)

where the matrix Z,, (£*,; is its conjugate and does not contain new degrees of freedom)
is symmetric, while W ; is hermitian.

The maximal number of allowed components in the r.h.s. is given, for complex
fundamental spinors with n complex components, by
ia) n(n+1) (real) bosonic components entering the symmetric n X n complex matrix 2,
plus
ita) n? (real) bosonic components entering the hermitian n x n complex matrix W ;.

Similarly, the maximal number of allowed components in the r.h.s. for quaternionic
fundamental spinors with n quaternionic components is given by
ib) 2n(n+1) (real) bosonic components entering the symmetric n X n quaternionic matrix
Z.p plus
iib) 2n* — n (real) bosonic components entering the hermitian n x n quaternionic matrix
Wi

The previous numbers do not necessarily mean that the corresponding generalized
supersymmetry is indeed saturated. This is in particular true in the quaternionic case, see
[15].

Any real generalized supersymmetry admitting a complex structure can be re-
expressed in a complex formalism with n-component complex spinors and total number
of n(2n + 1) (real) bosonic components split into n(n + 1) components entering the
symmetric matrix Z and n? components entering the hermitian matrix Y. The situation



122 F. Toppan Division Algebra, Generalized Supersymmetries and Octonionic M-Theory

is different in the quaternionic case. The quaternionic structure requires a restriction
on the total number of bosonic generators. n-component quaternionic spinors can be
described as 4n-component real spinors. However, the r.h.s. of a quaternionic (.21) and
(.22) superalgebra admits at most 4n* +n bosonic components, instead of 8n? +2n of the
most general supersymmetric real algebra. The Lorentz-covariance further restricts the
number of bosonic generators in a quaternionic supersymmetry algebra.

We conclude this section mentioning the two big classes of subalgebras, respecting
the Lorentz-covariance, that can be obtained from (.21) and (.22) in both the complex
and quaternionic cases. They are obtained by setting identically equal to zero either Z or
W, namely

1) 2, = 2%, = 0, so that the only bosonic degrees of freedom enter the hermitian
matrix W, ; or, conversely,

II) W,;, = 0, so that the only bosonic degrees of freedom enter Z,, and its conjugate
matrix Z* ;.

Accordingly, in the following we will refer to the (complex or quaternionic)
generalized supersymmetries satisfying the [) constraint as “hermitian"(or “type
I") generalized supersymmetries, while the (complex or quaternionic) generalized
supersymmetries satisfying the /1) constraint will be referred to as “holomorphic" (or “type
I1") generalized supersymmetries.

Generalized supersymmetries and the octonionic M-superalgebra

As already recalled, in the D = 11 Minkowskian spacetime, where the M-theory
should be found, the spinors are real and have 32 components. Since the most general
symmetric 32 X 32 matrix admits 528 components, one can easily prove that the most
general supersymmetry algebra in D = 11 can be presented as

{Qa, Qb} = (CT ) s P* + (CT )b ZM™ + (CT iy s Jap Z 4145 (.23)

(where C' is the charge conjugation matrix), while Z ] and ZWa-#sl are totally
antisymmetric tensorial central charges, of rank 2 and 5 respectively, which correspond
to extended objects |21, 22|, the p-branes. Please notice that the total number of 528 is
obtained in the r.h.s as the sum of the three distinct sectors, i.e.

528 = 11+ 66 + 462. (.24)

The algebra (.16) is called the M-algebra. It provides the generalization of the ordinary
supersymmetry algebra, recovered by setting ZIW = Zlm-#sl = .

The octonionic M-superalgebra is introduced by assuming an octonionic structure
for the spinors which, in the D = 11 Minkowskian spacetime, are octonionic-valued 4-
component vectors. The algebra replacing (.16) is given by

{Qaa Qb} = {Q*aa Q*b} = 07 {Qm Q*b} = Zab7 (25)

where * denotes the principal conjugation in the octonionic division algebra and, as a
result, the bosonic abelian algebra on the r.h.s. is constrained to be hermitian

Zab = Ly (.26)

leaving only 52 independent components.
The Z,, matrix can be represented either as the 11 441 bosonic generators entering

Zay = P*(CT ) ap + Zg”(CTW)ab, (.27)
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or as the 52 bosonic generators entering

Zay = ZL (T (.28)

,ul...,u5)ab'

Due to the non-associativity of the octonions, unlike the real case, the sectors individuated
by (.27) and (.28) are not independent. Furthermore, as we have already seen for k£ = 2, in
the antisymmetric products of k£ octonionic-valued matrices, a certain number of them are
redundant (for k£ = 2, due to the Gy automorphisms, 14 such products have to be erased).
In the general case [14] a table can be produced expressing the number of independent
components in D odd-dimensional spacetime octonionic realizations of Clifford algebras,
by taking into account that out of the D Gamma matrices, 7 of them are octonionic-valued,
while the remaining D — 7 are purely real. We get the following table, with the columns
labeled by k, the number of antisymmetrized Gamma matrices and the rows by D (up to
D =13)

D\kK|O] 1|2 3 4 7 8 9 10 | 11| 12 | 13
7 1 7 1 7 7 1

9 1192222 | 10 | 10 | 22 | 22 9 1

11 1111|4175 | 76 | 52 | b2 | 76 | 75 | 41 | 11 | 1

13 1113 |64 | 168 | 267 | 279 | 232 | 232 | 279 | 267 | 168 | 64 | 13 | 1

(.29)

For what concerns the octonionic equivalence of the different sectors, it can be symbolically
expressed, in different odd space-time dimensions, according to the table

D=7 MO = M3
D=9 MO+ M1 = M4
D =11 M1+ M2= M5 (.30)

D =13 M2+ M3 = M6
D=15| M3+ M4 = MO+ M7

In D = 11 dimensions the relation between M1+ M2 and M5 can be made explicit
as follows. The 11 vectorial indices p are split into the 4 real indices, labeled by a, b, ¢, ...
and the 7 octonionic indices labeled by i, 4, k,.... The 52 independent components are
recovered from 52 =4 4 2 x 7+ 6 + 28, according to

M1, Mb5aiiry = M5,
M1;, M2 = M2; | M5y = M5;, M550 = M5

M?24) M5apijr) = MSjap)

4% 7T =28 M2y, M5 (apei] = My

(.31)

The octonionic superconformal M-algebra
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The conformal algebra of the octonionic M-theory can be introduced [12| adapting
to the eleven dimensions the procedure discussed in [5| for the 10 dimensional case. It
requires the identification of the conformal algebra of the octonionic D = 11 M-algebra
with the generalized Lorentz algebra in the (11,2)-dimensional space-time. In such a
space-time the octonionic Clifford’s Gamma-matrices are 8-dimensional. The basis of
the hermitian generators is given by the 64 antisymmetric two-tensors CT', ) 2142
and the 168 antisymmetric three tensors CT'[,, ., 27128 (or, equivalently, by the 232
antisymmetric six-tensors CT'y, . ., 2" #¢). This is already an indication that the total
number of generators in the conformal algebra is 232. We will show that this is the case.

According to [5] the conformal algebra can be introduced as the algebra of
transformations leaving invariant the inner product of Dirac’s spinors. In (11,2) this is
given by ¥'Cn, where the matrix C, the analogous of the I'°, given by the product of
the two space-like Clifford’s Gamma matrices, is real-valued and totally antisymmetric.
Therefore, the conformal transformations are realized by the octonionic-valued 8-
dimensional matrices M leaving C' invariant, i.e. satisfying

MIC+CM = 0. (.32)

This allows identifying the (quasi)-group of conformal transformations with the (quasi-
Jgroup of symplectic transformations. Indeed, under a simple change of variables, C' can

be recast in the form
o= Y 1), (.33)
-1, 0

The most general octonionic-valued matrix leaving invariant {2 can be expressed through

M:(D B), (:34)
C —Df

where the 4 x 4 octonionic matrices B, C' are hermitian
B =BT, C=Ch. (.35)

It is easily seen that the total number of independent components in (.34) is precisely
232, as we expected from the previous considerations.

It is worth noticing that the set of matrices M of (.34) type forms a closed algebraic
structure under the usual matrix commutation. Indeed [M, M] C M endows the structure
of Sp(8|0) to M. For what concerns the supersymmetric extension of the superconformal
algebra, we have to accommodate the 64 real components (or 8 octonionic) spinors of
(11,2) into a supermatrix enlarging Sp(8|0). This can be achieved as follows. The two
4-column octonionic spinors « and 3 can be accommodated into a supermatrix of the
form

0|—p" af
al 0 0 |- (.36)
Bl 0 0

Under anticommutation, the lower bosonic diagonal block reduces to Sp(8/O). On the
other hand, extra seven generators, associated to the 1-dimensional antihermitian matrix

A
Al = —A, (.37)
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i.e. representing the seven imaginary octonions, are obtained in the upper bosonic diagonal
block. Therefore, the generic bosonic element is of the form

A0 0
0|C —Dft

with A, B and C' satisfying (.37) and (.35).

The closed superalgebraic structure, with (.36) as generic fermionic element and
(.38) as generic bosonic element, will be denoted as OSp(1,8|O). It is the superconformal
algebra of the M-theory and admits a total number of 239 bosonic generators.

Conclusions.

We have seen that, contrary to what is commonly believed, an alternative formulation
for the M superalgebra and the M superconformal algebra can be consistently introduced
in association with the non-associative maximal division algebra of the octonions. It
presents peculiar features, like the non-independence of the different octonionic brane
sectors, which is a reflection of the higher-rank antisymmetric octonionic tensorial
identities discussed in section 5. The existence of this second variant of the M algebra
is puzzling. It could be ultimately related with the arising of exceptional structures
(exceptional Lie and Jordan algebras) in the “Theory Of Everything"[19].

Since imaginary octonions admits a geometrical description in terms of the seven
sphere S7, it could be speculated that the higher-dimensional octonionic descriptions,
e.g. of the eleven dimensions, corresponds to a particular compactification of the eleven-
dimensional M theory down to AdS, x S”. This compactification corresponds to a natural
solution for the 11 dimensional supergravity, see [20].

The octonionic superconformal algebra OSp(1,8|0) has been explicitly derived.
It corresponds to a supersymmetric extension of a bosonic conformal algebra which is
mathematically interesting since it corresponds to a closed algebraic structure which goes
beyond the standard notion of conformal algebra of a given Jordan algebra, see [12].

Besides this aspect, the notion of hermitian (complex and quaternionic) and
holomorphic (complex and quaternionic) supersymmetries, as consistently division-
algebra constrained generalized supersymmetries, has been presented.

Physical implications of these mathematical structures are quite obvious. The
classification of generalized supersymmetries allow to understand the web of interrelated
dualities of different classes of theories which can be either analitically continued (let’s
say, to the Euclidean) or recovered through dimensional reduction.

As an example, we can cite that the analytic continuation of the M algebra
was proven in [23] to correspond to an eleven-dimensional complex holomorphic
supersymmetry. It was further shown in [15] that the same algebra also admits a
12-dimensional Euclidean presentation in terms of Weyl-projected spinors. These two
examples of Euclidean supersymmetries can find application in the functional integral
formulation of higher-dimensional supersymmetric models.

There is an interesting class of models which nicely fits in the framework here
described and is currently under intense investigation. It is the class of superparticle
models, introduced at first in [24| and later studied in [25], whose bosonic coordinates
correspond to tensorial central charges. It was shown in [26] that a 4-dimensional theory
of this kind leads to a tower of massless higher spin states, concretely implementing a
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Fronsdal’s proposal [27] of introducing bosonic tensorial coordinates to describe massless
higher spin theories (admitting helicity states greater than two). This is an active area
of investigation, the main motivation beingthe investigation the tensionless limit of
superstring theory, corresponding to a tower of higher helicity massless particles (see
e.g. [28]).

In a somehow “orthogonal"direction, a class of theories which can be investigated
in the present framework is the class of supersymmetric extensions of Chern-Simon
supergravities in higher dimensions, requiring as a basic ingredient a Lie superalgebra
admitting a Casimir of appropriate order, see e.g. [29].
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