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In this note our purpose is to introduce the Maxwell type equations in a complex Lagrange
space, particularly in a complex Finsler space.

The electromagnetic tensor fields are defined as the sum between the differential of the complex
Liouville 1-form and the symplectic 2-form of the space relative to the adapted frame of Chern-
Lagrange complex nonlinear connection.

Is proved that the (1, 1)-type electromagnetic field of a complex Finsler space vanish and the
differential of the (2, 0)-type electromagnetic field yields the generalized Maxwell equations. The
complex electromagnetic currents are also introduced and the conditions when they are conservative
are deduced.

Finally we apply the results to the electrodynamics Lagrangian considered in [Mu] and to the
case of complex Randers spaces.
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1 The basics of complex Lagrange geometry

The notion of complex Lagrange space was introduced by us ( [Mu]), hankering to obtain
some geometric models for quantum physics theories. It is a natural extension of complex
Finsler notion, for which already exists a large reference ( [A-P,Ai,Wo], ...). Here we only
briefly set the basic notions needed for our purpose.

Let M be a complex manifold,
(
zk
)
k=1,n

complex coordinates in a local chart, and T ′M
be its holomorphic tangent bundle in which, as a complex manifold, we consider the complex
induced coordinates u = (zk, ηk)k=1,n.

The complexified tangent bundle TC(T ′M) admits a vertical distribution V ′T ′M, locally
spanned by {∂̇k := ∂

∂ηk }k=1,n and its conjugate V ′′T ′M , locally spanned by {∂̇k̄ := ∂
∂η̄k }k=1,n

. A supplementary distribution in T ′(T ′M) to V ′T ′M is called a complex nonlinear
connection, in brief (c.n.c.), and it is determined by a set of complex functions N i

j(z, η) in
respect to with {δk := ∂

∂zk −N j
k
∂
∂ηj }k=1,n are change like vectors on the underline manifold

M. The distribution spanned by {δk}k=1,n will be called horizontal adapted to the (c.n.c.)
and will be denoted by HT ′M. Its conjugate distribution H ′′T ′M is locally spanned by
{δk̄ := δk}k=1,n.

A complex Lagrange space is a pair (M,L), where L : T ′M → R is a regular Lagrangian
in sense that the Hermitian metric tensor gij̄ = ∂2L/∂ηi∂η̄j is nondegenerated. Particularly,
if L is a positive function, smooth excepting the zero sections, (1, 1)-homogeneous, i. e.
L(z, λη) =| λ |2 L(z, η), ∀λ ∈ C, and the quadratic form gij̄η

iη̄j is positive defined, then
(M,L) is a complex Finsler space with fundamental function F =

√
L. It is obvious that the

class of complex Lagrange spaces include that of complex Finsler spaces, but some properties
of the last are lose in the first class.

The Lagrange function L defines a (c.n.c.), called by us the Chern-Lagrange (c.n.c.),
with the following coefficients:

N j
k = gm̄j

∂2L

∂zk∂η̄m
(1.1)
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and its adapted frames have a remarkable property concerning the brackets: [δj , δk] = 0 and
the others are

[δj , δk̄] = (δk̄N
i
j)∂̇i − (δjN

ı̄
k̄)∂̇ı̄ ; (1.2)[

δj , ∂̇k

]
= (∂̇kN

i
j)∂̇i ;

[
δj , ∂̇k̄

]
= (∂̇k̄N

i
j)∂̇i ;[

∂̇j , ∂̇k

]
= 0 ;

[
∂̇j , ∂̇k̄

]
= 0.

With respect to the adapted frames of (1.1) (c.n.c.) a notable derivative law of (1, 0)-type
is the so called Chern-Lagrange N -complex linear connection, which in notations from [Mu]
has the coefficients

DΓ(N) =
(
Lijk = gm̄iδkgjm̄ ; Lijk̄ = 0 ; Ci

jk = gm̄i∂̇kgjm̄ ; Ci
jk̄ = 0

)
, (1.3)

where Dδkδj = Lijkδi ; Dδk̄
δj = Li

jk̄
δi ; D∂̇k

∂̇j = Ci
jk∂̇i ; D∂̇k̄

∂̇j = Ci
jk̄
∂̇i, etc.

D is a metrical connection, that is DδkG = Dδk̄
G = D∂̇k

G = D∂̇k̄
G = 0, where G =

gij̄dz
i ⊗ dz̄j + gij̄δη

i ⊗ δη̄j is the N−lift of the metric tensor gij̄.
Also, with respect to the adapted frames of (1.1) (c.n.c.), two well defined forms can be

considered

ω = ω′ + ω′′ :=
∂L

∂ηi
dzi +

∂L

∂η̄i
dz̄i (1.4)

θ = gij̄δη
i ∧ dz̄j . (1.5)

ω is the Liouville form of the complex Lagrange space and θ is the Hermitian symplectic
2-form associated to the (M,L) space.

The complex Lagrange geometry is one Hermitian but in its applications appear
sometimes non-Hermitian quantities. For instance, if we consider the non-Hermitian tensor
gij = ∂2L/∂ηi∂ηj (without the request of its nondegenerating) and gı̄j̄ = gij, a well defined
2-form is given by

ϕ = gijδη
i ∧ dzj . (1.6)

Subsequently we shall use also this 2-form and its conjugate.

2 Maxwell equations on a complex Lagrange space

In [Mu], p. 99, we consider the following Lagrangian inspired from complex
electrodynamic:

Lq = m0cγij̄(z)η
iη̄j − q

c

(
Ai(z)η

i + Ai(z)ηi
)

(2.1)

where γij̄ is a Hermitian metric on the complex universe M , eventually it could be constant,
and the other quantities have the well-known physics meaning. Ai(z)ηi is a 1-form which
defines a complex potential.

(M,Lq) is a complex Lagrange space, with gij̄ = m0cγij̄(z) the metric tensor, and it
reduces to one complex Finsler space iff ReAi(z)ηi = 0.

In [Mu] we contented to make a gravitational approach relative to this Lagrangian,
without taking in account some electrodynamic purport of the complex potential. Actually
the main difficulty in obtain a consistent theory for complex electrodynamic which we have
then was the definition of complex electromagnetic fields which obey the covariance principle
with respect to Chern-Lagrange complex linear connection D.
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We try first time to fit at our framework one nice idea used by R. Miron ( [M-A]) in
real Lagrange model for electrodynamic theory. In large, it consist in define first the vertical
and horizontal tensors Di

j = Dδjy
i and dij = D∂̇i

yj and then the electromagnetic tensors are
Fij = 1

2
(Dij−Dji) and fij = 1

2
(dij−dji), where Dij = gikD

k
j and dij = gikd

k
j . Here we use real

notations with respect to canonical connection ( [M-A]). The data concerning the Lagrangian
expression send of to the electromagnetic tensors by means of metric tensor and connection
coefficients. When we attempt to follow an analogous idea in our theory, the first remark
is that from the particular case of complex Finsler spaces (M,L) the (1.3) Chern-Finsler
linear connection performs, as we easy can see from the homogeneity of the fundamental
function, the following conditions: Di

j = Dδjη
i = 0, Di

j̄ = Dδj̄η
i = 0, dij = D∂̇j

ηi = δij − Ci
0j ,

dij̄ = D∂̇j̄
ηi = 0, and consequently the corresponding electromagnetic tensor field which

could be introduced such away all vanish identically.
Neither in the more general case of complex Lagrange space such way do not offers

more because Dij and dij vanish and however the mixed tensors could be non zero they
do not generate consistent Hermitian electromagnetic tensors. Hence this theory does not
present much interest and then another approach needs follow. Such comely idea for us is
also inspired by a paper of R. Miron used for an electromagnetic theory of Ingarden space
( [Mi]), whose fundamental function is just of the Randers, but its geometry is not of one
real Finsler space. R. Miron prove that in a Ingarden space the differential of the Liouville
1-form is the difference between its electromagnetic tensor and the symplectic 2-form of the
space. This remark could be a motivation for the definitions which will come bellow.

Let (M,L) be a complex Lagrange space, ω, θ and ϕ the (1.4), (1.5), (1.6) forms, with
respect to adapted frames of Chern-Lagrange (c.n.c.). The differential operator on TCT ′M
has the components d = d′ + d′′, with

d′ = δkdz
k + ∂̇kδη

k and d′′ = δk̄dz̄
k + ∂̇k̄δη̄

k (2.2)

and hence for the (1.4) Liouville 1-form we have the differential

dω = d′ω′ + d′ω′′ + d′′ω′ + d′′ω′′.

Definition 2.1 We call the complex electromagnetic fields of the (M,L) space, the tensors

Fij =
1

2
{δj(∂̇iL)− δi(∂̇jL)} ; Fij̄ = −δi(∂̇j̄L) (2.3)

and their conjugates Fı̄j̄ = Fij , Fı̄j = Fij̄ .

Let be F (2,0) = Fijdzi ∧ dzj and F (1,1) = Fij̄dzi ∧ dz̄j .

Theorem 2.1 We have

d′ω′ = −F (2,0) + ϕ ; d′′ω′′ = −F (2,0) + ϕ = d′ω′ (2.4)
d′ω′′ = −F (1,1) + θ ; d′′ω′ = −F (1,1) − θ = −d′ω′′.

The proof follows directly from (2.2) and (2.3).
An immediate result is

Proposition 2.1 If (M,L) is a complex Finsler space, then F (1,1) = 0.
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Proof. From the homogeneity condition of the Finsler function is obtain that ∂̇iL = gij̄ η̄
j

and ∂̇j̄L = gij̄η
i. Taking in account that Chern-Finsler connection D is one metrical, we

have:

Fij̄ = −δi(∂̇j̄L) = −δi(gkj̄ηk) = −Dδi(gkj̄η
k) + (gkm̄η

k)Lm̄j̄k

= −gkj̄Dδiη
k = gkj̄(N

k
i − Lkhiη

h) = 0.

Here we use the fact that Lkhiηh = ∂̇h(N
k
i )ηh = Nk

i , in view of one property of Chern-
Finsler linear connection. �

Hence, in a complex Finsler space the non zero electromagnetic tensors are only Fij and
its conjugate.

Further, from ddω = 0, it deduces that d(F (2,0)+F (2,0)+F (1,1)+F (1,1)) = d(ϕ+ϕ+θ−θ).
Now writing this last formula with respect to adapted frames of Chern-Finsler (c.n.c.) and
taking into account the (1.2) components of the Lie brackets, we have

Theorem 2.2 In a complex Lagrange space we have the following generalized Maxwell
equations ∑

{DδkFij} = 0 ;
∑

{D∂̇k
Fij} = 0 ;∑

{Dδk̄
Fij} = 0 ;

∑
{D∂̇k̄

Fij} = 0 ;∑
{DδkFij̄} =

∑
{δj̄(Nh

i )ghk} ;
∑

{D∂̇k
Fij̄} = 0 ;∑

{Dδk̄
Fij̄} =

∑
{δj̄(Nh

i )ghk̄} ;
∑

{D∂̇k̄
Fij̄} = 0 .

Moreover, the following identities are fulfilled∑
{Dδkgij + ∂̇j(N

h
i )ghk} = 0 ;

∑
{D∂̇k

gij} = 0 ;∑
{Dδk̄

gij + ∂̇j(N
h
i )ghk̄} = 0 ;

∑
{D∂̇k̄

gij} = 0 .

All these sums are cyclic by (i, j, k), the bar indices being an abbreviation for δ/δz̄k or ∂/∂η̄k.

We note that these Maxwell equations become homogeneous if the complexified
horizontal distribution is integrable, i.e.

[
δi, δj̄

]
= 0. Taking into account that in a complex

Finsler space Fij̄ = 0, another set of identities is obtain for the Chern-Finsler (c.n.c.), which
are consequences of the Bianchi identities ( [Al]).

Next, by help of the metric tensor we can lowing or raising the indices for the complex
electromagnetic tensors,

F ij = gk̄igh̄jFk̄h̄ and F ı̄j = g ı̄kgh̄jFkh̄.

With these the electromagnetic currents
h

J,
h̄

J,
v

J,
v̄

J can be given by

∑
j

DδjF ij = 4π
h

J i ;
∑
j

D∂̇j
F ij = 4π

v

J i ;

∑
j

DδjF ı̄j = 4π
h̄

J ı̄ ;
∑
j

D∂̇j
F ı̄j = 4π

v̄

J ı̄ .
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It is obvious that in complex Finsler space
h̄

J=
v̄

J= 0. The currents will be conservative

iff DJ = 0, that is they satisfies the conditions: Dδj

h

J i= Dδj̄

h

J i= D∂̇j

h

J i= Dδj̄

h

J i= 0 and
analogous for others.

Further, let us come back to the (2.1) expression of the electrodynamic Lagrangian. It
can be rewritten as Lq = L0 − q

c
{Ai(z)ηi + Ai(z)ηi}, where L0 = m0cγij̄(z)η

iη̄j contains
specific data about the energy of the space but also about its geometry by means of γij̄.
Without upper point let us denoting the classical partial derivative, ∂i := ∂

∂zi . Then we have:

Fij = −Tij +
q

c
Fij and Fij̄ = −Tij̄ +

q

c
Fij̄ , (2.5)

where
Tij =

1

2
m0c{∂iγjk̄ − ∂jγik̄}η̄k ; Tij̄ = m0c∂iγkj̄η

k

are the stress-energy tensors of the space and

Fij =
1

2
{∂iAj − ∂jAi} ; Fij̄ = ∂iAj

are the exterior electromagnetic tensors of the space.
Let be T h̄k̄ = gh̄igk̄jTij and T h̄k = gh̄igj̄kTij̄ . Since D is a metrical connection, the law

of conservative energy Dδh̄
T h̄k̄ = Dδj̄T

h̄k = D∂̇h̄
T h̄k̄ = D∂̇ḣ

T h̄k = 0, implies∑
h̄

gh̄iDδh̄
Fij =

q

c

∑
h̄

gh̄i∂h̄Fij ;
∑
h̄

gh̄iD∂̇h̄
Fij = 0 ;

∑
h̄

gh̄iDδh̄
Fij̄ =

q

c

∑
h̄

gh̄i∂h̄Fij̄ ;
∑
h̄

gh̄iD∂̇h̄
Fij̄ = 0 .

As we say, Lq is a complex Finsler space only in a particular case and then it reduces
to one trivial with purely Hermitian metric. Recently we make with N. Aldea ( [A-M])
a study of complex Randers spaces. An immediate example of such space is (M,F ) with
F = α+ | β |, where

α2 = γij̄(z)η
iη̄j and β = Ai(z)η

i

and | β |=
√
β · β̄ is the complex norm.

Indeed (M,F ) is a complex Finsler space in some smoothness assumptions, and L = F 2

define a complex homogeneous Lagrangian for which we can make similar reasonings like
above.

The metric tensor and the Chern-Finsler (c.n.c.) of the complex Randers space ware
determined in the general setting in [A-M]. In our notations we have:

gij̄ =
F

α
hij̄ +

F

2|β|AiAj̄ +
1

2L
ηiηj̄

where hij̄ := γij̄ − 1
2α2γik̄γhj̄η

hη̄k and

CF

N i
j=

0

N i
j +

1

γ

(
γkr̄

∂Ar̄

∂zj
ηk − β2

|β|2
∂Ar̄
∂zj

η̄r
)
ξi +

β

2|β|k
ri∂Ar̄
∂zj

where
0

N i
j := γmi ∂γlm

∂zj η
l , ξi := β̄ηi + α2Ai, Ai = γm̄iAm̄ and kij̄ = 1

2α
hij̄ + 1

4|β|AiAj̄. Thus

we can consider the adapted frames {δk} of
CF

N i
j nonlinear connection.
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For the complex electromagnetic fields, first we have Fij̄ = 0 and

Fij =
1

2
{δj(∂̇iL)− δi(∂̇jL)} =

1

2
{δj(gik̄η̄k)− δi(gjk̄η̄

k)

=
1

2
{Dδj (gik̄η̄

k)− gmk̄η̄
kLmji −Dδi(gjk̄η̄

k) + gmk̄η̄
kLmij}.

Since Dδjgik̄ = 0 and Dδj η̄
k = 0, is obtain

Fij =
1

2
gmk̄{Lmij − Lmji}η̄k =

1

2
{δjgik̄ − δigjk̄}η̄k.

In a strongly Kähler Finsler space the torsion T ijk = Lijk − Likj = 0 and consequently
Fij = 0. If the Finsler space is weakly Kähler (see these notions in [A-P]) then Fijηj =
Fijηi = 0.

The generalized Maxwell equations are homogeneous for this example.
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