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1 Finsler structures. Finsler metric tensor field

Definitions. a) We call Finsler structure a couple (M, F ), where M is a real n−dimensional C∞

differentiable manifold and F : TM → R+ is a mapping (called Finsler fundamental function or Finsler
norm), which obeys the following properties:

1. F is C∞ on T̃M = TM\{0} ≡
⋃

x∈M

{(x, y) | y ∈ TxM, y 6= 0x} (F is smooth on the tangent space

without the image of the null section);

2. F (x, λy) = λF (x, y), ∀λ ∈ [0,∞) (F is positive homogeneous of degree one in y, i.e., on the fibres
of the tangent bundle (TM, π, M));

3. for all (x, y) ∈ TM , the functions

gij =
1
2

∂2F 2

∂yi∂yj
(1)

provide a symmetric positive definite matrix. They are the components of the metric Finsler
tensor field

g = gij(x, y) dxi ⊗ dxj .

b) We call the indicatrix of the Finsler structure (M, F ) at the point x ∈ M , the set of unit tangent
vectors Ix = {y ∈ TxM | F (x, y) = 1}.

Remarks. a) If 3) is replaced with the (weaker) condition that g should be non-degenerate and
of constant signature (not necessarily positive-definite and hence F not necessarily non-negative), then
the structure (M, F ) is called pseudo-Finsler structure.

b) If 2) is supplemented with the reversibility condition, i.e., F (x, y) = F (x,−y), ∀(x, y) ∈ TM ,
then F becomes homogeneous of first order, i.e., F (x, λy) = λF (x, y), ∀λ ∈ R. This is the case of (e.g.)
the Riemannian metric F = α.

c) If F is no longer non-negative, or not defined on the whole space TM (being defined only
on certain distributions of the tangent bundle), then there appear examples of new (generalized)
Finsler functions, e.g., the Kropina metric F = α2/β, or the Shimada pseudo-Finsler metric F (x, y) =
m
√

ai1...im(x)yi1 · . . . · yim , having as particular case the Berwald-Moor metric F (y) = n
√

y1 · . . . · yn.

2 The non-linear connection of a Finsler structure

Consider the tangent bundle (TM, π, M). Then a basic tool which allows to introduce a structure of
vector bundle on (TTM, dπ, TM) with structural group GLn(R) × GLn(R) is the non-linear connec-
tion N = {Na

i }, which provides a local adapted basis for the module of sections of the subbundles
(HTM, dπ, TM) and (V TM, dπ, TM) of the Whitney splitting (TTM = HTM ⊕ V TM, dπ, TM),
namely {

δi =
δ

δxi
=

∂

∂xi
−Na

i (x, y)
δ

δyi

}
⊂ Γ(HTM),

{
∂̇i =

∂

∂ya

}
⊂ Γ(V TM), (2)
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where V TM = Ker dπ. There exists a canonical nonlinear connection, provided by the Finsler funda-
mental function F , given by (Kern’s formula):

Na
i =

∂Ga

∂yi
, (3)

where gij are the components of the matrix dual (inverse) to gij , i.e., gisgsj = δi
j and

Ga =
1
2
gas

(
∂2L

∂ys∂xj
yj +

∂L

∂xs

)
. (4)

3 Linear connections and covariant derivation laws

The components ∇ = {F̃ i
jk; C̃

i
jk} of a linear connection which preserves the h− and v−distributions

(called linear d-connection), locally described by (2), computed with respect to the local adapted basis
of fields determined by a fixed non-linear connection N

{δ1, . . . , δn; ∂̇1, . . . , ∂̇n}

are described by the relations
∇δk

δj = F̃ i
jkδi; ∇∂̇c

∂̇b = C̃a
bc∂̇a. (5)

These components split into the h−components {F i
jk} and the v−components {Ca

bc}.
The non-trivial components of the torsion T (X,Y ) = ∇XY −∇Y X− [X,Y ] of ∇ are Finsler tensor

fields, provided by the formulas
T (δk, δj) = T i

jkδk + Ra
jk∂̇a

T (δk, ∂̇b) = C̃a
bkδa + P a

bk∂̇a

T (∂̇c, ∂̇b) = Sa
bc∂̇a,

(6)

These non-trivial torsion fields T ≡ {T i
jk, Ra

jk, P a
bk, C̃i

ja, Sa
bc} described in (6), have the explicit expres-

sions in terms of the connection coefficients ∇ = {F̃ i
jk; C̃

i
jk} given by (5), as follows

T i
jk = F̃ i

jk − F̃ i
kj , Ra

jk = δkN
a
j − δjN

a
k , P a

bk = F̃ a
bk − ∂̇bN

a
k , C̃i

ja, Sa
bc = C̃a

bc − C̃a
cb. (7)

We note that the Cartan tensor field which is defined in (11) is totally symmetric in all its indices and
that (M, F ) is a Riemannian structure (i.e., gij depend on x only) iff Cijk ≡ 0.

As well, for a Finsler linear d-connection ∇, one can define the associated h− and the v−covariant
derivatives, as follows





T
i1...ip
j1...jq | k =

δT
i1...ip
j1...jq

δxk +
∑

s=1,p

T
i1...ts...ip
j1...jq

F̃ is
tsk −

∑

s=1,q

T
i1...ip
j1...ts...jq

F̃ ts
jsk

T
i1...ip
j1...jq

∣∣∣∣
k

=
∂T

i1...ip
j1...jq

∂yk +
∑

s=1,p

T
i1...ts...ip
j1...jq

C̃is
tsk −

∑

s=1,q

T
i1...ip
j1...ts...jq

C̃ts
jsk,

for any Finsler tensor field of type (p, q). The connection ∇ is said to be h−metrical iff gij|k = 0 and
v−metrical iff gij |k = 0. There exist several well-known linear connections in Finsler Geometry, used
in applications. None of these connections has the two basic qualities of the Levi-Civita connection
from Riemannian Geometry (metricity and symmetry). The reasons for which such a connection ceases
to exist on the tangent space TM , is that the natural extra requirement - that of preserving the h−
and v−distributions locally described by (2), is fulfilled. Below is a table which contains four linear
connections which obey this extra property, but fail to be completely metric and symmetric.
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Linear connection Coefficients m m s s s s s
∇ = {F̃ i

jk, C̃
i
jk} h− v− hh− h hh− v hv − h hv − v vv − v

Cartan C
∇ = {F i

jk, C
i
jk} Y Y Y N N N Y

Chern-Rund CR
∇ = {F i

jk, 0} Y N Y N Y N Y
Berwald B

∇ = {Gi
jk, 0} N N Y N Y Y Y

Hashiguchi H
∇ = {Gi

jk, C
i
jk} N Y Y N N Y Y

The basic formulas which provide the components of the four connections from above are:

Gi
jk = ∂̇jN

i
k (8)

F i
jk =

1
2
gis(δjgsk + δkgsj − δsgjk) (9)

Ci
jk =

1
2
gis(∂̇jgsk + ∂̇kgsj − ∂̇sgjk) = gisCisk, (10)

where

Cisk =
1
2

∂gis

∂yk
=

1
4

∂3F 2

∂yi∂ys∂yk
. (11)

4 Invariants of a Finsler structure

The invariants of Riemann type of a Finsler structure (M, F ) are the following




g = gijdxi ⊗ dxj , gij =
1
2

∂2F 2

∂yi∂yj

η = ηidxi, ηi = ∂F/∂yi.

We note that these are 0-homogeneous Finsler tensor fields of type (0,2), (0,3) and (0,1), respectively.
The invariants of non-Riemannian type are





Aijkdxi ⊗ dxj ⊗ dxk, Aijk = F
4

∂3F 2

∂yi∂yj∂yk
=

F

2
∂gij

∂yk

Aidxi, Ai = gjkAijk

τ =

√
det(gij)i,j=1,n

σ(x)
, σ(x) =

V ol(Sn(1))
V ol({y ∈ Rn | F (x, yi ∂

∂xi ) ≤ 1}) .

We note that these are 0-homogeneous Finsler tensor fields of type (0,1) and (0,0), respectively.

5 Examples of Finsler and pseudo-Finsler structures

I. The Finsler metric function FR(x, y) =
√

gij(x)yiyj , where {gij(x)} are the coefficients of a Rie-
mannian metric on M , practically represents the Banach norm associated to the Riemannian struc-
ture g = gij(x)dxi ⊗ dxj of (M, g). In particular, for gij = δij , one gets for the Finsler metric
F (y) =

√
(y1)2 + . . . + (yn)2 of the Euclidean structure (M, δij).

Similarly, the pseudo-Finsler metric function FR(x, y) =
√

gij(x)yiyj , where {gij(x)} are the co-
efficients of a pseudo-Riemannian metric, is the pseudo-Riemannian norm attached to the pseudo-
Riemannian structure g = gij(x)dxi ⊗ dxj of (M, g). In particular, for gij = εiδij , where ε1 = −1, ε2 =
. . . = εn = 1, one gets for the Minkowski pseudo-Finslerian norm F (y) =

√
−(y1)2 + (y2)2 + . . . + (yn)2

attached to the pseudo-Euclidean Minkowski structure (M, εiδij).
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II. The Randers metric F = α + β, with

α =
√

aij(x)yiyj , β = bk(x)yk, (12)

where a = aij(x)dxi⊗dxj is a Riemannian metric on M and bk(x)dxk is a 1-form on M , has the property
that for β = 0, i.e., for bk = 0, ∀k ∈ 1, n reduces to the Finsler Riemannian structure (M, a ≡ {aij}).

The Randers spaces were first introduced by Randers in 1941, and further studied by Roman
Ingarden (who gave their actual name in 1957), Ralf G. Beil, Aurel Bejancu, Ioan Buc’ataru, Vasile
Sabău, etc. The Randers spaces have been shown to provide an alternative model for unified gravitation
and electromagnetism.

Homework. Denote ||b||a = ||bk(x)dxk||a = aij(x)bi(x)bj(x), and check that for ||b||a < 1 one gets a
Finsler structure with compact indicatrix Ix, ∀x ∈ M which encloses a convex body, while for ||b||a > 1,
F defines a pseudo-Finsler structure with non-bounded indicatrix.

III. Particular cases of Randers metrics:

a) The generalized Funk metric given by

F (x, y) =

√
(||x||2〈a, y〉 − 2〈a, x〉〈x, y〉)2 + ||y||2(1− ||a||2||x||4)

1− ||a||2||x||4 − ||x||2〈a, y〉 − 2〈a, y〉〈x, y〉
1− ||a||2||x||4 ,

where x ∈ D = B(0, ||a||−1/2) ⊂ Rn, y ∈ TxD, a ∈ Rn.
Homework. Show that (D, F ) is a Randers space of scalar curvature

K = 3||F ||−1〈a, y〉+ 3〈a, x〉2 − 2||a||2||x||2,
and that it has isotropic S−curvature, given by S = (n + 1) 〈a, x〉︸ ︷︷ ︸

c(x)

F .

b) The Finsler space (M = Bn(1/
√−µ) ⊂ Rn, F ) with µ < 0 and

Fµ(x, y) =
(||y||2 + µ(||x||2||y||2 − 〈x, y〉2))1/2

1 + µ||x||2 , ∀y ∈ TxM.

Homework. Show that (D, F ) is a Randers space. Compute its flag and S−curvatures.

c) The Finsler space (M = R2, F ) with λ ∈ [0,∞), k ≥ 1 and

Fλ,k(y) =
√

a2 + b2 + λ(a2k + b2k)1/k, ∀y = (a, b) ∈ T(x1,x2)R2, (x1, x2) ∈ R2.

Homework. Show that (D,F ) is a Randers space. Compute its flag and S−curvatures. Show that for
λ = 0, the Finsler fundamental function provides the Euclidean norm on R2.

IV. The Kropina pseudo-Finsler metric F = α2/β, has been used in irreversible thermodynamics,
as

F (y) = y−1
n+1

n+1∑

k=1

y2
i , y = (y1, . . . , yn+1) ∈ D ⊂ Rn+1,

and in Fisher statistic Finsler geometry.

V. The (α, β)-Finsler metrics are the ones with the fundamental function of the form

F (x, y) = αΦ
(

β

α

)
,

with α, β given by (12), where Φ is a positive smooth function. We note that for Φ(s) = 1, Φ(s) = 1+s
and Φ(s) = s−1, we accordingly obtain the Riemannian spaces F = α, the Randers spaces F = α + β,
and the Kropina spaces F = α2/β.
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6 Geodesics in (pseudo-)Finsler spaces

A curve x(t) is called geodesic of the Finsler space (M,F ) iff it satisfies the equations of geodesics

ẍi + γi
jk(x, ẋ)ẋj ẋk = 0, i = 1, n, (13)

where ẍ =
d2x

dt2
, ẋ =

dx

dt
and γi

jk = | i
jk| are the generalized Christoffel symbols of the second kind provided

by the Christoffel symbols of the first kind |jk; s|,

| i
jk| = gis|jk; s|, |jk; s| = 1

2
(∂jgsk + ∂kgsj − ∂sgjk), i, j, k = 1, n.

Remark. Like in the (sub-)Riemannian case, when the tensor gij is degenerate, then the geodesics still
can be defined by avoiding the usage of the Christoffel symbols of the II-nd kind (which involve the
existence of the inverse tensor gij), by using the lowered index version of (13) and the symbols of I-st
kind, as

gisẍ
s + |jk; i|ẋj ẋk = 0, i = 1, n. (14)

We note that γi
jk depend on (x, y), and that this provides a canonic non-linear connection provided by

F (called the Cartan non-linear connection), whose coefficients are given by:

Na
i =

∂(γa
jky

jyk)
∂yi

,

that the coefficients Gi = 1
2γi

jky
iyk (called spray coefficients) are 2-homogeneous in y, and that the

equations (13) rewrite as
ẍi + 2Gi(x, ẋ) = 0, i = 1, n.

Homework. Using the MAPLE software, compute the generalized Christoffel symbols, the equations
of geodesics and plot (as concurrent sheaf and as transversal net) the geodesics of the Euclidean space
R2, of the parametrized sphere Σ = Im r, r(u, v) = (cosu sin v, sinu sin v, cos v), (u, v) ∈ [0, 2π] ×
[0, π], and for the Finsler structures from examples III (choose n = 2 and convenient initial data for
solving/plotting the corresponding 2-nd order SODE).

7 The flag curvature of a Finsler space

For a given Finsler linear d-connection ∇ = {F̃ i
jk; C̃

i
jk}, one can easily compute the components of the

curvature R(X, Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z, which, due to the property that ∇ preserves
the h− and the v−distributions, provides three nontrivial sets of coefficients, via:

R(δl, δk)δj = Ri
jklδi, R(∂̇c, δk) = P a

bkc∂̇a, R(∂̇d, ∂̇c) = Sa
bcd∂̇a.

Homework. Check that the non-linear connection N = {Na
i } given by Kern’s relations (3)-(4) satisfies

Na
i = ∂(γa

bcybyc)

∂yi and that its curvature Ra
j k provided by (7) satisfies

∂Ra
jk

∂yl = Ra
jkl.

By means of this curvature tensor, one can easily define the h−curvature of Riemann type, K(X, Y, Z, V ) =
g(R(Z, V )Y,X), and further, for a family of oriented 2-tangent planes generated by two independent
vector fields X,Y , the associated sectional curvature

K(x,y)(X, Y ) =
K(X, Y ; X,Y )
Gramdet(X,Y )

, where Gramdet(X,Y ) =
∣∣∣∣

g(X,X) g(X,Y )
g(Y, X) g(Y, Y )

∣∣∣∣ .

We note that this sectional curvature generally depends on the support element (x, y) ∈ TM , hence
there exist three tangent vectors y,Xx, Yx ∈ TxM which take part in this definition, in the proper
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Finslerian case. Still, in the particular Riemannian case, for x ∈ M fixed, this depends just on the
vectors Xx, Yx ∈ TxM and provide the classical sectional curvature of the subjacent integral local
submanifold ΣX,Y ⊂ M , whose tangent plane is spanned by these two vectors, and the formula provides
by the Egregium theorem the Gauss curvature of ΣX,Y .

In the proper Finsler case we reduce the number of vectors from three to two, by replacing X →
y, Y → X, and we get the so-called flag curvature associated to the 2-plane spanned by {y, X},

K(x,y)(X) =
K(y,X; y, X)
Gramdet(y,X)

.

The Finsler space is called of scalar (flag) curvature if K(x,y)(X) does not depend on the field X, and
of constant flag curvature if K(x,y)(X) is independent on both y and X.

The role played by the flag curvature is significant in Finsler geometry. Among the latest related
results, we note the following:

Theorem (Rademacher 2004). Let (M, F ) be a simply connected compact Finsler structure
such that dimM ≥ 3. If the flag curvature satisfies the condition (1 − 1

1+λ) < K(x,y)(X) ≤ 1, ∀x ∈
M,∀y ∈ TxM,∀Xx ∈ TxM , where λ = sup

F (x,y)=1

F (x,−y)
F (x, y)

= sup
y∈Ix

F (x,−y)
F (x, y)

, then M is homeomorphic to

the sphere Sn.

Theorem (Z. Shen 2005). Let (M, F ) be a compact Finsler structure such that dimM ≥ 3, of
scalar negative curvature. Then F is a Randers metric.

8 The Legendre transform of a Finsler structure

Definition. Let (M,F ) be a Finsler structure. Then the mapping L : TM → T ∗M locally defined by

T (x, y) = (x, p), where pi = gij(x, y)yj , ∀(x, y) ∈ TM,

is called the Legendre transform of the given Finsler structure.
It can be proved that L is a local diffeomorphism, and that it transforms the Finsler norm F into

the dual norm F ∗ : T ∗M → R+ defined by F ∗(x, p) = sup
F (x,y)=1

|p(y)| = sup
y∈Ix

|p(y)|.

Remarks. a) The dual indicatrix, i.e., the indicatrix I∗x = {p ∈ T ∗M | F ∗(x, p) = 1} of F ∗ can be
locally described by its Cartesian implicit equation which is obtained by eliminating the parameters
y1, . . . , yn from the system of n + 1 relations





F (x; y1, . . . , yn) = 1

Fy1(x; y1, . . . , yn) = 0

. . .

Fyn(x; y1, . . . , yn) = 0

.

b) One can easily see that the (local) inverse L−1 : T ∗M → TM is generally hard to obtain. Namely,
the pre-image (x, y) ∈ TM of (x, p) ∈ T ∗M can be determined by finding the unique solution y =
(y1, . . . , yn) of the system of highly non-linear equations





g(x, y)11 · y1 + . . . + g(x, y)1n · yn = p1

. . .

g(x, y)n1 · y1 + . . . + g(x, y)nn · yn = pn.
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c) In the (particular) Riemannian case, when g(x, y)ij depends only on x ∈ M , this system is linear
and compatible, with the unique solution provided by yi = gijpj , i = 1, n. We then easily note that the
Legendre transform becomes in this case a vector bundle isomorphism, acting on the fibres as

Lx : TxM → T ∗xM, Lx(y) = p, pi = gijy
j ,

thus ”lowering” the index (Lx = L[). As well, its inverse acts on fibres as

L−1
x : T ∗xM → TxM, L−1

x (p) = y, yi = gijpj ,

thus ”raising” the index (L−1
x = L−1

# ). Hence, often L is called (in the Riemannian case), the musical
isomorphism.

Homework. Show that the Cartesian indicatrix Ix and the dual indicatrix I∗x (x ∈ R4) of the
Berwald-Moor pseudo-Finsler metric are Tzitzeica surfaces, provided by the same Cartesian equations:
Ix : y1y2y3y4 = 1; I∗x : p1p2p3p4 = 1.
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Exam quizzes

I. Solve several selected by the examiner homeworks.
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IV. Check that the provided examples of Finsler structures satisfy the corresponding axioms for
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Part II. Symmetries and transformation groups

Lecture notes - Balan Vladimir * Autumn School - Fryazino

December 18, 2008

1 Lie algebras and Lie groups

Lie Algebras

Definition
Lie algebra: a vector space V with [ · , · ] : V × V → V satisfying:
a) R−bilinearity
b) [a, b] = −[b, a] (skew symmetry)
c) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (the Jacobi identity).

Remark

Using ad : V → End(V ), ad a(b) = ja∗(b) = [a, b] (ja(b) = aba−1), the Jacobi identity confirms that ad a
is a derivation ∀a ∈ V , i.e.

ad a([b, c]) = [ad a(b), c] + [b, ad a(c)]

Examples of Lie algebras

• R3 with [u, v] = u× v (the cross product)

• End(V ) with [A,B] = A ◦B −B ◦A (using composition)

• Mn(K) with [A,B] = A ·B −B ·A (using matrix multiplication)

• X (M) with [X,Y ] = (Xi · ∂i(Y j)− Y i · ∂i(Xj))∂i,∀X,Y ∈ X (U)

• for M = G Lie group, (g, [ · , · ]), g ≡ TeG ≡ Xr(G) ≡ Xl(G)

• induced Lie bracket on submanifolds of M

Lie groups

Definition 1. a) Lie group (G, · ) group, diff. manifold with group operation and inversion both smooth
mappings

b) Lie subgroup - a subset H ⊂ G which is both algebraic subgroup and submanifold of G

Remark
Any Lie group is an orientable and parallelizable manifold

Examples of Lie groups

• (Kn,+) and (K∗, · ), K ∈ {R,C,H)

• (Mn(V ), +); (GL(V ), ◦ )

• (GL(n,K) = GL(Kn), · ), K ∈ {R,C,H)

• Aff (S) = GL(V )sT , (V = the linear space associated to the affine space S)

1



Examples

• G finite or countable (with the discrete topology of 0-dimensional manifolds)

• G,Gpr ⇒ G×Gpr ; consequence: Km × Tn where Tn = S1 × · · · × S1
︸ ︷︷ ︸

n times

• any closed subgroup of a Lie group

• H normal subgroup of G (H / G ⇔ ∀g ∈ G, gHg−1 = H)

Examples

• real Lie groups: subgroups of GL(n,R): O(n), SL(n,R), SO(n) = O(n) ∩ SL(n,R)

• complex Lie groups: subgroups of GL(n,C): U(n), SL(n,C), SU(n) = U(n) ∩ SL(n,C)

• T = T 1 = {z ∈ C∗ | |z| = 1} = S1 ⊂ C∗

• W additive subspace of V ; (K∗)n ⊂ GL(Kn)

• the Heisenberg-Weil triangular subgroups of GL(n,K) (used in second quantization and coherent states):

HR = {(aij) | aii = 1, aij = 0, ∀i > j},
HL = {(aij) | aii = 1, aij = 0,∀i < j}

1.1 Homomorphisms of Lie groups

Definition. G
ϕ−→Gpr homomorphism of Lie groups if ϕ is smooth and algebraic morphism.

Examples.

• x ∈ R→ ex ∈ R∗+
• A ∈ GL(n, K) → detA ∈ K∗

• G
ϕ−→G, ϕ(g) ∈ {ag, ga, aga−1} for some a ∈ G

• x ∈ R→ eix ∈ S1 ∈ C∗

• (A, b) ∈ Aff (S) → A ∈ GL(V ) (V associated to the affine space S)

• any algebraic morphism from G finite or countable to a Lie group Gpr

2 Lie algebras of Lie groups

• sl(n,K) = {A ∈ Mn(K)| Tr(A) = 0}, K ∈ {R,C}
• o(n, K) = {A ∈ Mn(K)|At = −A}, (K ∈ {R,C}, o(n) = o(n,R))

• so(n,K) = o(n,K) ∩ sl(n,K)

• o(p, q) = {A ∈ Mn(R)|AJ + JAt = 0}
= {AJ |At = −A} = o(n)J, J = diag (Ip,−Iq).

• so(p, q) = o(p, q) ∩ sl(n,R)
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Examples of Lie algebras

• u(n) = {A ∈ GL(n,C)| Āt = −A} (skew-Hermitian)

• su(n) = u(n) ∩ sl(n,C)

• u(p, q) = {A ∈ Mn(C)|AJ + JĀt = 0}
= {AJ |Āt = −A} = su(n)J, J = diag (Ip,−Iq).

• su(p, q) = u(p, q) ∩ sl(n,C)

• Heisenberg-Weil groups have the Lie algebras Lie(HU ) = {(aij)i,j=1,n | aij = 0, ∀i ≥ j}, similar Lie(HL).

Examples of Lie algebras

Particular cases

• so(3,R) = Span ({[Rx,π/2], [Ry,π/2], [Rz,π/2]}), [ · , · ]
• R3 = Span ({e1, e2, e3}), ×
• su(2) = Span

({(
i 0
0 −i

)
,
(

0 1−1 0

)
,
(

0 i
i 0

)})
, [ · , · ]

• The three Lie algebras are isomorphic.

• sl(2,R) = Span
({(

0 1−1 0

)
,
(

1 0
0 −1

)
, ( 0 1

1 0 )
})

3 Lie transformation groups

Transformation groups in plane

• T ≡ R2 - translations x → x + x0

• H ≡ R∗+ - homotheties x → kx

• HsT semidirect product ( (a, x) ◦ (b, y) = (ab, x + ky) )

• GL2(R) - linear isomorphisms of R2

• Aff (R2) = GL2(R)sT - the affine group

Isometries

• O(2) = {A ∈ GL2(R) | AtA = I2} - orthogonal transformations (linear isometries)

• Iso (R2) = O(2)sT - isometries

• the special orthogonal group (the connected component of O(2), positive linear isometries)

SO(2) = {A ∈ O(2) | det(A) = 1}
=

{
[Rθ] = (cos θ −sin θ

sin θ cos θ ) | θ ∈ R
}

,

• SO(2)sT (proper movements, positive isometries)
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Conformal transformations

• Conf (R2) = (H ×O(2))sT - the conformal group

• Conf +(R2) = (H × SO(2))sT - orientation preserving (positive) conformal transformations

• O(2) = SO(2) ∪ {A · diag (1,−1) | A ∈ SO(2)}
• glide reflections (negative isometries; not a group !):

(O(2)\SO(2))sT = {symm∆ ◦ Tv||v∆
| ∆ ⊂ R2}

• Conf +(R2) ∼ Aff (1,C) = {z → wz + w0 | z ∈ C∗, w0 ∈ C}
• Conf (R2) ∼ {z → wz + w0 or z → wz̄ + w0 | z ∈ C∗, w0 ∈ C}

Projective and concircular transformations

• PGL(2,R) = {x → π12([A(xt, 1)]) | A ∈ GL(3,R)} (the projective transformations of the plane)

• the circular transformations:

Circ2 = PGL(1,C) ∪ {z → ϕ(z̄) | ϕ ∈ PGL(1,C)︸ ︷︷ ︸
PGL(1,C)pr

}

• PGL(1,C) = proper fractional linear transformations = inversions ◦ spiral similarities ◦ reflections ◦
translations

• PGL(1,C) pr = improper fractional linear transformations = inversions ◦ spiral similarities ◦ translations

• SO(2)sH - spiral similarities of center O

• x → ρ · x/((x1)2 + (x2)2), inversion of center O

Addenda - other Lie group transformations

Isometries of Rn

• n = 3: positive isometries (proper motions) ⊂ isometries ⊂ affine transformations

SO(3)sT ⊂ O(3)sT ⊂ GL3(R)sT

• isometries of Rn:
SO(n)sT ⊂ O(n)sT ⊂ GL(n,R)sT

• Galilean transformations of classical mechanics (in R4
3,1)

(t, x) → (t, Ax + x0 − vt) ∼



A −v x0

0 1 0
0 0 1


 ∈ PGL(R4)

• Kepler (celestial mechanics - T 2
rot P ∼ d3, d = dmin(P,Sun) perihelion):

(t, x) → (βt, αx) = (βt,
3
√

α2x), β2 = α3, β > 0
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Lorentz transformations

• Lorentz transformations which fix the origin in (R2
1,1, ds2 = c2dt2 − (dx1)2)

O(1, 1) =
{

A = ±1√
1−β2

(
1 ±β
β ±1

)∣∣∣∣ |β| < 1
}

=
{

A = ± (
c ±s
s ±c

)∣∣ψ ∈ R}

for β = tanhψ, c = coshψ, s = sinhψ; four connected pieces (the extremal two are orthocronous):
{
( c s

s c ) ,
(

c −s
s −c

)
,
(−c s
−s c

)
,
(−c −s
−s −c

)}
containing

{
I = ( 1 0

0 1 ) , P =
(

1 0
0 −1

)
, T =

(−1 0
0 1

)
, PT =

(−1 0
0 −1

)}

Lorentz transformations

• Lorentz transformations on Rn
1,n−1 which fix the origin in

(Rn
p,q, ds2 = c2dt2 − (dx1)2 − · · · − (dxn−1)2), p + q = n

form O(p, q) (four connected components !)

4 Complex transformation groups

4.1 Realization of complex Lie groups

Realization of complex Lie groups

• Cn as real vector space spanned by {e1, . . . , en, ie1, . . . , ien}
• Λ = A + iB ∈ Mn(C) → r(Λ) =

(
A B
−B A

) ∈ M2n(R)

• det(r(Λ)) = |det(Λ)|2

• r(GL(n,C)) = {A ∈ GL2n(R) | AJ = JA}, J =
(

0 In
−In 0

)

• SL(n,C) = {A ∈ GL(n,C) | det(A) = 1}

Realization of complex Lie groups

• Realization: z = x + iy ≡ (x, y), w = u + iv ≡ (u, v); inner products:

〈z, w〉C =
∑

ziw̄i, 〈z, w〉R =
∑

ziui +
∑

yivi

and realization implies <〈z, w〉C = 〈z, w〉R.

• U(n) = {Λ ∈ GL(n,C) | 〈Λz,Λw〉C = 〈z, w〉C} = {Λ ∈ GL(n,C) | Λ̄tΛ = In}
• r(U(n)) = SO(2n) ∩ r(GL(n,C))

• similarly in (Cn
p,q, 〈z, w〉C =

∑p
i=1 ziw̄i −∑n

i=p+1 ziw̄i), the metric is preserved by U(p, q) ⊃ SU(p, q)

5



Particular cases

• n = 1: GL(1,C) ∼ (C∗, · ); r(U(1)) = SO(2)

• n = 2: SL2(C) = {A = (a
c
b
d) | det(A) = 1} admits an epimorphism to linear fractional transformations

L = {ϕA : C→ C | ϕA(z) = az+b
cz+d} of kernel Z2. It follows L ∼ SL(n,C)/Z2

• U(2) =
{

A =
(

a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1
}

• U(1, 1) =
{

A =
(

a b
b̄ ā

) ∣∣ |a|2 − |b|2 = 1
}

• The latter one admits an injection - not covering
{(

0 d
−d̄ 0

)∣∣∣ d ∈ C
}

,

(
c d
d̄ c̄

) ∈ SU(1, 1) →
(

1/c d/c̄
−d/c̄ 1/c̄

)
=

(
a b
−b̄ ā

)
∈ SU(2)

5 Actions, orbits and stabilizers

5.1 Group actions

Group actions

Action

Action of a Lie group G on a manifold M : mapping µ : G×M → M s.t.:
a) µ is differentiable,
b) τgg pr = τg ◦ τg pr (where τg(x) = µ(g, x)) and
c) τe = IdM .

Examples of actions:

• G → Diff (G) via La(g) = ag, Ra(g) = ga, ja(g) = aga−1

• GL(n, K)
ϕ−→Diff(P (Kn)), ϕA(x) = [Ax]

• linear representations (linear actions): G → GL(V )

• affine actions G → Aff (S), where S affine space with Aff (S) = GsT

• any homomorphism H → G pull-backs the actions of G on manifolds

5.2 Orbits and stabilizers

Orbits and stabilizers

• free action, if τgx = x ⇒ g = e

• effective action, if τg = IdM ⇒ g = e

• orbit of x ∈ M is Ox = {τg(x)|g ∈ G} ⊂ M

• transitive action if ∀x ∈ M,Ox = M

• stability (isotropy) group of x ∈ M is Gx = {g ∈ G|τg(x) = x}
• transformation group if τg ∈ Diff (M).
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Example
M = R3, G = SO(3), Se3 = diag (1, SO(2)) ∼ SO(2) ⊂ SO(3) and

Oe3 = {e3},Oe2 = {(cos t, sin t, 0), t ∈ R}

Orbits and stabilizers
Remarks

• for y = gx ∈ Ox, Gy = gGxg−1 (the stability groups are conjugate along the orbit)

• for µx : g → M (x ∈ M), the mapping µx∗,e : g ≡ TeG → TxM maps the right/left invariant vector fields
of g to X (M); its image is a Lie subalgebra of X (M).

Orbits and stabilizers

Theorem
If µx has constant rank k, then:

a) Gx is Lie subgroup of G of codimension k and Te(Gx) = Ker(µx∗,e)
b) ∃U 3 e neighborhood in G s.t. τU (x) ⊂ M is a submanifold of dimension k and Tx(τU (x)) = µx∗,eTeG
c) if Ox is a submanifold of M then dimOx = k.

Symmetric spaces

Theorem
If G acts transitively on M , then M ∼ G/H, where H = Gx, x ∈ M Examples.

• S2 ∼ SO(3)/SO(2)

• RP 2 = SO(3)/(SO(2)× Z2)

• CPn ∼ S2n+1/S1

6 Symmetric spaces - examples

Symmetric spaces - examples
• real Stieffel manifolds (k-orthonormal frames in Rn) V Rn,k ∼ O(n)/O(n− k) = SO(n)/SO(n− k)

• complex Stieffel manifolds (k-orthonormal frames in Cn) V Cn,k ∼ U(n)/U(n− k) = SU(n)/SU(n− k)

• real Grassmann (k-dimensional linear subspaces in Rn) GRn,k ∼ O(n)/(O(n− k)×O(k))

• oriented k linear subspaces in Rn: G̃Rn,k ∼ SO(n)/(SO(n− k)× SO(k))

• complex Grassmann (k-dimensional linear subspaces in Cn) GCn,k ∼ U(n)/(U(n− k)× U(k))

• particular case for k = 1, CPn−1 = GCn,1 ∼ U(N)/(U(n− 1)× U(1))

Examples of actions

1. G = GL(V )
ϕ−→Diff (B+(V )), ϕA(b) = AtbA (M = B+(V ) =bilinear symmetric tensors on V , dimV =

n). Gb = O(V, b) is a Lie subgroup of G. If b is non-degenerate, then Ob is open in M and

dimO(V, b) = dimGL(V )− dimOb =
n(n− 1)

2

2. G = GL(V )
ϕ−→Diff (B−(V )), ϕA(b) = AtbA (M = B−(V ) =bilinear skew-symmetric tensors on V ,

dimV = n). Gb = Sp(V, b) is a Lie subgroup of G. If b is non-degenerate, then Ob is open in M and

dimSp(V, b) = dimGL(V )− dimOb =
n(n + 1)

2

3. G = GL(V )
ϕ−→Diff (T 1

2 (V )), (ϕA(b))r
st = bk

ijA
i
sA

j
t (A

−1)r
k
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7 Infinitesimal isometries

Infinitesimal isometries (Killing vector fields)

• Let (M, g) be an n−dimensional (pseudo-)Riemannian manifold. X ∈ X (M) is a Killing vector field if
its local 1-parameter group is metric-preserving (ϕt∗g = g, ∀t ∈ I)

• X Killing iff (LXg) = 0 ⇔ LX(g(Y, Z)) = g(LXY, Z) + g(Y,LXZ), ∀Y, Z ∈ X (M)

• For {ei}i=1,n local field orthonormal basis, LXei = aj
i (x)ej whence X Killing iff aij + aji = 0 (with

lowering via g).

Killing vector fields

• The Killing vector fields form a Lie subalgebra in X (M) of dimension m ≤ n(n+1)
2 .

Example:

M = R2, gij = δij . The isometry group Iso (R2) = O(2)sT has its Lie algebra of (maximal) dimension 3,
generated by the Killing fields {

∂

∂x
,

∂

∂y
, x

∂

∂y
− y

∂

∂x

}

8 Groups of automorphisms of geometric structures

Groups of automorphisms of geometric structures

Definition

A subset G of Diff (M) is a Lie transformation group of M iff G is a Lie subgroup of Diff (M) and any flow of
G is the flow of an infinitesimal symmetry of Lie(G).

Theorem (Bochner-Montgomery-Zippin, 1955).

G subgroup of Diff (M), where M is a differentiable manifold. If G is locally compact, then G is a Lie
transformation group of M .

9 Riemannian isometries

Riemannian isometries

Definition

A map ϕ : (M, g) → (N, h) between Riemannian manifolds is a Riemannian isometry iff ϕ∗h = g (h(ϕ∗X, ϕ∗Y ) =
g(X, Y ), ∀X, Y ∈ X (M).

Theorem (Hopf)

Let (M, g) complete connected Riemannian manifold of constant sectional curvature k. Let (M̃, g̃) be the
standard model of simply connected complete Riemannian space with constant curvature k (hyperbolic for
k < 0, Euclidean for k = 0 and standard sphere of radius 1/

√
k, for k > 0. Then:

a) There exists a covering projection (”onto” map), smooth local isometry ϕ : (M̃, g̃) → (M, g).
b) If M is simply connected as well, then ϕ is injective, hence diffeomorphism, and the two manifolds are
isometric.
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10 Finslerian isometries

Finslerian isometries

Definition

A map ϕ : (M̃, F̃ ) → (M,F ) between Finslerian manifolds is a Finslerian isometry iff ϕ∗F = F̃ (F (ϕ∗X) =
F̃ (X), ∀X ∈ X (M̃).

Theorem (Bao-Chern-Shen)

If two Finsler structures (M̃, F̃ ) and (M,F ) are positively homogeneous of degree one, and both are
connected, F̃ is geodesically complete and there exists a smooth local isometry ϕ : (M̃, F̃ ) → (M, F ), then
a) (M, F ) is geodesically complete as well;
b) ϕ is a surjective covering projection.

Finslerian isometries

Definition

An isometry in (M,F ) is a diffeomorphism ϕ : M → M s.t. F ◦ ϕ∗ = F

Remark

F induces the distance (d(ϕ(x), ϕ(y)) = d(x, y),∀x, y ∈ M , where d(x, y) = inf{l(c) c(o) = x, c(1) = y}
and l(c) =

∫ 1
0 F (dc

dt )dt.

Finslerian isometries

Theorem (Deng-Hou 2002, generalization of the Myers-Steenrod theorem)

Any smooth map ϕ ∈ (Diff (M)) is an isometry on (M, F ) iff it is distance-preserving.

Theorem (Deng-Hou 2002)

The group of isometries G = Iso (M) of a Finsler space (M, F ) is a Lie transformation group and the
isotropy subgroup Gx is compact for all x ∈ M .

Finslerian isometries

Theorem (H.C.Wang 1947)

If (M,F ) is a Finsler space of dimension n 6= 4, and if dim Iso(M) > n(n−1)
2 +1, then (M, F ) is Riemannian.

Theorem (Chao-Hao 1957; Egorov 1974)

There exist Finsler non-Riemannian spaces with dim Iso (M) = n(n−1)
2 + 1.

Theorem (L.Kozma 2008)

a) If || ||1, || ||2 are two Minkowski norms on Rn and ϕ : Rn → Rn with ||ϕ(a|−ϕ(b)||2 = ||a− b||1, ∀a, b ∈
Rn, then ϕ ∈ Diff (M).
b) If ϕ is a distance-preserving mapping on (M,F ), then ϕ ∈ Diff (M).

Addenda. Invariant 4-tensors in R4

Theorem [4, 17.1.4]

T ∈ T 0
4 (R4) invariant under SO(4) has the form Tijkl = λδikδjl + µδijδkl + νδilδjk, (λ, µ, ν ∈ R)

Theorem

T ∈ T 2
2 (R4) invariant under GL4(R) has the form T ij

kl = λδi
kδ

j
l + µδi

lδ
j
k, (λ, µ ∈ R)
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G-structures associated to tensors

Theorem [8]
Let K be a tensor over Rn and G the subgroup of GL(n,R) which invariates K. Let P be a G−structure

on M = Rn (a subbundle of the bundle of frames L(M) with fibre G) and let T be the tensor field induced on
M by K and P . Then P is integrable (locally the canonic basis of TM provides frames in P ) iff there exist
coordinates in M on which T has constant components.

Theorem
If a G−structure is integrable, then it admits a torsionless connection

G−structures
Examples of G−structures

• G = GL(n,R). Any smooth manifold admits the G−structure P = L(M), integrable. Any diffeomor-
phism of M provides an automorphism of P and any vector field on M is an infinitesimal automorphism
of P

• G = GL+(n,R). Any orientable smooth manifold admits a G−structure; this is integrable. Any
orientation-preserving diffeomorphism of M provides an automorphism of P and any vector field on
M with orientation-preserving groups with 1 parameter is an infinitesimal automorphism of P
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Exam quizzes

Consider the matrix A =




2 1 1
1 2 1
1 1 2


 ∈ GL3(R).

I. a) Check that all the principal (Jacobi) minors of A are nontrivial.
b) Apply the Doolittle, LDU and Crout decompositions for A towards the upper/lower Heisenberg Lie

groups.
c) Using the first decomposition and backward substitution, solve the system AX = b, where X = (x, y, z)T

and b = (7, 8, 9)T .

II. a) For the matrix A from above, check that detA 6= 0.
b) Apply the QR decomposition for A towards SO(3) and the upper Heisenberg Lie groups.
c) Using this decomposition, the orthogonality of Q and the backward substitution, solve the system

AX = b, where X = (x, y, z)T and b = (7, 8, 9)T .

III. Check the Lie algebra properties for the examples provided on page 1 of the lectures.

IV. Check the homomorphism properties for the examples provided on page 2 of the lectures.

V. Check the Lie algebra properties for the examples provided on page 3 of the lectures.

VI. Show that the inversion defined on page 4 of the lectures is self-dual.

VII. Check the consequence of the first realization on page 5 of the lectures.

VIII. Define a Finsler isometry. State several related results.

Seminar addenda I. The LU decomposition algorithm.

1. Consider as input the matrix A ∈ GLn(R). Check that the Jacobi minors

∆k ≡ det A[k] =

∣∣∣∣∣∣∣

a11 . . . a1k
...

. . .
...

ak1 . . . akk

∣∣∣∣∣∣∣
,

of A are all nonzero. In affirmative case, the algorithm continues.

2. Denote A = A1 and subsequently build the matrices Lk = [e1, . . . , ek−1,mk, ek+1, . . . , en] and Ak+1 =
LkAk (k = 1, n− 1), where Ak = (ãij)i,j=1,n and





ej = (0, . . . , 0, 1︸︷︷︸
j−th

, 0, . . . , 0)T , j = 1, n

mk =


0, . . . , 0, 1︸︷︷︸

k−th

,− ãk+1,k

ãk,k
, . . . ,− ãn,k

ãk,k




T

, k = 1, n− 1.

3. Denote L∗ = L1 · . . . · Ln−1. Check that L∗ ∈ HL and that U = An is upper triangular.

4. Compute L = L−1∗ .

5. Check that L ∈ HL and that A = L · U .

Remarks. a) For solving a linear system AX = b, use the algorithm to build L∗ ·A = U and re-write the system
equivalently as the triangular system UX = L∗X, which can be easily solved by backward substitution, by
successively solving and replacing the solutions in the backward sequence of equations n → n− 1 → · · · → 1.

b) The algorithm from above provides the Doolittle decomposition, in which L ∈ HL and U is upper
triangular.
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Further, the LDU decomposition is A = L̂D̂Û , with L̂ ∈ HL, D̂ ∈ D = {diag (d1, . . . , dn) | dk ∈ R∗, k =
1, n} and Û ∈ HR, where L̂ = L, D̂ = diag (U11, . . . , Unn) and Û = [U−1

11 LT
1 , . . . , U−1

nn LT
n ]T , where L1, . . . , Ln

are the lines of the matrix U .
As well, the Crout decomposition provides A = L̄Ū , where L̄ = L̂D̂ is lower triangular and R̄ = R̂ ∈ HR.

Seminar addenda II. The QR decomposition algorithm.

1. Consider as input the matrix A ∈ GLn(R). Check that detA 6= 0, in which case the algorithm continues.

2. Denote as u1, . . . , un the column vectors of the matrix A.

3. Apply the Gram-Schmidt orthogonalization process:




v1 = u1

v2 = u2 − pr v1u2

. . .

vn = un − pr v1un − · · · − pr vn−1un,

⇔





u1 = v1

u2 = c12v1 + v2

. . .

un = c1nv1 + · · ·+ cn−1,nvn−1 + vn,

where pr vk
ul = ckl · vk, ckl =

〈ul, vk〉
〈vk, vk〉 , l = 2, l, k = 1, l − 1.

4. Re-write the last system as A = V R, where V is the matrix having the column vectors v1, . . . , vn and

R =




1 c12 . . . c1n

0 1 . . . c2n
...

...
. . .

...
0 0 . . . cn−1,n

0 0 . . . 1




.

5. Note that the column vectors of the matrix Q form an orthonormal basis B′ of Rn. Hence check that
the scalar product of pairwise column-vectors of Q is zero, and the norms of the column-vectors are all
equal to 1.

6. Decompose V = QD, where Q = [a−1
1 v1, . . . , a

−1
n vn], D = diag (a1, . . . , an) and ak = ||vk||2, k = 1, n.

7. Note that the orthogonality of Q ∈ O(n) infers det(Q) ∈ {±1}. In case that det(Q) = −1, the orthonor-
mal basis B′ is negative oriented. In this case transform the B′ to a positive-oriented orthonormal basis
of Rn, in two possible ways: either replace both the first column of Q and D with their opposites; or
interchange two columns of Q and interchange as well the corresponding norms from the diagonal of the
matrix D. As result, the column vectors of the new matrix Q will form a positive oriented orthonormal
basis of Rn and Q ∈ SO(n).

8. Point out the QDR decomposition A = QDR, with Q ∈ SO(n), D ∈ D and R ∈ HR.

Remarks. a) The algorithm provides as well the QR decomposition A = Q · R̃, with Q special orthogonal
(rotation) matrix and R̃ = DR upper triangular.

b) For solving a linear system AX = b ⇔ QR̃X = b, use the algorithm and the orthogonality of the matrix
Q ∈ SO(n) ⊂ O(n) (namely, QQT = In ⇒ Q−1 = QT ) in order to re-write the system equivalently as R̃X = b̃,
where b̃ = QT b; this is a triangular system which can be easily solved by backward substitution, by successively
solving and replacing the solutions in the backward sequence of equations n → n− 1 → · · · → 1.
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