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We show that anisotropy of the space naturally leads to new terms in the expression of Lorentz
force, as well as in the expressions of currents.

1 Introduction

Studying anisotropic spaces has an obvious meaning with regard to physical
interpretations. The direction dependence of the metric could cause the appearance of motion
dependent forces [1] associated with inertial forces in the accelerated frames. In case there is a
physical vector field – an electromagnetic one – in the anisotropic space, this may lead to the
appearance of the extra Lorentz type forces or extra currents that could reveal themselves in
a special laboratory environment or even in Nature. From mathematical point of view, it is

possible to treat the problem in the purely Finslerian setting when gij =
1

2

∂2F2

∂yi∂yj
for some

2-homogeneous in y function F = F(x, y) or introduce a more general type of anisotropic
metric that could explicitly give extra terms in the equations of geodesics.

If we take into account the y-dependence of the fundamental metric tensor in anisotropic
spaces, then the components of an electromagnetic-type tensor Fij, F i

j, F ij could depend
on the directional variables. In order to make sure of this, notice the following. In isotropic
(pseudo-Riemannian) spaces with Rij = 0, the components of the free electromagnetic
potential 4-vector Ai = Ai(x) obey de Rham equations:

Aµ;ν
;ν = 0

that is,
gνρ(x)∇ν∇ρ(A

µ) = 0.

When passing to anisotropic spaces with metric gij = gij(x, y), the solution of such an
equation would generally depend on directional variables (not to mention that the equation
itself could become more complicated). So, it is meaningful to take into consideration the
case when the potential 4-vector depends on the directional variables y = (yi),

Ai = Ai(x, y), and
Ai = Ai(x, y).

Variational procedures applied to the above naturally lead to additional terms in Lorentz
force

dyi

dt
+ Γi

jky
jyk =

q

c
F i

hy
h +

q

c
F̃ i

j

dyj

dt
, yi = ẋi

F i
h = gijFjh, Fjh =

∂Ah

∂xj
− ∂Aj

∂xh
,

F̃ i
j = gihF̃hj, F̃hj = −∂Ah

∂yj
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as well as the appearance of a correction to the usual expression of currents:

D ∂
∂xi

F ki + D ∂
∂ya

F ka = Jk.

In the present paper, we investigate the case of Finslerian spaces whose metrics are
obtained by a small (linearly approximable) deformation of metric tensors whose components
do not depend on positional variables (locally Minkowskian metrics) and coordinate changes
which preserve the positional independence of the undeformed metric. The construction will
be generalized to arbitrary Finsler spaces in future works.

2 Weak Finslerian deformation of locally Minkowskian metrics

A locally Minkowskian Finsler space is a Finsler space (M,F) with the property
that there exists a local coordinate system with respect to which the components of the
corresponding metric tensor do not depend on positional variables, but only on directional
ones:

γij = γij(y).

In the following, we shall only consider coordinate changes which preserve this property.
One of the properties of locally Minkowski spaces is projective flatness, namely, their

geodesics are straight lines:
This type of metrics includes as particular cases:

• Minkowski metric γ = diag(1,−1,−1,−1);

• Berwald-Moor 4-dimensional metric, [8], [9], [10], [11].

Let us consider the space R4, endowed with linear coordinate changes. Let (x, y) =

(xi, ya)i,a=1,4, yi =
∂xi

∂t
(t is a parameter), i = 1, .., 4 be the coordinates in a local frame of

TR4 ≡ R8.
Let g be a small (linearly approximable) deformation of a locally Minkowskian metric:

gij(x, y) = γij(y) + εij(x, y). (1)

We suppose that this metric tensor is Finslerian in the sense of [3], this is,

gij =
1

2

∂2F2

∂yi∂yj

for some 2-homogeneous in y function F = F(x, y), and gij is nondegenerate. We denote
by , k (with commas) partial derivation w.r.t. xk and with dots ·a, partial derivation by the
directional variable ya. Whenever convenient – and just in order to point out the difference,
we will denote the indices corresponding to y with a, b, c, ... and those corresponding to x
with i, j, k, ..., (though, they run over the same set {1, 2, 3, 4}). Let

Γi
jk =

1

2
gih(ghj,k + ghk,j − gjk,h)

denote the usual Christoffel symbols (with respect to x) of g.
In our case, Γi

jk depend on both x and y :

Γi
jk = Γi

jk(x, y).
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Let |k denote covariant derivation with respect to xk :

X i
|k = X i

,k + Γi
jkX

j. (2)

In the following, we shall also need the Cartan tensor Cijk, [4]:

Cijk =
1

2
(gij·k + gik·j − gjk·i) =

1

2
gij·k. (3)

Also, let
X i|a = X i

·a + Ci
jaX

j

denote covariant derivative with respect to ya.

3 Lorentz force

3.1 Variational principle

The equations of electrodynamics can be obtained from the variational procedure applied
to a Lagrangian. In isotropic spaces, the Lagrangian is, [6],

L(x, y) =
1

2
gij(x)yiyj +

q

c
Ai(x)yi, yi = ẋi.

where q is the electric charge, and Ai(x) are the covariant components of the 4-vector
potential.

In order to obtain Lorentz force in Finslerian spaces, let us consider the Lagrangian

L = L0 +
q

c
L1,

where
L0 =

1

2
gij(x, y)yiyj

(gij can be chosen as a general Finslerian metric tensor) and L1 = L1(x, y) is a scalar function
which is 1-homogeneous in the directional variables: L1(x, λy) = λL1(x, y), ∀λ ∈ R. Let

Ai(x, y) :=
∂L1

∂yi
.

Then
L1 = Aj(x, y)yj

and our Lagrangian is written as

L(x, y) =
1

2
gij(x, y)yiyj +

q

c
Ai(x, y)yi, yi = ẋi, (4)

where Aj = Aj(x, y) is now a direction dependent potential.
The components of the covector field Ai = Ai(x, y) are 0-homogeneous functions in y,

and possess the property
Ai·kyi = 0. (5)

The Euler-Lagrange equations

∂L

∂xi
− d

dt

( ∂L

∂yi

)
= 0
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attached to L lead to

gkh

(
dyh

dt
+ Γh

jly
jyl

)
+

q

c

(
Ak,h − Ah,k

)
yh +

q

c
Ak·h

dyh

dt
= 0. (6)

Let:
Fkh = Ah,k − Ak,h (7)

We have thus obtained

Proposition 1 The extremal curves t 7→ (xi(t)) : [0, 1] → R4 of the Lagrangian (4) are
given by

dyi

dt
+ Γi

jky
jyk =

q

c
F i

hy
h − q

c
gikAk·h

dyh

dt
, (8)

Remark 1 The term F i(x, y) ≡ q

c
gikFkhy

h is present also in the isotropic case (see [6]).
But the last one,

F̃ i(x, y) := −q

c
gik(x, y)Ak·h(x, y)

dyh

dt

can only appear in anisotropic ones.

The usual interpretation of the extremal curves is the equation of motion. Therefore,
the expression in the rhs of (8) presents the Lorentz force in the anisotropic space. We see
that its first term which is common with the isotropic case is proportional to velocity, while
the second term is proportional to acceleration which brings to mind the idea of an ”inertial
force” in the accelerated reference frame.

Let us designate
F̃ia := −Ai·a, F̃ai = Ai·a, (9)

where we denote by a, b, c, d, ... indices corresponding to derivation by directional variables.
Then F̃ia is (−1)-homogeneous in the directional variables:

F̃ia(x, λy) =
1

λ
F̃ia(x, y), λ ∈ R.

Then the relation between F̃ia and the new term in (8) is

F̃ i =
q

c
F̃ i

a

dya

dt
,

and we have thus obtained an antisymmetric 2-form on TR4 :

F = Fijdxi ∧ dxj + F̃iadxi ∧ dya. (10)

The above is nothing but the exterior derivative of the 1-form A = Ai(x, y)dxi + 0 · dya

on TR4 :
F = dA. (11)

Conclusion: Direction dependent electromagnetic potentials lead in a natural way to a
correction to the expression of the electromagnetic tensor.

Example 1 1. In the particular case when the covariant components of A do not depend on
direction,

Ai = Ai(x),

then F̃ia = 0 and we get the regular expression of Lorentz force.
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2. A simple, but nontrivial particular case is obtained when the contravariant components of
the potential 4-vector do not depend on the directional variables:

Ai = Ai(x),

taking into account the y-dependence of the perturbed metric tensor gij, we get that the
covariant components of A are direction dependent:

Ai = gij(x, y)Aj ⇒ Ai = Ai(x, y).

The new term to appear in Lorentz force is then

F̃ i =
q

c
F̃ i

a

dya

dt
= −q

c
gihAh·a

dya

dt
,

which leads to
F̃ i = −2

q

c
Ci

jaA
j dya

dt
, (12)

and
F̃ia = −2CijaA

j. (13)

Example 2 In particular, if γ = diag(1,−1,−1,−1) is the Minkowski metric, and

gij = γij + εij(x, y),

where εij(x, y) is a small Finslerian perturbation, then the above is

F̃ia = −εij·aAj, (14)

hence its values are small. For other locally Minkowskian metrics, the new term F̃ia is not
necessarily small.

Example 3 For the case when:

• γij is the Berwald-Moor Finslerian metric γij =
1

2

∂F2

∂yi∂yj
, F = 4

√
y1y2y3y4

• εij = 0, that is,

gij =
1

2

∂F2

∂yi∂yj
, and

• Ai = Ai(x), then the correction F̃ia is

F̃ia = −Ai·a = − ∂

∂ya
(gilA

l) = −2CilaA
l,

where the Cartan tensor Cila =
1

4

∂3F2

∂yi∂yl∂ya
has the explicit values

Cila = α
F2

yiylya
, α =





3
32

if i = j = k

− 1
32

if i = j 6= k
1
32

if i 6= j 6= k 6= i.

Here we see that Cila are not necessarily small.
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3.2 New term – ”electromagnetic” vs. ”metric”

Let us now have a look at equation (6):

gkh
Dyh

dt
=

q

c
Fkhy

h − q

c
Ak·h

dyh

dt
, y = ẋ.

From the mathematical point of view, we can interpret the last term in two ways:

• Since it appears multiplied by the acceleration
dyh

dt
and moreover, since Ak·h = Ah·k, we

can ”stick” it to the metric:

(gkh +
q

c
Ak·h)

dyh

dt
+ Γkhly

hyl =
q

c
Fkhy

h.

and get a new metric tensor
g̃kh = gkh +

q

c
Ak·h (15)

(if the matrix (g̃kh) is invertible), with the property

g̃khy
kyh = gkhy

kyh = F2

With this, we can write the equation of motion as

Dyi

dt
= g̃ik q

c
Fkhy

h (16)

and the obtained expression for Lorentz force g̃ik q

c
Fkhy

h differs from the case of isotropic

perturbation
q

c
gikFkhy

h due to the new metric (15).

• Also, we might leave the metric as it is and move the third term in the right hand side
and interpret it as a new term added to Lorentz force:

gkh
Dyh

dt
=

q

c
Fkhy

h − q

c
Ak·h

dyh

dt
.

This would yield
dyi

dt
+ Γi

jky
jyk =

q

c
(F i

hy
h + F̃ i

a

dya

dt
). (17)

with the influence of the anisotropy given by the second term in the rhs. Notice, that
q

c
(F i

hy
h + F̃ i

a

dya

dt
) is equal to

q

c
gik(Fkhy

h − Ak·a
dya

dt
) given by eq. (8) since F i

h = gikFkh,

F̃ i
a = gikAk·a. In eq.(16) the term

q

c
gikAk·hẍh was brought to the left hand side of the

equation of motion and ”swallowed” into the metric – the new ”metric” was denoted by g̃ik.
This illustrates the remark concerning the equivalence principle made in [1], applied to a
(curved) space with an electromagnetic field.

4 Homogeneous Maxwell equations

Let us consider again the 2-form (10)

F (x, y) = dA(x, y) =
1

2
Fij(x, y)dxi ∧ dxj + F̃ia(x, y)dxi ∧ dya.

We immediately get:



50 Гиперкомплексные числа в геометрии и физике, 2 (10), том 5, 2008

Proposition 2 There holds
Fij,k + Fki,j + Fjk,i = 0; (18)

which is just the homogeneous Maxwell equation or, in terms of covariant derivatives (2),

Fij|k + Fki|j + Fjk|i = 0.

There also hold the equalities

F̃ia,k + F̃ki·a + F̃ak,i = 0;

F̃ia·b + F̃bi·a = 0,

where Fia·b =
∂Fia

∂yb
. The above two relations, together with (18) mean actually that the

exterior derivative of F is 0:
dF = 0. (19)

5 Currents in anisotropic spaces

In the classical Riemannian case, the inhomogeneous Maxwell equations can be obtained
by means of the variational principle applied to

∫
(αFijF

ij − βjkAk)
√−g dΩ ,

[7], where α and β are constants, g = det(gij) and Ω = dx1dx2dx3dx4. Taking into account
that in our case, at least one of the quantities Fij, F ij depends on y, the whole integrand
depends on y, and is actually defined on some domain in R8.

Let
ua =

1

H
ya,

where H is a constant, [H] =
1

sec
, meant to "adjust" measurement units as to have [xi] =

[ua], hence also [Fij] = [F̃ia]. So, let us consider Ai = Ai(x, u) and the integral of action

I =

∫
(αFλµF

λµ − βjkAk)
√

GdΩ,

where λ, µ ∈ {i, j, a, b}, G = det(Gαβ) is the Sasaki lift of g to TR4 ≡ R8, [4]:

Gαβ(x, u) = gij(x, u)dxi ⊗ dxj + gab(x, u)dua ⊗ dub

and Ω = Π
i,a

dxidua gives the volume form on R8.

Remark: The product FλµF
λµ is in our case

FλµF
λµ = FijF

ij + F̃iaF̃
ia.

Taking variations with respect to Ak in the above, we get, in terms of covariant derivatives
with respect to the metrical connection DΓ = (Γi

jk, C
i
jk),

F ki
|i + F̃ ka|a = J i,

where |i = D ∂
∂xi

, |a = D ∂
∂ya

.
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Conclusion: In comparison to the case of isotropic spaces, there appears a new term in
the expression for the current, namely,

ζk = F̃ ka|a. (20)

This means that in an anisotropic space the measured fields would correspond to an
effective current consisting of two terms: one is the current provided by the experimental
environment, the other is the current corresponding to the anisotropy of space.

Examples:

1. If Ai = Ai(x), then we get F̃ia = 0 and

ζk = 0, F ki
|i = Jk.

2. Already a nontrivial example is obtained if

Ai = Ai(x);

then we have shown above that
F̃ia = −2CijaA

j.

Then, F̃ ia = −2Cia
jA

j and

ζk = −2(Cka
jA

j)|a = −2Cka
j|aAj − 2Cka

jC
j
haA

h.

The presence of the last current in the experimental situation could be noticed if
∣∣∣F̃ ka|a

∣∣∣ ≈∣∣∣F ki
|i

∣∣∣.
In the case of deformed Minkowski metric, we get that

ζk = −2εka
·jaA

j. (21)

Consequently, the current F̃ ia can be noticed when the ”regular” current is small and∣∣2εka
·jaA

j
∣∣ ≈

∣∣∣F ki
|i

∣∣∣ .

If we take instead a deformed Berwald-Moor metric, then the Cartan tensor components
are no longer small, and hence the correction ζk is generally not small, and it could be noticed
even if the regular current is not small.

Conclusion: An anisotropic space with electromagnetic field possesses inherent currents
that could produce observable fields.

Comparison to existent results:
R. Miron and collaborators, [7] defined electromagnetic tensors in Lagrange spaces

formally, by means of nonlinear (and linear) connections on the tangent bundle TM :

Fij =
1

2
(yj|i − yi|j), fab =

1

2
(yb|a − ya|b)

where N i
j, Li

jk, Ca
bc are the coefficients of the Kern nonlinear connection and respectively,

the canonical metrical linear connection, [7], on TM (in the case of Finsler spaces, (N i
j,

Li
jk, Ca

bc) provide the Cartan connection, [4]).
We notice there the appearance of new quantities fab (and additional Maxwell equations)

in comparison to the Riemannian case:

Fji|k + Fkj|i + Fik|j = 0, fab|c + fca|b + fbc|a = 0,

F ij
|j = J i, fab|b = ja.
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Also, in the cited work is investigated the case of an electromagnetic tensor arising from a
potential

Ai = Ai(x)

depending just on the positional variables xi. In this case, the authors show that the resulting
Maxwell equations and the resulting expression for Lorentz force are formally identical to
the usual ones in Riemannian spaces – no additional terms appear.

In our approach, we consider direction dependent potentials. The components and
the corrections due to anisotropy to the electromagnetic tensor appear from variational
approaches. The new appearing terms are to be added to the currents, not regarded as
separate quantities:

F ij
|j + F̃ ia

·a = J i.

We could also relate our components of the electromagnetic tensor to linear connections.
Namely, let DΓ = (Na

i, L
i
jk, C

i
jk) denote the Cartan connection, [4], [7], determined by the

Finslerian function gij; let us define the following tensor fields:

X i
jk =

2q

c

gih

F
∂

∂yk
(FAh|j),

where the x-covariant derivative Ah|j is taken with respect to the Cartan connection of g :

Ah|j =
δAh

δxj
− Ll

hjAl. Also, let

Ωih
rj =

1

2
(δi

rδ
h
j − grjg

ih)

denote the Obata operators, [7], of g.
Let us fix the nonlinear connection N as the Cartan one and define the linear connection

D̃Γ(N) = (L̃i
jk, C̃

i
jk) by

L̃i
jk = Γi

jk + Ωih
rjX

r
hk, C̃i

jk = Ci
jk −

q

c
gihAh·jk.

We denote x- and y- covariant derivatives with respect to this connection with ||k and ||k
respectively.

Then, by direct computation, one can check the following properties:

Proposition 3 1. A curve t 7→ (xi(t), ẋi(t)) on TR4 is an autoparallel curve of D̃Γ(N)
if and only if its projection t 7→ xi(t) on the base manifold R4 is a solution of Lorentz
equation (8).

2. D̃Γ(N) is h-metrical: gij||k = 0;

3. In the adapted basis (
δ

δxi
,

∂

∂yk
), the local coordinates of the electromagnetic tensor are

given by:

yi||j =
−1

2
(yj||i − yi||j) = −q

c
(Aj||i − Ai||j) =: −q

c
Fij. yi||k = gik − q

c
Ai·k,

6 The Berwald-Moor case

In the following, we shall develop an approach for obtaining a generalization of the
expression for the Lorentz force in the case of the Berwald-Moor quartic Finslerian function
F = 4

√
y1y2y3y4 , [8], [9], [10], [11], [12], in terms of the 4-scalar product introduced in [8].
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The 4-scalar product

< U, V, W, Y > = GijklU
iV jW kY l, ∀U, V, W, Y ∈ X (R4),

where the components Gijkl are, [8],

Gijkl =





1

4!
if i, j, k, l are all different from each other

0, elsewhere

induces a (direction dependent) pseudo-scalar product if we specify two of the 4 vectors
involved. For instance, for W = Y = y, we get

< U, V > := < U, V, y, y > = hijU
iV j,

where the flag (polynomial) metric tensor h = h(y) has the local components

hij = Gijkly
kyl =: Gij00,

equivalently, [12],

hij =
1

12

∂2F4

∂yi∂yj
.

We notice that the components hij are 2-homogeneous ploynomials in the directional
variables yi and that

hijy
iyj = F4

The Lagrangian in Section 3, providing Lorentz force can be written as

L =
1

2
< y, y > +

q

c
< A, y > .

If we use in the above, instead of the classical Finslerian metric tensor gij, the polynomial
metric hij, then we get a specific (generalized) Lagrangian for the Berwald-Moor case:

L =
1

2
hijy

iyj +
q

c
hijA

iyj.

Remark: The first term in the above is
1

2
hijy

iyj =
1

2
F4.

The second term is
q

c
hijA

iyj =
q

c
GijklA

iyjykyl.

Let us denote:
Ajkl = GijklA

i.

The above defined tensor is totally symmetric. Its nonvanishing components are:

A123 =
1

4!
A4, A124 =

1

4!
A3, A134 =

1

4!
A2, A234 =

1

4!
A1.

Moreover, if Ai = Ai(x) are only position dependent, then Ajkl depend only on x and
conversely. In the following, we shall assume this, namely

Ajkl = Ajkl(x).
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We get, thus, the following Lagrangian in case of the Berwald-Moor function

L =
1

2
F4 +

q

c
Aijk(x)yiyjyk. (22)

Let us obtain the terms of the Euler-Lagrange equation

∂L

∂xm
=

q

c
Aljk,mylyjyk;

∂L

∂ym
=

1
2

∂F4

∂ym
+ 3

q

c
Amjk(x)yjyk ⇒

d

dt

( ∂L

∂ym

)
=

d

dt

(1
2

∂F4

∂ym

)
+ 3

q

c
Amjk,ly

lyjyk +
q

c
6Ajmk

dyj

dt
yk =

=
(12

2
hmj

dyj

dt
+ 6

q

c
Ajmky

k
)dyj

dt
+

q

c

(
Amjk,l + Amlk,j + Amjl,k

)
ylyjyk.

Therefore, we get

Proposition 4 The extremal curves for the Lagrangian (22) are given by

6
(
hmj +

q

c
Amj0

)dyj

dt
+

q

c

(
Amjk,l + Amlk,j + Amjl,k − Aljk,m

)
ylyjyk = 0,

where Amj0 = Amjky
k.

Let us denote
Fmjkl =

1

6
(Amjk,l + Amlk,j + Amjl,k − Aljk,m). (23)

The above relation defines a 4-covariant tensor field, which is symmetric in its 3 last indices:
Fmjkl = Fmkjl = Fmklj etc.

By contracting it twice with yk, yl, we get an antisymmetric tensor:

Fmj00 := Fmjkly
kyl ⇒ Fmj00 = Fjm00.

With the notation (23), the equations of extremal curves can be written as:

hmj
dyj

dt
+

q

c
Fmjkly

jykyl +
1

6

q

c
Amj0

dyj

dt
= 0.

If we raise indices by means of hij, the above is equivalent to :

dyi

dt
+

q

c
F i

jkly
jykyl +

1

6

q

c
Ai

j0

dyj

dt
= 0. (24)

With this we can return to 8 and try to derive all the results obtained in what follows
there in the similar manner.

Discussion

The relativity principle states that there are no means to distinguish between the inertial
frames, but the equivalence principle goes even further. Since we can’t distinguish between an
accelerated frame and such a physical field as gravity, there is no reason to think that gravity
is velocity independent. If the acceleration is not rectilinear, the inertial force acting on a
body depends on the velocity of the body (e.g. Coriolis force). Therefore, measuring gravity
we can’t be sure to which extent we have accounted for the observable kinematics. From the
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mathematical point of view it means that the space is anisotropic. Locally, it could mean the
existence of a preferable direction (e.g. the axis of a rotating reference frame), but generally it
demands the direction dependent metric. This leads to the anisotropic geometrodynamics [1]
which appears to be able to explain some well known paradoxes observed on the cosmological
scale.

In this paper the ideas formulated in [1] were developed for the case when an additional
physical (electromagnetic) field is present in such an anisotropic space. Obviously, the notions
of Lorentz force and electric current in an accelerated frame (in an anisotropic space) should
be redefined with regard to the mentioned circumstances. This is performed for the case of
the linearly approximable anisotropic perturbation of the locally Minkowski metric. We have
found the expressions for the additional terms both in the Lorentz force 8 and in the current
20. It should be mentioned that it is important in which way – covariant or contravariant –
do the measurable (physical) variables transform with the coordinates transformation. The
calculations for the case when the unperturbed locally Minkowski metric is Minkowski one
lead to the concrete expressions 14 and 21 that can be used in observations.

Alongside with the weak anisotropic perturbation of the Minkowski metric we regarded
also the anisotropic Berwald-Moor metric as it was done in [8]. Working in terms of the
corresponding 4-scalar product, the geodesic equations have obtained a new form and what
could be called a ”Lorentz force” has also transformed. This is due to the fact that the algebra
chosen for the possible interpretation of experimental measurements essentially differs from
the usual one. It is hard to say at once whether it is convenient or not and whether it has
any new perspectives because of the lack of the corresponding language in the interpretation
of physical notions.

References

[1] S. Siparov. ArXiv: 0809.1817v2 [gr-qc] 10 Sep 2008
[2] S. Siparov, N. Brinzei. ArXiv: 0806.3066v1 [gr-qc] 18 Jun 2008
[3] Rashevsky, P.K. : The Geometrical theory of partial differential equations, Second Edition,

Editorial USSR, M. 2003 (in Russian).
[4] Bao, D., Chern, S. S., Shen, Z., An Introduction to Riemann-Finsler Geometry (Graduate Texts

in Mathematics; 200), Springer Verlag, 2000.
[5] Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer

Acad. Publ. FTPH no. 59, (1994).
[6] Munteanu, Gh. and Balan, V.: Lessons of Relativity Theory (in Romanian), Bren Eds.,

Bucharest, 2000.
[7] Raigorodski, L.D., Stavrinos, P.C., Balan, V., Introduction to the Physical Principles of

Differential Geometry, Univ. of Athens, 1999.
[8] D.G. Pavlov, Generalization of Scalar Product Axioms, ”HyperComplex Numbers in Geometry

and Physics” 1 (1), Vol 1, 2004, 5–18.
[9] S. Lebedev. ”HyperComplex Numbers in Geometry and Physics” 2 (4), 2005, 44
[10] V. Balan, N. Brinzei. ”HyperComplex Numbers in Geometry and Physics” 2 (4), 2005, 114
[11] V. Balan, N. Brinzei, S. Lebedev ”HyperComplex Numbers in Geometry and Physics” 2 (6),

2006, 113
[12] N. Brinzei, Projective relations for m-th root metric spaces, ArXiv:0711.4781v1.


