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1 Introduction

In the paper, we apply Miron’s theory of Einstein equations on general metric spaces, for
h-v models provided by the homogenous prolongation of a Finsler metric. In this context,
we show that Einstein’s equations in vacuum are satisfied by the homogeneous prolongation
of the Berwald-Moor Finslerian metric tensor.

We also investigate the homogeneous lift of conformally deformed Berwald-Moor metrics.
In Sections 2 and 3, we present the mathematical formalism of h-v metrics, [8], [9], which

lies at the base of a theory of gravitational and electromagnetic fields in Finsler spaces.
Finslerian metric tensors g(x, y) on a manifold M , by their dependence on directional

variables, actually live on the tangent bundle TM of the respective manifold. Once M is a
Finsler manifold, then the Finslerian metric tensor endows TM with a Riemannian structure
(which is called a lift or prolongation of the original Finslerian one on M), and the specific
instruments of Riemannian geometry can be applied on TM. This idea, applied to Einstein
equations, lies at the base of Miron’s formalism, which extends classical Einstein equations,
and which is presented in Section 4.

In Finsler spaces, the tangent space Tx0M at a point x0 ∈ M is itself a Riemannian
manifold, and, generally, it is curved. The geometry of the fibre Tx0M influences on the
energy-momentum tensor, and this influence is pointed out by Einstein’s equations on TM.

Section 5 is devoted to the homogeneous prolongation (or lift) of a Finsler metric, which
was also introduced by R. Miron. Homogeneity and homogeneous prolongations are needed
in a theory of geodesics and Jacobi fields on TM , in order to ensure the independence of
the distance Lagrangian to (at least a group of) reparametrizations.

In Section 6, we apply the above theories for the 4-dimensional Berwald-Moor space;
here, the homogeneous lift provides a much simpler model than the usual Sasaki lift. More
precisely, we show that, if we use the idea of homogeneous prolongation together with
Berwald-Moor metric and a conveniently chosen linear connection, the energy-momentum
tensor on TM identically vanishes (even though the curvature tensor R on TM is not
identically zero). As shown in [2], if we used the Sasaki lift instead the homogeneous one,
the vertical Ricci tensor Sab would no longer vanish.

The last section is devoted to deformations by a conformal factor σ(x) of the above
model.
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2 Nonlinear and linear connections on TM

LetM be a differentiable manifold of dimension n and class C∞, (TM, π,M), its tangent
bundle and (xi, ya) the coordinates of a point u ∈ TM in a local chart. We denote by ",i"
partial (usual) derivation with respect to xi and by "·a", partial derivation with respect to
ya.

Let TM be endowed with a nonlinear (Ehresmann) connection N, [5], [1], [9], and (δi, ∂̇a)
be the corresponding adapted basis on TM :

δi =
∂

∂xi
−Na

i

∂

∂ya
, ∂̇a =

∂

∂ya
;

analogously, let (dxi, δya) be its dual basis,

δya = dya +Na
idx

i.

If the nonlinear connection N is given, then any vector field X ∈ X (TM) is locally
represented as

X = X(0)i δ

δxi
+X(1)i ∂

∂yi
,

with X(0)i, X(1)i - distinguished (or d-) vector fields. In the same manner, a 1-form ω on
TM can be uniquely written as

ω = ω(0)idx
i + ω(1)iδy

i,

where ω(0)i, ω(1)i are distinguished 1-forms.
We adopt the following convention: if no elsewhere specified, indices i, j, k, ... will

denote the quantities corresponding to horizontal geometrical objects, while a, b, c will index
quantities corresponding to the vertical distribution.

A distinguished linear connection (or, simply, a d-connection), [9], [8], is a linear
connection D which preserves by parallelism the distributions generated by the nonlinear
connection N, i.e., the covariant derivative of any horizontal vector field remains horizontal,
while the covariant derivative of any vertical vector field remains vertical. In local
coordinates, a d-connection is characterized by its coefficients (Li jk, L

a
bk, C

i
jc, C

a
bc), where:

Dδkδj = Li jkδi, Dδk ∂̇b = Labk∂̇a

D∂̇c
δj = Ci

jcδi, D∂̇c
∂̇b = Ca

bc∂̇a.

We shall denote the local components of the torsion tensor of such a linear connection

T by T ijk, R
a
jk, P i

jc, P
a
kb, Sibc, S

a
bc (as in [1], [5], [8]): hT

( δ

δxk
,

δ

δxj

)
= T ijk

δ

δxi
,

hT

( ∂

∂yc
,
δ

δxj

)
= P i

jc

δ

δxi
etc. Then:

T ijk = Li jk − Likj, Ra
jk =

δNa
j

δxk
− δNa

k

δxj
, P i

jc = Ci
jc,

P a
jb =

∂Na
j

∂yb
− Labj , S

i
bc = 0, Sabc = Ca

bc − Ca
cb.

With the same convention of notations of indices, the local components of the curvature
are, [1], [5], [8]: ⎧⎪⎪⎨⎪⎪⎩

R i
j kl =

δLi jk
δxl

−
δLi jl
δxk

+ LhjkL
i
hl − LhjlL

i
hk + Ci

jaR
a
kl,

R a
b kl =

δLabk
δxl

− δLabl
δxk

+ LcbkL
a
cl − LcblL

a
ck + Ca

bcR
c
kl,



Atanasiu Gh., Brinzei N. Einstein Equations for Homogeneous Finsler Prolongation to TM ... 55

⎧⎪⎪⎨⎪⎪⎩
P i
j kc =

∂Li jk
∂yc

− Ci
jc|k + Ci

jbP
b
kc

P a
b kc =

∂Labk
∂yc

− Ca
bc|k + Ca

bdP
d
kc,⎧⎪⎪⎨⎪⎪⎩

S i
j bc =

∂Ci
jb

∂yc
−
∂Ci

jc

∂yb
+ Ch

jbC
i
hc − Ch

jcC
i
hb,

S a
b cd =

∂Ca
bc

∂yd
− ∂Ca

bd

∂yc
+ Cf

bcC
a
fd − Cf

bdC
a
fc,

where | denotes the horizontal covariant derivative associated to D.
The associated Ricci tensors are, [8]:

Rjk = R i
j ki,

1

P bj = P a
b ja,

2

P jb = P i
j ib, Sbc = S a

b ca.

3 h− v metric structures; metrical d-connections

Definition 1. ( [8]): An h-v metric on TM is a structure of the form

G = gij(x, y)dx
i ⊗ dxj + vab(x, y)δy

a ⊗ δyb, (1)

where gij and vab are (0,2)-type symmetric nondegenerate tensor fields on M.

Let G be an h-v metric on TM.
A d-connection D is metrical if DXG(Y, Z) = 0, for any vector fields X, Y, Z on TM.
The canonical metrical linear connection, [8], is locally given by

c

Li jk =
1

2
gih

(δghj
δxk

+
δghk
δxj

− δgjk
δxh

)
,

c

Labk =
∂Na

k

∂yb
+

1

2
vac

(δvbc
δxk

− ∂Nd
k

∂yb
vdc −

∂Nd
k

∂yc
vdb

)
, (2)

c

Ci
jc =

1

2
gih

∂gjh
∂yc

,

c

Ca
bc =

1

2
vad

(∂vdb
∂yc

+
∂vdc
∂yb

− ∂vbc
∂yd

)
.

The importance of the above connection is given by:

Theorem 2. ( [8]): The set of all distinguished connections compatible to G is given by

L̄i jk =
c

Li jk + Ωih
rjX

r
hk, C̄

i
jc =

c

Ci
jc + Ωih

rjY
r
hc

L̄abk =
c

Labk + Ωac
dbX

d
ck, C̄

a
bc =

c

Ca
bc + Ωaf

dbX
d
fc,

where Ωih
rj = 1

2
(δirδ

h
j − grjgih), Ωab

cd = 1
2
(δac δ

b
d− vcdvab) and X i

jk, X
a
bk, Y

i
jc, Y

a
bc are arbitrary

d-tensor fields.

In particular, if we want to a priori give the torsion tensors T ijk and Sabc, then there
holds

Theorem 3. ( [8]): There uniquely exists a d-connection DΓ(N) = (Li jk, L
a
bk, C

i
jc, C

a
bc)

such that:
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1. D is compatible to G.
2. Labk =

c

Labk, C
i
jc =

c

Ci
jc.

3. The torsion tensors T ijk and Sabc of D are a priori given.

(a) This connection is given by (2) and⎧⎪⎪⎨⎪⎪⎩
Li jk =

c

Li jk +
1

2
gir(grhT

h
jk − gjhT

h
rk + gkhT

h
jr)

Ca
bc =

c

Ca
bc +

1

2
vaf(vfdS

d
bc − vbdS

d
fc + vcdS

d
bf ).

. (3)

We shall use, in the following, the notations

τ ijk =
1

2
gir(grhT

h
jk − gjhT

h
rk + gkhT

h
jr),

τ̄abk =
1

2
vaf (vfdS

d
bc − vbdS

d
fc + vcdS

d
bf).

4 Einstein equations on TM

Let TM be endowed with: a nonlinear connection N, an h-v metric structure G and a
metrical d-connection D with a priori given torsions T ijk and Sabc, as in (3).

Once given an h-v metric G on TM, (TM,G) becomes a Riemannian manifold of
dimension 2n. One can formally state the Einstein equations on TM :

Ric (D)− 1

2
Sc (D)G = κT .

In local coordinates, the above relation becomes:

Theorem 4. ( [8]) The Einstein equations of (TM,G) have the following form:

Rij −
1

2
(R+ S)gij = κTij

1

P ai = κTai,
2

P ia = −κTia

Sab −
1

2
(R+ S)vab = κTab,

where Tij, Tai, Tia and Tab are the local adapted components of the energy momentum tensor.

Comment: in the above equations, the unknowns are not only the components gij, vab
of the metric tensor, but also the coefficients Na

i and the torsions T ijk, Sabc, this is, in the
most general case, one has

n(n + 1) + n2 + n2(n− 1) = n3 + n2 + n

unknowns. Once we fix the nonlinear connection N , their number decreases with n2, this is,
we still have n3 + n unknown functions (n = 4 ⇒ 68 unknown functions!).

If we also choose T ijk, Sabc as being 0, this is, if we work with the canonical d-connection
DΓ(N), the remaining unknown functions are only the components of the metric, this is,
n(n+1)

n=4
= 20 unknowns depending both on x and y. If we also establish a link between gij

and vab, the remaining unknown functions are only 10, just as in the classical Riemannian
case. Also, we can work with a given (known) metric and infer nonlinear connections/torsions
out of Einstein equations.

The equations are in number of 4n2, this is, for n = 4, we have 64 equations. Still, in
particular cases, as we shall see, this number can drastically reduce.
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Remark 5. gij, vab and Na
i appear in the equations with their second order derivatives,

while, for T ijk and Sabc, the above system is a PDE system of order one.

The energy conservation law, [8],

divT = 0,

in local coordinates takes the following form:

{
Ri

j −
1

2
(R+ S)δij

}
|i +

1

P a
j |a = 0{

Sab −
1

2
(R + S)δab

}
|a −

2

P i
b|i = 0.

5 Einstein equations for the homogeneous prolongation (lift)
of a Finsler metric

The notion of homogeneous lift is defined by R. Miron, [7], for Finsler metrics.
Its usefulness is the following: the use of the homogeneous lift insures the invariance of

the distance Lagrangian
∫ √

G(x, ẋ)dt on TM to reparametrizations of the form t �→ λt,
and consequently, the possibility of building an exponential map on TM.

Let g define a Finslerian metric tensor on M.

Definition 6. The homogeneous prolongation (lift) of the Finsler metric g to the tangent
bundle TM is the following (h, v)-metric:

GH = gij(x, y)dx
i ⊗ dxj + α

gab(x, y)

F 2
(x, y)δya ⊗ δyb, (4)

where

• F 2 = ‖y‖2 = gijy
iyj, and α > 0 is a constant;

• gab = δiaδ
j
bgij ;

• (δya) are computed w.r.t. the canonical nonlinear connection

Na
j =

∂Ga

∂yj
, Ga =

1

2
gab

( ∂g00

∂yb∂xk
yk − ∂g00

∂xk
δkb

)
(5)

Definition 7. The Sasaki lift of the generalized Lagrange metric g to TM is

G = gij(x, y)dx
i ⊗ dxj + gij(x, y)δy

i ⊗ δyj, (6)

With respect to the Sasaki lift, let us take into account the Cartan connection CΓ(N):

Li jk =
1

2
gih

(δghj
δxk

+
δghk
δxj

− δgjk
δxh

)
;

Ci
jk =

1

2
gih

(∂ghj
∂yk

+
∂ghk
∂yj

− ∂gjk
∂yh

)
=

1

2
gih

∂ghj
∂yk

.

Now, having in view the homogeneous prolongation (4), let us consider the canonical
(Cartan) nonlinear connection N determined by the Finslerian fundamental function F , and
the following d-connection MΓ(N):
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Li jk =
1

2
gih

(δghj
δxk

+
δghk
δxj

− δgjk
δxh

)
;

∗
Labk =

1

2
vad

(δvdb
δxk

+
δvdk
δxb

− δvbk
δxd

)
;

Ci
jc =

1

2
gih

∂ghj
∂yc

;

∗
Ci

jk =
1

2
vih

(∂vhj
∂yk

+
∂vhk
∂yj

− ∂vjk
∂yh

)
.

Remark 8. 1. In the expression of the coefficients
∗
Labk we denoted, for simplicity:

vdk = vdeδ
e
k, xd = δdjx

j .

2. The above connection is a metrical d-connection on TM.
3. Its coefficients Li jk and Ci

jc coincide with those of the Cartan connection.

Moreover, taking into account that, with respect to the canonical nonlinear connection

N we have
δF

δxi
= 0, i = 1, ..., 4, we get:

Proposition 9. The coefficients of the canonical metrical d-connection MΓ(N) are given
by:

Li jk =
∗
Labkδ

b
jδ
i
a

∗
Ca

bc = Ca
bc +Ba

bc,

where Li jk and Ci
jk are the coefficients of the Cartan connection CΓ(N), Ca

bc = Ci
jkδ

b
jδ
i
aδ
k
c

and
Ba

bc =
−1

F 2

(
δab yc + δac yb − yagbc

)
.

Obviously, Bi
jk are d-tensors of rank (1,2), and their horizontal covariant derivatives

with respect to MΓ(N) are:

Ba
bc|l = 0, Ba

bc| e = δab gce + δac gbe − δaegbc. (7)

The torsion tensors of MΓ(N) are:

T ijk = 0, Ra
jc, C

i
jk, P

a
jb = Na

j·b − Labj , Sabc = 0.

In the following, we shall also use the property, [1], [8]:

P a
jby

b = 0, P a
jby

j = 0.

The curvature tensors are:

R i
j kl,

∗
R a
b kl = R a

b kl +Ba
beR

e
kl,

P i
j kc,

∗
P a
b kc = P a

b kc +Ba
bdP

d
kc,

S i
j bc,

∗
S a
b cd =

∗
Ca

bc·d −
∗
Ca

bd·c +
∗
Cf

bc

∗
Ca

fd −
∗
Cf

bd

∗
Ca

fdc,
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where R a
b kl = R i

j klδ
a
i δ

j
b , P

a
b kc = P i

j kcδ
a
i δ
j
b .

Consequently, the Einstein equations for the homogeneous lift GH are:

Rij −
1

2
(R+

∗
S)gij = κTij

∗
P ai = κTai, Pia = −κTia
∗
Sab −

1

2
(R+ S)vab = κTab,

where the Ricci tensors: Rij = R h
i jh,

∗
P ai =

∗
P c
a ic, Pia = P h

i ah,
∗
Sab =

∗
S d
a bd are computed by

means of the above.

6 The homogeneous prolongation of the Finslerian Berwald-Moor Metric

Let,again, dimM = 4 and gij denote the flag Berwald-Moor metric, [2], [3]:

gij(y) =
1

2

∂2F 2

∂yi∂yj
, F = 4

√
y1y2y3y4, (8)

this is,

(gij) =
1

8F 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−y
2y3y4

y1
y3y4 y2y4 y2y3

y3y4 −y
1y3y4

y2
y1y4 y1y3

y2y4 y1y4 −y
1y2y4

y3
y1y2

y2y3 y1y3 y1y2 −y
1y2y3

y4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Its inverse is given by

(
gij
)

=
2

F 2

⎛⎜⎜⎜⎜⎝
−(y1)2 y1y2 y1y3 y1y4

y1y2 −(y2)2 y2y3 y2y4

y1y3 y2y3 −(y3)2 y3y4

y1y4 y2y4 y3y4 −(y4)2

⎞⎟⎟⎟⎟⎠ ,

The canonical nonlinear connection (5) has vanishing coefficients:

Na
i = 0, a, i = 1, ..., 4

and the homogeneous lift of the above looks this way:

G = gij(y)dx
i ⊗ dxj + vab(y)dy

a ⊗ dyb, (9)

where the vertical part of the metric is

vab =
α

2F 2
gijδ

i
aδ
j
b , α > 0. (10)

We should mention the simplicity of vab, since their expressions are rational functions
of yi.

By using the expressions of gij and vab in (2), we get
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Proposition 10. 1. The coefficients of the canonical d-connection of the homogeneous lift
of the Berwald-Moor flag metric have the form

∗
Li jk =

∗
Labk = 0, (11)

0

Ci
jc =

p

8

yi

yjyc
, p =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−3

8
, if i = j = c ;

1

8
, if i = j �= c or i �= j = c or i = c �= j ;

−1

8
, if i �= j �= c �= i .

(12)

2. The only nonvanishing coefficients
∗
Ca

bc are

Ca
aa = − 1

ya
, a = 1, ..., 4. (13)

3. The torsion tensor T has only one nonvanishing component, namely

P i
jc =

∗
Ci

jc = Ci
jc.

By using the above result in order to compute the curvature tensor of the canonical
d-connection, we obtain

Proposition 11. The curvature tensor of the canonical d-connection attached to the
homogeneous prolongation of the Finslerian Berwald-Moor metric has as only nonvanishing
components:

S i
j bc = dxi

(
R(∂̇b, ∂̇c)δj

)
.

Since S i
j bc do not appear in the construction of the Ricci tensor on TM , the Ricci tensors

and Ricci scalars identically vanish.
Thus, we have proven

Proposition 12. The homogeneous prolongation of the Finslerian Berwald-Moor metric,

G = gij(y)dx
i ⊗ dxj + vab(y)dy

a ⊗ dyb, (14)

with
gij(y) =

1

2

(
F 2
)
·i·j , vab(y) =

1

2F 2

(
F 2
)
·a·b , F 4 = y1y2y3y4,

is a solution for the Einstein equations in vacuum on the tangent bundle TM :

Rij −
1

2
(R+ S)gij = 0

∗
P ai = 0, Pia = 0

Sab −
1

2
(R+ S)vab = 0.

Remark 13. By applying a similar procedure, it follows that the homogeneous lift of the
flag BM metric, namely:

G̃ = g̃ij(y)dx
i ⊗ dxj + ṽab(y)δy

a ⊗ δyb, (15)
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where g̃ij(y) =
1

12F 2

∂2F 4

∂yi∂yj
, F = 4

√
y1y2y3y4, vab =

α

12F 4

∂2F 4

∂ya∂yb
, α > 0, is also a

solution for the Einstein equations in vacuum on TM.

Remark 14. 1. The above results are obtained by using the canonical nonlinear connection
and the canonical metrical d-connection. By using a different nonlinear connection N,
or a metrical d-connection with torsion, we can also obtain nonvanishing values of the
energy-momentum tensor.

2. If, instead of the homogeneous lift we would have used the Sasaki lift (g, g) of the
Finslerian Berwald-Moor metric, i.e.,

G = gij(y)dx
i ⊗ dxj + gab(y)dy

a ⊗ dyb, (16)

then, the vertical Ricci tensor
∗
Sab would have not vanished, hence the Sasaki lift of the

BM flag metric (together with the canonical connections N and D) does not give a
solution for Einstein’s equations in vacuum.

7 Homogeneous lifts of metrics conformally related to Berwald-Moor one

Let, for the beginning, (M,F ) denote an arbitrary Finsler space. Finsler spaces which
are conformally related to (M,F ), in the sense of ( [1]) (angle-preserving), are described by
fundamental functions of the form

F̃ = e
1
2
σ(x)F,

where σ is a real valued smooth function.

This is, the corresponding metric tensors gij =
1

2

∂2F 2

∂yi∂yj
and g̃ij =

1

2

∂2F̃ 2

∂yi∂yj
are

related by
g̃ij = eσgij.

It follows that the homogenized versions

vab =
gab
F 2

, ṽab =
g̃ab

F̃ 2

coincide:
vab = ṽab.

Hence, there holds:

Proposition 15. The homogeneous lift of any conformally deformed Finslerian metric F̃ =

e
1
2
σ(x)F, is given by:

G̃ = eσ(x)gijdx
i ⊗ dxj +

gab
F 2

δya ⊗ δyb, (17)

where gij is the metric tensor associated to the "undeformed" Finsler function F.
This is, a conformal factor σ(x) actually affects only the horizontal part of the metric.
As a remark, if we had used the Sasaki lift instead of the homogeneous one, the vertical

part vab of the metric would have also been multiplied by eσ.
Let now gij denote the Berwald-Moor Finslerian metric:

gij =
1

2

∂2F 2

∂yi∂yj
, F = 4

√
y1y2y3y4.



62 Гиперкомплексные числа в геометрии и физике, 2 (8), том 4, 2007

Then, geodesics of the conformally deformed model (M, F̃ ) are described by

d2xi

dt2
+ 2Gi(x, ẋ) = 0,

where 2Gi(x, y) = γijky
jyk and

γijk =
1

2
g̃ih(g̃hj,k + g̃hk,j − g̃jk,h).

By a direct computation, we get:

γijk =
1

2
(δijσ,k + δikσ,j − gihgjkσ,h).

Remark 16. With the notations in the previous sections, we have, actually,

γijk = Aihjkσ,h,

where Aihjk depend only on y and σ,h only on x.

It follows that
2Gi = (2yiyh − gihF 2)σ,h.

Taking into account the form of the BM contravariant metric tensor, we get that

2Gi = 2(yi)2σ,i, i = 1, ..., 4,

where, in the above, there is no summation over i. We have thus proven:

Proposition 17. Geodesics of the conformally deformed Berwald-Moor Finsler space

(M, e
σ(x)

2 F ) are given by:

ẍ1 + 2(ẋ1)2σ,1 = 0, ẍ2 + 2(ẋ2)2σ,2 = 0,

ẍ3 + 2(ẋ3)2σ,3 = 0, ẍ4 + 2(ẋ4)2σ,4 = 0.

Corollary 18. The only nonvanishing coefficients of the canonical nonlinear connection (5)
given by the conformally deformed Berwald-Moor metric eσ(x)gij are

N i
i = 2yiσ,i, i = 1, ..., 4

(where, again, there is no summation over i).

Then, the coefficients of the canonical connection M Γ̃(N) are given by:

L̃i jk =
∗
L̃abkδ

i
aδ
b
j =

1

2
g̃ih(g̃hj;k + g̃hk;l − g̃jk;h);

C̃i
jk = Ci

jk, C̃a
bc =

∗
Ca

bc,

where Ci
jk,

∗
Ca

bc denote the coefficients of the canonical d-connection attached to the
undeformed homogeneous prolongation of the BM metric.

The nonvanishing components of the torsion tensor are Ra
jk, P

i
jc = Ci

jc, P
a
jb.
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The curvature components which appear in the expressions of the Ricci tensors are:

R i
j kl =

δL̃i jk
δxl

−
δL̃i jl
δxk

+ L̃hjkL̃
i
hl − L̃hjlL̃

i
hk + Ci

jaR
a
kl,

P i
j kc =

∂L̃i jk
∂yc

− Ci
jc|k + Ci

jbP
b
kc,

∗
P a
b kc = P i

j kcδ
a
i δ

j
b +Ba

bdP
d
kc,

∗
S a
b cd = 0 ⇒

∗
Sbc = 0.

We notice the following properties:

L̃i ji = 2σ,i, Ci
ic = 0, Ba

bdP
d
ka = 0.

This is, the mixed Ricci tensors are:

Pjc = −Ci
jc|i + Ci

jbP
b
ic,

∗
P cj = L̃acj·a + Ca

cdP
d
ja,

where L̃acj = δai δ
h
c L̃

i
hj, C

a
cd = δai δ

h
cC

i
hd.

Hence, from the Einstein equations on TM, for the conformally deformed model (M, G̃)
there remain:

Rij −
1

2
Rgij = κTij

−Ci
jc|i + Ci

jbP
b
ic = κTai, L̃acj·a + Ca

cdP
d
ja = −κTia,

1

2
Rvab = κTab.

In vacuum, from T = 0, we get R = 0. By replacing into the above equations, we get:

Proposition 19. The Einstein equations in vacuum for the conformally deformed model
(M, G̃) are: ⎧⎪⎪⎨⎪⎪⎩

Rij = 0

Ci
jc|i = Ci

jbP
b
ic

L̃acj·a = −Ca
cdP

d
ja.

The first set of equations above involves second order derivatives of σ, while the last two
of them are PDE’s of order 1, linear in σ = σ(x).
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