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From Editorial Board

NUMBER, GEOMETRY AND NATURE

Number is one of the most fundamental concepts not only in mathematics, but in
general natural science as well. It may be primary even in comparison with such global
categories as time, space, substance, matter, and field. That is why editing the first
issue of the journal ”Hypercomlex numbers in geometry and physics” the editorial board
sincerely hopes that articles not only on numbers in general, but primarily the works that
reveal their organic connection with the real world will find here their true scope.

The concept of number in its most general meaning unifies not only common numbers
that all of us know from school, but also such objects as the quaternion, the octave,
the matrices, etc. Without denying the importance of numbers of all types, let us well
emphasize the class chain that has the following shape: natural → integer → rational →
real → complex. At the same time our aim is to found the possibility of extending the
given above classification to numbers of high dimensionality, including those that obey
commutative-associative multiplication.

At first sight this plan seems to be absolutely unproductive, for in algebra there exists
the Frobenius theorem that claims that multy-component numbers, as being structures
subjected to arithmetic properties, end with the complex numbers. At the same time a
special stress is laid on the fact that in the according algebras there are no the so-called
divisors of zero. Of course, if we take into consideration the real and complex numbers,
treating them as the standard, the zero divisor seems to be redundant. Nevertheless, from
the point of view of physics and the pseudo-Euclidean geometry closely connected thereto,
the zero divisor is one of the most natural objects, for the world lines of the light rays
are related to it. The fact that the pseudo-Euclidean planes may be juxtaposed with the
algebra of the commutative associative double numbers which have the zero divisors, may
serve as the best proof of it. Habitual claims, that the double numbers are too primitive
and cannot act as a real competitor to the complex, do not seem to be well-founded, as it
would mean in terms of geometry that the Euclidean spaces are more important than the
pseudo-Euclidean spaces. Long ago geometricians came to an agreement that both types
of space have right to exist; therefore, that is why it is impossible to divide the double
numbers as well as the complex numbers proper into the valuable ones and not rather.
In our opinion the next conclusion is obvious: in the classification of the value number
structures the double numbers should be placed close to the complex ones. If we do treat
the double numbers as the fundamentals, then we will not have any argument to keep on
ignoring the zero divisors, which means that it is quite possible to create number systems
of a larger number of dimensions, and this does not contradict the Frobenius theorem.

The complex quaternions (they are also called biquaternions) are a nice example of
such structures. Various interesting works published in the first issue of this journal are
devoted to the exploration of the associative complex numbers and not to the ones that
are commutative by multiplication. The hope of a success of this trend is based on the fact
that the Poincare group, that plays an important role in modern physics, is a subgroup
of the full group of continuous symmetries of the eight-dimensional real space of the
biquaternions. On the other hand if we accept the fact that the divisor is independent
we can build hypercomplex systems, that have commutative-associative multiplication,
what has its additional advantages. It is suggested that we should pick them out in a new
group of Poly-Numbers to emphasize the special status of such structures.
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Lately much attention has not been paid to the exploration of Poly-Numbers, for
their structure was commonly considered to be trivial. In a way this is true, but if we put
in the first place not algebra but geometry then the multitude increases significantly. It
is explained by the fact that spaces (that can be related to Poly-Numbers) as a rule are
Finslerian spaces, where some non-linear reflections stand out from linear transformations.

No matter what will be the result of the generalization of the idea of the num-
ber, the existence of the Finslerian geometries is the reality, which means that we can
explore physics in other or alternative ways. Why not try to change the geometrical
basis of physics, and hope that the very geometric basis would be closer to non-quadratic
structures, instead of searching hypercomplex structures corresponding to the classical
Minkowskian space or to its quadratic modifications. Expecting rather a beautiful and
effective confirmation of a close connection between mathematics and physics, we can
assume a supposition, that the new geometry must be connected with the most common
number structures as the basis of our a little bit risky plan. Here should emerge the
Poly-Numbers that on one hand, as it is mentioned above, are quite trivial, but on the
other hand are the elements of rather substantial geometries. Even if our expectation will
not be fulfilled with Poly Numbers, there is still a vast number of alternatives, and taking
into consideration the fundamental nature of the posed problem it is difficult to foresee
which of the ways will turn out to be more productive.
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GENERALIZATION

OF SCALAR PRODUCT AXIOMS

D. G. Pavlov

Moscow State Technical University n. a. N. E. Bauman
hypercomplex@mail.ru

The concept of scalar product is vital in studying basic properties of either Euclidean or
pseudo-Euclidean spaces. A generalizing of a special sub-class of Finslerian spaces, that we will
call the polylinear, is presented in the work. The idea of scalar polyproduct and of related
fundamental metric polyform has been introduced axiomatically. The definition of different
metric parameters such as the vector length and the angle between vectors are founded on the
idea. The concept of orthogonallity is also generalized. Some peculiarities of the geometry of
the four-dimensional linear Finslerian space related to the algebra of commutative-associative
hypercomplex numbers, that are called Quadranumerical, are proved in the concrete polyform.

1. The scalar product of the Euclidean spaces

For the last two thousand years that have past since the appearance of the famous
”Beginnings” mathematics have tried a number of methods of describing the Euclidean
spaces. The axiom systems by Euclid and Gilbert are the best well-known ones. But
taking into consideration the modern attitude, the system of axioms that uses the ideas
of the real number, the linear space, and the scalar product [1] is considered to be the
most convenient. At the same time a few know that the latter case owes its appearance in
geometry to a discovery of the non-commutative algebra of four-component hyper-complex
numbers discovered in 1843 by William Hamilton, he called it the algebra of quaternions
[2]. The discovery was preceded by several years of attempts to find three-component
numbers, the triplets, that could be confronted to the vectors of the common space the
same way as the complex numbers are confronted to the vectors of the Euclidean Plane.
The solution was found when Hamilton rejected the commutative multiplication and in
place of the triplets limited himself to the four-component numbers.

By definition a quaternion is a hyper-complex number, that can be presented as a
linear combination:

X = x0 + i · x1 + j · x2 + k · x3,

where xi are real numbers, and i, j, k are pair-wisely different imaginary units, so that
i2 = j2 = k2 = −1 and ij + ji = jk + kj = ki + ik = 0. These rules including the
rule of multiplication on the common real unit, sometimes are set into the so called table
of multiplication of hypercomplex numbers, that in the case of quaternions looks the
following way:

1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

.
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Hamilton suggested that in the quaternion we should distinguish the scalar part x0

from the vector part Vx = i · x1 + j · x2 + k · x3. In this case, as it is easy to check, the
product of 2 vector quaternions is a common quaternion:

VxVy = (−x1y1 − x2y2 − x3y3) + [i(x2y3 − x3y2) + j(x3y1 − x1y3) + k(x1y2 − x2y1)],

whose scalar part has a symmetric bilinear form, and the vector part looks like a conven-
tional vector multiplication. As a matter of fact, the term of scalar and vector product
appeared right from here, and for the first time were introduced by Hamilton.

The first explorers of the quaternions were looking at them mainly as at an oppor-
tunity of using algebraic methods while operating with points and vectors of common
space, though it is more natural to correspond these hyper-complex numbers with the
four-dimensional space. Hamilton himself knew about this, he thought that this circum-
stance once would be used to describe the time. In this case quaternions would become a
natural instrument not only in geometry, but also in physics.

Unfortunately, nowadays only some specialists know quaternions. It is explained by
the fact that the idea of scalar product that originates from the quaternion algebra was
very convenient and soon became an independent geometrical category, and practically
stamped the hyper-complex numbers that had given birth to it. There began a debate
among physics and mathematicians between the adherents of the quaternion algebra and
of the arising vector calculus. As is well-known, the vector approach won, this fact to
a certain extent owes to objective difficulties of quaternion diffusion into algebra and
the function of the complex variable, that is conditioned to the peculiarities of non-
commutative multiplication.

The scalar product that is connected with the quaternion can be applied only to the
three-dimensional vectors. But if we separate the idea of scalar product from concrete
numbers and generalize it to the field of arbitrary dimensionality, the advantages of the
concept (the opportunity to define the length of vectors and angles between them math-
ematically) will still be preserved. For this we should postulate a symmetrical bilinear
form of two vectors (A,B) = αijaibj in the affine m-dimensional space. Reciprocally
corresponding quadratic form (A,A) must be not negative. Then by definition we accept
that the affine map that maps the vector A onto A′ is congruent if it leaves the form
invariant:

(A,A) = (A′,A′).

Two figures that can be mapped one onto another by a congruent reflection are congru-
ent. By this fact the idea of congruence is defined in the axiomatic construction of the
Euclidean geometry. For a congruent map takes place not only invariance of the quadratic
form but also the invariance o the bilinear form:

(A,B) = (A′,B′).

For the vectors A and A′ are congruent if and only if:

(A,A) = (A′,A′),

it is possible to introduce the (A,A) as a numerical characteristic of the vector A. But
still it is more traditional to use the value of the positive square root of (A,A), that by
definition is called the length of the vector A and usually is defined as

|A| = (A,A)1/2.
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Such definition lets us introduce the definition of the unit vector. Its relationship with
common vectors is revealed in the following relation:

a = A/|A|.

If a and b, and a′ and b′, are two pairs of unit length vectors, then the figure, built
by the first two vectors, is congruent to the figure, constructed by the two latter ones,
only when the equality

(a,b) = (a′,b′)

is held true. The angle is considered to be the representative of congruency in the Eu-
clidean spaces. But the mere numerical characteristic is related not to bilinear form of
unit vectors, but to transcendental function of its inverse cosine

φ = arccos(a,b).

This definition of the angle is equivalent to the statement that the length of the arc
on the unit sphere between the ends of the vectors a and b is the angle. Such complication
of the numerical angle measure is compensated by the obtained property of additivity.
When composing two angles laying on the same plane their value is summed up.

The property of perpendicularity of directions is a particular consequence of the
idea of the angle. The perpendicular condition of two vectors consists in equality to 0 of
the value of their bilinear form. The particular status of the perpendicular directions is
accounted for many reasons, for example, for example by the simplification of the form of
the quadratic metric function, presented in the basis all vectors of which are reciprocally
perpendicular.

Two-dimensional case stands out among all the Euclidean spaces with quadratic
metric function. This peculiarity is reflected in the Liouville theorem, that proves that
in the three- or more-dimensional Euclidean (or pseudo-Euclidean) spaces the conformal
transformations are limited to inversions, dilations, translations and rotations [3]. In
other words, there are essentially more transformations that are related to conformal
in the two-dimensional case. Mathematically this fact is reflected in the vast majority
of analytical functions of the complex variable. To each of them a certain conformal
reflection of the Euclidean plane is related.

2. The scalar product of the pseudo-Euclidean spaces

It is well-known that if a symmetrical bilinear form postulated over the affine space
creates an alternating-sign quadratic form, then the geometry assigned by it becomes being
of not Euclidean but Pseudo-Euclidean type [4]. We can unify both types of geometries
by surrendering the claim about the positivity of the quadratic form. This unified system,
in particular, can be presented with the following set:

(a): every 2 vectors A and B of the linear space are associated with a certain real
number labeled by

k = (A,B)

and called (as well as in the Euclidean case) the scalar product of these vectors;

(b) the scalar product is commutative regarding the permutation of vectors

(A,B) = (B,A);
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(c) the scalar product is distributive regarding the composition of vectors

(A + C,B) = (A,B) + (C,B);

(d) the real multiplier can be isolated from the scalar product

(kA,B) = k(A,B).

The methods of defining the metric characteristics of pseudo-Euclidean spaces, which
are the generalizing of the corresponding Euclidean parameters, do not change consider-
ably, that enables us to save their names. So, transformations that leave the quadratic
form moduli of all the vectors invariant are of congruent nature:

|(A,A)| = |(A′,A)′|.

The vector length is defined as a positive value of the square root of the moduli of the
quadratic form:

|A| = |(A,A)|1/2.

But in this case there appear the so called isotropic and imaginary vectors. In the first case
the length equals 0 even at non-zero components, and in the second case the quadratic
form is negative. The angle between the two directions, as well as in the Euclidean case,
is defined by congruence of the figure formed by two unit vectors, and by definition is
treated as equal to the special function of their bilinear form:

φ = arcch(a,b),

which ensures the additivity of the parameter under plane rotations. So, the angle equals
the arc length between a pair of points on the unit sphere. But now, when calculating the
angle, it is important to take into consideration the area in which the driving vector that
is relative to the isotropic cone is lying, as the indicatrix stops being simply connected.

Also the perpendicular property of vectors is generalized in the pseudo-Euclidean
spaces. In this case their scalar product must equal 0. It is customary to call such vectors
orthogonal.

The pseudo-Euclidean spaces also admit the generalizing of the idea of a congruent
reflection, which is defined as a transformation that saves the similarity of infinitesimal
forms. Let us note that, as well as in the Euclidean case, the two-dimensional case, where
conformal maps are wider than in higher dimensions, is distinguished in the pseudo-
Euclidean space. Let us note another coincidence: The pseudo-Euclidean plane, as well
as the Euclidean one, has an algebraic analogue called double numbers which differ from
the complex by the fact that their square equals not -1, but +1. Such numbers along
with the complex ones admit the idea of analytical functions where a correspondence of a
conformal reflection of the pseudo-Euclidean plane [5] to each of them can be established.
These peculiarities of two-dimensional spaces demonstrate the relationship between the
geometries and commutative-associative algebras, for example, the algebras of complex
and double numbers.

Apart from the pseudo-Euclidean case other approaches towards generalizing of the
conception of the scalar product are known in geometry. The system of axioms for the
so called unitary, where the metric function is set in the field of complex and not real
numbers, and symplectic spaces where antisymmetric bilinear form [4, 6] is postulated in
place of the symmetric, — are sequent to the scalar product.
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Analyzing above examined examples of the usage of the concept of scalar product
and its generalizing we can note that they are unified by connection with one or another
bilinear form. But such form is just a special case of the polylinear form. Then there
emerges a question whether it is possible to obtain a substantial geometry if we postulate
the three-, four-, and so on up to polylinear symmetric form in place of the bilinear one?

3. The scalar polyproduct

Let us try to preserve all the axioms of the real number and m-dimensional affine
spaces as the basis and add the following:

(a): to every of n vectors A,B,C, . . . ,Z we will associate a real number denoted by

k = (A,B,C, . . . ,Z),

which we will call the scalar polyproduct;

(b): let us try to make it the way that the scalar polyproduct would be commutative
with respect to permutation of any including vectors

(A,B,C, . . . ,Z) = (B,A,C, . . . ,Z) = (C,B,A, . . . ,Z) = · · · = (Z,C,B, . . . ,A);

(c): distributive to their composing

(A,B,C + E, . . . ,Z) = (A,B,C, . . . ,Z) + (A,B,E, . . . ,Z);

(d): a real multiplier at any vector could be taken outside the scalar polyproduct:

(kA,B,C, . . . ,Z) = k(A,B,C, . . . ,Z).

These axioms just in a way differ from the corresponding axioms of the scalar prod-
uct. Besides they can be unified into a concept of the symmetric polylinear form, and
that is why we will call the space, endowed with one of the forms, polylinear. The above
examined Euclidean and pseudo-Euclidean spaces, according to their primary definitions,
are special cases of the polylinear spaces, in other words they comply to the above given
axiom system when n = 2, that enables us to call them bilinear.

We will call the scalar polyproduct of the same vector, A,A, . . . ,A, by analogy with
the quadratic form of the bilinear spaces, the fundamental metric form of the polylinear
space, or simply n-polyform of the vector A.

We will call the affine reflections of the polylinear space, that shift the vectors A
into A′, the congruent if they leave he moduli of the fundamental metric form invariant:

|(A,A,A, . . . ,A)| = |(A′,A′,A′, . . . ,A′)|. (1)

It is in our axiomatic construction of the polylinear space where the idea of congruence,
and then of other metric notions, will be defined.

If there is a set of objects over which the axioms of the affine space are held true,
we can choose any symmetric polylinear form in it and, therefore, the unambiguously
connected n-polyform, and ”assign” make the latter to be the fundamental metric form
and on its basis define the conception of congruence as it has been done above. Then we
a metrics gets introduced into the affine space with the help of the form, and it becomes a
correct metric geometry. Such construction is not related neither to number of dimensions



10 Pavlov D. G. Generalization of scalar product axioms

in the space nor to the specific number of dimensions in the fundamental form, nor with
the type of the latter case.

It follows from the properties of the symmetry and from the linearity of the form
(A,B,C, . . . ,Z) where correlations, that are more general than (1), are held true for the
congruent reflection of the polylinear space:

(A,A, . . . ,A,B) = (A′,A′, . . . ,A′,B′),

(A,A, . . . ,B,B) = (A′,A′, . . . ,B′,B′),

· · · · · · · · ·
(A,B, . . . ,C,Z) = (A′,B′, . . . ,C′,Z′).

In other words the congruent reflections of the polylinear spaces leave the polyforms
invariant where the vectors are present in different combinations.

We will say that the two vectors of the polylinear space A and A′ are congruent if
the moduli of the corresponding n-polyforms are equal and are nonzero:

|(A,A, . . . ,A,A)| = |(A′,A′, . . . ,A′,A′)| 6= 0.

By definition it is possible to regard a n-polyform as a numerical parameter of the vector
A. But in place of this, as well as in the bilinear spaces, striving for additivity and
unambiguity of the properties, we will use the positive root of the n-degree of the absolute
value (A,A, . . . ,A,A), calling it the vector length A:

|A| = |(A,A, . . . ,A,A)|1/n.

Then the length of the sum of two codirected vectors equals the sum of their length.
It is worth noting that this is not the only way of introducing the idea of length with
additive properties, but in this approach the length is defined for the maximum number
of directions coming from the affine space.

Now it becomes clear to which type of space we should relate the ones we try to
construct with the help of the given above axioms or the scalar polyproduct. Firstly,
these spaces are Finslerian [7,8] as their metric function is not limited by quadratic
forms. Secondly they belong to the class known in the Finslerian geometry under the
name of Minkowskian space [9], with which it is customary to associate the manifold
where the indicatrices do not depend on the point. [The space of the Special theory of
Relativity is a specific case of such spaces.] But the examined class of spaces is even
smaller, as it is related to a strict idea of polylinear symmetric form. The latter case
has a great significance as it becomes possible to introduce characteristics, that generalize
such fundamental categories of geometry as the length, the angle, the orthogonality, the
conformal reflection, etc. Let us conventionally call such spaces the polylinear Finslerian
spaces (till the appearance of a more specific name let).

If a and b, and also a′ and b′, are two pairs of unit vectors, then the figure, con-
structed with the first two vectors, will be congruent to the figure, constructed with the
latter two, if a transformation mapping one figure onto the other there will be found. From
the above examined properties of the polylinear forms it follows that such transformation
can be found only if

(a, a, . . . ,b) = (a′, a′, . . . ,b′),

(a, a, . . . ,b,b) = (a′, a′, . . . ,b′,b′),

. . . . . . . . .

(a,b, . . . ,b) = (a′,b′, . . . ,b′). (2)
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This, in particular, entails that in the bilinear spaces the congruence of the pair of
two unit vectors is related to the equality of only one form:

(a,b) = (a′,b′), (3)

which sets the idea of the angle as the parameter that characterizes the difference between
two directions. The equality (3) along with the definition of the unit vector are tantamount
to the axiom of the triangle congruence from the Hilbert system of axioms of the Euclidean
space. Two triangles are congruent in the Euclidean space if the lengths of corresponding
sides and angles between them are equal. One may can formulate analogous axioms
also for the pseudo-Euclidean spaces. But it follows from the definition (2) that in the
polylinear space with the dimension of the form of more than two the congruence of figures
constructed of two unit vectors is defined by more than one circumstance. In the spaces
with the three-linear form (a,b, c), the two forms must be equal to ensure that the figures
would be congruent:

(a, a,b) = (a′, a′,b′), (a,b,b) = (a′,b′,b′).

This seeming paradox has a very simple explanation. Usually speaking about a
spatial figure, constructed on two vectors, it is thought as of a plain element held among
sides, which are the driving vectors. But this is justified only in spaces with the bilinear
form. In the spaces with the arbitrary polylinear form, the two vectors are now connected
not with a plane but with a special cone-shaped surface, which configuration depends on
the metric properties of the surrounding space. There can be more than one parameter,
that defines the congruence of such fan-shaped figures, limited in the edges by unit vec-
tors, that in particular is observed in spaces with three-linear symmetric form with two
corresponding values.

On the basis of the above given brief analysis it becomes clear that polylinear spaces
admit an introduction of analogous of the idea of the angle attributed to bilinear spaces.
But we should take into account that the angle as the parameter in the bilinear spaces
unifies simultaneously two properties: on the one hand, it serves as a characteristic of
the difference between two directions, and on the other hand, is the parameter of one of
types of congruent transformations called rotations. In the general case of the polylinear
space each of the properties should be characterized by a proper value. It is meaningful
to use the negative value of the n- polyform of the difference as the basis to getting the
numerical parameter that would characterize the difference of directions of unit vectors:
a and b, to be more specific:

(a− b, a− b, . . . , a− b) =

= (a, a, . . . , a)−C1
n(a, a, . . . , a,b)± . . . (−1)n−1Cn−1

n (a,b, . . . ,b) + (−1)n(b,b, . . . ,b),

where Cj
i are binomial coefficients. Consequently the scalar form of two unit vectors a

and b reads

S(a,b) = −C1
n(a, a, . . . , a,b)± . . . (−1)n−1Cn−1

n (a,b, . . . ,b) (4)

or its function can play the role of a numerical parameter that defines the required prop-
erty. Let us note that if the polylinear space is a two-bilinear one the expression (4) to
the constant factor coincides with the definition of the common scalar product of two unit
vectors. The value (4) can be called the scalar product of two vectors of the polylinear
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space. But may be it is even justified to divide the scalar product into items symmetrized
in pairs:

S(a,b) = C1
n(−(a, a, . . . , a,b) + (−1)n−1(a,b,b . . . ,b))

+ C2
n((a, a, . . . , a,b,b) + (−1)n−2(a, a,b . . . ,b))± · · · = S1(a,b) + S2(a,b) + . . . , (5)

where every term Si(a,b) receives its proper value.

In the polylinear spaces there are pairs of vectors with definite ability of positional
relationship similar to orthogonal vectors in the bilinear spaces. In the Finslerian space
theory the corresponding idea is called the transversality. Let us call the vector A
transversal to the vector B, if (A,A, . . . ,A,B) = 0. It is seen here that the transver-
sality is not commutative, that is, the vanishing (A,A, . . . ,A,B) = 0 does not entail
(B,B, . . . ,B,A) = 0. But if we use the symmetrized forms (5), then the transversality,
assigned by them, will have commutative properties. By definition, we will consider A
and B mutually transversal of the first degree, when S1(A,B) = 0; and of the second
degree, if S2(A,B) = 0, and so on up to n/2 or (n− 1)/2 degree. Such differentiation of
transversality demonstrates the ability of vectors of the linear Finslerian spaces to form
pairs with a multitude of characteristic connection with the direction, – that generalizes
the conception of orthogonality.

Apart from the quantities defined by the forms (4) it is meaningful to introduce one
more ”angle-like” characteristic in some polylinear spaces that have continuous congruent
transformations like rotations. We will relate its value with the arc length in the unit
sphere outlined by a ray simultaneously with a continuous one-parameter rotation. So
generalized conception includes the property of the common angle - to be the additive
measure that follows from the additivity of the length.

Not only pairs can be included into polyforms, but also three-, four-, etc., up to
n different vectors. It is difficult to say to which quality consequences must lead this
circumstance in the area of simple figures. Only one thing is clear: this property of
polylinear spaces exists objectively that means that it should be as well taken into account.

There are such spaces among the polylinear ones where in one of the bases all the
forms are nullified but for the ones that include only different vectors. For such spaces
the fundamental metric forms take the following structure in the special basis:

(A,A, . . . ,A) = ±a1a2 . . . am ± a1a2 . . . am−1am+1

± · · · ± a2a3 . . . amam+1 ± · · · ± an−man−m+1 . . . an. (6)

Among these emerge the pseudo-Euclidean spaces labeled (1,m − 1), which play an im-
portant role in the modern theoretical physics. Though the classical quadratic form seems
to be more convenient for the spaces, the second degree of the intervals in some of the
isotropic bases looks like:

|A|2 = (A,A) = a1a2 + a1a3 + a1a4 + · · ·+ am−1am =
∑

k 6=l

akal.

For example, the square of interval of Minkowskian space S2 = (ct)2 − x2 − y2 − z2 after
the substitution

ct =
√

3/8(u + v + w + z), x =
√

1/8(u− v + w − z),

y =
√

1/8(u + v − w − z), z =
√

1/8(u− v − w + z)
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(similar to (16)) gets an attractive symmetric form:

S2 = uv + uw + uz + vw + vz + wz.

The expression (6) looks more concise in the cases with n = m, that is, when the
dimension of the fundamental form coincides with the dimension of the space. In this
case the nth degree of a vectors with respect to the corresponding basis takes on the form

|A|n = (A,A, . . . ,A) = ±a1a2 . . . an.

In these circumstances the specific role of the pseudo-Euclidean plane, where such
correlations are held, is defined. It seems probable that there must exist a connection
with associative-commutative algebras, that involves the appearance in the space of a
large group of conformal reflections, only in spaces with n = m. At the same time the
conformal reflections can be seen in a number of cases which follow from the works [10,
11] where the eight-dimensional biquaternions are examined, that, according to the above
given axiom, have metric forms of the fourth degree which come outside the Liouville
theorem. We can only hope that the property of some polylinear spaces has a vast group
of conformal reflections which appears to be perspective in geometry as well as in physics.

On the other hand even superficial study of the properties of the polylinear spaces
let us state that in some of them there are not only conformal, but also non-linear trans-
formations that do not have analogies within common bilinear spaces. The presence of
such transformations ensues merely from that the studied spaces require extension of the
notion of orthogonality up to several respective members. As is well known, the nonlinear
transformations that leave invariant ordinary orthogonality relates to conformal. In this
connection it is natural to expect that the transformations retaining the transversality
would occur preferable, too. This makes the existent polylinear spaces even more inter-
esting.

4. Examples of polylinear spaces

There is a great number of polylinear spaces. The task to classify such spaces seems
to be difficult even if we work with three-linear forms, not to mention the forms with a
larger number of dimensions. But if we limit ourselves to the three-dimensional case, and
if among symmetric three-dimensional spaces we examine those whose metric forms do
not depend on permutation of vector components (it is suggested in the work [12], that
examines a similar classification, to call them the high-symmetric) than we can single out
8 independent classes, where a fundamental canonical polyform can be related to each of
them. The simplest look among all the forms has the following:

(A,A,A) = a3
1 + a3

2 + a3
3 = F1;

(A,A,A) = a2
1a2 + a2

1a3 + a2
2a1 + a2

2a3 + a2
3a1 + a2

3a2 = F2;

(A,A,A) = a1a2a3 = F3.

In the work [12] they are called basic. Any of the eight non-isomorphic high-symmetric
tree-linear polyforms can be presented as a linear combination of the bases:

(A,A,A) = ω1F1 + ω2F2 + ω3F3.

But no matter how great the variety of spaces with three-linear symmetric form is, the
space with the following form stands out with its concise symmetry:

(A,A,A) = a1a2a3.
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As the result of its high involved symmetry we can confront the corresponding space with
the algebra of commutative-associative numbers that is the sum of three real algebras. Let
us call such hyper-complex system the triple numbers and label it as H3. Mathematical,
geometrical and may be physical structures related to the triple numbers are not trivial
at all, that is proved in the works [13, 14] published in this issue. It will be noted that
most three-linear polyforms cannot be juxtaposed by algebras in general [12].

In the four-dimensional polylinear spaces with n = m the basic forms have the
following shape:

(A,A,A,A) = a4
1 + a4

2 + a4
3 + a4

4; (7)

(A,A,A,A) = a3
1(a2 + a3 + a4) + a3

2(a1 + a3 + a4)

+a3
3(a1 + a2 + a4) + a3

4(a1 + a2 + a3); (8)

(A,A,A,A) = a2
1a

2
2 + a2

1a
2
3 + a2

1a
2
4 + a2

2a
2
3 + a2

2a
2
4 + a2

3a
2
4; (9)

(A,A,A,A) = a2
1(a2a3 + a2a4 + a3a4) + a2

2(a1a3 + a1a4 + a3a4)+

a2
3(a1a2 + a1a4 + a2a4) + a2

4(a1a2 + a1a3 + a2a3); (10)

(A,A,A,A) = a1a2a3a4, (11)

and to each of them their particular, not isomorphic to others, geometries of the polylinear
space.

As well as in the three-dimensional case the variety of four-dimensional polylinear
spaces is not limited to these examples. It seems to be a very difficult task to present the
full classification of corresponding geometries. Let us study at least one case before setting
about its realization. For example, the geometry related to the most symmetric among the
basic polyforms (7) – (11), and to be more specific (11). Its high symmetry again gives
us an opportunity to confront the space defined by it to the algebra of commutative-
associative hyper-complex numbers, that in order to be brief we will call the Quadra
numbers labeled as H4. Some of the properties of the space, related to the Quadra
numbers are given in [15]. We can get the Quadra number algebra by adding the axiom
of real numbers to the axiom of composing and multiplication of the following objects:
A = a1 · 1 + a2 · I + a3 · J + a4 ·K and B = b1 · 1 + b2 · I + b3 · J + b4 ·K, where ai and
bi – real numbers called the components, and 1, I, J,K the basic units. We accepting by
definition that the sum of the numbers A and B is called the number

C = (a1 + b1) · 1 + (a2 + b2) · I + (a3 + b3) · J + (a4 + b4) ·K,

and their product – another number of the same class:

D = (a1b1 + a2b2 + a3b3 + a4b4) · 1 + (a1b2 + a2b1 + a3b4 + a4b3) · I+

+ (a1b3 + a2b4 + a3b1 + a4b2) · J + (a1b4 + a2b3 + a3b2 + a4b1) ·K,

By the above given method we get the algebra of commutative-associative hyper-complex
numbers the, where the multiplication table of basic units have the following look:

1 I J K

1 1 I J K

I I 1 K J

J J K 1 I

K K J I 1

.
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It follows from the table that I2 = J2 = K2 = 1, namely all its imaginary units are
hyperbolic. We can get the same algebra another way: by applying for 2 times the
agebra of the real number using two independent hyperbolical-imaginary units I and J
the doubling operation. Let us denote the product of I and J as an independent object k,
the number A from the corresponding multitude can be presented as a linear combination:

A = (a1 + a2 · I) + (a3 + a4 · I) · J = a1 + a2 · I + a3 · J + a4 ·K,

where the symbol of the real unit 1, as it is accepted in the complex-numbers and quater-
nions, is omitted.

Let us call the numbers Ā, Â, Ã conjugate to the number A = a1+a2 ·I+a3 ·J+a4 ·K,
if they look like:

Ā = a1 − a2 · I + a3 · J − a4 ·K,

Â = a1 + a2 · I − a3 · J − a4 ·K,

Ã = a1 − a2 · I − a3 · J + a4 ·K. (12)

Notice that
ˆ̄̃
A = A. (13)

The product of such fours, as it is easy to check by the direct substitution, are always
real numbers

AĀÂÃ = a4
1+a4

2+a4
3+a4

4−2a2
1a

2
2−2a2

1a
2
3−2a2

1a
2
4−2a2

2a
2
3−2a2

2a
2
4−2a2

3a
2
4+8a1a2a3a4. (14)

By analogy with the algebra of complex numbers we will relate the value to the fourth
degree of the corresponding number modulus and denote it as |A|4. The introduced
conception has the common properties of the modulus:

|λA| = |λ| · |A|, |AB| = |A| · |B|,
where λ is a real, and A, B are complex numbers. In the product the property of
mutually conjugated to result in the real number let us introduce into the examined
algebra the operation of division, interpreted as an action inverse to multiplication. So,
let us understand the number

A−1 =
ĀÂÃ

|A|4 (15)

under the number A−1 which is inverse to A. Only the numbers whose module is non-zero
have their inverse analogues. Such numbers do not have such analogs. The examined
algebra is associated with the form (11). It can be proved by examining a shift from the
basis 1, I, J,K to the basis S1, S2, S3, S4,, whose objects are connected with the initial
correlation:

S1 =
1

4
(1 + I + J + K), S2 =

1

4
(1− I + J −K),

S3 =
1

4
(1 + I − J −K), S4 =

1

4
(1− I − J + K). (16)

These bases are the divisors of zero and are distinguished by the fact that their multipli-
cation table is the most vivid one:

S1 S2 S3 S4

S1 S1 0 0 0

S2 0 S2 0 0

S3 0 0 S3 0

S4 0 0 0 S4

.
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We will call the divisor of zero with such properties the principle, and the bases formed
of them – the absolute. The feedback of the units 1, I, J,K with the principle zero divisor
of the algebra H4 is evaluated the following way:

1 = S1 + S2 + S3 + S4, I = S1 − S2 + S3 − S4,

J = S1 + S2 − S3 − S4, K = S1 − S2 − S3 + S4.

It is easy not only to sum but also multiply and divide the numbers from H4 written in
the absolute basis. So, the product of two numbers A and B looks is following:

(AB) = (a′1b
′
1)S1 + (a′2b

′
2)S2 + (a′3b

′
3)S3 + (a′4b

′
4)S4,

and their fraction reads

A

B
=

a′1
b′1

S1 +
a′2
b′2

S2 +
a′3
b′3

S3 +
a′4
b′4

S4.

(Henceforth the components with primes will relate to the absolute basis). the absolute
basis reveals the structure of the quadrahypeboloic number algebra, which is isomorphic
to the algebra of real diagonal matrices. The group of mutually conjugated written in the
absolute basis looks like:

A = a′1S1 + a′2S2 + a′3S3 + a′4S4,

Ā = a′2S1 + a′1S2 + a′4S3 + a′3S4,

Â = a′3S1 + a′4S2 + a′1S3 + a′2S4,

Ã = a′4S1 + a′3S2 + a′2S3 + a′1S4. (17)

The modulus of the number A in such special basis looks like:

|A| = |a′1a′2a′3a′4|1/4, (18)

that proves the correspondence of the algebra to geometry defined by the fundamental
metric form (11). We can introduce the conception of function for the multitude of the
Quadra numbers. The exponential function is one of the most interesting. Under it we
will understand the following series:

eX = 1 + X +
X

2!
+ . . . ,

where X is an arbitrary Quadra number. With the introduction of the exponential func-
tion we can examine along with the algebraic form of the number H4 its exponential form.
So, the number A = a′1S1 + a′2S2 + a′3S3 + a′4S4, where all the components of a′i in the
absolute basis are positive, corresponds to:

A = |A|eαI+βJ+γK , (19)

where the positive value |A| is its modulus. By analogy with the complex and double
numbers we will call the real numbers α, β and γ, the argument of the Quadra number A.
The connection of the arguments with the components a′i in the absolute basis looks like:

α =
1

4
ln

a′1a
′
3

a′2a
′
4

=
1

4
(ln a′1 − ln a′2 + ln a′3 − ln a′4),
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β =
1

4
ln

a′1a
′
2

a′3a
′
4

=
1

4
(ln a′1 + ln a′2 − ln a′3 − ln a′4),

γ =
1

4
ln

a′1a
′
4

a′2a
′
3

=
1

4
(ln a′1 − ln a′2 − ln a′3 + ln a′4),

where ln x is a logarithmic function of the real x. As the hyperboloic analog to the Euler
formula works for every imaginary unit:

eαI = cosh α + I sinh α,

then the following expression for the exponent from an arbitrary Quadra number X =
δ + αI + βJ + γK is true:

eX = (cosh δ + sinh δ)(cosh α + I sinh α)(cosh β + J sinh β)(cosh γ + K sinh γ), (20)

where cosh x and sinh x are hyperbolic sinus and cosine. We can introduce an analogous
function for the quadranumerical variable X as the following rows:

cosh X = 1 +
X2

2!
+ . . . , sinh X = X +

X3

3!
+ . . . .

We can connect the notion of the derivative with the function of the quadranumerical
variable by the direction and analyticity the same way as the corresponding ideas are
introduced into the algebra of double numbers [2]. The analyticity of the function from H4

denotes the independence of its derivative from directions, [5] dF = F ′da, and appears in
simultaneous execution of 12 equations, which are analogs to the Cauchy-Riemann terms
for the complex and double variables:

∂U

∂a1

=
∂V

∂a2

=
∂W

∂a3

=
∂Q

∂a4

,
∂U

∂a2

=
∂V

∂a1

=
∂W

∂a4

=
∂Q

∂a3

,

∂U

∂a3

=
∂V

∂a4

=
∂W

∂a1

=
∂Q

∂a2

,
∂U

∂a4

=
∂V

∂a3

=
∂W

∂a2

=
∂Q

∂a1

, (21)

where

F (A) = U(a1, a2, a3, a4) + V (a1, a2, a3, a4)I + W (a1, a2, a3, a4)J + Q(a1, a2, a3, a4)K

is an analytical function of a quadranumerical variable, and U, V, W,Q are hypercomplex-
conjugated functions of four real arguments. In the algebra of quadranumbers there are
16 typical unit objects e1 − e16 that have in their basis, where the form (11) is written,
the following components:

e1 ↔ (1, 1, 1, 1); e5 ↔ (−1,−1,−1,−1);

e2 ↔ (1,−1, 1,−1); e6 ↔ (−1, 1,−1, 1);

e3 ↔ (1, 1,−1,−1); e7 ↔ (−1,−1, 1, 1);

e4 ↔ (1,−1,−1, 1); e8 ↔ (−1, 1, 1,−1);

e9 ↔ (1,−1,−1,−1); e13 ↔ (−1, 1, 1, 1);

e10 ↔ (1, 1,−1, 1); e14 ↔ (−1,−1, 1,−1);

e11 ↔ (1,−1, 1, 1); e15 ↔ (−1, 1,−1,−1);

e12 ↔ (1, 1, 1,−1); e16 ↔ (−1,−1,−1, 1).

The vectors ei that correspond to the numbers can be used to illustrate the presence
in the Quadra space of two types of transverslity, that generalize the idea of orthogonal
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directions for the Finslerian space. This is true that the 2 symmetrized forms (5) enter
the Quadra space. They look like:

S1(a,b) = (a, a, a,b) + (a,b,b,b) (22)

and
S2(a,b) = (a, a,b,b). (23)

The equality to zero of any of them means the transversality of the corresponding di-
rections. By direct substitutions of the components of vectors ei in (22) and (23) we
can make ourselves absolutely sure of the fact that every vector of the multitude faces 1,
form mutually transversal pairs of the first order, and of the second with 8 of them. We
can construct the basis that is an analog to the orthogonal from the four the first order
transversal vectors. One of the specific cases of the basis is the above examined four-set
1, I, J,K. It is impossible to construct basis from the second order transversal vectors as
for each pair of the third and what is more fourth order do not have such correlation of
directions.

5. Conclusion

The offered method of studying the examined class of Finslerian linear spaces, called
polylinear, seems to be promising for it is based on the same principles as the scalar
product. Let us note that the arising abilities let us move the focus of studies from the
common vivid base to the soil of mathematical constructions. Thus the pseudo-Euclidean
spaces demonstrate advantages of the analogous substitution. Not all geometrical effects
are vivid in these spaces but the extension of the scalar product in its time was very
useful.
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The concept of the multi-dimensional time has tried not once to take its place in nat-
ural science, but every time under the pressure of some paradox was rejected. Meanwhile a
philosophical question: why the space admits quite a number of dimensions and the time dos
not, still preserves. In this work a new attempt has been made to resolve the matter, by
switching from the traditional quadratic metrics to the Finslerian one, which may admit an
arbitrary degree of the vector component that is included into the metric function. Though the
offered method enables us to build continuums of time of any natural dimensionality, in order
to demonstrate the specificity of the raised topic this study will focus on a simple (after rather
trivial two-dimensional case) example of three temporial dimensions.

1. Introduction

The idea of space is accepted much easier and vividly than the idea of time. This
circumstance is conditioned by the fact that the space is looked over all at one time, and
above all in the three-dimensional shape, meanwhile we see just a side of the time and
only in one dimension. This situation forced some scientists ”to get rid” of the time,
either limiting to fixed problems or driving the time into the condition of an extra space
dimension. The first approach is related to Archimedes, the latter approach for the first
time appeared in the works of Galiley, reached perfection in Lagrange’s and in fact reigns
nowadays, – though The Special Theory of Relativity practically confronted the category
of time to space, denoting them absolutely different in their essence, having differences
already on the geometrical level.

There grows the belief formulated for the first time by Synge [1] that Euclid put
the natural science on the wrong track, as he took the space but not the time as the
fundamental idea of the science. The lack of any adopted term for time studying according
to Synge is the proof of such disregard. He suggested that we should use the word
”chronometry” to define the branch of science that deals with the idea of time in the
same wide meaning as geometry does with the idea of space. Though Synge is unlikely
to mean the multi-dimensional time, his statement is applicable to this aspect of the
problem.

2. Two-dimensional time

The essence of the multy-dimensional time, that serves as an alternative to the multy-
dimensional space, can be illustrated by a paradoxical-seeming statement: practically all
physicians know about the two-dimensional time, but by tradition go on looking at it in
another way. We mean the pseudo-Euclidean plane. It is surprising that among all the
Euclidean spaces only the two-dimensional is distinguished with its unique peculiarities,
it is worth mentioning the following.

Firstly, the theorem of Louiville, that enumerates the types of possible conformal
transformations, coming to translations, rotations, dilatations and inversions, is true for
all the pseudo-Euclidean spaces with 3 or more dimensions. In the two-dimensional case
the list of their conformal transformations is by far longer.
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Secondly, there are several concepts of the total product of the plane vectors, and
the majority of them have the inverse ones; meanwhile in other pseudo-Euclidean spaces
only scalar product is introduced, as well as division is not defined at all.

Thirdly, isotropic vectors always divide the pseudo-Euclidean planes with the signa-
ture (1, n − 1) into 3 simply connected domains, with an exception of the plane, with 4
such domains.

Fourthly, it does not matter which of the two typical coordinates of the Euclidean
space we will choose as the temporal and which as the spatial, as the result will change to
permutation. Another case appears in planes with a bigger number of dimensions, where
such symmetry collapses and to the time we can apply only change of the sign.

And finally, only the plane admits the accordance with the associative-commutative
algebra, whose main objects are called the double numbers. Their algebra has all the
characteristics of usual algebras of real and complex numbers, including the product
commutativity, with an exception of presence of specific objects, called the divisiors of
zero. Each divisor of zero has a counterpart such that their product is a divisor. Though
the double numbers are trivial in comparison with the complex, even such algebras cannot
be related with pseudo-Euclidean spaces with more than 2 dimensions.

But, thinking that the uniform order starts with 3 and more dimensions, scientists,
due to some reasons, don’t notice or at best attribute it to the reducible nature of the
two-dimensional space. It is interesting to note that we face practically the same in
the Euclidean case: the two-dimensional representatives stand separately out and are
juxtaposed with the algebra of complex numbers.

We can make a supposition basing on only these two examples that because of some
reasons the connection of some metric spaces with the commutative-associative algebra
make them in a way distinguished and that is why the very algebras and the corresponding
spaces deserve a special attention.

When we stated in the beginning that we there was no reason to treat the pseudo-
Euclidean space as a special case of the multy-dimensional time, we based on the fact
that in the space there is no objective reason for us to distinguish which of its directions
can act as time and which not. Then we must admit that in such a space all non-isotropic
directions are equal in rights. Their differentiation by physical meaning takes place only
after subjectively choosing one quadrant as the field of future.

Note. The subjective choice is related mostly to the world line, an element of whose
length is interpreted as the proper time of an observer, and the future region is defined
as the consequence of the line direction.

Only after the given procedure the points of the facing quadrant automatically ac-
quire the meaning of the past actions, and the points of the two side – become absolutely
distant. But few things will change on the pseudo-Euclidean plane if we choose to use
any other quadrant as the field of the future, as only all the others will trade places.
With an exception of this inessential-seeming moment, any further construction in the
pseudo-Euclidean plane does not differ from the construction in its usual interpretation
as the time-space.

But a move to 3 and more dimensions leads to the fact that the difference between
the pseudo-Euclidean space-time and the dimension-corresponding pure time becomes
principal, and moreover if we think of the conceptual multy-dimensional time as of a
possible geometrical alternative to the space of the Special Theory of Relativity, it is
important to revise not only mathematical, but also philosophical attitudes towards the
structure of physical reality.
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3. Three-dimensional time

To make a move from the two-dimensional time model to the three-dimensional let
us use the observation that in the case of the pseudo-Euclidean plane the corresponding
geometry becomes related with the idea of the commutative-associative hyper-complex
number, which are related to the commutative-associative hypercomlex algebras. William
Hamilton is the pioneer of hyper-complex numbers; while speaking at one of the sittings of
the Royal Irish Academy he stated that if there existed geometry - the pure mathematical
space science, there must be the same pure time science, and such a science should be alge-
bra [2]. It is paradoxical but he on the example of the quaternions, discovered by himself,
disproved the multitude of principally different algebras. But let us take his statement,
as a presentiment of the great mathematician, and by analogy with the algebra of binary
numbers we will try to make the algebra of triple number, and try to correspond with
them geometry, or using Synge’s suggestion, the chronometry of the three-dimensional
time.

The presence of the basis in binary numbers makes the expression for the second
degree of the module to take an absolutely symmetrical form:

|X|2 = x′1x
′
2, (1)

It indirectly shows that there must be a basis for the numbers that admittedly can be
an algebraic analog to the vectors of the three-dimensional time. In this basis the fourth
degree of the module becomes connected with the next absolutely symmetrical form out
of three components:

|X|3 = x′1x
′
2x
′
3. (2)

It is not difficult to make sure that the algebra of such numbers exists, it is commutative
and associative, and is the direct sum of three real algebras that continues the tendency
that started at the example of binary numbers, whose algebra becomes the direct sum of
the two real. As is well known, the one-dimensional time can be compared with the real
numbers themselves, that is another confirmation of the chosen algebraic way of searching
for models of the multy-dimensional time.

The manifolds for which the differentials of the vector length are expressed by means
of the types (1) – (2), are well known in geometry and are called the Finslerian spaces
with the Berwald-Moore metric function [3]. Usually under the term Finslerian spaces
we understand the manifold of the most common type with a null meaning of curvature
and torsion. The concerned metric (2) is defines the linear space, that is why it is in near
relation with Euclidean and pseudo-Euclidean spaces, though they do not look alike in
everything.

Let us call the linear Finslerian spaces, whose metric function in one of the bases
looks like:

F (x′) =
∣∣∣

n∏
i=1

x′i
∣∣∣
1/n

, (3)

the n-dimensional time. To have not only axiomatical but also physical right to use this
name let us interpret every point of the spaces as an event, and every line as a world line
of an inertial reference frame.

Notes. The concept of an event is introduced in this way that though having
something common with the classical analogue introduced by Minkowski, still differs from
the latter. This is related to the fact that the concept of event in the multy-dimensional
time stops having a single meaning and becomes dependent on the reference frame. In
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other words the same point of the space should be interpreted as different events if the
world lines are separated by isotropic hypersurfaces. The concepts of time and space are
as if substituting with one another. There are cases 2n of such domains in n-dimensional
time, and every point may have the same number of interpretations. But there does not
emerge polysemy if we examine only the reference frames where the world lines lie only
in the light cone, and the concept of event practically does not differ from its classical
analogue.

In such reference frame the interval of proper time between an arbitrary pair of the
equals the length of the vector related to the event. It follows from the symmetry of the
examined spaces that all their non-isotropic directions are absolutely equal in rights if we
decide to relate, according to the given above thesis, the length of the vector to the proper
time in the distinguished reference frame then its justified to call the spaces, this time
not by definition, rather than because of physical reasons, the multy-dimensional time.

But still preserves the question: whether such verities have any connection with the
real world? To approach the answer let us try to examine the properties and peculiarities
of the three-dimensional time. We will start from examining its structure and isotropic
subspaces.

4. Light pyramids

The form (2) nullifies in the points that correspond to the three distinguished planes,
defined by the equalization:

x′1 = 0, x′2 = 0, x′3 = 0. (4)

The vectors lying on the plane have the zero meaning of the modulus and in this meaning
are isotropic. At the same time, lines, that simultaneously belong to 2 planes (as well
as the point of intersection of all the 3) automatically become marked out. As there are
only three lines, it is quite natural to try to connect the vectors with the special basis.
This basis is unique up to permutation and the form (2) given above defines the value of
an arbitrary number module and also the length of the vector, – all being of the simplest
shape. Concerning the originality of such basis, we will give it a proper name of the
Absolute basis.

In this respect the concerned space turns out to be arranged in an absolutely another
way, than the usual Euclidean and pseudo-Euclidean spaces, where there are no preferred
bases (with an exception of the pseudo-Euclidean plane), and that is why we usually try
to turn the studying of analogous geometries into a non-coordinate form. The existence of
special bases in the multy-dimensional time means that if some day a connection between
corresponding varieties and the physical reality will be found then some frame of reference
will play a clearly distinguished role.

The isotropic planes (4) can be thought about for example as they are presented on
Fig. 1. As we can see on the picture the three-dimensional space is divided by isotropic
planes into 8 equal camer-oktants, that are domains of simple connectedness in fact. At
the same time every camera is separated from the 3 side ones by the two-dimensional
isotropic planes, it borders upon isotropic rays with another 3 cameras and with the
opposite one it contacts through only one point. By analogy we can characterize, only
taking into consideration the dimension, the mentioned above the two-dimensional time,
where all the space is divided by isotropic lines into 4 camera-octants. Every quadrant is
separated from 2 adjoining ones by isotropic rays, and with the opposite borders through
a point. At the same time the one-dimension time also obeys the rule, as we can look upon
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Figure 1: Isotropic planes of tree-dimensional time

the corresponding line as 2 opposite simply connected domains, divided by a special point,
a zero that in a way can be considered to be an extreme singular case of the isotropic
cone.

Figure 2: Light cones of tree-dimensional time (right) and tree-dimensional pseudo-Euclidian
space (left)

If we choose 2 facing camera-octants from the 8 of the three-dimensional time and
examine their united border we will get a figure depicted on Fig. 2. Such the sub-space
looks like a light cone of the Euclidean space (depicted on the same picture to the left
side) but for the fact that the first does not have a continuous axis symmetry. There
are non-zero vectors in the inside of both facing octants, and the ends of the unit length
vectors form 2 planes of a specific hyperboloid, which is the Finslerian analogue of the
double-band hyperboloid of the pseudo-Euclidean space. Both figures are depicted on
Fig. 3, the left corresponds to the three-dimensional time and represents only a quarter
of the hyperboloid of space, which has 8 cavities, each for every simply connected area.
The points of the figure satisfy the equalization: |x′1x′2x′3| = 1, and its general form is
represented on Fig. 4.

Among the unit vectors that are set against one and the same plane of such hy-
perboloid continuous transfers, exercised by the Abelian two-parameter group of linear



24 Pavlov D. G. Chronometry of the three-dimensional time

Figure 3: The fragments of unit hyperboloids

Figure 4: The eight-sheet hyperboloid of tree-dimensional time

transformations, is possible. The transformations can be displayed as a diagonal matrix:




a1 0 0

0 a2 0

0 0 a3


 , (5)

with a1a2a3 = 1. Transformations of the group are invariant to the interval of the three-
dimensional time (2) and that is why it is its motion. In their character the motions
are similar to the boosts of the corresponding pseudo-Euclidean space with the only
difference that the points of the line stay static in the one-parameter turnings in space-
time, and in the analogous case of the concerned space – only one single point. We will
call transformations of the group the hyperbolic turning of the three-dimensional time.

Among motions of the space, apart from turnings, we can single out a three-
parameter group of parallel shifts, that are a common idea in linear planes. There
is no other continued transformation that would be invariant to the interval in the
three-dimensional time.

The isotropic edges and unit hyperboloids of the distinguished group of facing oc-
tants whose ends are to end at infinity are depicted on Fig. 2 and Fig. 3, but due to
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Figure 5: The two light cones couple intersection

the limited plane of the draft, their ends are cut short, but not at a plane, common
for pseudo-Euclidean space, but in a more sophisticated way according to the following
considerations. If we intersect the border of one of the octants with the border of the
facing octant dislocated along their mutual axis we will get a rectilinear hexagon, and not
a plane but the broken as it is demonstrated on Fig. 5. The volume that belongs to the
interior of both octants is a common cube, and the mentioned above hexagon is composed
of its edges that do not intersect the main axis.

Figure 6: The two hyperboloids couple intersection with 0 < R < T

Notes. We can say that in case of the n-dimensional time the figure that is the
interception of two deposed towards each other facing cameras, consists of a half of (n−2)
edges of the formed by it hypercube, on top of all only edges that do not have common
points with the main axis of symmetry participate in the formation.

If we construct two sets of concentric hyperboloids (per se they are Finslerian gener-
alizing of spheres) inside the octants that form the cube with their centers in the opposite
tops, the intersection of pairs with equal radius will result into a set of continuous closed
graphs, whose form depends on the ratio of the corresponding to the curve radius of the
hyperboloid R to half of the main diagonal of the cube T . When the radius of hyperboloids
equal 0 they coincide with the isotropic edges of the octants, and their interception is a



26 Pavlov D. G. Chronometry of the three-dimensional time

Figure 7: The two hyperboloids couple intersection with R ≈ T

broken in space hexagon already examined on Fig. 5. When 0 < R < T the hyperboloids
are intercepted on curves that look like the curve on Fig. 6. They are three-dimensional
and have 6 round corners. While the value of the hyperboloid radius approaches to the
value T the curves that are the result of their interception become more smooth and
flattened out, and when R → T they turn into absolutely plane circumferences, though
with infinitesimal radius Fig. 7.

In the three-dimensional pseudo-Euclidean space the analogous constructions lead to
a group of concentric circumferences that lie in the same plane, you can see the circles on
Fig. 5-7 to the right of them. The circumference that belongs to two light cones, that is
corresponds to the interception of the pseudo-Euclidean sphere with R = 0 which in the
Special Thery of Relativity is interpreted as a momentary position of the light front, that
can be registered by the observer that is at the top of one of the cones, supposing that there
is a flash at the top of the other. In general we should apply an analogous interpretation
to the three-dimensional time case. So, the broken hexagon depicted on Fig. 5 can be
interpreted as the multitude of points of the observer space, that is situated at the point
T , with which it connects the momentary position of the light front, whose flash took
place in −T . To make this situation true we must admit that the isotropic borders of the
facing octants are analogues of the light cones of the past and future that corresponds in
number of dimensions with the pseudo-Euclidean. This method looks rather natural and
the only effort, in comparison with the common idea of the Special Theory of Relativity,
we should make is to admit the borderness of the light cone. Taking into consideration
that this borderness is executed in the space not available for the contemplation of the
observer, the question whether is complies with the realities of our world turns out to be
not so obvious.

Though we could save the name of light cones, usually used in the pseudo-Euclidean
spaces in order not to emphasize peculiarities of geometry of the multy-dimensional time,
for the isotropic borders of the simply-connected cameras, so let us call the corresponding
figures the light pyramids, first of all singling out the pyramids of the past and future.

5. Planes of relative simultaneity

We should logically go further and accept an analogy not only between isotropic
sub-spaces and the related to them light fronts but also we should put into correspondence
with every common circle of two equal hyperboloids of the pseudo-Euclidean space an
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analogous curve, that is the interception of a pair of Finslerian spheres of the multy-
dimensional time. There emerges quite a natural way to define the plane of the relative
simultaneity of the three-dimensional time, as the same physical sense was played in the
pseudo-Euclidean geometry by a plane represented with the above examined set of circles.
Following the logic we should understand a multitude of points, equidistant in the meaning
of the corresponding Finslerian metrics of two fixed points, under the simultaneous events
of the multy-dimensional time. At the same time one of the fixed points coincides with
the momentary position of the observer, and the second is the reflection of it with respect
to the studies plenty of events.

The straight line that goes through the two points defines the inertial reference frame,
but as it follows from the accepted definition of simultaneity now this property depends
not only on the speed of the observer but also on his momentary position concerning the
layer, to which he is going to give the equal time of performance. In the pseudo-Euclidean
case (that has become practically classical) while defining the simultaneity meant only
the relative speed of the relative speed of the reference frame, and the momentary posi-
tion of the observer was not important. It is not so in the three-dimensional time and
this circumstance seems to be one of the most important items, that differ the physical
properties of the examined manifold from the common pseudo-Euclidean constructions.

Figure 8: The simultaneous surface of three-dimensional time

It is convenient to describe the plane of simultaneity that corresponds to a fixed pair
of points by an equalization that relates it coordinates to the coordinates of the initial
affine space represented in the absolute basis. It is not difficult to get such equalization
for an arbitrary pair of points, but it looks most vividly when momentary position of the
observer is related to the point (T, T, T ), and its reflexion has coordinates (−T,−T,−T ).
In this case the equality of intervals leads to the equalization:

|(x′1 + T )(x′2 + T )(x′3 + T )| = |(T − x′1)(T − x′2)(T − x′3)|, (6)
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then after opening the brackets it leads to:

x′1x
′
2x
′
3 + (x′1 + x′2 + x′3)T

2 = 0. (7)

The plane corresponding to the equalization is depicted on Fig. 8.
The curves examined on Fig. 5 and Fig. 7 mark points on the plane litarally

equidistant from their geometrical center. Such curves in many ways are analogous to
common concentric circles, though the related to it geometry does not coincides with the
usual Euclidean.

On the other hand we can get a new group of curves, that corresponds to the multi-
tude of radial lines of the Euclidean circle the canonic planes by intercepting the plane of
simultaneity by canonic planes, called in the work [4] the cones of rotation, have tops in
the point (T, T, T ) and include the real axis. So, there is a net of curvilinear coordinates,
that in the two-dimensional physical space play the same role as the polar scheme of
coordinates does in the Euclidean plane.

Transformations that turn into themselves the plane of simultaneity so that the
circles and radial curves at the same time map into the same curves and become in many
ways analogous to spatial turns around the point of origin in the pseudo-Euclidean space,
as the physical distance in either of the cases remain the same. But in the case of the
three-dimensioal time these transformations are not linear, and on top of all do not leave
invariant the three-dimensional intervals.

6. Physical distance and speed

It could seem that we have approached to the possibility of introduction into the
three-dimensional time of two-dimensional physical distance and speed, it is enough to
bring on the simultaneity plane in correspondence the set of circumferential and radial
curves with the lines of the polar reference frame. But it is not like this. The fact is
that the examined multitude does not admit the introduction as one-digit such physical
notions as the distance and speed at least if the construction is based on the starting
measurement of time intervals. What seems to be practically an obvious property of
the pseudo-Euclidean spaces turns out to be not-compatible with the idea if the multy-
dimensional time. This circumstance not only decr eases, but on the reverse increases the
possibility of the multi-dimensional time to compete with the Minkowski space for being
the geometrical basis of the real world. In fact, if we follow the idea of chronometry we
should associate associate the time intervals, that are needed to send a desired signal and
receive its reflection, with physical distance. But any attempt to unite this natural and
vivid physical principle with the necessity of one-digitness comes upon obstacles. The
idea of rejecting the one-digitness of the physical distance and speed seems to be a nice
and far-reaching exit (cf. interpretations of quantum-mechanical uncertainty principle).

The above said does not mean that an entirely amorphous structure should replace
the Euclidean geometry of the physical space. The analysis shows that our radical sup-
position touches upon not the quality, but only quantity aspect of the phenomenon. The
distance and speed as independent physical categories are not completely excluded in the
multy-dimensional time, but only change their status, getting the traits uncertainty on the
initial geometric level. In particular the idea of equidistant in the physical meaning objects
becomes dependent on which signals the observer, that defines this equidistance, uses as
the reference. In its way the reference signals are defined by the principle of equality of
proper times, where the hours pass in the corresponding inertial reference frames between
sending, reflecting and receiving the signals. Taking into consideration that the time
intervals are the only value that by definition are measurable in our Finslerian multitude,
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the task of distinguishing among the continuous specter of inclined world lines the ones
would be characterized by the equality of intervals is quite possible. Let us note that we
already used the method above, while defining the relatively simultaneous events. So, we
can consider the signals to be etalons if their world lines start in one point, reach the
plane of simultaneity and after refraction gather together and in another fixed point of
the world line of the same observer. It is clear that all the intervals should be equal either
before or after the refraction.

Such logic in constructing drives us to the fact that the physical space of the observer
with its geometrical properties becomes in a way dependent on which set of reference
signals define the geometry. So if the world lines of reference frames are practically
parallel to the line of the observer, he starts to see a space, which in its characteristics
practically coincides with the Euclidean. This is related to the fact that the ends of the
vectors with the same value of the intervals in this cases lie (as it has been said above)
on practically plane and ideal circle, and the latter while constructing the physical space
plays the role of the Finslerian indicatrix. A common circle is the indicatrix of the two-
dimensional Euclidean space. When tuning to the signals whose world lines are inclined
more significantly, the ends of the corresponding vectors form this time not a circle, but a
more sophisticated closed curve, which is not a plane one. At limit of the signals, whose
speeds are interpreted as the light, this curve transforms into a broken hexagon, examined
on Fig. 5. The geometry of the two-dimensional physical space is the Finslerian, and it
is this geometry that differs greatly from the Euclidean, but in connection with the fact
that the indicatrix even in this limit case is still closed and flattened out. The differences
between the two geometries are not significant, in connection with which it is probably
possible to mix them up, especially if the experimental cases are limited to low speeds.

So, if we suppose that our real world has a direct connection with the examined
Finslerian geometry, the appearance of Euclidean and pseudo-Euclidean ideas in observer
outlook should be a natural process of consistent approaches to a more exact description.
On the other hand in our everyday life we use signals whose speed is by far lower than
the light when we try to find the zones that manage the world. As the matter of fact
we use the light only to identify the objects, and the distance is defined by other slower
means – for example by a ruler. This circumstance leads us to the fact that when in
special experiments really high-speed signals become of great importance, the geometry is
considered to be defined before hand, and that is why even abnormal results will be treated
anyhow, but only not in the direction of revising the obvious geometrical properties.

7. Conclusion

Among all the above listed properties and peculiarities of the three-dimensional time,
as a representative of a very specific class (the non-linear) of Finslerian spaces, we should
treat as the most important the one, thanks to which it is related to the most fundamental
notion of mathematics – the number – which is the object of algebra, that has the most
common arithmetical properties. We should emphasize ones more the fact that neither
Euclidean nor pseudo-Euclidean spaces with three or more dimensions do not possess the
analogous qualities. The quaternions and biquaternions used in similar situations are not
genuine numbers, as there algebra has commutative multiplication, as the result of which
the construction of a valuable theory that would generalize the theory of functions of the
complex variable is not possible (or is extremely difficult). At the same time the given
above examples demonstrate how common Euclidean and pseudo-Euclidean conceptions
can come out of the idea of substitution of the pseudo-Euclidean metric to multy-temporal
case – rather interesting and actual.
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The generalized metric space, that can be called the flat four-dimensional time, is based on
the Berwald-Moore’s Finslerianview of metric function. This variety let us introduce physical
notions: the event, the world lines, the reference frames, the multitude of relatively simultaneous
events, the proper time, the three-dimensional distance, the speed, etc. It is demonstrated how
from the point of the physical observer, associated with the world line, in absolutely symmetrical
four-dimensional time the contraposition of the coordinate takes place, that defines its proper
time, with the ones that appear as the result of the measurements made with the help of sample
signals. When the signals correspond with lines, which are practically parallel to the world line
of the observer, he starts to see the three-dimensional space which at the limit is the Euclidean
space.

1. Introduction

For the last 100 years the idea, that the Pseudo-Euclidean metric with an
alternating-sign quadratic dependence on the length of the vectors from the magnitude of
its components lays in the basis of geometry, has taken root in physics. But still numerous
and various attempts to connect all the known natural forces nature with the metric and
make true the idea of the total geometrization of physics have failed. This drives to the
idea that the reason lies not in the lack of scientists’ creativity, but in the metrics itself,
even better to say in the classical quadratic form, in place of which it is admittedly to
use other dependences. Unfortunately, this attitude, the possibility of which indicated
Riemann [1], was for the first time studied by Finsler [2], and up to nowadays used by
hundreds of investigator [3], did not give eventual pictures. Though nowadays the work
in this direction is continued, it considerably differs from many of them, as it is based
on the idea of scalar poly-products, which is new for the Finslerian geometry, and metric
form that is connected with one of the most fundamental notions in mathematics – the
real number.

2. Multidimensional time .

The spaces that have unique correspondence with algebras, that are the sum of
several real number algebras, stand out from Finslerian linear spaces. The metric functions
do not depend on the point and in one of the bases look like:

F (x′) =
∣∣∣

n∏
i=1

x′i
∣∣∣
1/n

, (1)

where x′i are the components of the vector and n is the number of dimensions. Such
metric functions are well-known in the theory of Finslerian spaces and took the name of
Berwald-Moore’s function [3].

Geometries with such metrics in many ways are of the same type and the difference
is related only to the dimension. The total equality of all non-isotropic directions is their
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main peculiarity. As any of such directions can be related to the proper time of the inertial
reference frame, it is appropriate to call such spaces the multi-dimensional time.

Note. It seems that it is possible to relate a general line with an inertial reference
frame in any linear space, where the element of the length is defined in every point. But
in many spaces some reference frames do not admit the presence of isotropic connections
with other lines that go in a parallel way with the given. For the viewer related to such
reference frames, the existence of isotropic vectors, with which it is traditional to associate
the light signals, becomes the origin to the idea of the physical distance and consequently
the physical space.

The defined in this way spaces not always have the same shape as the one we got used
to (in every day life and thanks to Euclid and Minkowski). At the same time we have to put
a more general meaning than usually into the idea of physical space. On the other hand
nothing prevent us from considering that in the sectors or dimensions, where isotropic
connection is not set or have an extraordinary characteristics, that physical directions are
undetectable, though representable from geometrical point of view. Consequently, it is
quite logical to suppose the existence of some spaces, some parts of directions and even
dimensions of which are not apparent from their physical side. From such point of view it
would be interesting to analyze arbitrary linear spaces and in particular those, connected
with quadratic forms and the Berwald-Moore’s metrics treated over the field of complex
numbers.

The chosen geometrical element of every n-dimensional time is its isotropic sub-space,
that is a figure constructed from n-hyperplanes, that divide the multiformity into 2n-equal
simply connected cameras. Any of the cameras adjoins to the others, but for the facing,
with which it borders in a point. The adjoining cameras can be classified according to
the distinguished by the dimension of the frontier planes from 1 to (n − 1). All simply
connected cameras are equal and have the shape of regular pyramids, n-hyperplanes of
which start from the top and go to the infinity. We will call such pyramids, by analogy
with isotropic cones of the Minkowski space, the light pyramids. Every light pyramid has
n one-dimensional edges that can easily be connected with a special basis. In the basis
the geometrical correlation of the multy-dimensional time appears in a vivid shape and,
as such a basis is to permutation unique, it is quite natural to call it the absolute.

Any single vector that belongs to the inner area of a light pyramid can be contin-
uously introduced into any other single vector that belongs to the same pyramid. The
respective transformation form n− 1-parametrical Abelian subgroup of movements, that
leaves the initial metric function (1) invariant. The metrics of such transformations in
the absolute basis is reduced to the diagonal shape:




a′1 0 . . . 0

0 a′2 . . . 0

. . . . . .

0 0 . . . a′n




, (2)

where
∏n

i=1 a′i = 1. The corresponding reflections can be classified as Hyperbolic turn
(that in a way are analogous to the busts of the pseudo-Euclidean spaces) because such
transformations leave on the place a point of convergence of the tops of all the pyramids
and isotropic edges of the last at the same time turn into themselves. Among continuous
movements of the multy-dimensional time along with hyperboloic turns there is also a
n-parametrical subgroup of parallel transfers. The examined variety doesn’t include any
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other continuous congruent transformations and that is why has less freedom than the
spaces with quadratic types of metrics. The very circumstance made Helmholtz, Lee,
Weyl prove a number of theorems that stated that the oneness of the quadratic metrics
[4 – 6]. The main emphasis was made to maximum mobility in quadratic spaces. This
according to them gave grounds to reject all other metric forms in the meaning of the
basis of the real space-time. Let us note without rejecting the theorem accuracy that its
approval is based on the examination of only the distinguished linear transformations,
which means that it gives a chance to other theorems, where non-linear symmetries play
the same role. In contrast to continuous congruent transformations the discrete group of
symmetry of the multy-dimensional time excels the corresponding Euclidean- and pseudo-
Euclidean spaces, but this is not enough to compete with the latter one. What really
makes the multy-dimensional time the multy-dimensional time interesting is the presence
of distinguished groups of non-linear transformations which are practically as fundamental
as the groups of movements.

Such transformations save invariant not the intervals, but specific scalar forms of
several vectors, that do not have direct analogous quadratic spaces, and that is why are
not well-studied.

It is better to come to the understanding of such polyforms through the generalizing
of the idea of the scalar product. It turns out that in a number of Finslerian linear spaces
the poly-linear symmetry form of n vectors [7] (its special case is the classical bilinear
form) can play the role of the scalar product. Let us call the poly-linear form the scalar
poly-product. Founding on this generalizing we can enlarge with some Finslerian spaces
such fundamental ideas of geometry as the length, the angle, the orthogonality, etc., the
introduction of which is difficult due to some problems [8].

In the absolute basis the scalar poly-product of the multy-dimensional time looks like:

(A,B, . . . ,Z) =
1

n!

∑

(i1,i2,...,in)

a′i1b
′
i2

. . . z′in , at ij 6= ik, if j 6= k. (3)

It is not difficult to believe that with A = B = . . . = Z the form (3) turns into the
metric function (1). We can build the geometry of the linear time in an arbitrary natural
scale using the poly-linear symmetrical form (3). But let us focus on this case if we base
on common ideas about physical measurements and vivid typological detailedness of the
four-dimensional space [9].

3. Four-dimensional time

According to (3) the scalar poly-product, that defines the four-dimensional time, in
the absolute basis looks like:

(A,B,C,D) =
1

4!

∑

(i1,i2,i3,i4)

a′i1b
′
i2
c′i3d

′
i4
, when ij 6= ik if j 6= k, (4)

it follows that the fourth degree of the vector length of such linear space is defined by the
expression:

(X,X,X,X) = |X|4 = x′1x
′
2x
′
3x
′
4. (5)

While turning to the basis analogous to the orthonormalized [7] (it is more visual than in
the absolute case) the expression transforms into a more complicated but still symmetrical
form:

|X|4 = x4
1 + x4

2 + x4
3 + x4

4 − 2(x2
1x

2
2 + x2

1x
2
3 + x2

1x
2
4 + x2

2x
2
3 + x2

2x
2
4 + x2

3x
2
4) + 8x1x2x3x4. (6)
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In a number of cases it is more convenient to use the form picking out one of the coordi-
nates, in particular x1:

|X|4 = x4
1−2(x2

2 +x2
3 +x2

4)x
2
1 +8(x2x3x4)x1 +(x4

2 +x4
3 +x4

4−2x2
2x

2
3−2x2

2x
2
4−2x2

3x
2
4). (7)

The main arguments in favor of the chance of confronting the four-dimensional time
to the real physical world is the presence of a group of continuous symmetries [10], that
can be examined as an alternative to the linear group of spatial turning of the Minkowsky
space. Not a scalar poly-product of the four-dimensional time (4) is an invariant to the
transformations, but a specific form, that is defined by 2 vectors:

S(A,B) =
(A,A,A,B)

(A,A,A,A)1/2
+

(A,B,B,B)

(B,B,B,B)1/2
. (8)

Though the form S(A,B) is not an additive quantity of the vectors that belong to the
interior of domain of a light pyramid, it complies with other very important characteristics
of the common scalar product, to be more specific: the symmetry, the rule of multipli-
cation by the vector, the sign distinctness and the triangle rule [10]. According to this
there exists a principal opportunity in the four-dimensional time to introduce the idea
of the three-dimensional distance, that corresponds to most of common conceptions of
the physical quantity, but for the additivity. From philosophical point of view the last
characteristic is very important. No, really, why should the rule of composition differ
from the one of three-dimensional distances, as both values are relative? Such linearity
appears only when we work with big distances, as well as the non-linearity of the rule of
speed composing is essential only in the relativist field. At the same time an additional
fundamental constant – the maximum possible magnitude of the physical system, or, in
other words, the radius of the Universe, acts as the light speed in the three dimensional
distance. For everyday distances we can still use the linear approximation, but in the
space scale, in case of logical appliance of the multy-dimensional time conception, certain
corrections should be made.

4. Plenty of relatively simultaneous events

We should first of all clarify the situation about a number of simultaneous events to
give the definition of the four-dimensional time, three-dimensional speed and distance. Let
us understand under it the total of points equidistant (of course in the meaning of the ac-
cepted Finslerian metrics (5)) from a pair of fixed events. In contrast to the Minkowskian
space, where a multitude of points constitute hyperplanes, in the four-dimensional time
the corresponding planes are non-linear [10]. Their form depends not only on the direction
of the world line, that connects the fixed points, but also on the magnitude of the interval
that separates them. This is the most fundamental difference from the space of the Special
Theory of Relativity, as the idea of simultaneosity is defined now not only by the speed
of the reference frame, but also by the interval of time that separates the instantaneous
position of the observer and the examined spatial layer of events. So the relativism in
the four-dimensional time touches upon not only the hyperbolic turns, with the help of
which realizes the switch between one system to another, but also the transmission, that
enables to change the reference point.

From philosophical point of view such generalization is quite logical, but in fact
establishes a sort of relationship between the two subgroups of the total group of congruent
symmetries. As an indirect affirmation of the made conclusion can serve the fact that
in algebra transmissions lack the operation of composition, which are a part of the four-
dimensional time, and hyperboloic turnings - multiplication, and mathematics do not
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question relationship between them. A natural way of introducing the idea of the physical
distance in the four-dimensional time is offering a method that from conceptual point
of view is analogous to the method of defining of the idea in the Minkowskian space.
By definition under distance we can understand a value that equals (or is proportional)
the tie intervals, that go along the world line of the observer, between sending some
uniformly moving model signals to the world lines of the examined objects, and receiving
the reflected signals. It leads to the fact that it is senseless to use the idea of distance
towards single events in the four-dimensional time, and is productive concerning only
chains of them, that are presented by certain lines. We can pay no attention to the fact
in the Minkowskian space, as multitudes regarding simultaneous events are hyperplanes,
as a result the distance defined for an arbitrary pair of parallel lines were still substantial
and for a pair of points.

Not to overload the brief article with excessive community, but at the same time to
be rather specific, we will give the result to which the described above algorithm drives
only in one case - when the world line of the observer coincides with the real axis, it
itself is situated at the point (T, 0, 0, 0) and the necessary layer goes through the point
(0, 0, 0, 0) (Fig. 1) [Here and later on the appearing coordinates relate to the generalized
orthogonal basis [7] that differs tremendously from the absolute].

Figure 1: The world lines of direct and opposite signals with speed module

In this case the equalization, that relates the real coordinate θ of a point of the plane
simultaneity to three other coordinates x2, x3 and x4, follows from the rule of equality
of the vector length that have the following components (T + θ, x2, x3, x4) and (T −
θ,−x2,−x3,−x4). (Variable θ means deviation of concrete point from hyperplane x1 = 0.)
Using the expression for the magnitude of the interval (7) and at the same time concerning
that for even degrees (−x)n = xn, we have:
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Opening the brackets and collecting terms we get:

Tθ3 + (T 2 − x2
2 − x2

3 − x2
4)Tθ + 2x2x3x4T = 0. (9)

introducing sizeless value η = θ/T, χ2 = x2/T, χ3 = x3/T, χ4 = x4/T and taking into
consideration that T 6= 0 we get a cubic equalization relatively to η:

η3 + (1− χ2
2 − χ2

3 − χ2
4)η + 2χ2χ3χ4 = 0. (10)

Its real root characterizes the relative value of deflection of the simultaneity plane absciss
from the coming through its center according to the hyperplane x1 = 0. We will call such
parameter the coefficient of non-platitude. When χ2 ≈ χ3 ≈ χ4 → 0, η also stems to 0, we
mean around the point (0, 0, 0, 0) the plane of the simultaneity turns into the hyperplane
x1 = 0.

The plane of simultaneity has physical meaning only inside the light pyramide, that
has the world line of the observer, in other case it would be necessary to admit the physical
meaning of the superlight speed. Following the method of the Special Theory of Relativity,
with every vector that start at (−T, 0, 0, 0) and ends at the plane of simultaneity, or in
other words at (ηT, x2, x3, x4) it would be quite natural to connect the world line of the
signal, that has a definite uniform speed. We will transform the signals of the vectors,
if they have equal interval values, according to the value of the speed module: |Vdir|.
Logically the signal, that is confronted to the vector, connecting the points (ηT, x2, x3, x4)
and (T, 0, 0, 0), has the value that is inverse to the speed |Vrev|. On contrast to the
Minkowskian space such vectors have components that differ not only in sign but also
in value (Fig. 1), to be more specific: Vdir ↔ (ηT + T, x2, x3, x4) and Vrev ↔ (T −
ηT,−x2,−x3,−x4). In the Minkowskian space the coefficient of the non-platitude η for
every point of the plane of the simultaneity equals 0, as the result the components of the
vectors that correspond to direct and inverse signal look like: Vdir ↔ (T, x2, x3, x4) and
Vrev ↔ (T,−x2,−x3,−x4).

To give a definition of distance between the real axis and an arbitrary line parallel to
it, which is totally defined by 3 fixed coordinates x2, x3, x4, we should have a model signal,
or even better to say vectors related to it, with the help of which it is possible to make
intervals that would equal the distance of different directions. As well as in the space of the
Special Theory of Relativity, in the four-dimensional time it is more convenient to relate
such symbol signals to isotropic vectors, that at one end have the same beginning and
from the other - they set against the plane of simultaneity. In the Minkowskian geometry
a number of ends of such vectors represent an intersection of two light cones: the future
with the top at point (−T, 0, 0, 0) and the past whose top is deposed to (T, 0, 0, 0). As
is well known the result of such interception is a common sphere, that lies completely in
the hyperplane x1 = 0. This is typical only for spaces with a quadratic metric type. In
any case in the fur-dimensional time an analogous figure that is the result of interception
of two facing light pyramids, is not plane though consists of linear elements.

Tit is better to make sure of it using the three- and four-dimensional time [12] as the
example, in particular looking at Fig. 2 where it is demonstrated the interception of two
light pyramids. For comparison, an interception of two light cones of the three-dimensional
pseudo-Euclidean space is demonstrated on the same picture. In the three-dimensional
time the interior of domain, that belongs to either of the pyramids, is a common cube, one
diagonal of which is a segment of the real axis [−T, T ]. At the same time the interception
of two light pyramids results in a figure, built from (n− 2) edges of such cube, excluding
the points −T and T . In this case this is a hexagon ABCDEF and it does not belong to
the plane x1 = 0, though compiles one of it rectilinear elements.
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Figure 2: The simultaneous surface of three-dimensional time (right) and in three-dimensional
pseudo-Euclidian space (left)

It is analogous in the four-dimensional time: the area that belongs to two facing light
pyramids is a four-dimensional cube and the plane of the interception of their isotropic
edges is built by 20 2-edges of the cube, that do not include the main diagonal [−T, T ].It
is difficult to demonstrate this figure using a plane scheme that is why we will limit to
the examined above a three-dimensional prototype. In the work [13] there was made an
attempt to examine the corresponding dodecahedron (but it seems that the author has lost
its principle four-dimensional character and depicted it as a common three-dimensional
figure).

In the Minkowskian space the world lines that are parallel to the world line of the
observer and touch the figure, which is the interception of two light cones, are accepted as
equidistant points of the physical space of the observer, and the value proportional to the
axis length of such double cone is referred as the distance. We can act in the analogous
way in the four-dimensional time. In this case the parallel to the real axis lines, that
come through the point of interception of the edges of two facing light pyramids, become
equidistant from it, and in the role of the distant act the value that proportional to the
main diagonal of the hypercube that is the result of such interception. In order to find
the numerical value of it we should choose 2 real roots from the equalization:

x4
1− 2(x2

2 + x2
3 + x2

4)x
2
1 + 8(x2x3x4)x1 + (x4

2 + x4
3 + x4

4− 2x2
2x

2
3− 2x2

2x
2
4− 2x2

3x
2
4) = 0, (11)

which are nothing but the abscises of the interception point of the line, which is related to
the coordinates x2, x3, x4, and 4 isotropic hyperplanes. One of the roots x1,1 corresponds
to the point that belong to the pyramid of the past, another x1,2 - to the future, as
the other 2 redundant roots x1,3 and x1,4 belong to the edges of the plane of the side
pyramids. In this case we can consider the distance to be half of the sum of the first 2
roots: Rc = 1/2(x1,1 + x1,2), while the index ”c” emphasizes that the value is defined by
light signals.

The three-dimensional space that appears as the result of such procedure is the
Finslerian and is characterized by its indicatrix whose role plays the described above
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[13] dodecahedron. The space in its characteristics is quite close to the Euclidean, it
comes from the convexity and two-dimensional restraint of its indicatrices, that does not
differ greatly from the indicatrix of the Euclidean space, which is a common sphere. But
the difference between the Euclidean sphere and the examined dodecahedron is rather
principle to mix up their geometries. That is why there was made a conclusion in the
work [13] that the idea that in the basis of the geometry of the real macro-world lies the
four-dimensional time metrics. But still we think that while making the conclusion one
very important circumstance, that when orientating in the real space the observer uses
much slower signals rather than the light ones, was not taken into consideration. The light
only helps, it is to identify the objects, as the comparison of their distances is realized by
other slower means. The fact was not important in the Special Theory of Relativity as the
indicatrix of the physical space did not depend on the speed of the signal. It is not like this
in the multy-dimensional time. The more the relative speed of the probing signals differs
from the light, the less the corresponding indicatrix distinguished from the hyper-plane,
the more round become its angles and the more it looks like the three-dimensional sphere.
At the limit when the relative speed of signals, with the help of which the physical space
is examined, stems to 0, it stops being different from the Euclidean. So if we detect
some static objects in the four-dimensional time with the help of the light, and define the
distance with the help of other slower signals, so in this case we will come upon only the
Euclidean geometry. Let us note that the very condition is complied in the vast majority
of common for a man situations.

On the other hand it is not questioned that there is a principle opportunity to carry
out an experiment in order to get to know which geometry better suits the real physical
space – the Riemannian or the Finslerian. In this case it is important that the distance
between fixed objects should be made by other light or slower signals. It is paradoxical but
such experiments that do not accept double interpretation lack among the huge number
of experimental materials. But the differences that should be traced are not large and
that is why can be explained in different ways.

The above accepted conception of building the three-dimensional time explains why
in absolutely equal in geometrical rights coordinates of the four-dimensional time the
observer, associated with a world line, will register a significant difference between the
coordinate that relate to his proper time and the other three. The answer lies in the
topological difference between indicatrices of the geometrical and physical spaces. So if
the first has the look of a specific 16-line hyperboloid, the second is a ring closed in two
dimensions, its right form though depends on the used in measurements signals, is static
from topological point of view.

5. Conclusions

Forms that save the scalar form (8), do not leave the intervals invariant, and tot ell the
truth are not movements of the four-dimensional time. But as they turn the hyper-planes
of the simultaneity (10) into themselves and do not change the three dimensional distances
Rc they can act as common physical turns. There can emerge an explanation of the famous
paradox - between the forward and rotatory movement. It is difficult to use the principle
of relativity to the latter case, and the most famous attempt to examine it was made
by Mach, who thought that the centrifugal forces owe their existence to the enormous
mass of all the bodies in the Universe. According to Mach if we start turning the whole
Universe a static small body will be affected by the centrifugal force that equals the force
that emerge during the turning of the body itself. For many people it stays unclear the
truth of the statement, and the question itself is still acute. In case we correspond to
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the real world in place of the Galileo or Pseudo-Euclidean metrics the geometry of the
four-dimensional time the problem itself will not appear as the transformation that is
responsible for the forward and rotatory movement, correspond to absolutely different
continuous symmetries.

The analysis of the multiformity characteristics made in the work that claims to
become an alternative to the Minkowski space is far from being finished. But the fact
that we can give such condition for one of the most simple Finslerian metrics of the
fourth degree that has nothing in common with the usual quadratic form, when it can
stimulate not only classical but relative conceptions about the physical space, is worth
paying attention to.
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The science of the past century has achieved great success on the basis of the geometrical
quadratic concepts that were followed as logical and mathematical primaries. More profound
ideas will imply using a more capacious class of geometries, for example the Finsler one which
inscribes structures because the Finslerian indicatrices are no more isotropic in all directions. In
the present work an attempt is made to resolve the respective difficulties of Finsler generalization
by choosing the particular Finsleroid–type metric that implies one preferred direction, admitting
the total axial symmetry around it. In this case, interesting constructive methods of introducing
the concept of the angle and scalar product outside the frame of the Euclidean Geometry can
conveniently be opened up.

“The Euclidean traditions are too strong to be rejected, and
probably few generations of mathematicians are necessary

to work off its influence.” (Busemann [2], p. 8.)

Introduction

The quadratic method is the most convenient one to introduce the vector length. Ac-
cording to the method the length is defined by means of the square root of the quadratic
form. For more than 20 centuries the Euclidean geometry and Euclidean rotations based
on it have been served in theoretical constructions and predictions of results of experi-
ments. The non-quadratic methods are developed in the Finsler geometry (see [1 – 6]).

Unfortunately, we must admit that much attention has not been paid in literature to
studying the corresponding opportunities. By tradition the mathematical and theoretical
physical concepts and equations are based on the method of introducing the vector length
by the help of square root. And numerous interesting and deeply critical analysis (see, e.g.,
[7, 8]) of the geometrical structure of the space–time and methods of its generalization and
comprehension usually go without even mentioning the existence of ideas and methods
of the Finsler Geometry. In spite of high level of adequacy and accurate coincidence, it
is still not clear how it is possible to express this degree of accuracy in numbers, for the
Euclidean rotations do not possess a small parameter to evaluate.

In comparison with the common Euclidean metrics the Finslerian one introdudces
the structure in metric geometry. While the unit surface of the Euclidean Geometry is
a sphere that is isotropic in all directions, the introduction of geometrically preferred
directions leads to generalizing the sphere and finally to generalizing the Euclidean Ge-
ometry. The corresponding, not isotropic, surface of the ends of the unit vectors (when
issued from a fixed point) generates the Finsler metrics. Respective geometries can re-
flect the physical cases where the corresponding directional anisotropy is present. The
Berwald–Moor metrics is totally anisotropic, for it supposes geometrically–emphasized
directions whose number equals the number of manifold dimensions (accordingly, 3 in the
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three–dimensional case and 4 in the four–dimensional case). The Finsleroid–Geometry
introduces only one preferred direction, supposing the total axial symmetry around it.

Actually, the task of generalizing the Euclidean metric function to the Finsler case
seems to be too general and rather unclear to give a definite answer. But if we treat
the problem from point of view of invariance and the possibility of introduction of the
angle and scalar product, then we can endeavor to find constructive ways of defining the
classes of Finsler spaces. As a result, there may emerge the methods of abandoning the
Euclidean geometry.

Of course, no matter how motivated our desire to leave the borders of “quadratic
conceptions” is, it is impossible to “overcome the square root completely”. The hierarchy
of geometries takes its root in generalizing. It is clear that methods and ideas of the
Euclidean geometry are present and work in the Riemann geometry. Many authors of
works on the Finsler Geometry used “the associative Riemann Geometry”, introduced
“the Riemann connection” or “the Finsler–Riemann connection”, introduced “associative
relative Riemann geometry along the vector fields”, constructed “osculating Riemann
space” , and “the Riemann development of the Finsler space along the curve”, etc. The
mathematicians applied steadily the associative Euclidean geometry in the Minkowski
spaces.

Any theory that abandons the concepts dictated by the quadratic form has the shape
of a pyramid: going down to the basis of the “unique super-geometry” the researcher must
enter the area of “the associative Finsler Geometry”, where in its turn appear different
Riemann images, and then numerous Euclidean pictures.

The above facts are directly related to the Quadra-number geometry (developed
recently in the work by Pavlov [9, 10]). In fact, it appears from examining the commutative
hyper-numbers and relates the standard to them. By interpreting the component of the
hyper-numbers as the component of the vector this metrics can be related to the type
of “Berwald–Moor’s Finsler metric function”. Basing ourselves on the last case we can
(and must) develop the theory of geometric correlations, including the introduction of
the geodesic angle, perpendicularity,... – that do not coincide with analogous geometrical
juxtaposition of the Riemann or Euclidean Geometry. Particularly, we cannot reject the
latter one because we use graphic presentations and pictures, at least we have to simulate
and construct them in the Euclidean space!

At the same time, this does not mean that the Finsler geometrical properties are
prescribed uniquely to the Quadra–space. In fact, according to its own capacities, the
poly–form theory makes it possible to introduce the corresponding angles and perpendic-
ularity; in particular, such a generalization of the theory of “higher degree of metrics”
was made in the works [9, 10].

Obviously, the Minkowski geometry has more invariants than the Euclidean one, and
the Finsler aprroach – more than the Riemann one. In such context we should indicate
that the Quadra–spaces have much more invariant objects, than the Finsler or Minkowski
ones, and can offer a theory which is richer in geometrical concepts. In particular, this
can be seen in the fact that the Euclidean geometry can be easily associated with the
Quadra–space in many ways.

Philosophy and logic of associated problems. We can hardly overestimate the
importance of Euclidean approaches and the fact that the Euclidean Quadratic geometry
has already built up and keeps on building up the way of thinking and analysis of many
scientists and researchers. For example, the Riemann geometry since its definition is
based on the quadratic form (sometimes it used to be called “the geometry created by the
quadratic form”), the theory of bundle spaces also applies the quadratic method (but it
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is more multifarious than the Riemann geometry), the Lagrangians in theories of physical
fields are usually quadratic with respect to derivatives, the energy and impulse of the
relativistic particle are connected by a quadratic form, etc. The Special and General
Theory of Relativity are also based on the quadratic forms, but now possess pluses 〈+〉
as well as minuse 〈−〉 in the signature; the Lobachevski geometry is also related to the
type.

Nowadays there are many books on geometry, where quite often different “models”
of generalized geometries are presented and studied. In contrast to this the Geometry,
and not “a model of geometry”, is presented in Euclid’s work.

Why the Euclidean geometry has lived through 2 millenniums? The reason is that
the square root of a quadratic form is used to define length and vectors. We can come
across this method everywhere: in practice, in mathematical and physical theories, and in
experiments; it is also used nowadays. Logically it is the simplest way. But “the simplest”
is not always “the most precise”.

“The axiomaticians” during the last century have been analyzing the structure of the
Euclidean geometry (remind Hilbert’s famous work The Foundations of Geometry), and
not the ways of constructive generalizing of the “quadraticity” of the Euclidean metrics.

It is quite easy to question any statement that declares about “high experimental
accuracy” of the quadratic method of establishing the length. Has anyone and with what
accuracy checked the Pythagorean theorem? Such check is hardly possible without the
researcher using more general methods for comparison (profound research of the topic is
out of the aim of the work, the readers may try to carry out their own analysis)

In fact, the Euclidivity of the geometry or its models is preserved till preserves the
quadraticity of the definition of length. But we need something more than just courage
to make the corresponding decisive step. This is a difficult task: we must find a good way
to change the quadratic method of defining the length by a more general one and recast
the equations of mathematical physics on the basis of the method in order to abandon
the “Euclidivity”. And this is a good task for the scientists of the new millennium. The
conservative way of thinking as an obstacle in the way of geometrical progress can be
effective only during a very short period of time.

The Length is the fundamental concept either in theoretical or applied science. We
can compare it only with the concept of Number in its fundamentality. The development
and application of the concept of the length have lead to creation of Geometry, and the
concept of number – to Algebra.

Using the theory of the so–called Minkowski Space (it is also called Minkowski ge-
ometry) we can formulate quite a general and modern attitude. In the modern accurate
mathematical language the Minkowski Space is often defined as the Finite–Dimensional
Banach Space.

In the Minkowski spaces the length is introduced by the general definition that
enables it to be defined by functions of a rather wide range of classes with minimum
conditions on smoothness. The fibered manifold, where the fiberes are Minkowski spaces,
are called the Finsler spaces.

During the last century many scientists have been studying the Minkowski geometry
and Finsler geometry. More than 2000 works and a number of monographs have been
published, but we should be very cautious while speaking about the achieved success.
It is inevitable that we come across a large number of tensors in the Finsler geometry
(that do not have non-trivial prototypes on the Riemann geometry), and it is not obvious
that such numerical growth predetermines qualitative leap. By the latter case the Finsler
geometry have spurned many mathematicians as it seems to be extremely difficult to study
because of the great number of tensors (in comparison to this the Riemann geometry is
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quite economical: there is a metrical tensor, one set of coefficients of association and one
curvature tensor).

But we should not be too pessimistic about the inconvenience of formalism. Es-
pecially nowadays, that there are few people that will be surprised by the multy–
componentry of the objects neither in mathematics nor in theoretical physics. It is likely
that the problems lie in another level, and to be more precise in the lack of definite key
links. Here we can recall Busemann’s remark, that the progress in motion should consist
“not of the generalizing of the Riemann geometry, but of its results as well”.

Should the development of the concept of “the Length” be in connection with the
development of the concept of “the Number”?

If we turn to prehistory of the Euclidean geometry, to Pythagoras’s activity, then we
will learn about his tragedy when he learnt that the diagonal of the square is rationally not
commensurable with the length of its sides. So, for Pythagoras it was a real catastrophe
that the number did not correspond to the length. This “surprise” gave an impulse to
development of the concept of the Number, and to be more precise, to creation of the
theory of the irrational number. The developed correspondence between the Length and
the Number made the basis of the Euclidean geometry and moreover of its axiomatics (for
example suggested by Hilbert). In this regard the axiomatic of the Euclidean geometry
developed by Hilbert was the culmination of the identity of the concept of arithmeti-
cal number and quadratic length, many geometric key concepts have been derived from
arithmetical numerical properties.

The following move from the Euclidean geometry to the Riemann one does not
add any new ideas to the dichotomy. The Riemann geometry is just “a fibration of the
Euclidean geometries”, so that in every level there works the Euclidean geometry and the
common definition of length is used.

The Minkowski geometry abandons the definition of the length, but (though, as
is well known, Minkowski started thinking about geometry while studying the theory
of numbers) develops the problem without any connection with the concept of number.
Pythagoras’s tragedy does not matter any more! We can say the same about the modern
Finsler spaces, that are just fibrations of the levels in the Minkowski space.

Such excursus into history enables us to show enough courage to state the following:
we should build the Finsler geometry in close connection with the development of the
concept of the Number.

We can hope that this idea will be principle for the successive development of the
Finsler geometry in the present century. We should know on what level does the Finsler
generalizing of the Length is needed to generalize the concept of the Number. The answer
is not clear, though the reversed way of thinking is obvious: the non-Euclidean, not
quadratic Finsler metric function should be the measure of the generalized number.

There emerges a very important question: where does poly-numbers are crucial in
the Finsler geometry, so that you can do nothing without them? Pythagoras’s tragedy
is clear: the rational numbers are not enough to measure the length of the unit square
diagonal. The origin of the transcendental numbers is also clear: the unit circumference
diameter cannot be measured by the algebraic irrational number.

The anisotropy is presumed in generalizing the Euclidean geometry. In this connec-
tion the indicatrix becomes the key concept: it is the surface of ends of the unit vectors
that issue at a fixed point. In the Euclidean geometry the sphere is the indicatrix. It
symbolizes the isotropy of the space, equality of its properties in all directions. As the
uniformity condition appears in the definition of the Minkowski space and the Finsler
space, the indicatrix proves anisotrophy of any vectors (not necessarily the unit ones).
The move from The Euclidean geometry to the Minkowski one symbolizes refusal from



44 Asanov G. S. Finsleroid–space supplemented by angle and scalar product

the total isotropy of the space and after the move the corresponding indicatrix cannot be
a second-order surface any more.

From the point of view of anisotropy, The Berwald-Moor metrics is characterized by
the presence of preferred directions, that in their number equal the number of dimensions
of the space.

In the present work the necessary basic definitions and results of calculations of
the associated values for the Finsleroid-geometry (EPD

g –geometry), that admit only one
preferred direction are presented. Our previous investigation [5,6] showed that the study
is promising. In fact, EPD

g -approach is applied to the development of new study of new
field in the metric differential geometry and can be effective in Finsler and Minkowski
geometries. The observation that the one-vector Finsler metric function associated with
EPD

g -space quite naturally admits the promising two-vector generalizing , in this way
generating the angle and the scalar product, is the key point of the article.

Attempts to introduce the angle and into the Finsler and Minkowski spaces always
striked against the ambiguity:

“Therefore no particular angular measure can be entirely natural in Minkowski ge-
ometry. This is evidenced by the innumerable attempts to define such a measure, none
of which found general acceptance“. (Busemann [2], p. 279.)

“Unfortunately, there exists a number of distinct invariants in a Minkowskian space
all of which reduce to the same classical euclidean invariant if the Minkowskian space
degenerates into a euclidean space. Consequently, distinct definitions of the trigonometric
functions and of angles have appeared in the literature concerning Minkowskian and
Finsler spaces“. (Rund [3], p. 26)

The fact that the attempts have never been unambiguous seems to be due to a lack
of the proper tools. For the opinion was taken for granted that the angle ought to be
defined or constructed in terms of the basic Finslerian metric tensor (and whence ought to
be explicated from the initial Finslerian metric function). Let us doubt the opinion from
the very beginning. Instead, we would like to raise alternatively the principle that the
angle is a concomitant of the geodesics (and not of the metric function proper). The angle
is determined by two vectors (instead of one vector in case of the length) and actually
implies using a due extension of the Finslerian metric function to a two-vector metric
function (to a scalar product). Below, the principle is applying to the Finsleroid space in
a systematic way. The essence of the generalizing can be visualized in deformation of the
Euclidean sphere (which is the indicatrix of the Euclidean space).

We devote the section 1 to geodesic equations. Remarkably, the equations admit a
simple and clear solution. Then we can find the angle between two vectors. Usually it is
expected that the angle measure should be additive (for the angles with the same vertex).
The angle differs from the Euclidean angle in the quasi–Euclidean space only by the
constant factor and consequently is additive. The cosine rule is held true when changing
the Euclidean angle by the found angle. We get the corresponding scalar product.

Formally, the method of introducing the vector length with the help of the square
root of a quadratic form lies in the basis of Euclidean conception. In the present work
we use the concrete axial–symmetric generalizing of such method, basing ourselves on
constructive ideas of the Finsler geometry. We introduce the corresponding Finsler metric
function and in detail describe its basic properties and consequences. The generalizing is
characterized by one non–dimentional parameter, that is denoted below as g.

Then the section 2 introduces designations, definitions and basic concepts of the
space EPD

g . On this fact the supposition that the space includes one emphasized direction,
that we will often call the Z axis, is based. The abbreviations FMF and FMT will be
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used to denote the Finsler metric function and Finsler metric tensor accordingly. The
characteristic parameter g can take the value between −2 and 2; if g = 0 the space EPD

g is
driven to the common Euclidean space. After preliminary introduction of characteristic
quadratic form B, that differs from the Euclidean sum of squares by the presence of the
mixed term (see (2.22)), we define FMF K of the space EPD

g with the help of the formula
(2.30) – (2.33). The characteristic feature of the formula is the presence of the function
“arctan”. Then we calculate the tensorial values of the space. There is a phenomenon
that simplifies the construction: the associated Cartan tensor that turns out to have a
simple algebraic structure (2.66) – (2.67). In particular this unique phenomenon leads
to the conclusion that the indicatrix of the space EPD

g is a space of constant positive
curvature. The curvature value depends on the parameter g according to the rule (2.73).

The section 3 introduces the concept of quasi–Euclidean reflection of the EPD
g –space.

The concept turns out to be quite promising because the quasi–Euclidean space is simple in
many aspects, so that the corresponding transformation simplifies different calculations.
It is not flat, but is conformally flat. The section 4 gives idea about some interesting
properties of the quasi–Euclidean metric tensor. Figures that illustrate the Finsleroids
with different values of the parameter g are placed in the Appendix.

1. Derivation of geodesics and angle in associated quasi–euclidean space

For the space under study, the geodesics should be obtained as solutions to the
equation

d2Rp

ds2
+ Cq

p
r(g; R)

∂Rq

∂ds

∂Rr

∂ds
= 0 (1)

which coefficients Cp
q
r are given by the list placed at the end of Sec. 2. To avoid

complications of calculations involved, it proves convenient to transfer the consideration
in the quasi–euclidean approach (see Secs. 3 and 4). Accordingly, we put

√
gpq(g; R)dRpdRq =

√
npq(g; t)dtpdtq (2)

and
Rp(s) = µp(g; tr(s)) (3)

together with
dRp(s)

ds
= µp

q(g; tr(s))
dtq(s)

ds
, (4)

where µp(g; tr) and µp
q(g; tr) are the coefficients given, respectively by Eqs. (3.14) and

(3.38) – (3.40). Let a curve C: tp = tp(s) be given in the quasi-euclidean space, with the
arc-length parameter s along the curve being defined by the help of the differential

ds =
√

npq(g; t)dtpdtq, (5)

where npq(g; t) is the associated quasi-euclidean metric tensor given by Eq. (3.49) in Part
II. Respectively, the tangent vectors

up =
dtp

ds
(6)

to the curve are unit, in the sense that

npq(g; t)upuq = 1. (7)
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Since Lp = ∂S/∂tp, we have

Lpu
p =

dS

ds
. (8)

Here, S2(t) = npq(g; t)tptq = rpqt
ptq (see Eq. (3.46)). Using Eq. (4.16) leads through

well-known arguments to the following equation of geodesics in the quasi–euclidean space:

d2t

ds2
=

1

4
G2 t

S2
Hpqu

puq, (9)

where Hpq = h2(npq − LpLq) (see Eq. (4.4)) and t = {tp}. We obtain

d2t

ds2
=

1

4
g2 t

S2

(
1− (

dS

ds
)2

)
=

1

4
g2(a2 − b2)

t

S4
(10)

and
d2t

ds2
=

1

4
g2(a2 − b2)

t

S4
(11)

with
S2(s) = a2 + 2bs + s2, (12)

where a and b are two constants of integration.
If we put

S(∆s) =
√

a2 + 2b∆s + (∆s)2 (13)

and
t1 = t(0), t2 = t(∆s), (14)

then we get
a =

√
(t1t1) (15)

and
S(∆s) =

√
(t2t2) (16)

together with

(t1t2) = aS(∆s) cos
[
h arctan

√
a2 − b2 ∆s

a2 + b∆s

]
. (17)

Here, t1 and t2 are two vectors with the fixed origin O; they point to the beginning of
the geodesic and to the end of the geodesic, respectively. The notation parenthesis couple
(..) is used for the euclidean scalar product, so that (t1t1) = rpqt

p
1t

q
1, (t1t2) = rpqt

p
1t

q
2, and

rpq is a euclidean metric tensor; rpq = δpq in case of orthogonal basis; δ stands for the
Kronecker symbol. From (1.15)-(1.17) it directly follows that

√
a2 − b2 ∆s

a2 + b∆s
= tan

[1

h
arccos

(t1t2)√
(t1t1)

√
(t2t2)

]
. (18)

The equality (1.18) suggests the idea to introduce

DEFINITION. The EPD
g -associated angle is given by

α
def
=

1

h
arccos

(t1t2)√
(t1t1)

√
(t2t2)

, (19)

so that

α =
1

h
αeuclidean. (20)
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Such an angle is obviously additive:

α(t1, t3) = α(t1, t2) + α(t2, t3). (21)

Also,
α(t, t) = 0. (22)

With the angle (1.19), we ought to propose

DEFINITION. Given two vectors t1 and t2, we say that the vectors are EPD
g -

perpendicular, if
cos (α(t1, t2)) = 0. (23)

Since the vanishing (1.23) implies

αquasi−euclidean(t1, t2) =
π

2
, (24)

in view of 1.20) we ought to conclude that

αeuclidean(t1, t2) =
π

2
h ≤ π

2
. (25)

Therefore, vectors perpendicular in the quasi-euclidean sense proper look like acute vectors
as observed from associated euclidean standpoint.

With the equality

(
√

a2 − b2 ∆s)2 + (a2 + b∆s)2 ≡ a2S2(∆s), (26)

we also establish the relations

√
a2 − b2 ∆s = aS(∆s) sin α (27)

and
a2 + b∆s = aS(∆s) cos α. (28)

They entail the equality
b√

a2 − b2
=

S(∆s) cos α− a

S(∆s) sin α
(29)

from which the quantity b can be explicated.
Thus each member of the involved set {a, b, ∆s, S(∆s)} can be explicitly expressed

through the input vectors t1 and t2. For many cases it is worth rewriting the equality
(1.24) as

S2(∆s) = (∆s)2 − a2 + 2(a2 + b∆s). (30)

Thus we have arrived at the following substantive items:

The EPD
g -Case Cosine Theorem

(∆s)2 = S2(∆s) + a2 − 2aS(∆s) cos α ; (31)

The EPD
g -Case Two-Point Length

(∆s)2 = (t1t1) + (t2t2)− 2
√

(t1t1)
√

(t2t2) cos α ; (32)

The EPD
g -Case Scalar Product
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< t1, t2 >=
√

(t1t1)
√

(t2t2) cos α ; (33)

The EPD
g -Case Perpendicularity

< t1, t2 >=
√

(t1t1)
√

(t2t2). (34)

The identification

|t2 ª t1|2 = (∆s)2 (35)

yields another lucid representation

|t2 ª t1|2 = (t1t1) + (t2t2)− 2
√

(t1t1)
√

(t2t2) cos α . (36)

The consideration can be completed by

THEOREM. A general solution to the geodesic equation (1.11) can explicitly be
found as follows:

t(s) =

=
S(s)

a

sin
[
h arctan

√
a2 − b2 (∆s− s)

a2 + b∆s + (b + ∆s)s

]

sin
[
h arctan

√
a2 − b2 ∆s

a2 + b∆s

] t1 +
S(s)

S(∆s)

sin
[
h arctan

√
a2 − b2 s

a2 + bs

]

sin
[
h arctan

√
a2 − b2 ∆s

a2 + b∆s

] t2.

(37)

The euclidean limit proper is

t(s)∣∣∣
g=0

=
(∆s− s)t1 + st2

∆s
= t1 + (t2 − t1)

s

∆s
,

so that the geodesics become straight. From (1.35) the equality

(t(s)t(s)) = S2(s) (38)

follows, in agreement with (1.12). Since the general solution (1.35) is such that the
right-hand side is spanned by two fixed vectors, t1 and t2, we are entitled concluding that
the geodesics under study are plane curves.

2. Finsleroid-space EPD
g of positive-definite type

Suppose we are given an N–dimensional vector space VN . Denote by R the vectors
constituting the space, so that R ∈ VN . Any given vector R assigns a particular direction
in VN . Let us fix a member R(N) ∈ VN , introduce the straightline eN oriented along the
vector R(N), and use this eN to serve as a RN–coordinate axis in VN . In this way we get
the topological product

VN = VN−1 × eN (1)



Hypercomplex Numbers in Geometry and Physics, 1, 2004 49

together with the separation

R = {R, RN}, RN ∈ eN and R ∈ VN−1. (2)

For convenience, we shall frequently use the notation

RN = Z (3)

and
R = {R, Z}. (4)

Also, we introduce a euclidean metric

q = q(R) (5)

over the (N − 1)–dimensional vector space VN−1.
With respect to an admissible coordinate basis {ea} in VN−1, we obtain the coordinate

representations
R = {Ra} = {R1, . . . , RN−1} (6)

and
R = {Rp} = {Ra, RN} ≡ {Ra, Z}, (7)

together with

q(R) =
√

rabRaRb, (8)

where rab are the components of a symmetric positive–definite tensor defined over VN−1.
The indices (a, b, . . . ) and (p, q, . . . ) will be specified over the ranges (1, . . . , N − 1) and
(1, . . . , N), respectively; vector indices are up, co–vector indices are down; repeated up–
down indices are automatically summed; the notation δa

b will stand for the Kronecker
symbol. The variables

wa = Ra/Z, wa = rabw
b, w = q/Z, (9)

where
w ∈ (−∞,∞), (10)

are convenient whenever Z 6= 0. Sometimes we shall mention the associated metric tensor

rpq = {rNN = 1, rNa = 0, rab} (11)

meaningful over the whole vector space VN .
Given a parameter g subject to the inequality

−2 < g < 2, (12)

we introduce the convenient notation

h =

√
1− 1

4
g2, (13)

G = g/h, (14)

g+ =
1

2
g + h, g− =

1

2
g − h, (15)

g+ = −1

2
g + h, g− = −1

2
g − h, (16)



50 Asanov G. S. Finsleroid–space supplemented by angle and scalar product

so that

g+ + g− = g, g+ − g− = 2h, (17)

g+ + g− = −g, g+ − g− = 2h, (18)

(g+)2 + (g−)2 = 2, (19)

(g+)2 + (g−)2 = 2, (20)

and

g+
g→−g⇐⇒ −g−, g+ g→−g⇐⇒ −g−. (21)

The characteristic quadratic form

B(g; R) = Z2 + gqZ + q2 ≡ 1

2

[
(Z + g+q)2 + (Z + g−q)2

]
> 0 (22)

is of the negative discriminant, namely

D{B} = −4h2 < 0, (23)

because of Eqs. (2.12) and (2.13). Whenever Z 6= 0, it is also convenient to use the
quadratic form

Q(g; w)
def
= B/(Z)2, (24)

obtaining

Q(g; w) = 1 + gw + w2 > 0, (25)

together with the function

E(g; w)
def
= 1 +

1

2
gw. (26)

The identity

E2 + h2w2 = Q (27)

can readily be verified. In the limit g → 0, the definition (2.22) degenerates to the
quadratic form of the input metric tensor (2.11):

B|g=0 = rpqR
pRq. (28)

Also

Q|g=0 = 1 + w2. (29)

In terms of this notation, we propose the FMF

K(g; R) =
√

B(g; R) J(g; R), (30)

where

J(g; R) = e
1
2
GΦ(g;R), (31)

Φ(g; R) =
π

2
+ arctan

G

2
− arctan

( q

hZ
+

G

2

)
, if Z ≥ 0, (32)

Φ(g; R) = −π

2
+ arctan

G

2
− arctan

( q

hZ
+

G

2

)
, if Z ≤ 0, (33)
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or in other convenient forms,

Φ(g; R) =
π

2
+ arctan

G

2
− arctan

(L(g; R)

hZ

)
, if Z ≥ 0, (34)

Φ(g; R) = −π

2
+ arctan

G

2
− arctan

(L(g; R)

hZ

)
, if Z ≤ 0, (35)

where
L(g; R) = q +

g

2
Z, (36)

and

Φ(g; R) =
π

2
− arctan

hq

A(g; R)
, if Z ≥ 0, (37)

Φ(g; R) = −π

2
− arctan

hq

A(g; R)
, if Z ≤ 0, (38)

where

A(g; R) = Z +
1

2
gq. (39)

This FMF has been normalized to show the handy properties

−π

2
≤ Φ ≤ π

2
, (40)

Φ =
π

2
, if q = 0 and Z > 0; Φ = −π

2
, if q = 0 and Z < 0. (41)

We also have

cot Φ =
hq

A
, Φ|

Z=0
= arctan

G

2
. (42)

It is often convenient to use the indicator of sign εZ for the argument Z:

εZ = 1, if Z > 0; εZ = −1, if Z < 0; (43)

Under these conditions, we call the considered space the EPD
g –space:

EPD
g = {VN = VN−1 × eN ; R ∈ VN ; K(g; R); g}. (44)

The right–hand part of the definition (2.30) can be considered to be a function K̆ of
the arguments {g; q, Z}, such that

K̆(g; q, Z) = K(g; R). (45)

We observe that
K̆(g; q,−Z) 6= K̆(g; q, Z), unless g = 0. (46)

Instead, the function K̆ shows the property of gZ–parity

K̆(−g; q,−Z) = K̆(g; q, Z). (47)

The (N − 1)–space reflection invariance holds true

K(g; R)
Ra↔−Ra⇔ K(g; R). (48)

It is frequently convenient to rewrite the representation (2.30) in the form

K(g; R) = |Z|V (g; w), (49)
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whenever Z 6= 0, with the generating metric function

V (g; w) =
√

Q(g; w) j(g; w). (50)

We have
j(g; w) = J(g; 1, w).

Using (2.25) and (2.31)–(2.35), we obtain

V ′ = wV/Q, V ′′ = V/Q2, (51)

(V 2/Q)′ = −gV 2/Q2, (V 2/Q2)′ = −2(g + w)V 2/Q3, (52)

j′ = −1

2
gj/Q, (53)

and also
1

2
(V 2)′ = wV 2/Q,

1

2
(V 2)′′ = (Q− gw)V 2/Q2, (54)

1

4
(V 2)′′′ = −gV 2/Q3, (55)

together with
Φ′ = −h/Q, (56)

where the prime (′) denotes the differentiation with respect to w.
Also,

(A(g; R))2 + h2q2 = B(g; R) (57a)

and
(L(g; R))2 + h2Z2 = B(g; R). (57b)

Sometimes it is convenient to use the function

E(g; w)
def
= 1 +

1

2
gw. (58)

The simple results for these derivatives reduce the task of computing the components
of the associated FMT to an easy exercise, indeed:

Rp
def
=

1

2

∂K2(g; R)

∂Rp
:

Ra = rabR
b K

2

B
, RN = (Z + gq)

K2

B
; (59)

gpq(g; R)
def
=

1

2

∂2K2(g; R)

∂Rp∂Rq
=

∂Rp(g; R)

∂Rq
:

gNN(g; R) = [(Z + gq)2 + q2]
K2

B2
, gNa(g; R) = gqrabR

b K
2

B2
, (60)

gab(g; R) =
K2

B
rab − g

radR
drbeR

eZ

q

K2

B2
. (61)

The reciprocal tensor components are

gNN(g; R) = (Z2 + q2)
1

K2
, gNa(g; R) = −gqRa 1

K2
, (62)
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gab(g; R) =
B

K2
rab + g(Z + gq)

RaRb

q

1

K2
. (63)

The determinant of the FMT given by Eqs. (2.59) – (2.60) can readily be found in
the form

det(gpq(g; R)) = [J(g; R)]2N det(rab) (64)

which shows, on noting (2.31) – (2.33), that

det(gpq) > 0 over all the definition range VN \ 0. (65)

The associated angular metric tensor

hpq
def
= gpq −RpRq

1

K2

proves to be given by the components

hNN(g; R) = q2K2

B2
, hNa(g; R) = −ZrabR

b K
2

B2
,

hab(g; R) =
K2

B
rab − (gZ + q)

radR
drbeR

e

q

K2

B2
,

which entails

det(hab) = det(gpq)
1

V 2
.

The use of the components of the Cartan tensor (given explicitly in the end of the
present section) leads, after rather tedious straightforward calculations, to the following
simple and remarkable result.

PROPOSITION 1. The Cartan tensor associated with the FMF (2.30) is of the
following special algebraic form:

Cpqr =
1

N

(
hpqCr + hprCq + hqrCp − 1

CsCs
CpCqCr

)
(66)

with

CtC
t =

N2

4K2
g2. (67)

By the help of (2.65), elucidating the structure of the curvature tensor

Spqrs
def
= (CtqrCp

t
s − CtqsCp

t
r) (68)

results in the simple representation

Spqrs = −CtC
t

N2
(hprhqs − hpshqr). (69)

Inserting here (2.66), we are led to

PROPOSITION 2. The curvature tensor of the space EPD
g is of the special type

Spqrs = S∗(hprhqs − hpshqr)/K
2 (70)
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with

S∗ = −1

4
g2. (71)

DEFINITION. FMF (2.30) introduces an (N − 1)–dimensional indicatrix hyper-
surface according to the equation

K(g; R) = 1. (72)

We call this particular hypersurface the Finsleroid, to be denoted as FPD
g .

Recalling the known formula R = 1 + S∗ for the indicatrix curvature (see [4]), from
(2.71) we conclude that

RFinsleroid = h2 = 1− 1

4
g2, 0 < RFinsleroid ≤ 1. (73)

Geometrically, the fact that the quantity (2.70) is independent of vectors R means that
the indicatrix curvature is constant. Therefore, we have arrived at

PROPOSITION 3. The Finsleroid FPD
g is a constant-curvature space with the

positive curvature value (2.73).

Also, on comparing between the result (2.73) and Eqs. (2.22)–(2.23), we obtain

PROPOSITION 4. The Finsleroid curvature relates to the discriminant (2.23) of
the input characteristic quadratic form (2.22) simply as

RFinsleroid = −1

4
D{B}. (74)

Last, we write down the explicit components of the relevant Cartan tensor

Cpqr
def
=

1

2

∂gpq

∂Rr
:

RNCNNN = gw3V 2Q−3, RNCaNN = −gwwaV
2Q−3,

RNCabN =
1

2
gwV 2Q−2rab +

1

2
g(1− gw − w2)wawbw

−1V 2Q−3,

RNCabc = −1

2
gV 2Q−2w−1(rabwc +racwb +rbcwa)+gwawbwcw

−3

(
1

2
Q + gw + w2

)
V 2Q−3;

and
RNCN

N
N = gw3/Q2, RNCa

N
N = −gwwa/Q

2,

RNCN
a
N = −gw(1 + gw)wa/Q2,

RNCa
N

b =
1

2
gwrab/Q +

1

2
g(1− gw − w2)wawb/wQ2,

RNCN
a
b =

1

2
gwδa

b /Q +
1

2
g(1 + gw − w2)wawb/wQ2,

RNCa
b
c = −1

2
g

(
δb
awc + δb

cwa + (1 + gw)racw
b
)
/wQ +

1

2
g(gwQ + Q + 2w2)waw

bwc/w
3Q2.

The components have been calculated by the help of the formulae (2.50) – (2.53).
The use of the contractions

RNCa
b
cr

ac = −g
wb

w

1 + gw

Q

(
N − 2

2
+

1

Q

)
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and
RNCa

b
cw

awc = −g
w

Q2
(1 + gw)wb

is handy in many calculations.
Also,

RNCN =
N

2
gwQ−1, RNCa = −N

2
g(wa/w)Q−1,

RNCN =
N

2
gw/V 2, RNCa = −N

2
gwa(1 + gw)/wV 2,

CN =
N

2
gwRNK−2, Ca = −N

2
gwa(1 + gw)w−1RNK−2,

CpC
p =

N2

4K2
g2.

3. Quasi–euclidean map of Finsleroid

It is possible to indicate the diffeomorphism

FPD
g

ig
=⇒ SPD (1)

of the Finsleroid FPD
g ⊂ VN to the unit sphere SPD ⊂ VN :

SPD = {R ∈ SPD : S(R) = 1}, (2)

where
S(R) =

√
rpqRpRq ≡

√
(RN)2 + rabRaRb (3)

is the input euclidean metric function (see (2.11)).
The diffeomorphism (3.1) can always be extended to get the diffeomorphic map

VN
σg

=⇒ VN (4)

of the whole vector space VN by means of the homogeneity:

σg · (bR) = bσg ·R, b > 0. (5)

To this end it is sufficient to take merely

σg ·R = ||R||ig ·
( R

||R||
)
, (6)

where
||R|| = K(g; R). (7)

Eqs. (3.1)–(3.7) entail
K(g; R) = S(σg ·R). (8)

The identity (2.57) suggests to take the map

R̄ = σg ·R (9)

by means of the components
R̄p = σp(g; R) (10)
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with

σa = RahJ(g; R), σN = A(g; R)J(g; R), (11)

where J(g; R) and A(g; R) are the functions (2.31) and (2.39). Indeed, inserting (3.11) in
(3.3) and taking into account Eqs. (2.30) and (2.57), we get the identity

S(R̄) = K(g; R) (12)

which is tantamount to the implied relation (3.8).

PROPOSITION 5. The map given explicitly by Eqs. (3.9)–(3.11) assigns the
diffeomorphism between the Finsleroid and the unit sphere according to Eqs. (3.1)–(3.8).

Therefore, we may also call the operation (3.1) the quasi–euclidean map of
Finsleroid.

The inverse
R = µg · R̄, µg = (σg)

−1, (13)

of the transformation (3.9) – (3.11) can be presented by the components

Rp = µp(g; R̄) (14)

with
µa = R̄a/hk(g; R̄), µN = I(g; R̄)/k(g; R̄), (15)

where
k(g; R̄)

def
= J(g; µ(g; R̄)) (16)

and

I(g; R̄) = R̄N − 1

2
G

√
rabR̄aR̄b. (17)

The identity
µp(g; σ(g; R)) ≡ Rp (18)

can readily be verified. Notice that

√
rabR̄aR̄b

R̄N
=

hq

A(g; R)
, wa =

Ra

RN
=

R̄a

hI(g; R̄)
, (19)

and √
B/Z = S/I,

√
Q = S/I. (20)

The σg–image

φ(g; R̄)
def
= Φ(g; R)|

R=µ(g;R̄)
(21)

of the function Φ described by Eqs. (2.31) – (2.42) is of a clear meaning of angle:

φ(g; R̄) = arccos
R̄N

√
rabR̄aR̄b

=





π

2
− arctan

√
rabR̄aR̄b

R̄N
, if R̄N ≥ 0;

−π

2
− arctan

√
rabR̄aR̄b

R̄N
, if R̄N ≤ 0;

(22)

which ranges over

−π

2
≤ φ ≤ π

2
. (23)
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We have

φ =
π

2
, if R̄a = 0 and R̄N > 0; φ = −π

2
, if R̄a = 0 and R̄N < 0, (24)

and also
φ|

R̄N =0
= 0. (25)

Comparing Eqs. (3.16) and (2.31) shows that

k = e
1
2
Gφ . (26)

The right–hand parts in (3.11) are homogeneous functions of degree 1:

σp(g; bR) = bσp(g; R), b > 0. (27)

Therefore, the identity
σp

s(g; R)Rs = R̄p (28)

should be valid for the derivatives

σq
p(g; R)

def
=

∂σq(g; R)

∂Rp
. (29)

The simple representations

σN
N (g; R) =

(
B +

1

2
gqA

)
J

B
, (30)

σN
a (g; R) = −g(ZA−B)

2q

JrabR
b

B
, (31)

σa
N(g; R) =

1

2
gq

JRah

B
, (32)

σa
b (g; R) =

(
Bδa

b −
grbcR

cRaZ

2q

)
Jh

B
, (33)

and also the determinant value

det(σq
p) = hN−1JN (34)

are obtained. The relations

σa
b R

b = JhRa(AZ+q2)/B, rcdσa
c σ

b
d = J2h2

[
rab − g(RaRbZ/qB) +

1

4
g2(RaRbZ2/B2)

]

are handy in many calculations involving the coefficients {σq
p}.

Henceforth, to simplify notation, we shall use the substitution

tp = R̄p. (35)

Again, we can note the homogeneity

µp(g; bt) = bµp(g; t), b > 0, (36)

for the functions (3.15), which entails the identity

µp
s(g; t)ts = Rp (37)
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for the derivatives

µp
q(g; t)

def
=

∂µp(g; t)

∂tq
. (38)

We find

µN
N = 1/k(g; t)− 1

2
g

m(t)I(g; t)

k(g; t)(S(t))2
, µN

a =
1

2
g

ract
cI∗(g; t)

k(g; t)(S(t))2
, (39)

µa
N = −1

2
g

m(t) ta

hk(g; t)(S(t))2
, µa

b =
1

hk(g; t)
δa
b +

1

2
g

tN tarbct
c

m(t) hk(g; t)(S(t))2
, (40)

where
m(t) =

√
rabtatb, (41)

I∗(g; t) = hm(t)− 1

2
gtN , (42)

and
S(t) =

√
rrstrts ≡

√
(tN)2 + rabtatb. (43)

The relations

∂(1/k(g; t))

∂tN
= −1

2
g

m(t)

hk(g; t)(S(t))2
,

∂(1/k(g; t))

∂ta
=

1

2
g

tNrabt
b

m(t)hk(g; t)(S(t))2

are obtained.
Also

Rpµ
p
q = tq, tpσ

p
q = Rq. (44)

The unit vectors

Lp def
=

tp

S(t)
, Lp

def
= rpqL

q (45)

fulfil the relations

Lq = lpσq
p, lp = µp

qL
q, lp = σq

pLq, Lp = µq
plq, (46)

where lp = Rp/K(g; R) and lp = gpq(g; R)lq are the initial Finslerian unit vectors.
Now we use the explicit formulae (2.61) – (2.62) and (3.29) – (3.32) to find the trans-

form
nrs(g; t)

def
= σr

pσ
s
qg

pq (47)

of the FMT gpq under the FPD
g –induced map (3.9) – (3.11), which results in

PROPOSITION 6. One obtains the simple representation

nrs = h2rrs +
1

4
g2LrLs. (48)

The covariant version reads

nrs =
1

h2
rrs − 1

4
G2LrLs. (49)

The determinant of this tensor is a constant:

det(nrs) = h2(1−N) det(rab). (50)

Notice that

LpLp = 1, npqL
q = Lp, npqLq = Lp, npqL

pLq = 1, npqt
ptq = (S(t))2.
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Eq. (5.47) obviously entails

gpq = nrs(g; t)σr
pσ

s
q . (51)

4. Quasi-euclidean metric tensor

Let us introduce

DEFINITION. The metric tensor (3.48) – (3.49) is called quasi-euclidean.

DEFINITION. The quasi-euclidean space

QN = {VN ; npq(g; t); g} (1)

is an extension of the euclidean space {VN ; rpq} to the case g 6= 0.

The transformation (3.47) can be inverted to read

gpq = σr
pσ

s
qnrs. (2)

For the angular metric tensor (see the formula going below Eq. (2.64)), from (3.46) and
(4.2) we infer

hpq = σr
pσ

s
qHrs

1

h2
, (3)

where
Hrs

def
= rrs − LrLs (4)

is the tensor showing the orthogonality property

LrHrs = 0. (5)

One can readily find that

Hrs = h2(nrs − LrLs).

PROPOSITION 7. The quasi-euclidean metric tensor (3.48) – (3.49) is conformal
to the euclidean metric tensor.

Indeed, if we consider the map

R̄p → R̃ : R̃p = f(g; R̄)R̄p/h (6)

with

f(g; R̄) = a

(
g;

1

2
S2(R̄)

)
(7)

and use the coefficients

kp
q

def
=

∂R̃p

∂R̄q
= (fδp

q + a′R̄pR̄q)/h (8)

to define the tensor
cpq(g; R̃)

def
= kp

rk
q
sn

rs(g; R̄), (9)

we find that
cpq = f 2rpq (10)
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whenever

f =

[
1

2
S2(R̄)

]γ/2

, (11)

where

γ = h− 1 ≡
√

1− g2

4
− 1 (12)

is the parameter. The proof of Proposition 7 is complete.
Let us now use the obtained quasi-euclidean metric tensor npq(g; t) to construct the

associated quasi-euclidean Christoffel symbols Np
r
q(g; t). We find consecutively:

npq,r
def
=

∂npq

∂tr
= −1

4
G2(HprLq + HqrLp)/S, (13)

and

Np
r
q = nrsNpsq, Nprq =

1

2
(npr,q + nqr,p − npq,r), (14)

together with

Nprq(g; t) = −1

4
G2HpqLr/S, (15)

which eventually yields

Np
r
q(g; t) = −1

4
G2LrHpq/S. (16)

Comparing the representation (4.16) with the identity (4.5) shows that

tpNp
r
q = 0, Np

s
s = 0, Nt

s
rNp

t
q = 0. (17)

Also,
∂Np

r
q

∂ts
− ∂Np

r
s

∂tq
= −1

4
G2(HpqHs

r −HpsHq
r)/S2. (18)

Using the identities (4.17)-(4.18) in the quasi-euclidean curvature tensor:

Rp
r
qs(g; t)

def
=

∂Np
r
q

∂ts
− ∂Np

r
s

∂tq
+ Np

w
qNw

r
s −Np

w
sNw

r
q, (19)

we arrive at the simple result:

Rprqs(g; t) = −1

4
G2(HpqHrs −HpsHqr)/S

2. (20)

This infers the identities

LpRpqrs = LqRpqrs = LrRpqrs = LsRpqrs = 0. (21)

Note. Because of the transformation rules (3.12) and (3.47), the representation
(4.20) is tantamount to Eqs. (2.69)–(2.70). Therefore we have got another rigorous proof
of Proposition 3, and of Eq. (2.71), concerning the Finsleroid curvature.
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Figure 1: g = 0.2 and g = −0.2
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Figure 2: g = 0.6 and g = −0.6
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Figure 3: g = 1.96 and g = −1.96

Figure 4: 3D-images of Finsleroid; g = 0.6
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In the first part of this work a real axis of the space associated with the H3 algebra and
the lines parallel to this axis are interpreted as the world lines of resting particles; surface of
simultaneity is used for introduction of a distance between the real axis and a line parallel
thereto. The coordinate system similar to a polar one can be introduced on this surface such
that this allows us to reveal its simplest invariant transformations. In the second part of this
paper the Lorentz transformations in form of special kind of rotations in the space associated
with H4 algebra are presented.

Introduction

The H3 and H4 algebras belong to the commutative–associative algebras of the Hn

type which are of the simplest structure. These algebras are characterized by some pre-
ferred basis. The multiplication of numbers is realized in terms of this basis in a compo-
nentwise manner similarly to the addition in arbitrary algebras. On the other side, in Hn

type algebras, which can be called hyperbolic, H3 and H4 algebras directly follow after
the algebras of real (H1) and double (H2) numbers, which possessed important properties
for their physical applications [6, 11]. We set forth an assumption of ”inheriting” these
properties by 3- and 4- dimensional algebras under consideration. As a motivation of
this assumption we recall the relation between Berwald–Moor’s metrics and H4 algebra in
Finsler generalization of the relativity theory [1]. From the point of view of possible appli-
cations, hyperbolic H4 algebra is the most promising one because the n = 4 dimensional
spaces have the topological preference [7]. However, H3 algebra possesses one evident
advantage. It is possible to use the computer visualization animation for figures, surfaces,
and lines in the three dimensional metrical space associated with this algebra. Although it
is not worth overestimating the analytical capacities of such applications, it gets a special
visuality to geometric properties of this space. Therefore a sufficiently general approach
to physical treatment of the hyperbolic space properties, offered in the first part of this
paper, is represented for a space accounted with H3 algebra. Its properties give the cube
of norm as

|A|3 = |a1a2a3|,
where ai are components of the vector in the preferred basis, combined from three numbers
ei, where i = 1, 2, 3, with properties (ei)

2 = ei, ei · ej = 0 when i 6= j. Real numbers on a
line can be shared in two classes: they are positive numbers, placed on the right side from
zero, and the negative ones, placed on the left side from zero. Two isotropic lines in the
double numbers algebra divide the pseudo-euclidian plane into 22 quadrants. Similarly to
this the associated space is divided into 23 octants, and for all numbers appropriated to
one octant points it is typical that the same sign combination of components is taken with
respect to the preferred basis. The boundaries of the octants are three isotropic planes
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with equations ai = 0, where i = 1, 2, 3. It will be noted also that since a hyperbolic
algebras are algebras with a unity, defined by an expression

1 = e1 + e2 + · · ·+ en,

two octants of the treated space can be preferably be selected. They are the octants,
containing 1 and -1; they are characterized by numbers with all positive or all negative
components, respectively.

Using considered algebras requires an availability of euclidian or pseudo-euclidian
properties. In the order of algebras: the Dirac algebra [2], quaternions [3], biquaternions
[5] – the existence of such properties provides a classical appearance of the norm of the
number. However, there is a slight amount of such algebras, but amongst commutative-
associative algebras only the double number algebra belongs to such class, in which a
square of the norm of the numbers is given by

|A|2 = |(a1)2 − (a2)2|

(see [4]). Chronogeometry method [8], [12] gives an other opportunity to establishing
properties which are similar with the properties of euclidian or pseudo-euclidian spaces,
in the spaces associated with the considered algebras; the first part of this paper is devoted
to application of this method to H3. Some more opportunity to establishing the sought
properties appears on application of symmetric polyform associated with the algebra [9],
which, for example, has the following form for H3 algebra:

(A,B,C) =
1

3!
(a1b2c3 + · · ·+ a3b2c1).

The second part of this paper is connected with such opportunity applied to H4 alge-
bra, where the form having appearance as pseudo-euclidian metric is determined by a
polylinear form of four vectors.

1. A simultaneity surface in the commutative–associative algebras (as exam-
plified by H3)

1.1. Axiomatics

We shall treat the following statements, playing the role of axioms, as a principle to
interpret physically the properties of the considered algebras class.

1. It is possible to connect an algebra number with some spatial-temporal event.

2. The real axis of the space, which direction is given by means of the unity of the
algebras, is treated as a temporal axis, while the norm of the number is interpreted as an
observer’s time interval whose world line coincides with the vector corresponded to this
number.

3. The increase of a relative velocity of particle or signal results in increasing an
inclination of tangent line to the particles world line in the given point to the observer
world line, and resting material points have world lines which are parallel to the observer
line.

4. Light signals, which have a maximal velocity, are connected with isotropic hy-
persurfaces of the algebra; and it is supposed that the velocity of the light signals does
not depend on their propagation direction. According to these statements two selected
octants with 1 and −1, which are referred to above, are the analogs of the cone of the
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future and the past Minkowski space in the space associated with H3 algebra, respectively.
Contrary to the Minkowski space in the considered space a domain outside these cones
also possesses isotropic directions, because consists of six side cones. In this paper we
restrict our attention to the most common particular case, when the observer world line
coincides with the real axis.

1.2. Exponential form of the H3 algebra number representation with respect to the
basis (1, j, k)

Any number in the selected basis is represented as:

A = a1 · e1 + a2 · e2 + a3 · e3.

For an exponential function in terms of this basis the following formula takes place:

exp(a1 · e1 + a2 · e2 + a3 · e3) = exp(a1) · e1 + exp(a2) · e2 + exp(a3) · e3. (1)

Since in the considered algebra we get |A|3 = |a1a2a3|, any number with ai > 0 is
represented as

A = |A| · exp(b1e1 + b2e2 + b3e3)

with a restriction
b1 + b2 + b3 = 0, (2)

which implies the identity:

| exp(b1e1 + b2e2 + b3e3)| = 1.

The other basis of the algebra is composed from vectors:





1 = e1 + e2 + e3

j = sin ϕ0 · e1 + sin(ϕ0 + 2π/3) · e2 + sin(ϕ0 + 4π/3) · e3

k = cos ϕ0 · e1 + cos(ϕ0 + 2π/3) · e2 + cos(ϕ0 + 4π/3) · e3

(3)

The vectors appearing in this basis are mutually orthogonal (in the usual euclidian
sense), while an arbitrary parameter ϕ0 can be treated in a certain sense as the angle
of a simultaneous rotation of a pair of vectors j, k around the real axis. If t, x, y – are
coordinates of the number in a new basis, then according to the transformation rules of
coordinates of the number we have a system in the other basis:





a1 = t + sin ϕ0 · x + cos ϕ0 · y
a2 = t + sin(ϕ0 + 2π/3) · x + cos(ϕ0 + 2π/3) · y
a3 = t + sin(ϕ0 + 4π/3) · x + cos(ϕ0 + 4π/3) · y

(4)

from which it follows that t = (a1 +a2 +a3)/3. Therefore by (2) the number representable
in a exponential form in the basis (1,j,k) is given by

A = |A| · eα·j+β·k.

If we modify this exponential representation, introducing an definition
ρ =

√
α2 + β2, we obtain

A = |A| · eρ(cos ϕ·j+sin ϕ·k). (5)
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Thus, in agreement with (5), the number at this representation is given by three parame-
ters: the norm of the number |A|, the ”radial coordinate” ρ, and the ”angle coordinate”
ϕ. Making use of (1) and (3), formula (5) takes simple and elegant form in components:





a1 = |A| · exp(ρ sin[ϕ0 + ϕ])

a2 = |A| · exp(ρ sin[ϕ0 + 2π/3 + ϕ])

a3 = |A| · exp(ρ sin[ϕ0 + 4π/3 + ϕ])

1.3. Method of setting the distance between the real axis and the parallel line.

For determination of the distance between the world lines of resting particles, one of
which lying on the real axis, we use the chronogeometry method. Consider the exchange
of signals with the constant velocity ν ≤ c; for simplicity we shall arrange point-events of
signal transmission and the reception of the reverse signal on the real axis symmetrically
with respect to zero time moment. Because of an equality of lengths of straight and
reverse signals velocity |B − A1| = |A2 −B|, so we have:

(a1 + T )(a2 + T )(a3 + T ) = (T − a1)(T − a2)(T − a3),

where ai + T > 0, T − ai > 0, which after expanding takes form:

(a1 + a2 + a3) · T 2 + a1a2a3 = 0. (6)

1

2

O

t

A

A

B

Figure 1: The measuring of a distance between the world lines by pre-light signals exchange.

The multitude of points-events satisfied to equation (6) form a surface of a simul-
taneity: it is for the observer on the real axis, being in the point with T coordinate,
all these events are taking place in the same zero moment of time. Point A = (0, 0, 0)
belongs to the simultaneity surface, and the tangent plane to this surface in the origin
has an equation:

a1 + a2 + a3 = 0. (7)

Substitution of (4) into (6) allows to obtain the equation of the simultaneity surface in
form of the dependence of the time of the signal passing (on a clock of resting observer)
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T from introduced coordinates {t, x, y} of point of the simultaneity surface:

T 2 =
1

12
(x2 + y2)− 1

3

{
t2 +

1

t

[
3

4
xy(y · sin 3ϕ0 − x · cos 3ϕ0)

+ x3 sin ϕ0 sin(ϕ0 + 2π/3) sin(ϕ0 + 4π/3) + y3 cos ϕ0 cos(ϕ0 + 2π/3) cos(ϕ0 + 4π/3)
]}

.

According to this equation (and similar equations for other algebras, in particularly,
H4 algebra) the first items on the right side have an euclidian form, and then they domi-
nate on other remaining items, square of travel time of signal depends linearly on square
of the euclidian distance in the world lines space, which can be useful for the next physical
interpretations.

1.4. The system of curvilinear coordinates of the simultaneity surface and the trans-
formations mapping it to itself

Keeping in mind an important of an invariant transformations in modern physics, we
shall briefly consider the topic of finding the transformations of the simultaneity surface,
mapping it to itself. We introduce two-dimension coordinate system {ρ, ϕ} on this surface,
somewhat analogous to polar coordinate system on two-dimension plane to get:





a1 = (T − ρ) · eR(ρ,ϕ) sin(ϕ0+ϕ) − T,

a2 = (T − ρ) · eR(ρ,ϕ) sin(ϕ0+2π/3+ϕ) − T,

a3 = (T − ρ) · eR(ρ,ϕ) sin(ϕ0+4π/3+ϕ) − T,

(8)

where the function R = R(ρ, ϕ) taken from transcendent equation is obtaining by using
the coordinates (8) into (6):

Z̄3 − Z̄2
[
e−R sin(ϕ0+ϕ) + e−R sin(ϕ0+2π/3+ϕ) + e−R sin(ϕ0+4π/3+ϕ)

]

+2Z̄
[
eR sin(ϕ0+ϕ) + eR sin(ϕ0+2π/3+ϕ) + eR sin(ϕ0+4π/3+ϕ)

]− 4 = 0,

where Z̄ = (T − ρ)/T .

Figure 2: Curvilinear coordinates system ρ, φ on simultaneity surface.
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In the vicinity of zero at a1, a2, a3 ¿ 1, R ¿ 1, ρ ¿ 1, the equations (8) are got
simplified:





a1 ∼= R · T · sin(ϕ0 + ϕ),

a2 ∼= R · T · sin(ϕ0 + 2π/3 + ϕ),

a3 ∼= R · T · sin(ϕ0 + 4π/3 + ϕ),

so that
a1 + a2 + a3 ∼= 0 and (a1)2 + (a2)2 + (a3)2 ∼= (R · T )2. (9)

Thus, according to (9), the coordinate system (8) is distinguished: in the vicinity
of zero the parameter R is proportional to euclidian distance from a point, located on the
simultaneity surface, to the center of this surface, in which R = 0.

Then independent transformations of the simultaneity surface we seek are ”rotations”
by angle ∆ϕ(ϕ → ϕ + ∆ϕ) and ”a similarity transformations” with a coefficient K(ρ →
K · ρ).

2. The representation a Lorentz transformations by rotations in the space,
associated with H4 algebra.

Following [10], we define the inner product of two arbitrary (with positive values of
components) vectors A and B in the space under consideration by a symmetric four-form
of H4 space as:

(A,B) :=
(A, A,B,B)

|A| · |B| .

The inner product of two vectors satisfying to properties of positiveness, homogeneity,
and normality:
1. (A, B) > 0;
2. (kA, B) = (A, kB) = k(A,B);
3. (A, A) = |A|2.

The inner product of units vectors a = A/|A| and b = B/|B| may be regarded as an
angle characteristic, setting a relation between two directions defined by these vectors –
it is expressed via quotient components of these vectors (d = b/a):

(a, b) = (d1d2 + d1d3 + . . . d3d4)/6. (10)

Consider a basis in the space associated with H4 algebra, consisting of these vectors:




1 = e1 + e2 + e3 + e4,

j′ = 3e1 − e2 − e3 − e4,

k′ =
√

2(2e2 − e3 − e4),

l′ =
√

6(e3 − e4).

We denote coordinates of relation of two considered vectors in a new basis via
td, xd, yd, zd and expressing (10) via these components, we obtain:

(a, b) = t2d − x2
d − y2

d − z2
d.

We shall denote the nonlinear transformation of 4-space, associated with H4 algebra,
which remains all vectors in the direction setting by vector A in rest, and retains the
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introduced inner product, as a rotation of vector B round a vector A. Thus, in addition
to the other representations of Lorentz group [13] the representation by rotations round
arbitrary time-like axis in the space, associated with H4 algebra, can be used.

Results and conclusions

The method of determination of the distances between the world lines introduced
for the space associated with a commutative-associative H3 algebra (or H4) allows to
distinguish ”a euclidian part”.

A new geometric interpretation of the Lorentz transformations as rotations in the
space connected with algebra H4 is obtained. Arbitrary setting of a rotation axis is
possible; all said above gives a hope on the application of such new interpretation in
relativity physics.
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We introduce the notion of the generalized-analytical function of the poly–number variable,
which is a non–trivial generalization of the notion of analytical function of the complex variable
and, therefore, may turn out to be fundamental in theoretical physical constructions. As an
example we consider in detail the associative-commutative hypercomplex numbers H4 and an
interesting class of corresponding functions.

1. Introduction

Let Mn be an n-dimensional elementary manifold and Pn denote the system of n-
dimensional associative-commutative hypercomplex numbers (poly-numbers, n-numbers),
and a one-to-one correspondence between the sets be assigned. Under these conditions,
we choose in Pn the basis

e1, e2, ..., en; eiej = pk
ijek, (1)

X = x1 · e1 + x2 · e2 + · · ·+ xnen ∈ Pn, (2)

where e1, e2, ..., en – symbolic elements, pk
ij stand for characteristic real numbers, and

x1, x2, ..., xn – real coordinates with respect to the basis (e1 ≡ 1, e2, . . . , en). Obviously,
the numbers x1, x2, ..., xn can be used not only as the coordinates in Pn, but also as
coordinates in the manifold Mn , so that (x1, x2, ..., xn) ∈ Mn. Though in Mn we can
go over to any other curvilinear reference frame, the reference frame {xi}, as being built
by the help the basis of poly–numbers and a fixed one-to-one correspondence Mn ↔ Pn,
ought to be considered preferable (as well as any other reference frame connected with this
by non-degenerate linear transformation). The poly–number algebraic operations induce
the same operations in the elementary manifold (formally) and in the tangent space at any
point of the manifold (informally). Accordingly, the tangent spaces to Mn are isomorphic
to Pn.

The function

F (X) := f 1(x1, · · · , xn)e1 + · · ·+ fn(x1, · · · , xn)en (3)

of the poly–number variable, where f i are sufficiently smooth functions of n real variables,
will be considered to be a vector (contravariant) field in Mn. Hence, apart from addition
and multiplication by number, any operation of multiplication of vector fields

fk
(3) = f i

(1) · f j
(2) · pk

ij (4)

can also defined in Mn. It is useful but not obligatory to consider the space Mn to be the
main (“the examined”) object and the space Pn to be a sort of an instrument with the
help of which the space Mn is “examined”. In the general case the parallel transportation
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of a vector in the space Pn does not correspond to the “parallel transportation” of the
same vector in the space Mn, so that for a due definition of absolute differential (or the
covariant derivative) we are to have the connection objects or the quantities which may
replace them. If we avoid introducing the pair {Mn, Pn}, restricting the treatment only
to associative-commutative hypercomplex numbers, then it is natural to introduce the
definitions

dX := dxi · ei (5)

and

dF (X) := F (X + dX)− F (X) =
∂f i

∂xk
· ei · dxk. (6)

The function F (X) of poly-number variable X is called analytical, if such a function
F ′(X) exists that

dF (X) = F ′(X) · dX, (7)

where the multiplication in the right-hand part means the poly-number operation. From
(7) it follows that

∂f i

∂xk
= pi

kj · f ′j. (8)

Since with respect to the basis ei with the components e1 = 1 the equalities

pi
1j = δi

j (9)

hold, we have

f ′i =
∂f i

∂x1
. (10)

Inserting (10) in (8) yields the Cauchy-Riemann relations

∂f i

∂x1
− pi

kj ·
∂f j

∂x1
= 0 (11)

for the functions under study. The number n(n− 1) of these relations is growing quicker
that the number n of components of analytical function. This leads to the functional
restriction of the set of such functions at n > 2. The present work is just attempting
to elaborate a non-trivial extension of the notion of analytical function of poly-number
variable subject to the condition that number of the Cauchy–Riemann–type conditions
does nor exceed the number of unknown function–components. The first step in this
direction has been made above when introducing the pair {Mn, Pn}. Therefore it seems
natural to replace the differential 6) by means of the absolute differential

DF (X) := 5kf
i · ei · dxk, (12)

where

5kf
i :=

∂f j

∂xk
+ Γi

kj · f j (13)

is the covariant derivative, and Γi
kj means ”the connection coefficients”. Instead of the

formulas (8) and (10) we get
5kf

i = pi
kj · f ′j (14)

and
f ′i = 51 · f i, (15)

and the Cauchy–Riemann conditions take on the form

5kf
i − pi

kj · 51f
j = 0. (16)

Of course, ”the connection objects” Γi
kj in the formula (13) are not obligatory to be

uniform for all the set of functions obeying the conditions (16).
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2. Definitions and basic implications

Let us call the function F (X) generalized–analytical, if such a function F ′(X) exists
that

D̃F (X) = F ′(X) · dX, (17)

where
D̃F (X) ≡ 5̃kf

i · ei · dxk (18)

and the definition

5̃kf
i :=

∂f i

∂xk
+ γi

k (19)

has been used. It is assumed that under the transition from one (curvilinear) coordinate
system to another coordinate system the involved objects γi

k are transformed according
to the law

γi′
k′ =

∂xk

∂xk′ ·
∂xi′

∂xi
· γi

k −
∂xk

∂xk′ ·
∂2xi′

∂xk∂xi
· f i. (20)

It will be noted that such a definition entails that 5̃kf
i behaves like a tensor. The

quantities γi
k will be called the gamma-objects. In general we do not assume the relations

γi
k = Γi

kj · f j (21)

with a single ”connection object” Γi
kj for generalized-analytical functions. It would be

more precise to say of the pair {f i, γi
k}, such that the analytical function of poly-number

variable is the pair {f i, 0}, but this pair transform to the pair {f i, γi′
k′ 6= 0} under going

over from the special coordinate system to another curvilinear one.

From the definition of generalized-analytical functions it follows that

5̃kf
i = pi

kj · f
′j (22)

and
f
′j = 5̃1f

i; (23)

the respective generalized Cauchy–Riemann relations take on the form

5̃kf
j − pi

kj5̃1f
j = 0. (24)

The number of unknown functions in the pair {f i, γi
k} equals n + n2 = n(n + 1),

– which is more than the number n(n − 1) of the generalized Cauchy-Riemann relations
(24). Thus, to use the notion of generalized-analytical function in theoretical-physical
constructions it is necessary to additionally establish and formulate the set of require-
ments (possibly one requirement) which, when used in conjunction with the notion of
generalized-analytical function, would lead unambiguously to equations of some field of
physical meaning. Usually, they are n partial differential equations of second order for n
independent function-component field.

If {f i
(1), γ

i
(1)k} and {f i

(2), γ
i
(2)k} – two generalized-analytical functions, then their ar-

bitrary linear sum with real coefficients α, β is a generalized-analytical function. This
ensues directly from the definition, on using also the formulae (22)–(24) and (20). Thus,
we have

α · {f i
(1), γ

i
(1)k}+ β · {f i

(2), γ
i
(2)k} = {α · f i

(1) + β · f i
(2), α · γi

(1)k + β · γi
(2)k}. (25)

Now, let us consider the poly-number product of two generalized-analytical functions
f i

(1) and f j
(2):

fk
(3) = f i

(1) · f j
(2) · pk

ij (26)
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and try to find the object γi
(3)k such that the pair {f i

(3), γ
i
(3)k} be generalized-analytical

function. To this end we formally differentiate the left and right parts of (26) with respect
to xk and use the formula (22), obtaining

∂f i
(3)

∂xk
+ γi

(3)k = pi1
kjp

i
i1i2

f ′j(1)f
′j2
(2) + pi2

kjp
i
i1i2

f i1
(1)f

′j
(2). (27)

Owing to the formula
pr

im · pm
kj = pr

km · pm
ij (28)

(which is an implication of the properties of associativity and commutativity of poly-
numbers), we can write

∂f i
(3)

∂xk
+ γi

(3)k = pi
kjp

j
i1i2

(f ′i1(1)f
i2
(2) + f i1

(1)f
′i2
(2)), (29)

where
γi

(3)k = pi
i1i2

· (γi1
(1)kf

i2
(2) + f i1

(1)γ
i2
(2)k). (30)

The result (29) can conveniently be represented in terms of the absolute differential as
follows:

D[F(1)(X) · F(2)(X)] = [DF(1)(X)] · F(2)(X) + F(1)(X) · [DF(2)(X)] (31)

or
D[F(1)(X) · F(2)(X)] = [F ′

(1)(X) · F(2)(X) + F(1)(X) · F ′
(2)(X)] · dX. (32)

From the last formula we obtain the relation

[F(1)(X) · F(2)(X)]′ = F ′
(1)(X) · F(2)(X) + F(1)(X) · F ′

(2)(X). (33)

It remains to clarify whether the transformation law of the objects γi
(3)k under the

transitions to arbitrary coordinate system is correct. With this aim the formula (30)
should be written in a varied form:

γi
(3)k = pi

i1i2
· (γi1

(1)kf
i2
(2) + f i1

(1)γ
i2
(2)k) + (Γi

kmpm
i1i2

− Γm
ki1

pi
mi2

− Γm
ki2

pi
i1m) · f i1

(1)f
i2
(2), (34)

where Γj
im ≡ 0 with the respect to our special coordinate system; however, under the

transition to an arbitrary coordinate system the objects Γj
ik transform like ordinary con-

nection objects and in general Γj′
i′k′ 6= 0 . The condition Γj

ik ≡ 0 can also be replaced to
apply the more general condition

Γi
kmpm

i1i2
− Γm

ki1
pi

mi2
− Γm

ki2
pi

i1m ≡ 0 (35)

and, moreover, the three coefficients Γ in (35) can be regarded as different. It is possible to
restrict ourselves to but the class of generalized-analytical function obeying the property

((1)Γi
kmpm

i1i2
− (2)Γm

ki1
pi

mi2
− (3)Γm

ki2
pi

i1m) · f i1
(1)f

i2
(2) ≡ 0. (36)

Given the special coordinate system. If one has Γi
jk ≡ (1)Γi

jk ≡ (2)Γi
jk ≡ (3)Γi

jk ≡ 0,

then the tensor pk
ij is transported ”parallel” without any changes in components.

Thus, the poly-product of two generalized-analytical functions of poly-number vari-
able is again a generalized-analytical function, and the formula (33) takes place for deriva-
tives if one adopts that the ”connection coefficients” associated to the tensor pk

ij with
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respect to the special coordinate system vanishes identically over all three indices. In
terms of the pairs {f i, γi

k} the poly-product of two generalized-analytical function can be
written as follows:

{f i1
(1), γ

i1
(1)} · {f i2

(2), γ
i2
(2)} = {pi

i1i2
f i1

(1)f
i2
(2), p

i
i1i2

· (γi1
(1)kf

i2
(2) + f i1

(1))γ
i2
(2)k)}. (37)

So, the polynomial or the converged series with real or poly-number coefficients of one or
several generalized-analytical functions is a generalized-analytical function. The ordinary
differentiation rules are operative for the respective derivative (which was denoted my
means of the prime (′)) of such polynomials and series, whenever the tensor pk

ij with
respect to the special coordinate system vanishes identically over all three indices.

Since in such a theory of generalized-analytical functions of poly-number variable
(in which the ”connection objects” as well as the gamma-objects are different for each
tensor and, generally speaking, for each index), the concept of ”parallel transportation”
is deprived of the geometrical simplicity that is characteristic of the spaces of affine con-
nection, the Riemannian and pseudo-Riemannian spaces included. This notwithstanding,
the concepts of absolute differential and covariant derivative can readily be extended on
the basis of invariance of their form with respect to any curvilinear coordinate system.
The covariant derivative 5̃k for arbitrary tensor is defined quite similarly to the way
which is followed to define the covariant derivative 5k in the spaces of affine connection;
at the same time, for each tensor and probably for each index there exist, in general, their
own ”connection objects” or gamma-objects. The respective differential is constructed
in accordance with the definition

D̃ := dxk · 5̃k. (38)

Here, the converted indices can not be ignored, for ”connection coefficients” correspond
to them.

The Cauchy-Riemann relations (24) are necessary and sufficient conditions in order
that f i be a generalized-analytical function. Let us show that these relations can be
written in an explicitly invariant form if the matrix composed of the numbers

qij = pr
impm

rj, (39)

is non-singular, that is if
q = det(qij) 6= 0. (40)

In this case the inverse matrix (qij) forms the tensor (qij) showing the properties

qjkq
ki = qikqkj = δi

j. (41)

Whence, when the formula (22) is applied instead of the formulae (23) and (24), we get
the invariant expression for the derivative

f ′i = qispr
sm5̃r · fm (42)

and for the Cauchy-Riemann relations

5̃kf
i − pi

kj · qjspr
sm5̃rf

m = 0. (43)

Let us turn to the generalized-analytical functions F(1)(X) and F(2)(X), which are
constrained by the relation

F(2)(X) = F (X) · F(1)(X), (44)
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where F (X) – some function of poly-number variable. The function is generalized-
analytical in the field where the function F(1)(X) is not a divisor of zero. In this case

F (X) =
F(2)(X)

F(1)(X)
, (45)

D̃F (X) =
F(1)(X)D̃[F(2)(X)]− D̃[F(1)(X)]F(2)(X)

F 2
(1)(X)

(46)

or

F ′(X) =
F(1)(X)F ′

(2)(X)− F ′
(1)(X)F(2)(X)

F 2
(1)(X)

. (47)

If

F (X) = F(2)[F(1)(X)], (48)

then the function F (X) is generalized-analytical with

F ′(X) = F ′
(2)(F(1)) · F ′

(1)(X). (49)

3. Similar geometries and conformal transformations

Actually, we are interested in not only the pair {Mn, Pn} and generalized-analytical
functions {f i, γi

k} but (eventually) possible ways of application of these notions to con-
structing physical models and solving new physical proiblems. Two spaces in which
congruences of extremals (geodesics) coincide are similar in many respects. The extremals
are meant to be solutions to set of equations for definition of curves over which the length
of the curve acquires its extremum; alternatively, they are meant to be the curves which
in a given geometry are defined to be geodesics (for example, geodesics in geometries of
affine connection). However, for some physical as well as mathematical problems it is not
of great importance which length element is used in applied space, – a real use is made
to only the set of equations that define extremals (or to extremals proper). We shall
say that two n–dimensional geometries are similar, if there exist such coordinate systems
and parameters along curves that with respect to them the equations for extremals are
equivalent and the initial and/or final date set forth in one space may also be given in
another space.

All the set of generalized-analytic functions can be broken into the subsets {f i, Γk
ij}

that involve the same connection coefficients Γk
ij, so that for all generalized-analytic func-

tions from the subset the relation

Γi
kjf

j = γi
k (50)

is fulfilled. It should be stressed (once more) that the coefficients Γk
ij are independent of

any choice of functions in the subset {f i, Γk
ij}. Generally speaking, the subset may be

formed by only one generalized-analytic function. If f i and γi
k are prescribed, then the

relations (50) can be treated to be a set of equations for definition of the coefficients Γk
ij.

Having find and fixed them, they can be applied for all tensors and indices, thereafter we
get a due possibility to work with the space of affine connection Ln(Γk

ij) in which the set
of equations for geodesics is of the form

d2xi

dσ2
= −Γi

kj

dxk

dσ

dxj

dσ
. (51)
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Generally speaking, in this way we loose the possibility to use the poly–number product
for construction of new generalized–analytical functions and should give up the simple
differentiation rules (33). In the last case the covariant derivative 5̃k in the special
coordinate system must act on the tensor pi

kj. In order to have simultaneously on the

subset {f i, Γk
ij} the poly-number product of generalized–analytical functions and the rules

(33), which application yields again a generalized–analytical function, we are to restrict
ourselves to the functions subjected to the condition (36) with Γi

jk ≡ (1)Γi
jk ≡ (2)Γi

jk ≡
(3)Γi

jk.

Let us require that the space Ln(Γi
jk) be similar to a Riemannian or pseudo–

Riemannian one Vn(gij), where gij is a (fundamental) metric tensor. Then instead of
(50) we get the system of equations

[
1

2
gim

(
∂gkm

∂xj
+

∂gjm

∂xk
− ∂gkj

∂xm

)
+

1

2
(pkδ

i
j + pjδ

i
k) + Si

kj

]
· f j = γi

k, (52)

where Si
kj stands for an arbitrary tensor (torsion tensor) obeying the property of skew–

symmetry with respect to two indices, and pi may be an arbitrary one–covariant tensor
[1]. This system may be used to define the fundamental tensor gij.

There exist such Finslerian spaces which are not of Riemannian or pseudo–
Riemannian type, but in which, however, one has the system of equations

d2xi

dσ2
= −Γi

kj[L(dx; x)] · dxk

dσ

dxj

dσ
, (53)

where the coefficients Γi
kj[L(dx; x)] are defined by means of a relevant metric function

L(dx1, . . . , dxn; x1 . . . , xn) of Finsler type. The corresponding Finsler spaces are similar to
spaces of affine connection endowed with the connection coefficients Γi

kj deviated possibly
from the coefficients Γi

kj[L(dx; x)] by occurrence of an additive torsion tensor and/or an

additive tensor 1
2
(pkδ

i
j + pjδ

i
k) [1].

Let a generalized–analytical functions define spaces of the affine connection Ln((1)Γk
ij)

and Ln((2)Γk
ij) similar to corresponding Riemannian or pseudo–Riemannian spaces Vn(gij)

and Vn(K2
V gij) and/or the Finslerian spaces Fn[L(dx; x)] and Fn[KF L(dx, x)], where

KV (x1, .., .xn) > 0, KF (x1, ..., xn) > 0 – scalar functions (invariants). Then the trans-
formation (coordinate and/or in the space of generalized–analytical functions) going over
the set f i

(1) in the set f i
(2), can be called conformal, for under this procedure one has

gij(x) → K2
V (x) · gij (54)

and
(dx; x) → KF (x) · L(dx; x). (55)

4. Possible additional requirements

From the definition of a generalized–analytical function it follows that it is possible
to present the function by choosing two arbitrary one–covariant fields f i(x1, . . . , xn) and
f ′i(x1, . . . , xn). Then the formula (23) entails the following representation for the gamma–
objects:

γi
k = − ∂f i

∂xk
+ pi

kjf
′j (56)

The Cauchy–Riemann conditions are fulfilled automatically. So, to get the field equations
for the unknown function–components f i(x1, . . . , xn) and f ′i(x1, . . . , xn), it is nesessary to
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set forth at least 2n additional relations, for example, some partial differential equations
of the first–order with respect to f i(x1, . . . , xn) and f ′i(x1, . . . , xn).

(1): Let us consider the subset of generalized–analytical functions f i such that

D̃F (x) ≡ 0, ↔ ∇̃kf
i ≡ 0, ↔ f ′i ≡ 0 (57)

In this case the Cauchy–Riemann conditions are fulfilled automatically and arbitrary
vector–function coupled with γi

k = − ∂f i

∂xk , that is the pair {f i,− ∂f i

∂xk }, is a generalized–
analytical function. It is important to note that the properties of poly–numbers do not
influence this procedure. In other words, this subset (treated on the level of the Cauchy–
Riemann conditions) are independent of any choice of the system of poly–numbers.

(2): If instead of the conditions (57) we assume the relations

D̃F (X) = λ · F (X) · dX, ↔ ∇̃kf
i = λ · pi

kj · f j, ↔ f ′i = λ · f i, (58)

where λ is a real number, then the pairs {f i,− ∂f i

∂xk + λpi
kjf

j} with arbitrary vector–

functions f i will form the subset of the generalized-alanytical functions which to some
extent account for properties of poly–numbers.

(3): Farther generalizing the requirements (57) and (58) can be formulated in the
form

F ′(X) = Λ · F (X), (59)

where
Λ = λ1e1 + λ2e2 + ... + λnen (60)

an arbitrary poly–number. In this case the pair
{

f i,− ∂f i

∂xk
+ pi

kjp
j
mrλ

mf j

}
(61)

will be the generalized-alanytical functions.

(4): Using the formulas (23) and (24), we can prove the following statement. If the
relations

1) Γi
kjf

j = γi
k, (62)

2) Γi
1jp

j
kr − pi

kjΓ
j
1r = 0, (63)

3)
∂Γi

1r

∂xk
− ∂Γi

kr

∂x1
+

[
(Γi

kj − pi
kmΓm

1j)Γ
j
1r − Γi

1j(Γ
j
kr − pj

kmΓm
1r)

]
= 0 (64)

hold, then together with the generalized-alanytical pair {f i, γi
k}, the pair

{f ′i, Γi
kjf

′j}, {f ′′i, Γi
kjf

′′j}, . . . , {f (m)i, Γi
kjf

(m)j}, . . . (65)

are also generalized-alanytical. In the last formulas the notation

f (m)i ≡ ∂f (m−1)j

∂x1
+ Γi

1jf
(m−1)j (66)

has been used.

(5): One additional requirements can sound: for the subset {f i, Γi
kj} of generalized-

alanytical functions a Riemannian or pseudo–Riemannian geometry Vn(gij) similar to the
affine connection geometry Ln(Γi

jk) can be found.
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(6): If a Finsler space Fn[L(dx; x)] is similar to a space of affine connection, then
one among possible requirements can claim that the subset {f i, Γi

jk} give rise to an affine
connection geometry similar to the Finsler geometry Fn[L(dx; x)].

(7): Let

xi = xi(τ) (67)

be a parametric presentation of some curve joining two points xi
(0) = xi(0), xi

(0) = xi(0),

that is, the parameter along curves varies in the limits τ ∈ [0; 1]. Let us consider the
functional with integration along indicated curve

I[xi(τ)] =

∫ 1

0

F (X) dX =

[∫ 1

0

pi
kjf

k(x1(τ), . . . , xn(τ))dxj

]
· ei (68)

=

[∫ 1

0

pi
kjf

k dxj

dτ

]
· ei,

where F (X) – some generalized-alanytical function, and require that value of the integral
(68) be independent of integration way, in which case the variation of this functional at
fixed ends of curves should vanish, that is the Euler conditions

d

dτ

(
pi

kjf
j
)− pi

mj

∂f j

∂xk

dxm

dτ
= 0 (69)

or (
pi

kj

∂f j

∂xm
− pi

mj

∂f j

∂xk

)
· dxm

dτ
= 0 (70)

must be valid. Assuming that xi(τ) are arbitrary smooth functions, from these equations
we get

pi
kj

∂f j

∂xm
− pi

mj

∂f j

∂xk
= 0, (71)

or, recollecting that {f i, γi
k} is a generalized–analytic pair,

pi
kjγ

i
m − pi

mjγ
j
k = 0. (72)

From these relations it ensues that for the functions f i the Cauchy–Riemann conditions
(11) hold fine.

Thus, the assumption of independence of the integral (68) of the path leads to the
conclusion that the function F (X) is analytical, that is such an assumption is superfluous
for non–trivial generalization of the concept of analyticity.

5. Case H4

It is convenient to work with the associative-commutative hypercomplex numbers in
term of the ψ-basis which relates to the basis

e1 = 1, e2 = j, e3 = k, e4 = jk, j2 = k2 = (jk)2 = 1 (73)

by means of the linear dependence

ei = sj
i · ψj, (74)
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where

sj
i =




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




, sk
i · sj

k = 4 · δj
i . (75)

For the basis elements ψ1, ψ2, ψ3, ψ4 the multiplication law

ψi · ψj = p
(ψ)k
ij · ψk (76)

involves the characteristic numbers

p
(ψ)k
ij =

{
1, if i = j = k,

0, in other cases
(77)

We shall use the following notation:

X = x1e1 + ... + x4e4 = ξ1ψ1 + ... + ξ4ψ4 (78)

and
F (X) = ϕ1(ξ1, ..., ξ4) · ψ1 + ϕ4(ξ1, ..., ξ4) · ψ4. (79)

Thus, if ϕi(ξ1, ..., ξ4) – a generalized-analytical function of the H4-variable used, then
such a vector-function ϕ′i(ξ1, ..., ξ4) can be found that

∂ϕi

∂ξk
+ γ

(ψ)i
k = p

(ψ)i
kj · ϕ′j. (80)

Taking into account (77), we get

∂ϕ1

∂ξ1 + γ
(ψ)1
1 = ϕ′1, ∂ϕ1

∂ξ2 + γ
(ψ)1
2 = 0,

∂ϕ1

∂ξ3 + γ
(ψ)1
3 = 0,

∂ϕ1

∂ξ4 + γ
(ψ)1
4 = 0,

∂ϕ2

∂ξ1 + γ
(ψ)2
1 = 0,

∂ϕ2

∂ξ2 + γ
(ψ)2
2 = ϕ′2, ∂ϕ2

∂ξ3 + γ
(ψ)2
3 = 0,

∂ϕ2

∂ξ4 + γ
(ψ)2
4 = 0,

∂ϕ3

∂ξ1 + γ
(ψ)3
1 = 0,

∂ϕ3

∂ξ2 + γ
(ψ)3
2 = 0,

∂ϕ3

∂ξ3 + γ
(ψ)3
3 = ϕ′3, ∂ϕ3

∂ξ4 + γ
(ψ)3
4 = 0,

∂ϕ4

∂ξ1 + γ
(ψ)4
1 = 0,

∂ϕ4

∂ξ2 + γ
(ψ)4
2 = 0,

∂ϕ4

∂ξ3 + γ
(ψ)4
3 = 0,

∂ϕ4

∂ξ4 + γ
(ψ)4
4 = ϕ′4.





(81)

These relations involve the expression for the derivative

ϕ′i =
∂ϕi

∂ξi−
+ γ

(ψ)i
i− (82)

(i = i−, for which no summation is assumed), and also the Cauchy-Riemann relations

∂ϕi

∂ξk
+ γ

(ψ)i
k = 0, i 6= k. (83)

The space H4 is the metric (Finslerian) space in which the length element ds is
expressible through the form dξ1dξ2dξ3dξ4 in a conic region defined possibly in various
ways. Let us stipulate that

ds = 4
√

dξ1dξ2dξ3dξ4, (84)
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assuming that the region is prescribed by the inequalities

dξ1 ≥ 0, dξ2 ≥ 0, dξ3 ≥ 0, dξ4 ≥ 0 . (85)

Let us consider the four-dimensional Finslerian geometry with the length element of
the form

ds = 4
√

κ4 · dξ1dξ2dξ3dξ4, (86)

where κ ≡ κ(dξ1dξ2dξ3dξ4) > 0. Such a geometry is not Riemannian or pseudo-
Riemannian. Let us show that such a geometry is similar (according to terminology
adopted above) to some affine geometry with a connection L4(Γ

i
kj). Let us write equations

for extremals of this Finslerian space by using the tangential equation of indicatrix [2]:

Φ(p1, ..., p4; ξ
1, ..., ξ4) = 0 , (87)

where

Φ(p; ξ) = p1p2p3p4 −
(κ

4

)4

, (88)

and

pi =
∂(ds)

∂(dξi)
=

1

4
·

4
√

κ4 · dξ1dξ2dξ3dξ4

dξi
. (89)

Then the set of equations for definition of extremals reads

dξ1

∂Φ
∂p1

= ... =
dξ4

∂Φ
∂p4

=
dp1

− ∂Φ
∂ξ1

= ... =
dp4

− ∂Φ
∂ξ4

,

Φ(p, ξ) = 0;





(90)

or

dξi =
∂Φ

∂pi

· λ · dτ, dpi = −∂Φ

∂ξi
· λ · dτ, Φ(p; ξ) = 0, (91)

where τ – a parameter along extremals, and λ ≡ λ(p; ξ) 6= 0 – a function. For the
tangential equation of the indicatrix (87), (88) the set of equations (91) takes on the form

.

ξi=
p1p2p3p4

pi

· λ,
.

pi= (
1

4
)4∂k4

ξi
· λ, p1p2p3p4 =

(
k

4

)4

, (92)

with
.

ξi=
dξi

dτ
,

.
pi=

dpi

dτ
. (93)

Let us consider λ = λ(ξ) > 0 to be a function of only coordinates. Then, by explicating
pi, we get the set of equations for definition of extremals in the Finslerian space (86) in
the form

..

ξi= −Γi
kj

.

ξk
.

ξj, (94)

where

Γi
kj = −





∂ln

(
λ

λ0

)

∂ξj , if i = j = k,

δi
k

∂ln

(
σ

σ0

)

∂ξj , in other cases;

(95)
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σ =
(κ

4

)4

· λ, (96)

λ0 and σ0 are constants of relevant dimensions. Let us write down explicitly the coefficients
Γi

kj:

(Γ1
kj) = −




∂ln

(
λ

λ0

)

∂ξ1

∂ln

(
σ

σ0

)

∂ξ2

∂ln

(
σ

σ0

)

∂ξ3

∂ln

(
σ

σ0

)

∂ξ4

0 0 0 0

0 0 0 0

0 0 0 0




, (97)

(Γ2
kj) =




0 0 0 0

∂ln

(
σ

σ0

)

∂ξ1

∂ln

(
λ

λ0

)

∂ξ2

∂ln

(
σ

σ0

)

∂ξ3

∂ln

(
σ

σ0

)

∂ξ4

0 0 0 0

0 0 0 0




, (98)

(Γ3
kj) = −




0 0 0 0

0 0 0 0

∂ln

(
σ

σ0

)

∂ξ1

∂ln

(
σ

σ0

)

∂ξ2

∂ln

(
λ

λ0

)

∂ξ3

∂ln

(
σ

σ0

)

∂ξ4

0 0 0 0




, (99)

(Γ4
kj) = −




0 0 0 0

0 0 0 0

0 0 0 0

∂ln

(
σ

σ0

)

∂ξ1

∂ln

(
σ

σ0

)

∂ξ2

∂ln

(
σ

σ0

)

∂ξ3

∂ln

(
λ

λ0

)

∂ξ4




. (100)

It will be noted that instead of the matrices (97) – (100) one can take their transforms.
Thus, the Finslerian geometry with the length element (86) is similar to the geometry of
the affine connection L4[Γ

i
kj +Si

kj + 1
2
(pkδ

i
j +pjδ

i
k)], where Si

kj – a tensor which is assumed
to be skew-symmetric with respect to the subscripts, and pk stands for an arbitrary
one-covariant tensor.

Let us consider the generalized-analytical functions ϕi of H4-variable that obey the
additional condition 3), that is the pair

{
ϕi,−∂ϕi

∂ξk
+ p

(ψ)i
kj µjϕj

}
, (101)
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where
Λ = λi · ei = µj · ψj. (102)

Let us select from such pairs a subset {ϕi, Γi
kj}, where Γi

kj are defined by the matrices
transposed to the matrices (97) – (100). In this way, the requirement 6) is retained. Then
the pair (101) should fulfill the 16 relations (50) the first four of which are

∂ϕ1

∂ξ1
= µ1ϕ1 +

∂ ln

(
λ

λ0

)

∂ξ1
ϕ1,

∂ϕ1

∂ξ2
=

∂ ln

(
σ

σ0

)

∂ξ2
ϕ1, (103)

∂ϕ1

∂ξ3
=

∂ ln

(
σ

σ0

)

∂ξ3
ϕ1,

∂ϕ1

∂ξ4
=

∂ ln

(
σ

σ0

)

∂ξ4
ϕ1.

For the compatibility it is necessary and sufficient that the mixed derivatives obtained
with the help of the formulae (103) be equal. A part of these equations, except for three
ones, is automatically satisfied. If we consider all the 16 equations, not confining ourselves
to the first four equations, we get the following 12 conditions:

∂2ln

(
κ

κ0

)4

∂ξiξj
= 0, i 6= j; (104)

from which it ensues that

ln

(
κ

κ0

)4

= a1(ξ
1) + a2(ξ

2) + a3(ξ
3) + a4(ξ

4) (105)

or
κ = κ0 · exp{[a1(ξ

1) + a2(ξ
2) + a3(ξ

3) + a4(ξ
4)]/4}, (106)

where ai are four arbitrary functions of one real argument. Then from equations (103)
and relevant equations for other components of the generalized-analytical function, we
get

ϕi = ϕi
(0)

(
κ

κ0

)4 (
λ

λ0

)
bi(ξ

i−) · exp(µi−ξi), (107)

where
ai(ξ

i−) = ln
∣∣bi(ξ

i−)
∣∣ . (108)

Thus, despite of two additional requirement, the generalized-analytical function (107)
in general case is not reducible to an analytical function of H4-variable, and besides we
obtain the expression (106) for the coefficients κ in the metric function of the Finslerian

space with the length element (86). If λ
λ0

=
(

κ0

κ

)4
, then ϕi is an analytical function.

If
κ = κ0 · exp{[(ξ1)2 + (ξ2)2 + (ξ3)2 + (ξ4)2]/4}, (109)

then with respect to the coordinates xi

κ = κ0 · exp{(x1)2 + (x2)2 + (x3)2 + (x4)2}. (110)
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Conclusion

Having introduced the concept of the generalized-analytical function of poly-number
variable in the present work, we have made the first step in the direction of constructing
a relevant theory aiming to develop theoretical-physical models. An important ingredient
of such investigations must be search for additional requirements to be obeyed by the
generalized-analytical functions and for the consequences implied by the requirements.
The conditions that lead to trivial results — to analytical functions — should especially
be analyzed. This may admit formulating the properties that are forbidden to attribute
proper generalized-analytical functions of poly-number variable (in contrast to analytical
functions proper). As it has been shown above, the independence of integral of integra-
tion path relates to such properties. Of course, it is necessary to carry out a particular
attentive study to compare the properties of analytical functions of complex variable and
generalized-analytical functions of poly-number variable in case of the dimension exceed-
ing 2. It can be hoped, therefore, that the concepts and results of the present work may
face future novel theoretical-physical applications.
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In the field theories with twistor structure particles can be identified with (spacially bounded)
caustics of null geodesic congruences defined by the twistor field. As a realization, we consider
the “algebrodynamical” approach based on the field equations which originate from noncom-
mutative analysis (over the algebra of biquaternions) and lead to the complex eikonal field
and to the set of gauge fields associated with solutions of the eikonal equation. Particle-like
formations represented by singularities of these fields possess “elementary” electric charge and
other realistic “quantum numbers” and manifest self-consistent time evolution including trans-
mutations. Related concepts of generating “World Function” and of multivalued physical fields
are discussed. The picture of Lorentz invariant light-formed aether and of matter born from light
arises then quite naturally. The notion of the Time Flow identified with the flow of primodial
light (“pre-Light”) is introduced in the context.

Introduction. The algebrodynamical field theory

Theoretical physics has arrived to the crucial point at which it should fully reexamine
the sense and the interrelations of the three fundamental entities: fields, particles and
space-time geometry. String theory offers a way to derive the low-energy phenomenology
from the unique physics at Plankian scale. However, it doesn’t claim to find the origin
of physical laws, the Code of Universe and is in fact nothing but one more attempt to
describe Nature (in a possibly the most effective way) but not at all to understand it.

Twistor program of R. Penrose [1, 2] suggests an alternative to string theory in the
framework of which one can hope, in principle, to explain the origin of basic physical
entities. For this, one only assumes the existence of the primary twistor space CP 3 which
underlies the physical space-time and predetermines its Minkowsky geometry and, to some
extent, the set of physical fields.

The most interesting manifestation of twistor structure is its ability to reduce the
resolution of free massless (conformally invariant) equations (both linear and nonlinear
ones, specifically of the Yang-Mills type) either to explicit integration in twistor space
(the so called Penrose transform) or to resolution of purely algebraic problems (the Kerr
theorem, the Ward construction etc. [2]). Making use of the Kerr theorem and of the
Penrose’s “nonlinear graviton construction”, one can also obtain, in a purely algebraic
way, the whole set of the self-dual solutions to (complex) Einstein equations.

However, general concept of twistor program as a unified field theory is not at all
clear or formulated up to now. Which equations are really fundamental, in which way can
the massive fields be described and in which way the particles’ spectrum can be obtained?
And, finally, why precisely twistor, a rather refined mathematical object, should be taken
as a basis of fundamental physics?

In the interim, twistor structure arises quite naturally in the so called algebrodynam-
ics of physical fields which has been developed in our works. From general viewpoint, the
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paradigm of algebrodynamics can be thought of as a revive of Pithagorean or Platonean
ideas about “Numbers governing physical laws”. As the only (!) postulate of algebrody-
namics one admits the existence of a certain unique and exeptional structure, of purely
abstract (algebraic) nature, the internal properties of which completely determine both
the geometry of physical space-time and the dynamics of physical fields (the latters being
also algebraic in nature).

In the most successful realization of algebrodynamics principal structure of the
“World algebra” has been introduced via generalization of complex analysis to exeptional
noncommutative algebras of quaternion (Q) type [15, 16, 17, 25, 27]. In particular, it
was demonstrated that explicit account of noncommutativity in the very definition of
functions “differentiable” in Q inevitably results in the non-linearity of the generalized
Cauchy-Riemann equations (GCRE) which follow. This makes it possible to regard the
GCRE as fundamental dynamical equations of interacting physical fields represented by
(differentiable) functions of the algebraic Q-type variable.

A wide class of such fields-functions exists only for the complex extension of Q-
algebra, i.e. for the algebra of complex quaternions B (biquaternions). Over the B-algebra,
the GCRE turn to be Lorentz invariant and acquire, moreover, the gauge and the spinor
structures. On this base a self-consistent and unified algebrodynamical field theory has
been constructed in our works [15, 16, 24, 25, 27, 26, 28, 30].

From the physical viewpoint, the most important property of GCRE is their direct
correspondence to a fundamental light-like structure. The latter manifests itself in the
fact that every (spinor) component S(x, y, z, t) ∈ C of the primary B-field must satisfy
the complex eikonal equation (CEE) [14, 15]

ηµν∂µS∂νS = (∂tS)2 − (∂xS)2 − (∂yS)2 − (∂zS)2 = 0, (1)

where ηµν = diag{1,−1,−1,−1} is the Minkowsky metric and ∂ stands for the partial
derivative by respective coordinate. The CEE (1) is Lorentz invariant, nonlinear and
plays the role similar to that of the Laplace equation in complex analysis. Each solution
to GCRE can be reconstructed from a set of (four or less) solutions to CEE.

In the meantime, in [30] the intrinsic twistor structure of CEE has been discovered,
and on its base the general solution of the nonlinear eikonal equation has been obtained.
It was proved that, in this respect, every CEE solution belongs to one of two classes
which both can be obtained from a twistor generating function via a simple and purely
algebraic procedure. This construction allows also for definition of singular loci of the null
geodesic congruences correspondent to the eikonal field – the caustics. Just at the caustics
– the envelopes of the congruences – the neighbouring rays intersect each other, and the
associated physical fields turn to infinity forming, thus, a unique particle-like object – a
common source of the fields and of the congruence itself. Thus, in the algebrodynamical
theory the particles can be considered as (spacially bounded) caustics of the primodial null
congruences.

On the other hand, null congruences naturally define the universal local “transfer”
of the basic twistor field with fundamental constant velocity “c” (in full analogy with
the transfer of field by an electromagnetic wave) and point thus to exceptional role of
the time coordinate in the algebrodynamical scheme and in twistor theory in general.
Existence of the “Flow of Time” becomes therein a direct consequence of the existence
of Lorentz invariant “aether” formed by the primodial light-like congruence (“preLight”).
In the paper, we underline the principal property of multivaluedness of the fundamental
complex solution to CEE (“World solution”) and of the physical fields associated with
it. As a result, at each space-time point one has a superposition of a great number of
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rays which belong to locally distinct null congruences, and the Time Flow turns to be
multi-directional, i.e. consists of a number of superposed “subflows” (linked globally by
complex structure into a unique physical “corpuscular-field” dualistic complex).

In section 2 we consider the twistor structure of CEE and the procedure of algebraic
construction of its two classes of solutions. A few simple illustrative examples are pre-
sented. In section 3 we discuss the caustic structure of the CEE solutions, in particular
of spatially bounded type (particle-like singular objects), and the properties of associated
physical fields. In section 4, we introduce the “World function” responsible for generation
of the “World solution” to CEE and discuss the related concept of multivaluedness of
physical fields. Final section 5 is devoted to some general issues which bear on the nature
of physical time. The notions of the primodial light (“pre-Light”) and of the light-formed
aether are introduced, and the Time Flow is actually identified with the Flow of preLight.
Intrinsic structure of these fundamental flows is studied which relates to the property of
multivaluedness of the basic twistor field.

The article is an extended version of the preceding paper [41] and, as to description
of physical picture of the World, continues our paper [42]. In order to simplify the pre-
sentation, we avoid to apply the 2-spinor and the other refined mathematical formalisms,
for this refering a prepared reader to our recent papers [25, 27, 28, 30].

The two classes of solutions to the complex eikonal equation

The eikonal equation describes the process of propagation of wave fronts (field dis-
continuties) in any relativistic theory, in Maxwell electrodynamics in particular [4, 5].
Physical and mathematical problems related to the eikonal equation were dealt with in a
lot of works, see e.g. [6, 7, 8, 10, 11, 12].

The complex eikonal equation (CEE) arises naturally in problems of propagation of
restricted light beams [13] and in theory of congruences related to solutions of Einstein or
Einstein-Maxwell system of equations [14]. We, however, interpret the complex eikonal, to
the first turn, as a fundamental physical field which describes, in particular, the interacting
and “self-quantized” particle-like objects formed by singularities of the CEE solutions. By
this, the electromagnetic and the other conventional physical fields can be associated with
any solution of the CEE; they are responsible for description of the process of interaction
of particles-singularities. Note that particle-like properties of field singularities related
to the 5-dimensional real eikonal field have been studied in [9]; the concept of particles
as singularities of electromagnetic and eikonal fields has been incidentically discussed by
many authors, in particular by H. Bateman [6] af far as in 1915.

We start with a definition, together with Cartesian space-time coordinates {t, x, y, z},
of the so called spinor or null coordinates {u, v, w, w̄} (the light velocity is taken to be
unity, c = 1)

u = t + z, v = t− z, w = x− iy, w̄ = x + iy (2)

which form the Hermitian 2× 2 matrix X = X+ of coordinates

X =

(
u w

w̄ v

)
(3)

In the representation using spinor coordinates the CEE (1) looks as follows:

∂uS∂vS − ∂wS∂w̄S = 0. (4)

The CEE possesses a remarkable functional invariance [15, 16]: for every S(X) being
its solution any (differentiable) function f(S(X)) is also a solution. The eikonal equation
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is known also [6] to be invariant under transformations of the full 15-parameter conformal
group of the Minkowsky space-time.

Let us take now an arbitrary homogeneous function Π of two pairs of complex vari-
ables {ξ, τ}

Π = Π(ξ0, ξ1, τ
0, τ 1) (5)

which are linearly dependent at any space-time point via the so called incidence relation

τ = Xξ ⇔ τ 0 = uξ0 + wξ1, τ 1 = w̄ξ0 + vξ1, (6)

and which transform as 2-spinors under Lorentz rotations 1. The pair of 2-spinors
{ξ(X), τ(X)} linked through Eq.(6) is known as a (null projective) twistor of the
Minkowsky space-time [2].

Let us assume now that one of the components of the spinor ξ(X), say ξ0, is not
zero. Then, by virtue of homogeneity of the function Π, we can reduce the number of its
arguments to three projective twistor variables, namely to

Π = Π(G, τ 0, τ 1), G = ξ1/ξ0, τ 0 = u + wG, τ 1 = w̄ + vG (7)

Now we are in order to formulate the main result proved in our paper [30].

Theorem. Any (analytical) solution of CEE belongs, with respect to its twistor structure,
to one of two and only two classes and can be obtained from some generating twistor
function of the form (7) via one of the two simple algebraical procedures (described below).

To obtain the first class of solutions, let us simply resolve the algebraic equation
defined by the function (7)

Π(G, u + wG, w̄ + vG) = 0 (8)

with respect to the only unknown G. In this way we come to a complex field G(X) which
necessarily satisfies the CEE. Indeed, after substitution G = G(X) Eq.(8) becomes an
identity and, in particular, can be differentiated with respect to the spinor coordinates
u, v, w, w̄. Then we get

P∂uG = −Π0, P∂wG = −GΠ0, P∂w̄G = −Π1, P∂vG = −GΠ1, (9)

where Π0, Π1 are the partial derivatives of Π with respect to its twistor arguments τ 0, τ 1

while P is its total derivative with respect to G,

P =
dΠ

dG
= ∂GΠ + wΠ0 + vΠ1 , (10)

which we thus far assume to be nonzero in the space-time domain considered. Multiplying
then Eqs.(9) we prove that G(X) satisfies the CEE in the form (4). It is easy to check that
arbitrary twistor function S = S(G, u + wG, w̄ + vG), under substitution of the obtained
G = G(X), also satisfies the CEE (owing to the functional constraint (8) it depends in
fact on only two of three twistor variables).

To obtain the second class of CEE solutions, we have from the very beginning to
differentiate the function Π with respect to G and only after this to resolve the resulting
algebraic equation

P =
dΠ

dG
= 0 (11)

1To simplify the notation, we do not distinguish between the primed and unprimed spinor indices. In
the incidence relation (6) the standard factor “i” (imaginary unit) is omitted what is admissible under
the proper redefinition of the twistor norm
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with respect to G again. Now the function G(X) does not satisfy the CEE; however,
if we substitute it into (7) the quantity Π becomes an explicit function of space-time
coordinates and necessarily satisfies the CEE (as well as any function f(Π(X)) by virtue
of functional invariance of the CEE). Indeed, differentiating the function Π with respect
to the spinor coordinates we get

∂uΠ = Π0+P∂uG, ∂wΠ = GΠ0+P∂wG, ∂w̄Π = Π1+P∂w̄G, ∂vΠ = GΠ1+P∂vG, (12)

and, taking into account the generating condition (11), we immegiately find that the
function Π itself obeys the CEE (4).

The functional condition (8) and, therefore, the CEE solutions of the first class are
in fact well known. Indeed, apart from the CEE, the field G(X), if it is obtained by
the resolution of Eq.(8), satisfies (as it is easily seen from Eqs.(9) for derivatives), the
over-determined system of differential constraints

∂uG = G∂wG, ∂w̄G = G∂vG (13)

which define the so called shear-free (null geodesic) congruences (SFC). By this, algebraic
Eq.(8) represents (in implicit form) general solution of Eqs.(13), i.e. describes the whole
set of SFC in the Minkowski space-time. This remarkable statement proved in [18] is
known as the Kerr theorem.

The second class of CEE solutions generated by algebraic constraint (11), to our
knowledge, hasn’t been considered in literature previously 2. It is known, however, that
condition (11) defines the singular locus for SFC, i.e. for the CEE solutions obtained from
the Kerr constraint (8). Precisely, condition (11) fixes the branching points of the principal
complex field G(X) or, equivalently, – the space-time points where Eq.(8) has multiple
roots. As to the CEE solutions of the second class themselves, their branching points
occure at the locus defined by another condition which evidently follows from generating
Eq.(11) and has the form

Λ =
d2Π

dG2
= 0. (14)

The null congruences (especially the congruences with zero shear), as well as their singu-
larities and branching points, play crucial role in the algebrodynamical approach. They
will be discussed below in more details. Here we only repeat that, as it has been proved
in [30],

the two simple generating procedures described above exhaust all the (analytical) solutions
to the CEE representing, thus, its general solution

(note only that for solutions with zero spinor component, ξ0 = 0, another gauge, in
compare with the one used above, should be choosed). The obtained result can be thought
of as a direct generalization of the Kerr theorem.

To make the exposition more clear, we present below several examples of the de-
scribed construction.

1. Static solutions. Let the generating function Π depends on its twistor variables in
the following way:

Π = Π(G,H), H = Gτ 0 − τ 1 = wG2 + 2zG− w̄, (15)

where z = (u− v)/2, and the time coordinate t = (u + v)/2 is, in this way, eliminated. It
is evident that the generating ansatz (15) covers the whole class of static CEE solutions.

2Study of solutions of the real eikonal equation by differentiation of generating functions depending
on coordinates as parameters is used in general theory of sungularities of caustics and wavefronts [11]
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In [21, 14] it was proved that static solutions to the SFC equations (and, therefore,
static solutions to the CEE too) with spacially bounded singular locus are exhausted, up
to 3D translations and rotations, by the Kerr solution [18] which follows from generating
function of the form

Π = H + 2iaG = wG2 + 2z∗G− w̄, (z∗ = z + ia) (16)

with a real constant parameter a ∈ R. Explicitly resolving equation Π = 0 which is
quadratic in G we obtain the two “modes” of the field G(X)

G =
w̄

z∗ ± r∗
=

x + iy

z + ia±
√

x2 + y2 + (z + ia)2
(17)

which in the case a = 0 correspond to the ordinary stereographic projection S2 7→ C from
the North or the South pole respectively. It is easy to check that this solution and also
its twistor counterpartners

τ 0 = t + r∗, τ 1 = Gτ 0, (18)

satisfy the CEE (as well as any function of them). Correspondent SFC is in the case
a = 0 radial with a point singularity; in general case a 6= 0 the SFC is formed by the
rectilinear constituents of a system of hyperboloids and has a ring-like singularity of a
radius R = |a|. Using this SFC, a Riemannian metric (of the “Kerr-Schild type”) and an
electric field can be defined which satisfy together the electrovacuum Einstein-Maxwell
system. In the case a = 0 this is the Reissner-Nordström solution with Coulomb electric
field, in general case – the Kerr-Newman solution with three characteristical parameters:
the mass M , the electric charge Q and the angular momentum (spin) Mca, – for which
the field distribution possesses also the proper magnetic moment Qa which corresponds
to the gyromagnetic ratio specific for the Dirac particle [19, 20]. In the algebrodynamical
scheme, moreover, electric charge of the point or the ring singularity is necessarily fixed
in modulus, i.e. “elementary” [15, 16, 28, 29] (see also [25] where a detailed discussion of
this solution in the framework of algebrodynamics can be found).

Now let us obtain, from the same generating function, a solution to CEE of the
second class. Differentiating Eq.(16) with respect to G and equating derivarive to zero,
we get G = −z∗/w and, substituting this expression into Eq.(16), obtain finally the
following solution to CEE (which is univalued everywhere on 3D-space):

Π = −(r∗)2

w
= −x2 + y2 + (z + ia)2

x− iy
. (19)

It is instructive to note that equation Π = 0, being equivalent to two real-valued con-
straints z = 0, x2+y2 = a2, defines here the ring-like singularity for the Kerr solution (17),
as it should be in account of the theorem above presented (for this, see also section 4).

Static solutions of the II class with spatially bounded singularities are not at all ex-
hausted by the solution (19). Consider, for example, solutions generated by the functions

Π =
Gn

H
, n ∈ Z, n > 2. (20)

We’ll not write out correspondent solutions in explicit form and shall restrict ourselves by
examination of the spacial structure of their singularities which can be obtained from the
joint system of equations P = 0, Λ = 0, see Eqs. (11), (14). Eliminating from the latter
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the unknown field G we find that singularities (branching points of the eikonal field) have
again the ring-like form z = 0, x2 + y2 = R2 with radii equal to

Rn =
a(n− 1)√
n(n− 2)

(21)

The cases n = 1, 2 evidently need special consideration. For n = 1 equating to zero
derivative of the function G/H we find G = ±iw̄/ρ with ρ =

√
x2 + y2. This brings us

after substitution to the following solution of the CEE:

Π = (z + ia± i
√

x2 + y2)−1 (22)

which has the pole at the ring z = O, x2 + y2 = a2 but has a branching point only on the
origin r = 0, i.e. which under any a corresponds to the point singularity.

In the case n = 2 via analogous procedure we get G = w̄/z∗ and after substitution
come to the following solution of the CEE [30]:

Π =
w̄

r∗
=

x + iy

x2 + y2 + (z + ia)2
(23)

which is of the same structure as (the inverse of) the solution (19). As the latter, it has no
branching points on the real space-time slice while its pole corresponds to the Kerr ring.
Let us take for simplicity a = −1; then solution (23) can be rewritten in the following
familiar form:

Π = i
x + iy

2z + i(r2 − 1)
(24)

which can be easily identified as the standard Hopf map. As the solution of the CEE it
has been studied in [22] and especially in the recent paper [23] where its geometrical and
topological nature has been examined in detail. We suspect also that generalized Hopf
maps considered therein relate (in the case m = 1) to the CEE solutions generated by
the functions (20) and, as the latters, has the ring singularities correspondent to those
represented by Eq.(21). However, this should be verified by direct calculations.

2. Wave solutions. Consider also the class of generating functions dependent on one of
the two twistor variables τ 0, τ 1 only, say on τ 0:

Π = Π(G, τ 0) = Π(G, u + wG). (25)

Both classes of the CEE solutions obtained via functions (25) will then depend on only
two spinor coordinates u = t + z, w = x − iy. This means, in particular, that the fields
propagate along the Z-axis with fundamental (light) velocity c = 1. A “photon-like”
solution of this type, with singular locus spacially bounded in all directions, was presented
in [29].

Notice also that an example of the CEE solution with a considerably more rich and
realistic structure of singular locus is presented below in section 4 (see also [29]).

Particles as caustics of the primodial light-like congruences

It’s well known that a null congruence of rays corresponds to any solution of the
eikonal equation; it is orthogonal to hypersurfaces of constant eikonal S = const and
directed along the 4-gradient vector ∂µS. Usually, these two structures define the char-
acteristics and bicharacteristics of a (linear) hyperbolic-type equation, e.g. of the wave
equation ¤Ψ = 0.
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In the considered complex case, i.e. in the case of CEE, the hypersurfaces of constant
eikonal and the 4-gradient null congruences belong geometrically to the complex extension
CM4 of the Minkowski space-time which looks here quite natural in account of the complex
structure of the primary biquaternion algebra B. The problem of physical sense of the
additional (imaginary) dimensions is much important and nontrivial, and we hope to
discuss it in the forthcoming paper.

Here we use another interesting property: existence of a null geodesic congruence
defined on a real space-time for every of the complex-valued solutions to CEE. This re-
markable property follows directly from the twistor structure inherent to CEE. Indeed,
according to the theorem above-presented, any of the CEE solutions (both of the I and
the II classes) is fully determined by a (null projective) twistor field {ξ(X), τ(X)} (in the
choosed gauge one has ξ0 = 1; ξ1 = G(x)) subject to the incidence relation (6). This
latter “Penrose equation” can be explicitly resolved with respect to the space coordinates
{xa, a = 1, 2, 3} as follows:

xa =
=(τ+σξ)

ξ+ξ
− ξ+σξ

ξ+ξ
t , (26)

with {σa} being the Pauli matrices and the time t remaining a free parameter. Eq.(26)
manifests that the primodial spinor field ξ(X) reproduces its value along the 3D rays
formed by the unit “director vector”

~n =
ξ+~σξ

ξ+ξ
, ~n2 = 1 , (27)

and propagates along these locally defined directions with fundamental constant velocity
c = 1. In the choosed gauge we have for Cartesian components of the director vector (27)

~n =
1

(1 + GG∗)
{(G + G∗),−i(G−G∗), (1−GG∗)}, (28)

the two its real degrees of freedom being in one-to-one correspondence with the two
components of the complex function G(X).

Thus, for every solution of the CEE the space is foliated by a congruence of rectilinear
light rays, i.e by a null geodesic 3 congruence (NGC). Notice that the director vector obeys
the geodesic equation [42]

∂t~n + (~n~∇)~n = 0 . (29)

The basic field G(X) of the NGC can be always extracted from one of the two
algebraic constraints (8) or (11) which at any space-time point possess, as a rule, not one
but rather a finite (or even infinite) set of different solutions. Suppose that generating
function Π is irreducible, i.e. can’t be factorized into a number of twistor functions of
the same structure (otherwise, we should make a choice in favour of one of the mul-
tiplies). Then a generic solution of the constraints will be nothing but a multivalued
complex function G(X). Choose locally (in the vicinity of a particular point X) one of
the continious branches of this function. Then a particular NGC and a set of physical
fields can be associated with this branch, i.e. with one of the “modes” of the multivalued
field distribution.

Specifically, for any of the I class CEE solutions the spinor F(AB) of electromagnetic
field can be defined explicitly in terms of twistor variables of the solution [27, 28, 29]:

F(AB) =
1

P

{
ΠAB − d

dG

(
ΠAΠB

P

)}
. (30)

3On the flat Minkowsky background the geodesics are evidently rectilinear
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where ΠA, ΠAB are the first and the second order derivatives of the generating function Π
with respect to its two twistor arguments τ 0, τ 1. For every branch of the solution G(X)
this field locally satisfies Maxwell homogeneous (“vacuum”) equations. Moreover, as it
has been demonstrated in [16, 24, 27], a complex-valued SL(2,C) Yang-Mills field and
a curvature field (of some effective Riemannian metric) can be also defined through only
the same principal function G(X) for any of the CEE solution of the first class.

Consider now analytical continuation of the function G(X) up to one of its branching
points which corresponds to a multiple root of Eq.(8) (or, alternatively, of Eq.(11) for
solutions of the II class). At this point P = 0, and the strength of electromagnetic
field (30) turns to infinity. The same holds for the other associated fields, for curvature
field 4 in particular [21]. Thus, the locus of branching points (which can be 0-, 1- or even
2-dimensional, see section 4) manifests itself as a common source of a number of physical
fields and can be identified (at least, in the case when it is bounded in 3-space) as a unique
particle-like object.

Such formations are capable of much nontrivial evolution simulating physical interac-
tions or even mutual transmutations represented by bifurcations of the field singularities
(see, e. g., the example in section 4). They possess also a realistic set of “quantum
numbers” including a self-quantized electric charge and a Dirac-type gyromagnetic ratio
(equal to that for a spin 1/2 fermion) [19, 20, 25]. Numerous examples of such solutions
and their singularities can be found in our works [24, 25, 26, 27].

On the other hand, for the light-like congruences – NGC – associated with CEE
solutions via the guiding vector (28) the locus of branching points coincides with that of
the principal G-field and represents the familiar caustic structure, i.e. the envelope of the
system of rays at which the neighbouring rays intersect each other (“focusize”). From
this viewpoint, within the algebrodynamical theory the “particles” are nothing but the
caustics of null rectilinear congruences associated with the CEE solutions.

The World function and the multivalued physical fields

At this point we have to decide which of the two types of the CEE solutions can be in
principle taken in our scheme as a representative for description of the Universe structure
as a whole. As a “World solution” we choose a CEE solution of the first class because
a lot of peculiar geometrical structures and physical fields can be associated with any of
them [16, 25, 27]. Such a solution can be obtained algebraically from the Kerr functional
constraint (8) and a generating twistor “World function” Π which is exceptional with
respect to its internal properties; geometrically it gives rise to an NGC with a special
property – zero shear [2, 3].

Moreover, a conjugated CEE solution of the II class turns then also to be involved into
play since it defines a characteristic hypersurface of the (I class) “World solution”. In fact,
this is determined as a solution of the joint algebraic system of Eqs.(8),(11). Precisely, if we
resolve Eq.(11) with respect to G and substitute the result into (8), equation Π(G(X)) =
0 would define then the singular locus (the characteristic hypersurface) of the World
solution. On the other hand, the function Π(G(X)) would necessarily satisfy the CEE
representing its II class solution in account of the theorem presented in section 2. Thus,

the eikonal field here carries out two different functions being a fundamental physical field
(as a CEE solution of the I class) and, at the same time, a characteristic field (as a
solution of the II class) which describes the locus of branching points of the basic field
(i.e., the discontinuties of its derivatives).

4Associated Yang-Mills fields possess, generically, additional string-like singularities
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Let us conjecture now that the World function Π is an irreducible polinomial of a
very high but finite order 5 so that Eq.(8) is an algebraic (not a transcendental) one. Note
that in this case Eq.(8) defines an algebraic surface in the projective twistor space CP 3.

The World solution consists then of a finite number of modes – branches of multi-
valued complex G-field. A finite number of null directions (represented in 3-space by the
director vector (28)) and an equal number of locally distinct NGC would exist then at
every point.

Any pair of these congruences at some fixed moment of time will, generically, has
an envelope consisting of a number of connected one-dimensional components-caustics 6.
Just these spacial structures (in the case they are bounded in 3-space) represent here the
“particles” of generic type. Other types of particle-like structures are formed at the focal
points of three or more NGC where Eq.(8) has a root of higher multiplicity. Formations
of the latter type would, of course, meet rather rarely, and their stability is problematic.
One can speculate on their possible relation to particle’s excitations – resonances.

Nonetheless, we can model both types of particles-caustics in a simple example based
on generating twistor function of the form [29]

Π = G2(τ 0)2 + (τ 1)2 − b2G2 = 0, b = const ∈ R , (31)

which leads to the 4-th order polinomial equation for the G-field. At initial moment of
time t = 0, as it can be obtained analytically, the singular locus consists of a pair of point
singularities (with opposite and equal in modulus “elementary” electric charges) and of a
neutral 2-surface (ellipsoidal cocoon) covering the charges (see [29] for more details). The
latter corresponds to the intersection of all of the 4 modes of the multivalued solution while
each of the point charges is formed by intersection of a particular pair of (locally radial,
Coulomb-like) congruences [29]. Time evolution of the solution and of its singularities is
very peculiar: for instance, at t = b/

√
2 the point singularities cancel themselves at the

origin r = 0 simulating thus the process of annihilation of elementary particles. Moreover,
this process is accompanied by emission of the singular light-like wavefront represented
by another 2-dimensional component of connection of the caustic structure.

Thus, we see that the multivalued fields are quite necessary for to ensure the
self-consistent structure and evolution of a complicated (realistic) system of particles-
singularities. One only should not be confused by such, much unusual, property of the
principal G-field and, especially, by multivalued nature of the other associated fields
including the electromagnetic one.

Indeed, in convinient classical theories, the fields are in fact only a tool which serves
for adequate description of particle dynamics (including the account of retardation etc.)
and for nothing else. In nonlinear theories, as well as in our algebrodynamical scheme,
the fields are moreover responsible for creation and structure of particles themselves, as
regular solitons or singularities of fields respectively. In the first, more familiar case we,
apparently, should consider the fields to be univalued. The same situation occures in
the framework of quantum mechanics where the quantization rules often follow from the
requirement for the wave function to be univalued.

However, as we have seen above, in the algebrodynamical construction the field
distributions must not necessarily be univalued! On the other hand, acception of fields’

5This conjecture is, in fact, not at all necessary. Indeed, one can easily imagine that the World function
leads to the Kerr Eq.(8) which possesses an infinite number of roots for complex-valued field function
G(X) at any space-time point X

6In fact, the caustics of generic type are determined by one complex condition Π(G(X)) = 0 (i.e., by
two real equations) on three coordinates and, at a fixed moment of time t = t0, correspond to a number
of one-dimensional curves (“strings”)
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multivaluedness does not at all prevent to obtain the discrete spectrum of characteristics
in a full analogy with quantum mechanics. For example, the requirement of univaluedness
of a particular, locally choosed mode of the principal G-field and of the associated
electromagnetic field (far from the branching points of the first and, consequently, from
the infinities of the second!) leads to the general property of quantization of electric charge
of singularities in the framework of algebrodynamical theory [28, 29].

As to the process of “measurement” of the field strength, say, of electromagnetic
field, it directly relates to only the measurements of particles’ accelerations, currents
etc., and only after the measurements the results are translated into conventional field
language. However, this is not at all necessary (in recall, e.g, of the Wheeler-Feynman
electrodynamics and of numerous “action-at-a-distance” approaches [31, 32]). In fact,
“we never deal with fields but only with particles” (F. Dyson).

In particular, on the classical (nonstochastic) level we can deal, effectively, with the
mean value of the set of field modes at a point; similar concept based on purely quantum
considerations has been recently developed in the works [33]. In our scheme, the true
role of the multivalued field will become clear only after the spectrum and the effective
mechanics of particles-singularities will be obtained in a general and explicit form.

We hope that a sort of psycological barrier for acception of general idea of the field
multivaluedness will be get over as it was with possible multidimensionality of physical
space-time. The advocated concept seems indeed very natural and attractive. In the
purely mathematical framework, multivalued solutions of PDEs are the most common
in comparison with the familiar δ-type distributions [34, 8]. From physical viewpoint,
this makes it possible to naturally define a dualistic “corpuscular-field” complex of a
very rich structure which, actually, gathers all the particles in the Universe into a unique
object. The caustics-singularities are well-defined themselves and undergo a collective
self-consistent motion free of any ambiguity or divergence (the latters can arise here only
in result of incorrect discription of the evolution process and can be removed, if arise, on
quite legal grounds, contrary, say, to the renormalization procedure in the quantum field
theory). Note also that recently accomplished universal local classification of singularities
of differentiable maps, in particular of caustics and wavefronts [11], can explicitly bear on
the characteristics of elementary particles if the latters are treated in the framework of
the algebrodynamical theory.

As to the principal problem of the choice of a particular representative of the gener-
ating World function Π of the Universe we are ready to offer an interesting candidature
being in hope to discuss it elsewhere.

The light-formed relativistic aether and the nature of time

Light-like congruences (NGC) are the basic elements of the picture of physical world
which arises in the algebrodynamical scheme and, to some extent, in twistor theory in gen-
eral. The rays of the NGC densely fill the space and consist of a great number of branches
– components superposed at each space point and propagating in different directions with
constant in modulus and universal (for any branch of multivalued solution, any point and
any system of reference) fundamental velocity. There is nothing in the Universe exept
this primodial light flow (“pre-Light Flow”) because the whole Matter is born by pre-Light
and from pre-Light at the caustic regions of “condensation” of the pre-light rays.

In a sense, one can speak here about an exeptional form of relativistic aether which is
formed by a flow of pre-Light. Such an exeptional form of the World aether has nothing in
common with old models of the light-carrying aether which had been considered as a sort
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of elastic medium. Here, the light-formed aether consists of structureless “light elements”
and is, obviously, in full correspondence with special theory of relativity 7.

At the same time, notions of the aether formed by pre-Light and of the matter formed
by its “thickenings” evoke numerous associations with the Bible and with ancient Eastern
philosophy. Certainly, there were teologists, philosophers or mystics who were brought to
imagine a similar picture of the World. However, in the framework of successive physical
theory this picture becomes more trushworthy and, to our knowledge, has not been yet
discussed in literature 8.

On the other hand, existence of the primodial light-formed aether and manifestation
of universal property of local “transfer” of the aether – generating field G(X) with constant
fundamental velocity c = 1 points to different status of space and time coordinates and
offers a new approach to the problem of physical time as a whole. By this, it is noteworthy
that since in 1908 H. Minkowsky has joined space and time into a unique 4-dimensional
continuum, no further understanding of the nature of time has been achieved in fact.
Moreover, this synthesis has “shaded” the principal distinction of space and time entities
and clarified none of such problems as (micro/macro)irreversibility, (in)homogeneity and
(non)locality of time, its dependence on material processes etc.

In the interim, the key problem of Time can be formulated in a rather simple way.
Subjectively, we perceive time as a continious intrinsic motion, a latent flow. Everybody
comprehends in a moment, as the ancient Greeks did, what is meant by the “River of
Time”, the “Flow of Time”. As a rule, we consider this intrinsic motion to be indepen-
dent on our will and on material processes and uniform: not for nothing, in physics the
flow of time is modelled by the uniform motion of, say, the record tape etc. Moreover,
under variations in time one does not only observe the conservation of a particular set
of integral quantities (which is widely used in the orthodox physics) but perceives sub-
jectively the complete repetition, reproduction of the local states of any system; that’s
why for measurements of time itself we use clocks whose principle of operation is based
on reproducible, periodical processes. In other words, whereas one has much ambiguious
and diverse distributions of spacial positions of physical bodies, all they and we all have
always one and the same monotonically increasing time coordinate, i.e. are in a common
and permanent motion together with the “Time River”.

Surprisingly, almost all these considerations are absent in the structure of theoretical
physics and, in particular, in relativity theory. To bring into correspondence the results
of calculations with practice (e. g. for the Cauchy problem etc.) one chooses a “time
orthogonal hypersurface”, i. e. quite ambiguiously fixes the unity of the present moment
of time, of the moment “now”, perceived subjectively by everybody; however, there are
no intrinsic reasons for this choice in the very structure of theoretical physics, including
the STR.

At least partially, such a situation is caused by the following. The notion of every-
where existing, eternal Flow of Time immegiately leads to the problem of its (material?
pre-material?) carrier. In this connection, the works of N. A. Kozy’rev [39] should be
marked, of course, in which the concept of the “active” Flow of Time influencing directly
the material processes has been proposed. To our opinion, however, there are no reliable
physical grounds at present which confirm the Kozy’rev’s ideas, and no mechanism of
“interaction” of this exotic form of matter with the ordinary ones. As to the algebrody-

7At present, it seems rather strange that A. Einstein didn’t come himself to the concept of relativistic
aether so consonant with the ideas of STR and with his favourite Mach principle. Suprisingly, R. Penrose
also overlooked this opportunity which follows naturally from his twistor theory

8Similar in some aspects ideas have been advocated in the works [36, 37, 38]. Note, in particular, the
concept of the “radiant particle” offered by L. S. Shikhobalov [35]
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namical paradigm, the Time Flow is non-material therein: it does not interact or influence
the Matter at all but just forms it. In distinction from the Kozy’rev’s concept, we do not
deal here with various material entities only one of them being the Time itself: on the
contrary, here we have one triply-unique entity – preLight-Time-Matter. Note that more
close the approach turns to be to the concept of “Time-generating Flows” developed by
A. P. Levich [40].

On the other hand, under consideration of the problem of the carrier of the Time
Flow, we inevitably return back to the notion of some form of the World aether which has
been exiled from physics after the triumph of Einstein’s theory. To do without aether, none
Flow of Time can be successively included into the structure of theoretical physics and
none subjectively perceived properties of time can be precisely formulated and described.

However, in a paradoxical way, just the STR with its postulate of the invariance of
light velocity justifies the introduction of the dynamical Lorentz invariant aether formed
by the light-like congruences as the primary element of physical World. Specifically, the
Time Flow can be naturally identified now with the Flow of Primodial Light (pre-Light),
and the “River of Time” turns to be nothing but the “River of Light”. Moreover, it is the
universality of light velocity which explains our subjective perception of uniformity and
homogeneity of the Time Flow.

There is, however, another, the most striking and unexpected feature of the intro-
duced concept of physical time. The Time Flow manifests here itself as a superposition
of a great number of distinctly directed and locally independent components – “subflows”.
At any point of 3-dimensional space there exists a (finite) set of directions: each mode
of the primodial multivalued field G(X) defines one of these directions and propagates
(reproduces its value) along it forming thus one of the constituents of the (globally unique)
Flow of pre-Light identical to the Flow of Time.

One can conjecture that just by virtue of the local multivaluedness we are not capable
of to perceive the particular local direction of the Time Flow. Apart from this, it is
natural to assume that in the tremendously complicated structure of the World solution a
stochastic component is necessarily present, particularly in the structure of the primodial
Light-Time Flow. This results in chaotic variations of local directions of the light-like
congruences which are certainly inaccessible for perception. On the other hand, it is the
existence of (constant in modulus and the same for all of the branches of the multivalued
World solution) fundamental propagation velocity of the pre-Light rays which makes it
possible to feel the Flow of Time in general and to subjectively regard it as uniform and
homogeneous in particular.

Conclusion

Thus, we have examined the realization of the algebrodynamical approach in which,
as a base of unified physical theory, the only structure of a purely abstract nature is
choosed, namely the algebra of complex quaternions and the generalized CR-equations –
the conditions of differentiability in this algebra. Very the same structure can be succes-
sively expressed, in fact, on a number of equivalent geometrical languages (of covariantly
constant fields, twistor geometry, shear-free congruences etc.).

Primary GCR-equations result directly in the field of complex eikonal which is re-
garded as a fundamental physical field (alternative in a sense to the linear fields of quantum
mechanics). In its turn, the eikonal field is here closely related to the fundamental 2-spinor
and twistor fields, on whose language, in particular, the general solution of the complex
eikonal equation is formulated. Through the eikonal field also the other ones are defined,
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namely the electromagnetic and Yang-Mills fields. Singularities of the eikonal and of cor-
respondent null congruences are considered as particle-like formations (“self-quantized”
and effectively interacting).

In result, physical picture of the World which arises as a consequence of the only
algebraic structure appears to be very beatiful and unexpected. As its basic elements it
contains the primodial light flow – “pre-Light” – and the relativistic aether formed by the
latter, multivalued physical fields and prelight-born matter (consisting of particles-caustics
formed by the superposition of individual branches of the unique pre-light congruence in
the points of their “focusization”).

As very natural and deep seems to be the here arising connection between the ex-
istence of universal velocity (velocity of “light”) and of the time flow; connection which
permits to understand, in a sense, the origin of the Time itself. Time is nothing but the
primodial Light; these two entities are undividible. On the other hand, there is nothing
in the World except the preLight Flow which gives rise to all the “dense” Matter in the
Universe.
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Introduction

Our physical intuition distinguishes four dimensions in a natural correspondence with
material reality. Four dimensionality plays special role in almost all modern physical the-
ories. High dimensional quantum fields theory and string theory are considered together
with their compactifications, i. e. the main space, describing the reality is a product of
a four-dimensional manifold with some compact high-dimensional space. In this way we
come to the well-known Kaluza-Klein model and ten-dimension superstring theory.

It is an interesting fact that the dimension four is a more complicated dimension
from pure mathematical point of view. It seems that there is a contradiction with our
intuition in understanding of the dimension concept, really, new dimensions give us new
complexity. But it is not true in general. Additional dimensions often give a new freedom.
It is natural that we must have some golden mean in this approach, in which we don’t
have a necessary freedom, but low-dimensional methods weakly work. In topology this
mean is dimension four.

The goal of this note is to give a small survey of some problems in four-dimensional
topology.

S-cobordism problem

One of the main questions of geometric topology is the problem to classify manifolds
lying in a given category with respectively chosen equivalence relation. Working in the
topological category, the question about classification of topological manifolds up to home-
omorphism rises, for example, assuming compactness, connecteness and closedness. In di-
mension one we have only circles, in dimension two we come to the complete classification:
every connected closed compact manifold is homeomorphic to the two-dimensional sphere
with handles and Mobius bands. In this case, the fundamental group is a complete topo-
logical invariant. In the dimension three the question about classification becomes a hard
problem, the existence of the connected 1-connected three-dimensional manifold, which is
not homeomorphic to the three-dimensional sphere, is a well-known Poincare Problem. It
is interesting that in dimension ≥ 5 many difficulties, occurring place in low dimensions,
are disapear. First of all, this fact is connected with the concept of general position in
high-dimensional spaces. Roughly speaking, in many important cases small deformations
give possibility to cancel self-intersections of complexes. But in low-dimensional case we
can not do the same.

Let’s introduce one of the central equivalence relation in the topology of manifolds, so
called s-cobordism relation. Let M1 and M2 be n-dimensional manifolds. We say that they
are cobordant if there exists a (n+1)-dimensional manifold W , such that ∂W = M1∪M2.
Further, if the embeddings Mi → W, i = 1, 2 are homotopical equivalences, then this
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cobordism is called h− cobordism (and manifolds are h− cobordant). Every homotopical
equivalence defines an element from the Whitehead group, which depends only on the
fundamental group of a given manifold (or in general, fundamental group of cell complex).
The Whitehead group can be defined as a quotient of the K1-functor of the integral
group ring of the fundamental group by the natural action of group. In this way, the
homotopical equivalence represents a trivial element of the Whitehead group if and only
if it is homotopic to the composition of elementary cell extensions and collapsings, i.e.
so-called simple homotopy equivalence. H-cobordism with simple homotopy equivalence
is called s-cobordism. In particular, every homotopy equivalence between 1-connected
manifolds is homotopic to the simple one.

The main result of the high-dimensional topology is following Theorem (see [1], [2]).

s-cobordism Theorem. Let n ≥ 5. The connected h-cobordism W between n-
dimensional manifolds M1 and M2 is homeomorphic to the direct product W ≡ M1 × I,
if and only if this cobordism is an s-cobordism.

In particular, if we consider only 1-connected manifolds then arbitrary h-cobordism
between them is a direct product. The higher-dimensional Poincare Conjecture then
follows from this, i.e. every homotopical sphere is homeomorphic to the standard one in
dimension ≥ 5. The proof of the s-cobordism Theorem fails in the case of dimension four
and analogical statement presents an open problem:

Problem. Does the s-cobordism Theorem hold in the dimension 4?

The proof of the high-dimensional s-cobordism Theorem is based on the handlebody
decomposition of the manifold W and reduction of a given manifold to the structure of the
direct product of Mi with interval. The crucial point in this method is so-called Whitney
trick. It gives a possibility to cancel the intersection points of the immersed submanifolds
due to the embedding of a 2-dimensional disk (Whitney’s disk), (see [1]). The main
obstruction to extend the proof on the case of dimension four is the fact that Whitney
trick does not work in dimension four. Actually, it is well-known that every 2-dimensional
complex can be isotopically reduced to the embedded one in the 5-dimensional manifold.
But in dimension four it is not true in general and we can consider the Whitney’s disk
only as immersed one. This easy fact destroys all prove of the s-cobordism theorem in
the case of dimension 4.

To get over the difficulties related to the immersed Whitney disc, some new methods
have been developed. The method given by A. Casson is most effective. The meaning
of this method is to paste a self-intersections step by step by new immersed discs. This
process can be extended infinitely long but the neighborhood of the final 2-complex is a
handle, which is homotopically equivalent to the standard one. This idea was used by M.
Freedman in the proof of the topological Poincare Conjecture in dimension four.

In general, as it was mentioned above, the s-cobordism problem in dimension 4 is
still open. The analog of the s-cobordism Theorem was proved by M. Freedman and P.
Teichner in 1996 in the class of 4-dimensional manifolds with fundamental groups of the
subexponential growth (more precisely, of the growth ≤ 2n) [4].

False and exotic 4-dimensional manifolds

There is a natural question of comparison of given equivalence relations, i.e. homo-
topical equivalence, homeomorphisms, diffeomorphisms, in the class of manifolds of a fixed
dimension. So, any two continously homeomorphic smooth manifolds are diffeomorphic in
the dimension less than four. The situation in dimension four is much more complicated.
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A manifold N is called a false copy of the manifold M if N is homotopically equivalent
to M but not homeomorphic to M . N is called an exotic copy of M if N and M are
homeomorphic, but not diffeomophic as manifolds.

The existence of the false and exotic spheres is connected with the topological and
smooth versions of the Poincare Conjecture respectively. The smooth Poincare Conjecture
is true in the dimensions less than four: there are no exotic three (and less) dimensional
spheres. The analysis of the high-dimensional question leads to the beautiful theory of
exotic spheres: there exist 28 7-dimensional manifolds, which are homeomorphic to the
standard 7-dimensional sphere, but not diffeomorphic, due to the wonderful result of
Milnor. The most intriging case is again dimension four. This is the only dimension, in
which the existence of the exotic spheres is still open.

The situation with exotic copies of R4 is also very surprising. It is known that there
does not exist any exotic Rn in dimension n 6= 4 and the analogical question was open
for a long time in dimension four. In eighties due to the results of Freedman and Don-
aldson it was proved that there exist infinitely many smooth pair-wise nondiffeomorphic
four-dimensional manifolds, such that each of them is homeomorphic to R4. The proof
of this fact essentially used the methods of mathematical physics: instantons, Yang-Mills
connections etc (see [5]). One of the main invariants of 1-connected four-dimensional
manifolds is so-called intersection form, i.e. symmetric bilinear form, define on the sec-
ond cohomologies of a given manifold. Classical Whitehead’s theorem says that two
given 1-connected oriented closed smooth four-dimensional manifolds are homotopically
equivalent if and only if they have isomorphic intersection forms. In this connection,
there is an actual question to classify all symmetric bilinear forms which can be realized
as intersection form for some four-dimensional manifold. M. Freedman has shown that
every symmetric bilinear form can be realized as an intersection form of some compact
1-connected four-dimensional manifolds and that there exist no more than two manifolds
with given form. Donaldson classified all intersection forms of smooth manifolds and
concluded from this the existence of the exotic structures on R4. The structure of exotic
R4 is very complicated and takes important place in modern research. There are still many
open questions related to such manifolds. In particular, does there exist any exotic R4

such that it can not be divided by properly embedded R3 onto two exotic pieces (Problem
4.43 (D), [6]).

The false four-dimensional manifolds construction requires an application of other
techniques. As it was mentioned above, there are no false four-dimensional spheres
(four-dimensional topological Poincare Conjecture). Very often the question about home-
omorphicity of a given homotopic four-dimensional manifolds is very difficult. One of the
first such type examples of four-dimensional manifolds is Cappell-Shaneson construction
(see [2]): there exists a false projective RP 4, which is homotopically equivalent but not
diffeomorphic to RP 4. This space is not PL-homeomorphic to RP 4.

Finishing this section let’s present more open problems in dimension four, related to
exotic structures. The reader can find many classical and modern problems of this type
the Kirby Problem List [6] (see also [7]).

Problem (4.77 [6]): An exotic smooth structure on R4 with R1 is diffeomorphic to
R5. How can we usefully see the exotic R4 in R5?

Problem (4.86 [6]): Do all closed, smooth 4-manifolds have more than one smooth
structure? (The generalization of the smooth 4-dimensional Poincare Conjecture).

Problem (4.87 [6]): Does every non-compact, smooth 4-manifold have an uncount-
able number of smoothings?
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Schoenflies Conjecture

Consider one more problem, which has the solution in all dimensions besides four.
This problem is about knotting in codimension equal to one. Recall that the embedding
f : Mm → Nn+m is called locally-flat if the image of each point in Nm+n has neighborhood
U such that the pair (Im(f) ∩ U,U) is homeomorphic (piecewise-linearly, in the case we
work in this category) to the pare (Dm ×Dn, Dm × {0}).

Conjecture Let f : Sn → Sn+1 be a piece-linear locally-flat embedding. Then
Sn+1 \ im(f) is 2-component and the closure of each of the components is a piece-linear
n-dimensional ball.

Roughly speaking, this conjecture states that n-dimensional sphere can not knot in
(n + 1)-dimensional one. This conjecture turn out to be true in dimensions n + 1 6= 4.
But in the case of dimension four, again we can not apply the methods which we use in
other dimensions.

Finishing this note, we want to mention one more time that there exist not so much
fields in mathematics which use so different methods as four-dimensional topology. The
problems of four-dimensional topology lead to the difficult questions of group theory. This
is a theory of growth in groups, Andrews-Curtis-type problems, lower central series in
groups etc. Also we can see many applications of high-dimensional methods in dimension
four, for example, surgery exact sequences, methods of the link and knot theory. The
dimension four is the unique dimension from the topological point of view, where we can
find so many application of different techniques and which has so many open problems,
the development of new tecniques of algebra and topology will be needed for their solution.
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A review of modern study of algebraic, geometric and differential properties of quater-
nionic (Q) numbers with their applications. Traditional and ”tensor” formulation of Q-units
with their possible representations are discussed and groups of Q-units transformations leaving
Q-multiplication rule form-invariant are determined. A series of mathematical and physical
applications is offered, among them use of Q-triads as a moveable frame, analysis of Q-spaces
families, Q-formulation of Newtonian mechanics in arbitrary rotating frames, and realization of
a Q-Relativity model comprising all effects of Special Relativity and admitting description of
kinematics of non-inertial motion. A list of ”Quaternionic Coincidences” is presented revealing
surprising interconnection between basic relations of some physical theories and Q-numbers
mathematics.

Introduction

The discovery of quaternionic (Q) numbers dated by 1843 is usually attributed to
Hamilton [1, 2], but in the previous century Euler and Gauss made a contribution to math-
ematics of Q-type objects; moreover Rodriguez offered multiplication rule for elements of
similar algebra [3-5]. Active opposition of Gibbs and Heaviside to Hamilton’s disciples
gave a start to the modern vector algebra, and later to vector analysis, and quaternions
practically ceased to be a tool of mathematical physics, despite of exclusive nature of their
algebra confirmed by Frobenius theorem. At the beginning of 20 century last bastion
of Q-numbers amateurs, ”Association for the Promotion of the Study of Quaternions”,
was ruined. The only reminiscence of once famous hypercomplex numbers was the set
of Pauli matrices. Later on quaternions appeared incidentally as a mathematical mean
for alternative description of already known physical models [6, 7] or due to surprising
simplicity and beauty they were used to solve rigid body cinematic problems [8]. An
interest to quaternionic numbers essentially increased in last two decades when a new
generation of theoreticians started feeling in quaternions deep potential yet undiscovered
(e. g. [9 – 11]).

This work is an attempt to give more systematic overview of contemporary state of
Q-number mathematics, its applications to physical theories and possible perspectives in
this area. In the context some quite specific even surprising physical models, but worth
to pay attention to, are shortly discussed.

The review arranged as follows. In section 1 general relations of the quaternionic
algebra are briefly described in the traditional hamiltonian formulation as well as in
tensor-like format. Section 2 is devoted to description of structure of three ”imaginary”
quaternionic units. In section 3 the elements of differential Q-geometry are given with
examples of their mathematical application. Section 4 comprises Q-formulation of Newto-
nian mechanics in the rotating frames of reference. Quaternionic Relativity Theory with
a number of cinematic relativistic effects is found in section 5. Section 6 contains the list
of ”Great Quaternion Coincidences” and final discussion.



Hypercomplex Numbers in Geometry and Physics, 1, 2004 105

1. Algebra of quaternions

Traditional approach

According to Hamilton, a quaternion is a mathematical object of the form

Q ≡ a + bi + cj + dk,

where a, b, c, d are real numbers, a is a coefficient at real unit ”1”, and i, j,k – three
imaginary quaternion units. The multiplication rule for these units given by Hamilton
and often used in literature is

1i = i1 ≡ i, 1j = j1 ≡ j, 1k = k1 ≡ k,

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j

These very cumbersome equations mean, that Q-multiplication loses a commutativity.

Q1Q2 6= Q2Q1,

so that a notion of the right and the left multiplication appears, but it remains associative.

(Q1Q2)Q3 = Q1(Q2Q3).

Two rather different algebraic parts are separated naturally in a quaternion, these once
could be denoted as scalar:

scal Q = a,

and vector
vect Q = bi + cj + dk.

Addition (subtraction) of quaternions is performed by components, scalar and vector parts
are added (subtracted) separately. With respect to addition the Q-algebra is commutative
and associative.

Further step is quaternion conjugation introduced similarly to that of the complex
numbers

Q̄ ≡ scal Q− vect Q = a− bi− cj− dk,

modulus of a Q-number is defined as

|Q| ≡
√

QQ̄ =
√

a2 + b2 + c2 + d2.

This permit to formulate a quaternionic division being as multiplication ”right” and ”left”

QL =
Q1Q̄2

|Q2|2
, QR =

Q̄2Q1

|Q2|2
.

Definition of Q-modulus enhances the famous four squares identity

|Q1Q2|2 = |Q1|2 |Q2|2 .

Due to the properties mentioned above the Q-numbers form the algebra, which belongs to
the elite group of four the so-called exclusive – ”very good” – algebras: of real, complex,
quaternionic numbers and the octonions (Frobenious and Horwits theorems of 1878-1898
[12]).
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Special attention should be paid to Q-units representations. In terms of Hamilton
real unit is simply 1 while three imaginary units similarly to complex numbers algebra
are denoted as i, j, k. Later a simple 2 × 2 matrices representation of these units was
revealed

i = −i

(
0 1

1 0

)
, j = −i

(
0 −i

i 0

)
, k = −i

(
1 0

0 −1

)
.

This representation of course is not unique. Here is a simple example. If in the above
expressions imaginary unit i of complex numbers is represented as 2×2 with real elements

i =

(
0 1

−1 0

)
,

then three vector Q-units turn out to be represented by real 4×4 matrices. The procedure
of the matrix rank duplication can obviously be continued further.

”Tensor” form and representations

If each Q-unit is endowed with its proper number (as components of a tensor)

(i, j,k) → (q1,q2,q3) = q, k, j, k, l,m, n, . . . = 1, 2, 3,

then quaternionic multiplication rule acquires compact form

1qk = qk1 = qk, qjqk = −δjk + εjknqn,

where δkn and εknj – respectively, 3-dimension (3D) symbols Kronecker and Levi-Chivita.

It is easy to show that a number of the Q-units representations even only by 2 × 2
matrices is infinite. Indeed for any 2× 2 matrices with properties

A =

(
a b

c −a

)
, B =

(
d e

f −d

)
, T rA = TrB = 0,

the first two Q-units can be constructed as follows

q1 =
A√

det A
, q2 =

B√
det B

,

while the third one is

q3 ≡ q1q2 =
AB√

det A det B
provided that Tr(AB) = 0.

The scalar unit is always invariant:

1 =

(
1 0

0 1

)
.
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Transformations of Q-units and invariancy of the multiplication rule

a. Spinor-type transformations

If U is an operator changing at once all the units, and there is an inverse operator
U−1 : UU−1 = E, then transformations

qk′ ≡ UqkU
−1 and 1′ ≡ U1U−1 = E1 = 1

retain the multiplication rule

1qk = qk1 = qk, qjqk = −δjk + εjknqn

form-invariant

qk′qn′ = UqkU
−1UqnU = UδknU

−1 + εknjUqjU
−1 = δkn + εknjqj′ .

Such operator can be represented for example by 2× 2 matrix

U =

(
a b

c d

)
, det U = 1,

or unimodular quaternion,

U =
a + d

2
+

√
1−

(
a + d

2

)2

q,

where

q ≡



√
1−

(
a + d

2

)2


−1 (

a−d
2

b

c −a−d
2

)
.

In general this transformation contains 3 independent complex parameter (or 6 real ones),
then U ∈ SL(2, C). In special case of only three real parameters, then U ∈ SU(2).

b. Vector type transformations

Vector Q-units can be transformed by 3× 3 matrix Ok′n

qk′ = Ok′nqn.

The requirement of Q-multiplication form-invariance forces the transformation matrix to
be orthogonal and unimodular

Ok′nOj′n = δkn ⇒ O−1
nk′ = Ok′n, det O = 1.

This transformation in general has 6 independent real parameters, then O ∈ SO(3, C). In
the special case of three parameters O ∈ SO(3, R). Below a variant of representation of
the transformation matrix O is given with x, y, z being arbitrary real or complex functions

O =




√
1− x2 − z2 −x

√
1−y2−z2+yz

√
1−x2−z2

1−z2

xy−z
√

1−x2−z2
√

1−y2−z2

1−z2

x
√

1−x2−z2
√

1−y2−z2−xyz

1−z2

−y
√

1−x2−z2−xz
√

1−y2−z2

1−z2

z y
√

1− y2 − z2


 .



108 Yefremov A. P. Quaternions: algebra, geometry and physical theories

This matrix can be represented as a product of three irreducible multipliers

O =




√
1−x2−z2

1−z2 − x√
1−z2 0

x√
1−z2

√
1−x2−z2

1−z2 0

0 0 1







√
1− z2 0 −z

0 1 0

z 0
√

1− z2







1 0 0

0
√

1−y2−z2

1−z2 − y√
1−z2

0 y√
1−z2

√
1−y2−z2

1−z2


 .

after substitutions z ≡ sin B, x ≡ − sin A cos B, y ≡ − sin Γ cos B, where A,B, Γ – are
complex ”angles”, it takes the form

O =




cos A sin A 0

− sin A cos A 0

0 0 1







cos B 0 − sin B

0 1 0

sin B 0 cos B







1 0 0

0 cos Γ sin Γ

0 − sin Γ cosΓ


 = OA

3 OB
2 OΓ

1 .

If the angles are real: A = α, B = β, Γ = γ, then this transformation is an ordinary vector
rotation consisting of three simple rotations around numbered orthogonal axes: O ⇒
R,R = Rα

3 Rβ
2Rγ

1 . Correlation between related ”spinor” and ”vector” transformations is
easily determined:

Ok′n = −1

2
Tr(UqkU

−1qn), U =
1−Ok′nqkqn

2
√

1 + Omm′
.

Q-geometry in three dimensional space

Hamilton was the first to note that triad of Q-units behaves as three strictly tied unit
vectors (with length i) initiating Cartesian coordinate system, somewhat exotic because
of its ”imaginarity”. Due to the fact the Q-triad in 3D-space (q1,q2,q3) will be called
’quaternionic basis’ (Q-basis). Now Q-units transformations have apparent geometrical
sense of various rotations of the Q-basis. An example: a simple rotation by real angle α
around axis # 3

q′ = Rα
3q.

Notion of Q-basis helps to introduce 3D quaternionic vectors (Q-vectors), defined as

a = akqk,

here all its components ak are real. The most important property of Q-vector – is its
invariancy with respect to vector transformations from the group SO(3,R)

a′ = ak′qk′ = ak′Rk′jqj = ajqj = a.

The projection of Q-vector onto arbitrary coordinate axis (represented by any different
Q-unit) can be found in two ways. First, if at least one set of projections of Q-vector
and rotation matrices Rnk′ are known then projections of this vector on rotated axis are
immediately found

ak′ = anRnk′ .

The second approach is related to existence of internal structure of the Q-units; a brief
analysis of it is given in the next section.
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2. Structure of quaternionic ”imaginary” units

Eigenfunctions of Q-units [13]

Each vector Q-unit can be thought of as operator, so eigenfunctions and eigenvalues
problem can be formulated for it

qψ = λψ, ϕq = µϕ.

The solution of this problem are the eigenvalues (”imaginary length” of Q-unit with
division by parity)

λ = µ = ±i,

and two sets of eigenfunctions(one for each parity), possible given by columns ψ± and
rows ϕ±, being the functions of components q.

Here is an example explicit form of eigenfunction: for the Q-unit represented by
matrix

q = − i

T

(
a b

c −a

)
,

where T ≡ a2 + bc 6= 0, b 6= 0, c 6= 0, its eigenfunctions are defined as

ϕ± = x
(

1 ± b
T±a

)
, ψ± = y

(
1

∓ c
T±a

)
,

where x, y are arbitrary complex factors.

The freedom of components, arising in the calculations is reduced by convenient
normalization condition

ϕ±ψ± = 1,

while the eigenfunctions orthogonality (by parity) is an inherited property

ϕ∓ψ± = 0.

One can construct tensor products of eigenfunctions and obtain 2× 2 matrices

C± ≡ ψ±ϕ±,

possessing a properties reciprocal with respect to the ones of vector q:

det C = 0, T r C = 1,

whereas
detq = 1, T r q = 0.

Matrix C is idempotent
Cn = C,

and can be expressed throw their own unit Q-vector

C± =
1± iq

2
.

When inversed the latter expression gives information about internal structure of Q-unit

q = ±i(2C± − 1) = ±i(2ψ±ϕ± − 1),
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which turns out to consist of a combination of its eigenfunctions and scalar units.

Since each Q-unit has its own eigenfunctions the Q-triad as a whole possesses unique
set of eigenfunctions {ϕ±(k), ψ

±
(k)}. There is an interesting algebraic observation concerning

this set. Three Q-units are interrelated by obviously nonlinear combination – multiplica-
tion e. g.

q3 = q1q2,

but it is easy to show that corresponding eigenfunctions depend on each other linearly:

ϕ±(3) =
√∓iϕ±(1) ±

√
iϕ±(2), ψ±(3) =

√±iψ±(1) ±
√−iψ±(2).

Q-eigenfunctions help to represent a spinor-type transformation of Q-units retaining Q-
multiplication invariant in the familiar form

ψ±(k′) = Uψ±(k), ϕ±(k′) = ϕ±(k)U
−1,

so that the eigenfunctions can be regarded as a set of specific spinor functions, allowing
in subject in general to SL(2C) transformations. Yet another mathematical observa-
tion should be noted: from pairs of eigenfunctions, belonging to different Q-units of one
triad and having one parity, one can construct 24 scalar invariants SL(2C) group; these
invariants are real or complex numbers, e. g.:

σ+
12 ≡ ϕ+

(1)ψ
+
(2) =

√
− i

2
=

1− i

2
.

Quaternionic eigenfunctions as projectors

Eigenfunctions act on their own Q-basis as following

ϕ±(1)q1ψ
±
(1) = ±i, ϕ±(1)q2ψ

±
(1) = 0, ϕ±(1)q3ψ

±
(1) = 0,

or in general
ϕ±(k)qnψ

±
(k) = ±iδkn (no summation by k).

It looks like that eigenfunctions select a projection of the unit Q-vector, generating
them. This idea is confirmed by an example of an action of eigenfunctions of one Q-basis
onto the vectors of the rotated Q-basis

ϕ±(k)qn′ψ
±
(k) = ϕ±(k)Rn′mqmψ±(k) = ±iRn′k = ±i cos ∠(qn′ ,qk) (no summation by k),

the result of the action is ’nearly’ projection of Q-basis q′ on q. It is convenient to denote
precise projection as

〈qn′〉k ≡ ∓iϕ±(k)qn′ψ
±
(k) = cos ∠(qn′ ,qk) (no summation by k).

It is now easy to formulate rule of calculation of projection of a Q-vector a onto
arbitrary direction, defined by vector qj (e. g. with help of eigenfunctions of positive
parity)

〈a〉+j ≡ −iak′ϕ
+
(j)qk′ψ

+
(j) = ak′Rk′j = aj (no summation by j).

Thus quaternionic eigenfunctions with their own interesting properties are more funda-
mental mathematical objects then Q-units and too can serve as useful tool for practical
purposes such as computing projections of Q-vectors.
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4. Differential Q-geometry

Quaternionic connection

If vectors of Q-basis are smooth functions of parameters qk(Φξ) (index ξ enumerates
parameters), then

dqk(Φ) = ωξ kjqjdΦξ,

where an object ωξ kj is called quaternionic connection. Q-connection is antisymmetric
in vector indices

ωξ kj + ωξ jk = 0,

and has the following number of independent components

N = Gp(p− 1)/2,

where G is an number of parameters and p = 3 – is a number of space dimensions. If G
= 6 [a case of group SO(3,C)], then N = 18; if G = 3 [a case of group SO(3,R)], then N
= 9. Q-connection can be calculated at least in three ways:

using vectors of Q-basis ωξ kn =

〈
∂qk

∂Φξ

〉+

n

,

using matrices U from the group SL(2C) (general case) and special representation of
constant Q-units qk̃ = −iσk, where σk – Pauli matrices

ωξ kn =

〈
U−1 ∂U

∂Φξ

qk̃ − qk̃U
∂U−1

∂Φξ

〉+

n

,

and, finally, using matrices O from SO(3, C) (in a general case)

ωξ kn =
∂Okj̃

∂Φξ

Onj̃.

All the formulae of course provide same result.

From the point of view of vector transformations a Q-connection is not a tensor. If
qk = Okp′qp′ , then transformed components of connection are expressed throw original
ones with addition of inhomogeneous term

ωξ kj = Okp′Ojn′ωξ p′n′ + Ojp′
∂Okp′

∂Φξ

.

In 3D space Q-connectivity has clear geometrical and physical treatment as moveable
Q-basis with behavior of Cartan 3-frame. Parameters of its ordinary rotations can depend
on spatial coordinates Φξ = Φξ(xk), then ∂nqk = Ωnkjqj, then components of slightly
modified Q-connection

Ωnkj ≡ ωξ kj∂nΦξ

have a sense of Ricci rotation coefficients. Parameters can also depend on the length of
line of motion of the Q-basis or on the observer’s time. Then Φξ = Φξ(t), ∂tqk = Ωkjqj,
and components of Q-connection

Ωkj ≡ ωξ kj∂tΦξ

became generalized angular velocities of rotations of the frame.
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The typical examples of Q-frames and Q-connection are

a) Frene frame. For the smooth curve xk̃(s) defined in constant basis the Frene frame
is represented by the triad qk, obeying the equations

d

ds
q1 = RI(s)q2,

d

ds
q2 = −RI(s)q1 + RII(s)q3,

d

ds
q3 = −RII(s)q2,

where the first and the second curvatures are

RI = Ω12, RII = Ω23.

b) Twisted straight line. For a given straight line x1̃ = u, x2̃ = x3̃ = 0, one can
construct a Q-basis associated with it so that one vector is tangent to the line. In this
case Q-connection is not zero and represented the only component describing torsion (or
rather twist) of the line about itself.

q1 = −i

(
1 0

0 −1

)
, q2 = −i

(
0 −ie−iγ(u)

ieiγ(u) 0

)
, Ω23 =

dγ

du
,

here γ(u) is the angle, which is an arbitrary but smooth function of the line length.

Quaternionic spaces

Tangent Q-space [15]. It is known that on every N-dimensional differentiable man-
ifold UN with coordinates {yA} one can construct a tangent space TN with coordinates

{X(A)} so that dX(A) = g
(A)
B dyB, where g

(A)
B – Lame coefficients. By an extra rotation

one can construct a tangent Q-space T (U,q), with coordinates {xk}, k = 1,2,3, which
associated with Q-frame vectors.

dxk = hk(A)dX(A) = hk(A)g
(A)
B dyB,

where hk(A) are in general non-square matrices normalized by projectors of the basic space
onto 3D one or vice versa.

Proper quaternionic space itself U3 is defined as 3D-space, locally identical to own
tangent space T (U3,q). The Q-space has the following basic features. Its Q-metric
represented by vector part of the Q-multiplication rule qjqk = −δjk + εjknqn is non-
symmetric, its antisymmetric part is Q-operator (matrix), so that every point U3

has internal quaternionic structure. Q-connection U3 can be: (i) proper (metric)
Ωnkj ≡ ωξkj∂nΦξ, for variable Q-basis it is always non zero, and (ii) affine (non-metric),
independent from Q-basis. Q-torsion does not vanish in both cases, whereas Q-curvature
rknab = ∂aΩbkn − ∂bΩakn + ΩajnΩbjk − ΩbjkΩajn for the metric Q-connection identically
equals zero, but can be present in the space of affine Q-connection.

Once Q-space is introduced, there appears a new field of investigation of differential
manifolds and spaces. Thus in the preliminary classification of Q-spaces based on presence
and nature of curvature, torsion and non-metricity at least 10 different families can be
distinguish [15]. In addition Q-spaces can be a nontrivial background for classical and
quantum theories and problems.
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4. Newton mechanics in Q-basis

Dynamics equations in rotating frame [16]

The Q-basis endowed with clock becomes a classical (non-relativistic) reference sys-
tem. For an inertial observer the dynamic equations of classical mechanics can be written
in constant Q-basis

m
d2

dt2
xk̃qk̃ = Fk̃qk̃.

SO(3, R)-invariance of two Q-vectors, the radius-vector r ≡ xkqk and force F ≡ Fkqk

allow to represent these equations in Q-vector form

m
d2

dt2
(xkqk) = Fkqk, or mr̈ = F

In explicit form these equations possess enough complicated structure

m(
d2

dt2
xn + 2

d

dt
xkΩkn + xk

d

dt
Ωkn + xkΩkjΩjn) = Fn

which nevertheless can be simplified and interpreted from physical points of view. Due
to antisymmetry of the connection (generalized angular velocity)

Ωj ≡ Ωkn
1

2
εknj, Ωkn = Ωjεknj,

the dynamic equations can be rewritten in vector components

m(an + 2vkΩjεknj + xk
d

dt
Ωjεknj + xkΩjΩmεjkpεmpn) = Fn

or by conventional vector notation

m(~a + 2~Ω× ~v +~̇Ω× ~r + ~Ω× (~Ω× ~r)) = ~F .

Among left hand side terms one easily recognizes 4 classical accelerations: linear, Coriolis,
angular and centripetal. However this traditional interpretation is good only for simple
rotation; in the case of combination of many Q-frame rotations number of components
of generalized accelerations highly increases, and the equations become much more com-
plicated. However it is worth noting that derivation of these equations for the most
complicated rotations with the help of Q-basis and Q-connection is extremely simple.

Samples of Q-formulation of problems of classical mechanics

’Chasing’ Q-basis – is a frame with one of its vectors, say q1 is always directed to
observed particle. Dynamic equations for this case are written in explicit form in following
manner

r̈ − r(Ω2
2 + Ω2

3) = F1/m,

2ṙΩ3 + rΩ̇3 + rΩ2Ω1 = F2/m,

2ṙΩ2 + rΩ̇2 + rΩ1Ω3 = −F3/m.

Components of Q-connection are defined as functions of angles of two rotations, the first
(an angle α) – around vector q3, the second (an angle β) – around q2

Ω1 = α̇ sin β, Ω2 = −β̇, Ω3 = α̇ cos β.
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The chasing Q-basis approach is convenient to solve a number of mechanical problems
related to rotations, some times very complicated, of observed objects and systems of
reference. Here is an illustration.

Rotating oscillator. One seeks for motion law r(t) of a harmonic oscillator (mass m,
spring elasticity k) which has a freedom of motion along rigid smooth rod rotating in the
plane around one of its ends (here one end of the spring is fixed) with angular velocity
ω; the equilibrium point is located at the distance l from the rotation center, there is no
gravity. Radial and tangent dynamic equations in the chasing Q-basis (F is unknown rod
reaction force)

r̈ − rω2 = − k

m
(r − l), 2ṙω =

1

m
F,

admit the following family of solutions:

(i) r(t) = r0 + v0t + at2

mass moves away from the center of rotation with quadratic (or linear) law,

(ii) r(t) = const + Aeiwt + Be−iwt, w ≡
√

k/m− ω2

here are three different situations depending on a relation of the quantities under the
square root:

– r = const,

– harmonic oscillators,

– exponential motion away from the center of rotation.

It is interesting that the variants of rotating classical oscillator behavior with l = 0
are precisely similar to behavior of four known cosmological models of Einstein-DeSitter-
Friedman considered in the General Relativity.

5. Construction of Quaternionic Relativity

Hyperbolic rotations and biquaternions [17]

It was noted above, that SO(3,C)-transformations of Q-units admit pure imaginary
parameters. In this case rotations become hyperbolical (H – from hyperbolic); e. g.
simple H-rotation q′ = Hψ

3 q is performed by matrix of the form

Hψ
3 =




cosh ψ −i sin ψ 0

i sin ψ cosh ψ 0

0 0 1


 ,

and 2× 2 -matrices of Q-units representation are no longer hermitian:

q1′ = −i

(
0 eψ

e−ψ 0

)
.

This is the time to recall the notion of so called biquaternionic vectors (BQ). BQ-vector
is defined as Q-vector with complex components u = (ak + ibk)qk. Obviously for vectors
of this type the norm (or modulus) in general can not be defined; but among all BQ-
vectors there is a subset of ”good” elements with well definable norm by u2 = b2 − a2.
These vectors appear to be form-invariant with respect to transformations of subgroup
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SO(2, 1) ⊂ SO(3, C), and in particular, with respect to simple H-rotations q′ = Hqu =
ukqk = uk′qk′ , but only when reciprocally imaginary components akbk = 0 are orthogonal
to each other.

Quaternionic Relativity

The made above observation allows to suggest a space-time BQ-vector ”interval”

dz = (dxk + idtk)qk,

with specific properties:

(i) Temporal interval is defined by imaginary vector,

(ii) space-time of the model appears to have six-dimensional (6D),

(iii) vector of the displacement of the particle and vector of corresponding time
change must always be normal to each other dxkdtk = 0.

In this case BQ-vector-interval is invariant under group SO(2, 1) ⊂ SO(3, C), as well
as of course its square (which differs from the square of norm only by sign) dz2 = dt2−dr2,
the latter has precisely the same form as a space-time interval of Special Relativity of
Einstein. This 6D-model was initially named the Quaternionic Relativity. Temporal and
spatial variables symmetrically enter the expression of BQ-vector-interval, and the Q-triad
related to it describes relativistic system of reference Σ ≡ (q1,q2,q3). Transition from
one reference system to another is performed with the help of ’rotational equations’ of
the type Σ′ = OΣ with matrix O from the group SO(2, 1) is a product of matrices of real
and hyperbolic rotations. So the theory could also be named (may be more correctly)
’Rotational Relativity’. The meaning of a simple H-rotation is immediately revealed from
the first line of equation Σ′ = Hψ

3 Σ in the explicit form

iq1′ = i cosh ψ(q1 + tanh ψq2).

If like in Special Relativity cosh ψ = dt/dt′, then

idt′q1′ = idt(q1 + V q2),

which describes motion of reference system Σ′ relative to Σ with velocity V along direction
q2. It is easy to show that SO(2, 1)-rotations of Q-reference system enhance Lorenz
coordinate transformations and therefore all cinematic effects of Special Relativity.

It should be noted here that parameters of real and hyperbolic rotations can be
variable for instance dependent on observer’s time. This hints to expect of the discussed
theory a possibility to describe non-inertial motions. Analysis of the rotational equations
confirms the expectation. Well-known relativistic model of reference system constantly
accelerated with respect to the inertial one (hyperbolic motion), frequently found in liter-
ature and normally regarded with use of assumption beyond frames of Special Relativity,
in quaternionic theory is solved naturally and fast not only from the inertial observer
viewpoint, but from position of accelerated frame too [18].

The kinematic problem of other non-inertial motion – relativistic circular mo-
tion – can be completely and precisely resolved by means of the rotation equation
Σ′ = H

ψ(t)
2 R

α(t)
1 Σ, where Σ′ is reference system rotating along the circle around the

immobile frame Σ. This problem also can be solved both from the point of view of
inertial observer, in this case the result has the form

t =

∫
dt′ cosh ψ(t′), α(t) =

1

R

∫
dt′ tanh ψ(t′),
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atan(t) =
1

cosh2 ψ

dψ

dt
, anorm(t) = R

(
dα(t)

dt

)2

,

and from the point of view of the observer in the reference system arbitrary moving along
circular orbit.

The solution of the problem of ”classical” Thomas precession in the framework of
Special Relativity also needs additional assumptions, while in the quaternionic theory has
a single line form – the first row of the matrix of rotation equation Σ′′ = R

−α(t)
1 Hψ

2 R
α(t)
1 Σ,

in this case of course correct value of precession frequency is obtained

ωT = (1− cosh ψ) ≈ −1

2
ωV 2.

Moreover, the quaternionic theory of relativity appears to be able to describe Thomas
precession for the vectors moving along trajectories of general type. The basic rotational
equation in this case naturally generalized: Σ′′ = R−θ(t)Hψ(t)Rθ(t)Σ, here θ(t) – an angle of
instant rotation. Requirement that an axis of hyperbolic rotation be normal to the plane
formed by the radius-vector of observed frame and its velocity vector, is also significant.
In this case formula of variable frequency of general Thomas precession has the form

ΩT =
d

dt
(θ − θ′).

An example of such Thomas precession is an apparent displacement of mercurial
perihelion, for which calculations give a value ∆ε = 2, 7′′/100 years.

Universal character of motion of the bodies (including non-inertial motions) in the
Quaternionic Relativity suggests seeking for new cinematic relativistic effects. One is
found in Solar System planets’ satellites motion. Relative velocity of the Earth and other
planets changes with time and sometimes achieves significant value comparable somehow
to value of the fundamental velocity. This can lead to discrepancy between calculated
and observed from the Earth cinematic magnitudes characterizing cyclic processes on
this planet or near it. In particular there must be a deviation of the planetary satellite
position. Such an angular difference is surprisingly found to be linearly dependent upon
the time of observation

∆ϕ ≈ ωVEVP

c2
t,

here ω is an angular velocity of satellite motion around the planet, V – are linear velocities
of the Earth and the planet around the sun. The magnitude of the effect is the following
for the closest to the Jupiter and ”the fasters” Jupiter satellite ∆ϕ ∼= 12′ for 100 terrestrial
years; for the Mars satellite (Phobos) ∆ϕ ∼= 20′ for 100 terrestrial years [19]. Both values
are big enough for the effect to be noticed in prolonged and precise observations.

One can say that space-time model and kinematics of the Quaternionic Relativity are
nowadays studied in enough details and can be used as an effective mathematical tool for
calculation of many relativistic effects. But respective relativistic dynamic has not been
yet formulated, there are no quaternionic field theory; Q-gravitation, electromagnetism,
weak and strong interactions are still remote projects. However, there is a hope that it
is only beginning of a long way, and the theory will ”mature”. This hope is supported
by observation of number of remarkable ”Quaternionic Coincidences” forming a discrete
mosaic of physical and mathematical facts; probably one day it will turn into a logically
consistent picture providing new instruments and extending our insight of physical laws.
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6. Remarkable ”quaternionic coincidences”

There are, at least, five such coincidences (all of them given below), noted by different
authors in various time.

1. The Maxwell equations as an conditions of the analyticity of functions of quater-
nionic variable.

In 1937 year Fueter [20] noted, that Cauchy-Riemann ∂f/∂z∗ = 0 equations defining
the differentiability of complex variable function and modeling physically a flat motion of
liquid without sources and whirls, have the following quaternionic analogue

(
i
∂

∂t
− qk̃

∂

∂xk̃

)
H = 0, H = (Bñ + iEñ)qñ.

Surprising fact is that the equations of classic Maxwell electrodynamics in vacuum prove
to be corresponding physical model

div ~E = 0, div ~B = 0, rot ~E − ∂ ~B

dt
= 0, rot ~B +

∂ ~E

dt
= 0.

2. Classical mechanics in the rotating reference systems.

The compact form of Newton equations in quaternion frame is described above in
section 4. Finally it should be stressed that the form of dynamics equations naturally
arising and externally primitive

mr̈ = F

hides all possible combinations of rotations of reference systems or observed bodies. Using
differential quaternionic objects helps to easily obtain explicit form of the equations whose
elements have obvious physical meaning.

3. The quaternionic theory of relativity.

1:1 isomorphism of the Lorenz group of Special Relativity and the group of invariance
of quaternionic multiplication SO(3, C) leads to non-standard theory of relativity with
symmetric six-dimensional space-time. This theory significantly differs from Einstein
Special Relativity in origin, model, possibilities and mathematical tools, but predicts
absolutely similar cinematic effects. Invariance of specific biquaternionic vector ”interval”
dz = (dxkn+i dtk)qk under subgroup SO(2, 1) with in general variable parameters admits
calculation of relativistic effects for non-inertial motion of reference systems.

4. Pauli equations [21].

Consider the quantum particle with electric charge e, mass m, and generalized mo-
mentum

Pk ≡ −i~
∂

∂xk

− e

c
Ak

in the simplest quaternionic space (all the parameters are constant, connection, non-
metricity, torsion and curvature equal to zero). Hamiltonian of such particle in Q-metrics

H ≡ − 1

2m
PkPmqkqm

is the exact copy of Hamilton function of Pauli equation

H =
1

2m

(
~p− e

c
~A
)2

− e~
2mc

~B · ~σ,
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and the spin term ”automatically” acquires a coefficient equal to Bohr magneton.

5. Young-Mills field strength.

If one constructs a ”potential” vector in an arbitrary quaternionic space from
Q-connection components Ωamn (indices a, b, c enumerate coordinates of basic Q-space,
indices j, k, m, n enumerate vectors of tangent triad)

Aka ≡ 1

2
εkmnΩamn,

and similarly construct a ”field strength” vector

Fkab ≡ 1

2
εkmnrmnab,

from quaternionic curvature components

rknab = ∂aΩbkn − ∂bΩakn + ΩajnΩbjk − ΩbjkΩajn

then these two geometrical objects are interconnected in the similar manner as the field
strength and potential of the Young-Mills field

Fkab ≡ ∂bAka − ∂aAkb + εkmnAmaAnb.

(formula) It should be stressed that for the Q-spaces with metric (not affine) connection
curvature (field strength) identically vanish.

Discussion

Quaternionic numbers of course are first of all mathematical objects, so the problem
of development of their algebra, analysis and geometry is self-consistent. But history
of modern science states that once the geometry, in particular differential geometry, is
discussed the presence of physics is unavoidable. There is a known point of view that
Einstein who suggested General Relativity was a pioneer in geometrization of physics.
But it is also known that quite earlier Maxwell formulated his electrodynamics in terms of
quaternions convenient for description of ’etheric tensions’ which were thought to represent
field strength vectors. But since that the geometrical language has not been utilized for
many decades.

The aspects of quaternionic mathematics given in this review once again draw at-
tention to ’genetic relations’ between physics and geometry: from description of frames
rotations to quaternionic field structure phenomena in Pauli equations and Young-Mills
theory.

Wide variety of possibilities provided by Q-approach and derived within it non-
traditional physical models, like six-dimensional space-time or mentioned above coinci-
dences may lead to opinion that quaternions are still a mathematical play, something like
’lego’ elements, from which one can build many exotic constructions.

As a comment there are the following two observations.

1. Producing non-standard physical models Q-method nonetheless allows to success-
fully solve physical problems thus being a useful tool for practical purposes. A typical
example: inherited exponential character of representation of simple rotations helps to
simply formulate summation of different rotations, including, of course, imaginary ro-
tations, describing relativistic boosts. Recall that in classical mechanics summation of
ordinary rotations is quite a task.



Hypercomplex Numbers in Geometry and Physics, 1, 2004 119

2. All physical quaternionic theories are not heuristically invented, but appear nat-
urally from fundamental mathematical lows, as though confirming Pythagorean idea on
”world – number” dependence. Indeed, Q-algebra, the last associative algebra, describes
well physical quantities, all of them up to our knowledge being associative with respect
to multiplication: from observable kinematic and dynamic one, to tensors and spinors
incorporated in the theories. All this gives a hope that further efforts in the research
”quaternions – physical laws” relations will once grow into wide scientific programme.
Yet another small, but persevering step in this direction has been recently made, when
the author of this review succeeded to found an exact solution for relativistic oscilla-
tor problem in the framework Quaternionic Relativity. Details of the solution will be
published elsewhere.
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Arbitrary three-form can be put in a canonical form. The requirement of existence of
two-parametric Abelian Lie group to play the role of group of symmetry for three-form admits
selecting the three-forms that correspond to three-numbers and finding all the three-numbers
which cube of norm is a non-degenerate three-form with respect to a special coordinate system.
There are exactly two (up to isomorphism) such sets of hypercomplex numbers, namely the sets:
C3,H3. They can be regarded as generalizations of complex and binary (hyperbolic) bi-numbers
to the case of three-numbers.

1. Introduction

The real number is a stoneconcept for both the mathematics and physics. The
associative-commutative n-dimensional hypercomplex numbers over the field of real num-
bers, – which we shall call the n-numbers for short, – comprises an attractive extension
of this concept. The complex numbers are well adopted in solving problems of math-
ematical and theoretical physics and present actually a particular case of such hyper-
complex numbers, bi-numbers. Regrettably, the n-numbers at n > 2 have not been
studied in great detail. It can be hoped that, possessing such simplified properties as
associativity and commutativity and showing sufficient complexity in some cases, the
associative-commutative hypercomplex numbers shall find their non-trivial application.
At n > 2 the very classification and choice of the n-numbers for mathematical studies
with the aim of farther application in physics is a non-trivial problem. The formulation of
additional conditions to specify a narrow (but significant) class in all the set of n-numbers
seems to be a convenient way to attack the problem. The stipulating of a special basis in
term of which the coordinates of the n-numbers be similar (for example, the norm would
be independent of permutation of coordinate labels, the more strength condition insists
of fulfilling the requirement that n-th degree of norm of the n-number be non-degenerate
with respect to such coordinates) can play the role of such a condition. For the sake of
brevity, in the present work the n-form of the coordinates of the n-dimensional linear
space is meant to be the highsymmetric poly-linear form of n-th degree, all the arguments
of which being equal to a fixed vector. Highsymmetry of form means existence of such a
basis that the relevant representation of the symmetric form of n-vector arguments does
not change under permutation of of coordinates. The non-degeneracy of form means the
impossibility to express the form as an integer degree of a form of lower degree. Below
we shall often omit the term “non-degenerate” , implying merely an n-form.

The present work is devoted to studying the three-numbers, that is, the associative-
commutative hypercomplex numbers of the form

X = x1 + x2 · e2 + x3 · e3, (1)

where e2, e3 are symbolic elements, and x1, x2, x3 are real numbers applying as the coor-
dinates with respect to the basis e1 ≡ 1, e2, e3. If a number X admits the exponential
representation

X = ρ · exp(α · e2 + β · e3), (2)
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where ρ > 0, α, β – real numbers, then the quantity ρ can naturally be called the modulus
of the three-number X. Let us search for only the three-numbers that with respect to
a special basis (the latter is not necessary the basis e1 ≡ 1, e2, e3) the cube of the norm
ρ(x1, x2, x3) is a non-degenerate three-form of coordinates, that is,

ρ3 = Ω(x1, x2, x3; ω1, ω2, ω3), (3)

where the three-form of the general type

Ω(x1, x2, x3; ω1, ω2, ω3) = ω1Ω1(x1, x2, x3) + ω2Ω2(x1, x2, x3) + ω3Ω3(x1, x2, x3) (4)

is an arbitrary linear combination with real numbers ωi (i = 1, 2, 3) at the basis
three-forms:

Ω1(x1, x2, x3) ≡ x3
1 + x3

2 + x3
3, (5)

Ω2(x1, x2, x3) ≡ x1x
2
2 + x1x

2
3 + x2

1x2 + x2x
2
3 + x2

1x3 + x2
2x3, (6)

Ω3(x1, x2, x3) ≡ x1x2x3. (7)

It will be noted that in the three-dimensional space the symmetric cubic form of
three vector arguments, assuming the linearity in each argument, contains not three but
ten arbitrary real parameters; that is, the form is a more general notion then the high-
symmetric three-form and hence leads to the form which is more general then (4). The
requirement of non-degeneracy of three-form reads

Ω(x1, x2, x3; ω1, ω2, ω3) 6= Ω(x1, x2, x3; ω1, ω2, ω3) ≡ ω · (x1 + x2 + x3)
3. (8)

In the sequel we shall assume the non-degenerate type, unless otherwise stated ex-
plicitly.

The multiplication of the number X by a unimodular number X1 yields the number

Y = X1 ·X, (9)

which modulus is equal to the modulus of the number X, so that for such three-numbers
we have

Ω(y1, y2, y3; ω
′
1, ω

′
2, ω

′
3) = Ω(x1, x2, x3; ω1, ω2, ω3). (10)

Thus in order that the cube of norm be three-form, the set of unimodular num-
bers of this hypercomplex system must form a two-parametrical continuous Abelian Lie
group (the symmetry group which retains the form of the three-form) consisted of linear
transformations (9) of the coordinate space of considered three-forms.

Let us assume that for definite values of parameters of three-form (4) we find the
symmetry group which is two-parametric Abelian group of continuous linear transforma-
tions with generators E2, E3 given by real quadratic matrices 3 × 3. Then, as is known,
the linear transformations themselves can be defined through generators of matrix Â
according to the formula

Â = exp(α · Ê2 + β · Ê3), (11)

where α, β are real parameters. Let in this way the multiplication rules

Êi · Êj = pk
ij · Êk (12)

obey for generators, where i, j, k = 1, 2, 3; Ê1 stands for the unit matrix (the generator of
general scale transformation), pk

ij is some real number; summation over repeated indices
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is assumed. Then Ê1Ê2, Ê3 can be regarded as a representation of the basis elements
e1 ≡ 1, e2, e3 of some set of three-numbers, whence the representation of the set of such
numbers in the coordinate linear three-dimensional space x1, x2, x3 in the form of linear
quadratic matrices 3× 3. It is obvious that the multiplication law for the basis elements
e1 ≡ 1, e2, e3 will be of the same form (12) with the same characteristic numbers pk

ij

ei · ej = pk
ij · ek. (13)

Now we can write the numbers representable in the exponential form (2). The
coordinate linear space x1, x2, x3 is not obliged to be introduced in the same basis, that is
in accordance with the formula (1). Therefore, in general case there appears the following
relation for numbers representable in exponential form:

x1 · e′1 + x2 · e′2 + x3 · e′3 = ρ · exp(α · e2 + β · e3), (14)

where e′1, e
′
2, e

′
3 is a basis differed in general case from e1 ≡ 1, e2, e3, and such that e′1 may

differ from real unity. Using three coordinate relations (14) and finding two real parameter
α, β, we get the expression for the cube of norm through the coordinates x1, x2, x3:

ρ3 = f(x1, x2, x3). (15)

If an initial three-form enters the right-hand part of this formula, then the relevant
three-numbers are found.

2. Transformation of three-form to a canonical type

Apart of general scale transformation, there exists but one linear coordinate trans-
formation connected continuously with the identity by means of which an arbitrary
three-form goes over again in a three-form. Let us write the transformation in the matrix
form: 


x1

x2

x3


 =

1

3q




p + 2 p− 1 p− 1

p− 1 p + 2 p− 1

p− 1 p− 1 p + 2







y1

y2

y3


 , (16)

where q is an arbitrary positive real number, and

p ≡ q3. (17)

With respect to new variables, the three-form Ω(x1, x2, x3; ω1, ω2, ω3) transformed by
(16) takes on the form

Ω(x1, x2, x3; ω1, ω2, ω3) = Ω(y1, y2, y3; ω
′
1, ω

′
2, ω

′
3), (18)

where

ω′1 ≡ u · (w1p
3 + 3w2p + 2w3),

ω′2 ≡ 3u(w1p
3 − w3),

ω′3 ≡ 3u(2w1p
3 − 3w2p + 4w3),





(19)

u ≡ 1

27p
, (20)

w1 ≡ 3ω1 + 6ω2 + ω3,

w2 ≡ 6ω1 − ω3,

w3 ≡ 3ω1 − 3ω2 + ω3.





(21)
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Certainly, the classification of three-forms (by transforming to canonical type) can be
performed in various ways. Let us start with stipulating that the three-forms connected by
the linear non-degenerate coordinate transformation that does not affect the values of the
three-form itself, are equivalent, — in the sense that they differ by only the choice of basis
in three-dimensional linear space of x1, x2, x3, that is by the choice of basis (symbolic)
element in the space of three-numbers. When transforming three-form to a canonical form,
we shall consider not all linear non-degenerate transformations but only the possible triple,
namely, the transformation (16); the discrete transformation (changing simultaneously the
sign for all three coordinates); general scale transformation (multiplying simultaneously
all three coordinates by a fixed real positive number). The basis forms (5) – (7), because
of their preferable type, are certainly regarded as canonical.

So, let us consider three-form of the general type (4) and go over by the help of
the linear transformation (16) to new coordinates. Since the relationship between the
quantities wi and the parameters of the three-form ωi is one-to-one, we shall try to diminish
the number of parameters of three-form with respect to new coordinates, considering
various variants and using the quantities wi and the formulas (19).

1). If

sign(w1) = sign(w2) 6= 0, (22)

then by the help of the coordinate transformation (16) with the parameter value

p = 3

√
w3

w1

(23)

the initial three-form can be reduced to the form Ω(y1, y2, y3; ω
′
1, 0, ω

′
3).

2). If

sign(w1) = − sign(w3) 6= 0, (24)

then the two transformations (16) can always be found such that ω′1 can be nullified by
using one of them, whereas ω′3 can be nullified by using another member, and in both
cases the parameter ω′2 gets strongly not equal to zero at any value w2. Thus as a result,
one is to choose either the form Ω(y1, y2, y3; 0, ω

′
2, ω

′
3) or thereto equivalent three-form

Ω(y1, y2, y3; ω
′
1, ω

′
2, 0). In order to exclude ambiguity, we shall always choose the first

version, that is the three-form Ω(y1, y2, y3; 0, ω
′
2, ω

′
3). On so doing, the parameter p in the

transformation (16) is a real positive root of the cubic equation

w1p
3 + 3w2p + 2w3 = 0. (25)

There remains to consider the case when the quantities vanish either separately or totally.

3). If

w1 = 0, sign(w2) = − sign(w3) 6= 0, (26)

then by the help of the transformation (16) the three-form can be reduced to the canonical
form Ω(y1, y2, y3; 0, ω

′
2, ω

′
3), with ω′2 6= 0 and ω′3 6= 0, as well as

p = −2w3

3w2

. (27)

4). If

w1 = 0, sign(w2) = sign(w3) 6= 0, (28)
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then by the help of the transformation (16) the three-form can be reduced to the canonical
form Ω(y1, y2, y3; ω

′
1, ω

′
2, 0), with ω′1 and ω′2 6= 0, and

p =
4w3

3w2

. (29)

5). If
w1 = 0, w2 = 0, w3 6= 0, (30)

then
ω′1 = 2uw3, ω′2 = −3uw3, ω′3 = 12uw3. (31)

In this case the three-form can be presented by Ω(x1, x2, x3; ω1,−3
2
ω1, 6ω1), so that the

coordinate transformation (16) leads to the representation Ω(y1, y2, y3; ω
′
1,−3

2
ω′1, 6ω

′
1) with

ω′1 6= 0, that is, the transformation (16) degenerates to a general scale transformation.

6). If
sign(w1) = − sign(w2) 6= 0, w3 = 0, (32)

then the transformation (16) with the parameter

p =

√
−3w2

w1

(33)

transfers the initial three-form into the three-form Ω(y1, y2, y3; 0, ω
′
2, ω

′
3), with ω′2 6= 0 and

ω′3 6= 0.

7). If
sign(w1) = sign(w2) 6= 0, w3 = 0, (34)

then under the linear transformation (16) with

p =

√
3w2

2w1

(35)

the three-form is reduced to Ω(y1, y2, y3; ω
′
1, ω

′
2, 0), with ω′1 6= 0andω′2 6= 0.

8). If
w1 6= 0, w2 = 0, w3 = 0, (36)

then
ω′1 = uw1p

3, ω′2 = 3uw1p
3, ω′3 = 6uw1p

3, (37)

and hence under the transformation (16) the three-form Ω(x1, x2, x3; ω1, 3ω1, 6ω1) becomes
Ω(y1, y2, y3; ω

′
1, 3ω

′
1, 6ω

′
1), where sign(ω′1) = sign(ω1). Thus, the transformation (16) in

such a case is reduced to multiplication of the initial three-form by a real positive number,
that is, to a general scale transformation. We exclude such case in constructing three-
numbers, for the case is degenerate (see (8)).

9). Lastly, we are to consider the variant

w1 = 0, w2 6= 0, w3 = 0, (38)

in which

ω′1 = 3 · u · w2 · p =
w2

9
= ω1, ω′2 = ω2 = 0, ω′3 = −9 · u · w2 · p = −w2

3
= −3ω1, (39)
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that is, applying (16) with arbitrary p transforms the three-form Ω(x1, x2, x3; ω1, 0,−3ω1)
to Ω(y1, y2, y3; ω

′
1, 0,−3ω′1). Thus, in the given case the transformation (16) does not

influence parameters of three-form, so that we can conclude that this transformation is a
symmetry transformation for three-form Ω(x1, x2, x3; ω1, 0,−3ω1).

Subsequent simplifying the three-form can be performed by multiplying it by an
arbitrary real number deviating from zero. Such an operation is reduced to the following
two ones: the changing of sign for all the coordinates and the general scale transformation.
As a result, one of the coefficients ω′i 6= 0 of the three-form can be put to be unity,
that is, the normalization can be performed. The proposed scheme 1) – 9) together
with the normalization does not contradict to selecting three basis forms to play the
role of canonical coordinates and introducing the notion of non-degeneracy, for the given
algorithm goes over the basis forms (5) – (7) to the same basis forms, and any degenerate
form to a degenerate one.

Thus, we have arrived at the following conclusion. Studying three-form of the general
type Ω(x1, x2, x3; ω1, ω2, ω3) reduces to studying the 8 canonical three-forms:

Ω(x1, x2, x3; 1, 0, 0) ≡ Ω1(x1, x2, x3); (40)

Ω(x1, x2, x3; 0, 1, 0) ≡ Ω2(x1, x2, x3); (41)

Ω(x1, x2, x3; 0, 0, 1) ≡ Ω3(x1, x2, x3); (42)

Ω(x1, x2, x3; 1,−3

2
, 6); (43)

Ω(x1, x2, x3; 1, 3, 6) ≡ (x1 + x2 + x3)
3, (degenerate); (44)

Ω(x1, x2, x3; 1, ω, 0), ω ∈ [−1

2
; 0) ∪ (0; 1; ] (45)

Ω(x1, x2, x3; 1, 0, ω), ω 6= 0; (46)

Ω(x1, x2, x3; 0, 1, ω), ω 6= 0. (47)

The condition on the parameter ω (45) for the sixth canonical three-form is necessary
in order that the uncertainty be avoided that does exists under consideration of the
variant 2) of values of parameters of the general-type three-form. The condition ω 6= 0
for the sixth, seventh, and eighth canonical three-forms is necessary to exclude the basis
three-forms that have been ascribed to a canonical type.

3. Three-forms which may relate to three-numbers

Instead of searching directly the linear transformations leaving the three-forms 1
(40) – 8 (47) unchanged, we shall try to find the linear transformations which are infinitely
near to identical ones. This problem is reduced to finding relevant generators.

1. There does not exist any continuous two-parametric Abelian Lie group which
leave the form of the first canonical three-from (40) unchanged.

2. There does not exist any continuous two-parametric Abelian Lie group which
leave the form of the second canonical three-from (41) unchanged.

3. The third canonical three-form (42) has a two-parametric non-Abelian group Lie
to act as a symmetry group with the generators

â1 =



−1 0 0

0 1 0

0 0 0


 , â2 =



−1 0 0

0 0 0

0 0 1


 . (48)
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4. The fourth canonical three-form (43) has a three-parametric non-Abelian group
Lie to act as a symmetry group with the generators

â3 =




1 0 0

1 0 0

1 0 0


 , â4 =




0 1 0

0 1 0

0 1 0


 , â5 =




0 0 1

0 0 1

0 0 1


 . (49)

It is necessary to verify that whether a two-parametric Abelian sub-group exists in this
group.

5. The fifth canonical three-form (44) is non-degenerate and, therefore, is excluded
from searching the three-numbers corresponding thereto.

6. The sixth canonical three-form does involve any two-parametric Lie group (for any
admissible-type parameter (45)), although at ω = 1 this three-from has one-parametric
group of symmetry. Therefore the sixth canonical three-from cannot relates to three-
numbers.

7. ω = −3 7th is the only parameter value at which the three-form has a two-
parametric Abelian Lie group to serve as a symmetry group with the generators

â6 =




0 1 0

0 0 1

1 0 0


 , â7 =




0 0 1

1 0 0

0 1 0


 . (50)

It will be noted that the transformation (16) with the generator presented by the
sum of the generators (50) enters this symmetry group, so that the three-form
Ω(x1, x2, x3; 1, 0,−3) should related to special cases.

8. The eight canonical three-form (47) at ω = 3 has a one-parametric symmetry
group which cannot relate to three-numbers, and at ω = 2 has a two-parametric Abelian
symmetry group with the generators

â8 =



−2

3
−1 −1

0 1
3

1

0 1 1
3


 , â9 =




1
3

1 0

1 1
3

0

−1 −1 −2
3


 . (51)

Thus among the canonical three-forms we are able to find the four non-degenerate
types that may relate to three-numbers. Retaining the numeration of canonical three-
forms, let us write down these four forms indicating the related generators of symmetry
group:

1. −−−−−−−− ;

2. −−−−−−−− ;

3. Ω(x1, x2, x3; 0, 0, 1) ≡ Ω3(x1, x2, x3), {â1, â2}; (52)

4. Ω(x1, x2, x3; 1,−3

2
, 6) {â3, â4, â5}; (53)

5. −−−−−−−− ;

6. −−−−−−−− ;

7. Ω(x1, x2, x3; 1, 0,−3), {â12, â13}; (54)

8. Ω(x1, x2, x3; 0, 1, 2), {â14, â15}; (55)
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4. Three-forms Ω3(x1, x2, x3), Ω(x1, x2, x3; 0, 1, 2) and three-numbers

Let us consider the three-form Ω3(x1, x2, x3) which, as have been clarified above,
possesses a two-parametric continuous Lie group — namely the symmetry group with
the generators â1, â2 (48). Juxtaposing to the unit matrix and generators â1, â2 the basis
elements e1 ≡ 1, e2, e3 of sought system of three-numbers, we get for them the following
multiplication table:

× 1 e2 e3

1 1 e2 e3

e2 e2
1
3
(2− 2e2 + e3)

1
3
(1− e2 − e3)

e3 e3
1
3
(1− e2 − e3)

1
3
(2 + e2 − 2e3)

Table 1.

So the three-numbers which can relate to the three-form Ω3(x1, x2, x3) have been
found. It remains to verify whether a system of linear coordinates exists with respect to
which the cube of the found three-numbers is a three-form Ω3(x1, x2, x3).

From the form of generators (48) it is obvious that the obtained system of three-
numbers is isomorphic to the algebra of the diagonal matrices 3× 3; therefore, we denote
such numbers as H3 and introduce a linear coordinates x1, x2, x3 in terms of the basis

ψ1 =
1

3
(1− e2 − e3), ψ2 =

1

3
(1 + 2e2 − e3), ψ3 =

1

3
(1− e2 + 2e3) (56)

with the multiplication table

× ψ1 ψ2 ψ3

ψ1 ψ1 0 0

ψ2 0 ψ2 0

ψ3 0 0 ψ3

Table 2.

Whence,
x1ψ1 + x2ψ2 + x3ψ3 = ρ · exp(α · e2 + β · e3) (57)

or
x1ψ1 + x2ψ2 + x3ψ3 = ρ · exp[(−α− β) · ψ1 + exp(α) · ψ2 + exp(β) · ψ3] (58)

Thus the exponential representation of the numbers H3 is possible, if xi > 0 for
the coordinates. If the angles α, β are excluded from three relations, then we obtain the
expression for the cube of norm

ρ3 = x1 · x2 · x3 (59)

This is not a unique possibility of symmetric introducing linear coordinates. For the
numbers H3 there exists the basis involving two hyperbolic unities

1 = ψ1 + ψ2 + ψ3, j = −ψ1 − ψ2 + ψ3, k = −ψ1 + ψ2 − ψ3 (60)

× 1 j k

1 1 j k

j j 1 −1 + j + k

k k −1 + j + k 1

Table 3.
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If linear coordinates are introduced with respect to this basis then the cube of norm
of the numbers H3 reads

ρ3 = Ω(x, x, x; 1,−1, 2) (61)

A noncanonical form enters the right-hand part of the formula (61). By the help of
the transformation (16) at p = 4, wich changing signs simultaneously for all the coordi-
nates and applying the general scale transformation, the three-form Ω(x1, x2, x3; 1,−1, 2)
can be sent into the eighth canonical three-form Ω(x, x, x; 0, 1, 2). The linear coordinates
xi for the numbers H3 can be introduce alternatively as

(x2 + x3)ψ1 + (x1 + x3)ψ2 + (x1 + x2)ψ3 = ρ · exp(α · e2 + β · e3), (62)

in which case

ρ3 = Ω(x1, x2, x3; 0, 1, 2) (63)

is again the eighth canonical form (55).

On so doing, the three-forms Ω(x1, x2, x3; 0, 0, 1) ≡ Ω3(x1, x2, x3),
Ω(x1, x2, x3; 1,−1, 2), Ω(x1, x2, x3; 0, 1, 2) relate to one and same three-numbers H3

which isomorphic to the algebra of quadratic diagonal matrices 3 × 3. Although the
three-forms Ω(x1, x2, x3; 0, 0, 1) ≡ Ω3(x1, x2, x3), Ω(x1, x2, x3; 0, 1, 2) cannot be obtained
one from another by applying continuous linear transformation (16) in conjunction
with scale-general transformation and probably also changing the sign of all the three
coordinates, the forms are nevertheless connected by discrete linear transformation of
corrdinates: 


x1

x2

x3


 =




0 1 1

1 0 1

1 1 0


 ·




y1

y2

y3


 . (64)

5. Three-form Ω(x1, x2, x3; 1,−2
3
, 6)

Let us consider the generators â3, â4, â5 of linear transformations which leave the
three-form Ω(x1, x2, x3; 1,−3

2
, 6) unchanged. These generators does not commute with

one another. To single out two commuting generators, let us comprise the following linear
combinations for these operators:

Ê0 = â3 + â4 + â5, Ê2 = −â3 + â4, Ê3 = −â3 + â5. (65)

For them the following multiplication table is operative:

× Ê0 Ê2 Ê3

Ê0 3Ê0 3Ê2 3Ê3

Ê2 0 0 0

Ê3 0 0 0

Table 4.

Thus,Ê2, Ê3 or arbitrary two linear-independent combination thereof can be taken
to serve as a pair of commuting generators. Using Table 4, , it can readily be shown that
apart of Ê2, Ê3 and their linear combinations, no linear combinations of three operators
Ê0, Ê2, Ê3, that is, the operators â3, â4, â5, may exist which commute with one another.
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Let us relate to Ê2, Ê3 the symbolic elements e2, e3 of the hypercomplex number. Then
for the basis elements e1 ≡ 1, e2, e3 we obtain the Kely table

× 1 e2 e3

1 1 e2 e3

e2 e2 0 0

e3 e3 0 0

Table 6.

Three-numbers with such a multiplication table of symbolic elements may naturally
be called dual and denoted by D3. For such three-numbers,

ρ · exp(α · e2 + β · e3) = ρ · (1 + α · e2 + β · e3). (66)

Up to the nummeration order, the unique possibility to introduce linear coordinates
xi in a symmetric fashion is

X = x1 + x2 · (1 + e2) + x3 · (1 + e3), (67)

so that the three-form

ρ3 = (x1 + x2 + x3)
3 ≡ Ω(x1, x2, x3; 1, 3, 6) (68)

is non-degenerate.

Thus no three-number which cube of norm is equal to this three-form
Ω(x1, x2, x3; 1,−3

2
, 6) can be found.

6. Three-form Ω(x1, x2, x3; 1, 0,−3)

The generators â6, â7 of the group symmetry under which actions the form
Ω(x1, x2, x3; 1, 0,−3) leaves unchanged possess the following multiplication rules:

â6 · â6 = â7, â7 · â7 = â6, â6 · â7 = â7 · â6 = 1. (69)

Juxtaposing with them the symbolic elements e2, e3 of the system of three-numbers, we
obtain the following Kely table:

× 1 e2 e3

1 1 e2 e3

e2 e2 e3 1

e3 e3 1 e2

Table 7.

The hypercomplex associative-commutative three-dimensional numbers with the
multiplication law for basis elements that is indicated by Table 7 will be denoted as
C3. Using this Kely table, we get the formula

exp(α · e2 + β · e3) =
1

3
eα+β{1 + 2e−

3
2
(α+β) · cos[

√
3

2
(α− β)]}+

+
1

3
eα+β{1− 2e−

3
2
(α+β) · cos[

√
3

2
(α− β) +

π

3
]} · e2+

1

3
eα+β{1− 2e−

3
2
(α+β) · cos[

√
3

2
(α− β)− π

3
]} · e3. (70)
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Let us introduce a coordinate system x1, x2, x3 with respect to the same basis as
follows:

x1 + x2 · e2 + x3 · e3 = exp(α · e2 + β · e3). (71)

Using the formula (70) and three coordinate relations (71), we get two relations

x1 + x2 + x3 = ρ · e(α+β), x2
1 + x2

2 + x2
3 =

1

3
ρ2 · e2(α+β){1 + 2 · e−3(α+β)}, (72)

which are no more involving any difference of parameters (α− β). Expressing the sum of
parameters (α + β) from (70), we get two relations

ρ3 =
3

2
· (x1 + x2 + x3} · (x2

1 + x2
2 + x2

3}−
1

2
· (x1 + x2 + x3}3 ≡ Ω(x1, x2, x3; 1, 0,−3}. (73)

Thus we observe that for the three-numbers C3 the cube of modulus is a three-form
Ω(x1, x2, x3; 1, 0,−3).

Although for the numbers C3, by using symbolic element and unity, one can comprise
the linear combination

j =
1

3
[1− 2(e2 + e3)], j2 = 1, (74)

which is a hyperbolic unity (j2 = 1), that is the numbers C3 really present a generalization
of hyperbolic (binary) numbers, it proves impossible to form a linear combination which
would be the elliptic unity (with i2 = −1); in a sense, the three-numbers C3 present a
generalization also for complex numbers for which the symbolic unity is a solution of the
algebraic equation x2 = −1. For the numbers C3 the basis elements 1, e2, e3 are roots
for the cubic equation x3 = 1, or with modified sign −1,−e2,−e3 they are roots for the
equation x3 = −1. Thus, from one side, in terms of complex numbers the equation x3 = 1
has three roots

1, −1

2
± i

√
3

2
, (75)

from which an imaginary unity can be singled out as their linear combination; from
another side, the formulas (70) involve trigonometric functions, so that (in just this sense)
the numbers C3 may be regarded as a generalization of not only binary (hyperbolic) but
also complex numbers for the three-dimensional case.

6. Conclusion

Up to isomorphism, two systems of hypercomplex three-dimensional numbers C3

and H3 are the only systems that can be selected from all the set of systems of associa-
tive-commutative hypercomplex numbers by setting forth the requirement of existence
of a basis which respect to which the cube of norm of three-number (if it exists) is a
non-degenerate three-form. The numbers C3 can be juxtaposed by canonical three-form
Ω(x1, x2, x3; 1, 0,−3) (see Section 6 of present work), whereas the three-numbers H3 by
canonical three-forms Ω3(x1, x2, x3), Ω(x1, x2, x3; 0, 1, 2) ((see Section 4 of present work).

It is hoped that the result obtained permits entailing that also for the n-numbers
with n > 3 the requirement of existence of a basis in term of which the n-degree of
norm (provided the latter be exist) of n-number is equal to the n-form of coordinates,
would select a narrow class of the hyperbolic numbers to play the role of generalization
of complex and hyperbolic numbers (bi-numbers). Probably it is the hyperbolic numbers
of such a type that primary find applications in mathematics and physics, being applied
to the problems which involve in a sense the symmetry with respect to permutation of
coordinates or some transformation “mixing” coordinates and simultaneously retaining
their legitimacy.
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