ON CARTAN SPACES WITH THE M-TH ROOT METRIC

$$K(x,p) = \sqrt[m]{a^{i_1 i_2 \dots i_m}(x) p_{i_1} p_{i_2} \dots p_{i_m}}$$

Gheorghe Atanasiu, Mircea Neagu

Faculty of Mathematics and Informatics, University "Transilvania" of Braşov, Romania qh atanasiu@yahoo.com, mircea.neaqu@unitbv.ro

The aim of this paper is to expose some geometrical properties of the locally Minkowski-Cartan space with the Berwald-Moór metric of momenta $L(p) = \sqrt[n]{p_1 p_2 \dots p_n}$. This space is regarded as a particular case of the m-th root Cartan space. Thus, Section 2 studies the v-covariant derivation components of the m-th root Cartan space. Section 3 computes the v-curvature d-tensor S^{hijk} of the m-th root Cartan space and studies conditions for S3-likeness. Section 4 computes the T-tensor T^{hijk} of the m-th root Cartan space. Section 5 particularizes the preceding geometrical results for the Berwald-Moór metric of momenta.

Key-words: m-th root Cartan space, S3-likeness, T-tensor, Berwald-Moór metric of momenta.

MSC2000: 53B40, 53C60, 53C07.

1 Introduction

Owing to the studies of E. Cartan, R. Miron [6], [7], Gh. Atanasiu [2] and many others, the geometry of Cartan spaces is today an important chapter of differential geometry, regarded as a particular case of the Hamilton geometry. By the Legendre duality of the Cartan spaces with the Finsler spaces studied by R. Miron, D. Hrimiuc, H. Shimada and S. V. Sabău [8], it was shown that the theory of Cartan spaces has the same symmetry like the Finsler geometry, giving in this way a geometrical framework for the Hamiltonian theory of Mechanics or Physical fields. In a such geometrical context we recall that a Cartan space is a pair $C^n = (M^n, K(x, p))$ such that the following axioms hold good:

- 1. K is a real positive function on the cotangent bundle T^*M , differentiable on $T^*M\setminus\{0\}$ and continuous on the null section of the canonical projection $\pi^*: T^*M \to M$;
- 2. K is positively 1-homogenous with respect to the momenta p_i ;
- 3. The Hessian of K^2 , with the elements

$$g^{ij}(x,p) = \frac{1}{2} \frac{\partial^2 K^2}{\partial p_i \partial p_j},$$

is positive-defined on $T^*M\setminus\{0\}$.

On the other hand, in the last two decades, physical studies due to G. S. Asanov [1], D. G. Pavlov [9], [10] and their co-workers emphasize the important role played by the Berwald-Moór metric $L:TM \to \mathbb{R}$,

$$L(y) = (y^1 y^2 ... y^n)^{\frac{1}{n}},$$

in the theory of space-time structure and gravitation as well as in unified gauge field theories.

For such geometrical-physics reasons, following the geometrical ideas exposed by M. Matsumoto and H. Shimada in [4], [5] and [11] or by ourselves in [3], in this paper we investigate some geometrical properties of the m-th root $Cartan\ space$ which is a natural generalization of the locally Minkowski-Cartan space with the Berwald-Moór metric of momenta.

2 The m-th root metric and v-derivation components

Let $\mathcal{C}^n = (M^n, K(x, p)), n \geq 4$, be an n-dimensional Cartan space with the metric

$$K(x,p) = \sqrt[m]{a^{i_1 i_2 \dots i_m}(x) p_{i_1} p_{i_2} \dots p_{i_m}},$$
(2.1)

where $a^{i_1 i_2 \dots i_m}(x)$, depending on the position alone, is symmetric in all the indices i_1, i_2, \dots, i_m and $m \geq 3$.

Definition 1 The Cartan space with the metric (2.1) is called the m-th root Cartan space.

Let us consider the following notations:

$$a^{i} = \left[a^{ii_{2}i_{3}...i_{m}}(x)p_{i_{2}}p_{i_{3}}...p_{i_{m}}\right]/K^{m-1},$$

$$a^{ij} = \left[a^{iji_{3}i_{4}...i_{m}}(x)p_{i_{3}}p_{i_{4}}...p_{i_{m}}\right]/K^{m-2},$$

$$a^{ijk} = \left[a^{ijki_{4}i_{5}...i_{m}}(x)p_{i_{4}}p_{i_{5}}...p_{i_{m}}\right]/K^{m-3}.$$
(2.2)

The normalized supporting element $l^i(=\dot{\partial}^i K, \dot{\partial}^i = \partial/\partial p_i)$, the fundamental metrical d-tensor $g^{ij}(=(1/2)\dot{\partial}^i\dot{\partial}^j K^2)$ and the angular metrical d-tensor $h^{ij}(=K\dot{\partial}^i\dot{\partial}^j K)$ are given by

$$l^{i} = a^{i},$$

$$g^{ij} = (m-1)a^{ij} - (m-2)a^{i}a^{j},$$

$$h^{ij} = (m-1)(a^{ij} - a^{i}a^{j}).$$
(2.3)

Remark 1 From the positively 1-homogeneity of the m-th root Cartan metrical function (2.1) it follows that we have

$$K^{2}(x,p) = g^{ij}(x,p)p_{i}p_{j} = a^{ij}(x,p)p_{i}p_{j}.$$

Let us suppose now that the d-tensor a^{ij} is regular, that is there exists the inverse matrix $(a^{ij})^{-1} = (a_{ij})$. Obviously, we have $a_i \cdot a^i = 1$, where

$$a_i = a_{is}a^s = \frac{p_i}{K}.$$

Under these assumptions, we obtain the inverse components $g_{ij}(x,p)$ of the fundamental metrical d-tensor $g^{ij}(x,p)$, which are given by

$$g_{ij} = \frac{1}{m-1}a_{ij} + \frac{m-2}{m-1}a_i a_j. \tag{2.4}$$

The relations (2.2) and (2.3) imply that the components of the v-torsion d-tensor $C^{ijk}(=-(1/2)\dot{\partial}^k g^{ij})$ are given in the form

$$C^{ijk} = -\frac{(m-1)(m-2)}{2K} \left(a^{ijk} - a^{ij}a^k - a^{jk}a^i - a^{ki}a^j + 2a^ia^ja^k \right). \tag{2.5}$$

Consequently, using the relations (2.4) and (2.5), together with the formula

$$a_s a^{sjk} = a^{jk}$$
,

we find the components of the v-derivation $C_i^{jk} (= g_{is}C^{sjk})$ in the following form:

$$C_i^{jk} = -\frac{(m-2)}{2K} \left[a_i^{jk} - \left(\delta_i^j a^k + \delta_i^k a^j \right) + a_i (2a^j a^k - a^{jk}) \right], \tag{2.6}$$

where $a_i^{jk} = a_{is}a^{sjk}$. From (2.6) we easily find the following geometrical result:

Proposition 1 The torsion covector $C^i(=C_r^{ir})$ is given by the formula

$$C^{i} = -\frac{(m-2)}{2K} \left(a_r^{ir} - na^i \right),$$

where $n = \dim M$.

3 The v-curvature d-tensor S^{hijk}

Taking into account the relations (2.5) and (2.6), by calculation, we obtain

Theorem 3.1 The v-curvature d-tensor $S^{hijk} (= C_r^{ij} C^{rhk} - C_r^{ik} C^{rhj})$ can be written in the form

$$S^{hijk} = \frac{(m-1)(m-2)^2}{4K^2} \mathcal{A}_{\{j,k\}} \{ a_r^{ij} a^{rhk} - a^{ij} (a^{hk} - a^h a^k) + a^i a^j a^{hk} \},$$

where $A_{\{j,k\}}$ means an alternate sum.

Remark 2 Using the relations (2.3), we underline that the v- curvature d-tensor S^{hijk} can be written as

$$K^{2}S^{hijk} = \frac{(m-2)^{2}}{4} \left[\left(h^{hj}h^{ik} - h^{hk}h^{ij} \right) / (m-1) + (m-1)U^{hijk} \right], \tag{3.1}$$

where

$$U^{hijk} = a_r^{ij} a^{rhk} - a_r^{ik} a^{rhj}. (3.2)$$

In the sequel, let us recall the following important geometrical concept [4]:

Definition 2 A Cartan space $C^n = (M^n, K(x, p)), n \ge 4$, is called S3-like if there exists a positively 0-homogenous scalar function S = S(x, p) such that the v-curvature d-tensor S^{hijk} to have the form

$$K^{2}S^{hijk} = S\left\{h^{hj}h^{ik} - h^{hk}h^{ij}\right\}. \tag{3.3}$$

Let $C^n = (M^n, K(x, p)), n \ge 4$, be the *m*-th root Cartan space. As an immediate consequence of the above definition we have the following important result:

Theorem 3.2 The m-th root Cartan space C^n is an S3-like Cartan space if and only if the d-tensor U^{hijk} is of the form

$$U^{hijk} = \lambda \left\{ h^{hj}h^{ik} - h^{hk}h^{ij} \right\}, \tag{3.4}$$

where $\lambda = \lambda(x, p)$ is a positively 0-homogenous scalar function.

Proof. Taking into account the formula (3.1) and the condition (3.4), we find the scalar function (see (3.3))

$$S = \frac{(m-2)^2}{4} \left[(m-1)\lambda + \frac{1}{m-1} \right]. \tag{3.5}$$

4 The T-tensor T^{hijk}

Let $N = (N_{ij})$ be the canonical nonlinear connection of the m-th root Cartan space with the metric (2.1), whose local coefficients are given by [8]

$$N_{ij} = -\gamma_{ij}^0 + \frac{1}{2} \gamma_{h0}^0 \dot{\partial}^h g_{ij},$$

where

$$\gamma_{jk}^{i} = \frac{g^{ir}}{2} (\partial_k g_{rj} + \partial_j g_{rk} - \partial_r g_{jk}), \ \partial_k = \partial/\partial x^k,$$
$$\gamma_{ij}^{0} = \gamma_{ij}^s p_s, \qquad \gamma_{h0}^{0} = \gamma_{hr}^l g^{rs} p_l p_s.$$

Let $C\Gamma(N) = (H_{jk}^i, C_i^{jk})$ be the Cartan canonical connection of the m-th root Cartan space with the metric (2.1). The local components of the Cartan canonical connection $C\Gamma(N)$ have the expressions [8]

$$\begin{split} H^i_{jk} &= \frac{g^{ir}}{2} (\delta_k g_{rj} + \delta_j g_{rk} - \delta_r g_{jk}), \\ C^{jk}_i &= g_{is} C^{sjk} = -\frac{g_{is}}{2} \dot{\partial}^k g^{js}, \end{split}$$

where

$$\delta_j = \partial_j + N_{js} \dot{\partial}^s.$$

In the sequel, let us compute the T-tensor T^{hijk} of the m-th root Cartan space, which is defined as [11]

$$T^{hijk} \stackrel{def}{=} KC^{hij}|^k + l^hC^{ijk} + l^iC^{jkh} + l^jC^{khi} + l^kC^{hij},$$

where " $|^k$ " denotes the local v-covariant derivation with respect to $C\Gamma(N)$, that is we have

$$C^{hij}|^k = \dot{\partial}^k C^{hij} + C^{rij}C^{hk}_r + C^{hrj}C^{ik}_r + C^{hir}C^{jk}_r.$$

Using the definition of the local v-covariant derivation [8], together with the relations (2.6) and (2.3), by direct computations, we find the relations:

$$K|^{k} = a^{k} = l^{k},$$

$$a^{i}|^{k} = \frac{(m-1)}{K}(a^{ik} - a^{i}a^{k}) = \frac{h^{ik}}{K},$$

$$a^{ij}|^{k} = \frac{(m-2)}{K}(a^{ik}a^{j} + a^{jk}a^{i} - 2a^{i}a^{j}a^{k}) = \frac{(m-2)}{(m-1)K}(h^{ik}l^{j} + h^{jk}l^{i}).$$
(4.1)

Suppose that we have $m \geq 4$. Then, the notation

$$a^{hijk} = \left[a^{hijki_5i_6...i_m}(x) p_{i_5} p_{i_6}...p_{i_m} \right] / K^{m-4}$$

is very useful. In this context, we can give the next geometrical results:

Lemma 1 The v-covariant derivation of the tensor a^{hij} is given by the following formula:

$$a^{hij}|^{k} = \frac{(m-3)}{K} a^{hijk} + \frac{m}{2K} a^{hij} a^{k} - \frac{(m-2)}{2K} \cdot \left\{ a_{r}^{hk} a^{rij} + a_{r}^{ik} a^{rhj} + a_{r}^{ik} a^{rhj} + a_{r}^{ik} a^{rhi} - a^{hij} a^{h} - a^{hkj} a^{i} - a^{hik} a^{j} - a^{ij} a^{hk} - a^{hj} a^{ik} - a^{hi} a^{jk} + 2 \left(a^{ij} a^{h} a^{k} + a^{hj} a^{i} a^{k} + a^{hi} a^{j} a^{k} \right) \right\}.$$

$$(4.2)$$

Proof. Note that, by a direct computation, we obtain the relation

$$\frac{\partial a^{hij}}{\partial p_k} = \frac{(m-3)}{K} \left(a^{hijk} - a^{hij} a^k \right). \tag{4.3}$$

Finally, using the definition of the local v-covariant derivation, together with the formulas (4.3) and (2.6), we find the equality (4.2).

Theorem 4.1 The T-tensor T^{hijk} of the m-th root Cartan space is given by the expression

$$T^{hijk} = -\frac{(m-1)(m-2)(m-3)}{2K} a^{hijk} + \frac{(m-1)(m-2)^2}{4K} \cdot \left(a_r^{hk} a^{rij} + a_r^{ik} a^{rhj} + a_r^{jk} a^{rhi}\right) - \frac{m(m-1)(m-2)}{4K} \cdot \left(a^{hij} a^k + a^{hjk} a^i + a^{ijk} a^h + a^{hik} a^j - a^{ij} a^{hk} - a^{hj} a^{ik} - a^{ih} a^{jk}\right).$$

$$(4.4)$$

Proof. It is obvious that we have the equality

$$T^{hijk} = (KC^{hij})|^k + l^hC^{ijk} + l^iC^{jkh} + l^jC^{khi} =$$

= $(KC^{hij})|^k + a^hC^{ijk} + a^iC^{jkh} + a^jC^{khi}.$

Consequently, differentiating v-covariantly the relation (2.5) multiplied by K and using the formulas (4.1), together with the Lemma 1, by laborious computations, it follows the required result. \blacksquare

5 The particular case of Berwald-Moór metric of momenta

Let us consider now the particular case when $m=n\geq 4$ and

$$a^{i_1 i_2 \dots i_n}(x) = \begin{cases} 1/n!, & i_1 \neq i_2 \neq \dots \neq i_n \\ 0, & \text{otherwise.} \end{cases}$$

In this special case, the m-th root metric (2.1) becomes the **Berwald-Moór metric of** momenta [8]

$$K(p) = \sqrt[n]{p_1 p_2 \dots p_n}. (5.1)$$

By direct computations, we deduce that the *n*-dimensional locally Minkowski-Cartan space $C^n = (M^n, K(p))$ endowed with the Berwald-Moór metric of momenta (5.1) is characterized by the following geometrical entities and relations (E-R):

$$a^{i} = \frac{K}{n} \cdot \frac{1}{p_{i}}, \quad a_{i} = \frac{p_{i}}{K}, \quad a_{i} \cdot a^{i} = \frac{1}{n} \quad \text{(no sum by } i),$$

$$a^{ij} = \begin{cases} \frac{n}{n-1} \cdot a^{i}a^{j}, & i \neq j \\ 0, & i = j \end{cases}, \quad a_{ij} = \begin{cases} n \cdot a_{i}a_{j}, & i \neq j \\ -n(n-2) \cdot (a_{i})^{2}, & i = j, \end{cases}$$

$$a^{ijk} = \begin{cases} \frac{n^{2}}{(n-1)(n-2)} \cdot a^{i}a^{j}a^{k}, & i \neq j \neq k \\ 0, & \text{otherwise} \end{cases}$$

and

$$a^{hijk} = \begin{cases} \frac{n^3}{(n-1)(n-2)(n-3)} \cdot a^h a^i a^j a^k, & h \neq i \neq j \neq k \\ 0, & \text{otherwise.} \end{cases}$$

Moreover, the equalities (E-R) imply that the components a_i^{jk} are given by the formulas:

$$a_i^{jk} = -\frac{n^2}{(n-1)(n-2)} \cdot a_i a^j a^k, \quad i \neq j \neq k$$

$$a_i^{ik} = a_i^{ki} = \frac{n}{n-1} \cdot a^k, \qquad i \neq k \text{ (no sum by } i)$$

$$a_i^{kk} = 0, \qquad \forall i = \overline{1, n}, \text{ (no sum by } k).$$

$$(5.2)$$

In this context, we obtain the following important geometrical result:

Theorem 5.1 The locally Minkowski-Cartan space $C^n = (M^n, K(p)), n \ge 4$, endowed with the Berwald-Moór metric of momenta (5.1) is characterized by the following geometrical properties:

- 1. The torsion covector C^i vanish;
- 2. S3-likeness with the scalar function S = -1;
- 3. The T-tensor T^{hijk} vanish.

Proof. 1. It is easy to see that we have

$$\sum_{r} a_r^{ir} = \sum_{r,s} a_{rs} a^{sir} = n \sum_{r,s} a_r a_s a^{sir} = n \sum_{r} a_r a^{ir} = n a^i.$$

2. It is obvious that we have

$$h^{ij} = \begin{cases} a^i a^j, & i \neq j \\ -(n-1) \cdot (a_i)^2, & i = j. \end{cases}$$

Consequently, by computations, we obtain

$$U^{hijk} = -\frac{n^2}{(n-1)^2(n-2)^2} \left\{ h^{hj} h^{ik} - h^{hk} h^{ij} \right\},\,$$

where U^{hijk} is given by the relation (3.2). It follows what we were looking for (see the equalities (3.4) and (3.5)).

3. Using the relation (4.4) and the formulas (E-R) and (5.2), by laborious computations, we deduce that $T^{hijk} = 0$.

References

- [1] Asanov G. S., Finslerian extension of general relativity, Reidel, Dordrecht, 1984.
- [2] Atanasiu Gh., The invariant expression of Hamilton geometry, Tensor N. S. 47, 3 (1988), 225–234.
- [3] Atanasiu Gh., Balan V., Neagu M., The Pavlov's 4-polyform of momenta $K(p) = \sqrt[4]{p_1p_2p_3p_4}$ and its applications in Hamilton geometry, Hypercomplex Numbers in Geometry and Physics 2, 4 (2005), 134–139.
- [4] Matsumoto M., On Finsler spaces with curvature tensors of some special forms, *Tensor N. S.* **22** (1971), 201–204.

- [5] Matsumoto M., Shimada H., On Finsler spaces with 1-form metric. II. Berwald-Moór's metric $L = (y^1y^2...y^n)^{1/n}$, Tensor N. S. **32** (1978), 275–278.
- [6] Miron R., Hamilton geometry, An. St. "Al. I. Cuza" Univ. Iași 35 (1989), 33-67.
- [7] Miron R., The geometry of Cartan spaces, Prog. in Math. 22 (1988), 1–38.
- [8] Miron R., Hrimiuc D., Shimada H., Sabău S. V., The geometry of Hamilton and Lagrange spaces, Kluwer Academic Publishers, 2001.
- [9] Pavlov D. G., Four-dimensional time, Hypercomplex Numbers in Geometry and Physics 1, 1 (2004), 31–39.
- [10] Pavlov D. G., Generalization of scalar product axioms, *Hypercomplex Numbers in Geometry and Physics* 1, 1 (2004), 5–18.
- [11] Shimada H., On Finsler spaces with the metric $L(x,y) = \sqrt[m]{a_{i_1 i_2 ... i_m}(x) y^{i_1} y^{i_2} ... y^{i_m}}$, Tensor N. S. **33** (1979), 365–372.

О ПРОСТРАНСТВАХ КАРТАНА С МЕТРИКОЙ М-КОРНЯ

$$K(x,p) = \sqrt[m]{a^{i_1 i_2 \dots i_m}(x) p_{i_1} p_{i_2} \dots p_{i_m}}$$

Г. Атанасиу, М. Неагу

Университет "Трансильвания", Брашов, Румыния gh atanasiu@yahoo.com, mircea.neagu@unitbv.ro

Цель статьи состоит в том, чтобы выявить некоторые геометрические свойства локальных пространств Минковского-Картана с метрикой импульсов Бервальда-Моора $L(p) = \sqrt[n]{p_1p_2...p_n}$. Это пространство рассматривается как частный случай m-корневых пространств Картана. Раздел 2 изучает v-ковариантные дифференциальные компоненты m-корневого пространства Картана. Секция 3 вычисляет d-тензор v-кривизны S^{hijk} m-корневых пространств Картана и исследует условия S^3 -подобия. Секция 4 вычисляет T-тензор T^{hijk} m-корневого пространства Картана. Секция 5 конкретизирует предыдущие геометрические результаты для метрики моментов Бервальда-Моора.

Ключевые слова: m-корневые пространства Картана, S3-подобие, T-тензор, метрика импульса Бервальда-Моора.

MSC2000: 53B40, 53C60, 53C07