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The effect of the optic-metrical parametric resonance could provide the possibility to obtain
the experimental evidence of the gravitational waves existence. The effect might change, if the
geometry of the physical space-time is not Riemannian but Finslerian one. The investigation of
this situation is undertaken.

1 Introduction

Let us regard a two-level atom in the strong monochromatic quasi-resonant field. The
system of Bloch’s equations for the components of the density matrix components is

d

dt
ρ22 = −γρ22 + 2iα1 cos(Ωt− k1y)(ρ21 − ρ12), (1)( ∂

∂t
+ v

∂

dy

)
ρ12 = −(γ12 + iω)ρ12 − 2iα1 cos(Ωt− k1y)(ρ22 − ρ11),

ρ22 + ρ11 = 1.

Here ρ22 and ρ11 are the populations of the levels, ρ12 and ρ21 are the polarization terms,
γ and γ12 are the longitudinal and transversal decay rates of the atom (since level 1 is the
ground level, γ12 = γ/2); α1 = μE

�
is the Rabi parameter (Rabi frequency) proportional

to the intensity of the electromagnetic wave (EMW), μ is the dipole momentum, E is the
electric stress, k1is the wave vector of the EMW, v is the atom velocity along the Oy-axis
pointing at the Earth, γ � α1 is the condition of strong field.

Let this atom belong to the saturated space maser that is located in the field of the
periodic gravitational wave (GW) emitted by a pulsar or a short-period binary star and
propagating anti-parallel to the Ox-axis pointing at the GW-source. The GW acts on the
atomic levels, on the maser radiation and on the geometrical location of the atom. In [1]
it was shown that the first efect is much smaller than the other two effects. The action of
the GW on the monochromatic EMW could be accounted for by the solution of the eikonal
equation

gik
∂ψ

∂xi
∂ψ

∂xk
= 0. (2)

The motion of the atom could be obtained from the solution of the geodesic equation

d2xi

ds2
+ Γikl

dxk

ds

dxl

ds
= 0 (3)
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(and not from the solution of the geodesic declination equation as in the calculations of the
displacements of the parts of the laboratory setups, designed for the detection of the GW).

The equations (1–3) are basic for the theory of the optic-metrical parametric resonance
(OMPR) effect which could provide the possibility to detect the GW in a principially new
way. This new way differs from the 18 ones known before [2] by the fact that it is the zero-
order and not the first-order effect in the non-dimensional amplitude of the GW. In papers
[3], [4], [5], the interpretation of the possible results of the investigation of the geometrical
properties of the physical space-time with the help of the OMPR effect is given. The regular
case of the isotropic space-time described in terms of Riemannian geometry is described
quantitatively and completely, while the case of an anisotropic space-time described by
Finsler geometry is described only qualitatively.

Let us give the result corresponding to Riemann geometry. The weak gravitational field
in empty space (far from masses) is described by the linearized Einstein equations. Then, for
the corrections to the flat space metric tensor, it suffices the wave equation. In the simplest
case of plane waves, it has the form( ∂2

∂x2
− 1

c

∂2

∂t2

)
hki = 0. (4)

The solution is the expression [6]

hki = Re[Aki exp(ikαx
α)] (5)

that satisfies the equation if kαkα = 0, i. e. kα is the light-like vector. Then the metric tensor
can be written as

gik =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 + h cos D
c
(x0 − x1) 0

0 0 0 −1− h cos D
c
(x0 − x1)

⎞⎟⎟⎟⎟⎠ (6)

where h is the dimensionless amplitude of the GW, D is the frequency of the GW.
The solution of (2) with regard to (6) shows that the action of the GW causes the phase

modulation of the EMW. Since h is very small, the phase modulated EMW can be presented
as a superposition [7]

E(t) = E cos(Ωt− ky) + E
ω

4D
h[cos((Ω−D)t− ky)− cos((Ω +D)t− ky)]. (7)

The solution of (3) with regard to (6) gives [1]

y(t) ∼ h
c

D
sin(Dt+ kgx) (8)

where kg is the GW wave vector. The expression (8) makes it possible to get the component
of the atom velocity directed towards the Earth

v = v0 + v1 cosDt , (9)
v1 = hc .

By substituting (9) and (7) into (1), one gets
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d

dt
ρ22 = −γρ22 + 2i[α1 cos(Ωt− ky) + α2 cos((Ω−D)t− ky) (10)

−α2 cos((Ω +D)t− ky)](ρ21 − ρ12), (11)
d

dt
ρ12 = −(γ12 + iω)ρ12 − 2i[α1 cos(Ωt− ky) + α2 cos((Ω−D)t− ky)

−α2 cos((Ω +D)t− ky)](ρ22 − ρ11), (12)
ρ22 + ρ11 = 1,

where α2 = ωh
4D
α1, and (9) was used in the the expression for the full derivative d

dt
= ∂

∂t
+kv.

The solution of the system (10) is performed by the asymptotical extension method, the
small parameter being ε = γ

α1
(notice, that α2

α1
∼ ε too). If the OMPR conditions

γ

α1

= Γε; Γ = O(1); ε� 1, (13)

α2

α1
=

ωh

4D
= aε; a = O(1); ε� 1, (14)

kv1

α1
=

ωh

α1
= κε; κ = O(1); ε� 1, (15)

(ω − Ω + kv0)
2 + 4α2

1 = D2 +O(ε) ⇒ D ∼ 2α1 (16)

are fulfilled, then the principal term of the asymptotic expansion for Im(ρ21) which
characterizes the scattered radiation energy flow can be calculated explicitly. The effect
of the OMPR is that at the frequency shifted by D from the central peak of the EMW (that
is from the signal of the space maser), the energy flow has the zero order in the powers of
the small parameter of the expansion, i. e. is proportional to ε0, and has the form

Im(ρ21) ∼
α1

D
cos 2Dt+O(ε) (17)

It means that the energy flow is periodically amplified and attenuated with the frequency
of the GW. The OMPR signal (17) may be absent while the regular observations due to
the time averaging, but it can be registered either with the help of a gate detector checking
only the subsequent half-periods, or with the help of the special statistical processing of the
radio telescope signal.

One of the assumptions of the qualitative analysis in [3], [4], [5] was that the Einstein
equations in empty space in case of the anisotropic space-time still have the form of the wave
equation (4) though its solution might become dependent on the direction. In order to prove
this assumption and to obtain the generalized model for the OMPR effect in Finsler space
the approach developed in [9], [8] will be used. What is actually to be done in this paper
(Part 1) is to find some suitable and simple expressions for the metric in the anisotropic
case and use them in the eikonal equation and in the geodesic equation. Besides, in the
anisotropic case the classical Riemannian forms of the both mentioned equations might
need revising. In the subsequent paper (Part 2), we expect to obtain the solutions of these
equations and use them for the calculation of the OMPR effect in Finsler case.

2 The weakly deformed model (γ + ε, v)

Let M be a 4-dimensional manifold, and TM its tangent bundle. We denote by (xi, yi)

the coordinates in a local chart on M and by
(
δi =

δ

δxi
, ∂̇i =

∂

∂yi

)
the local adapted basis
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on TM, adapted to a given nonlinear connection N. In the following Sections yi will be used

for ∂x
i

∂t
, where t denotes an arbitrary parameter and it must not be mixed with the physical

coordinate mentioned in the Introduction.
In the following, by "metric", we shall always mean a generalized Lagrange metric, [8],

this is, a (0,2)-type tensor η = η(x, y) with the property det(ηij) �= 0, ∀(x, y) ∈ TM.
In the following, we shall use (h, v)-metric structures on TM in the form

G = gij(x, y)dx
i ⊗ dxj + vab(y)δy

i ⊗ δyj, (18)

where the (0,2)-type tensors (gij) and (vab) have the property

det
(
gij(x, y)

)
�= 0, det

(
vab(y)

)
�= 0, ∀y �= 0.

If, in some local chart, gij or vab do not depend on the positional variables xi, then they
are called locally Minkowskian.

Let:

• v = v(y) be a locally Minkowskian metric (which can be specialized, for instance, as a
small deformation ε̃, as in [12]– [14];

• gij(x, y) = γij(y) + εij(x, y), where
• γ = γ(y) is a 0-homogeneous locally Minkowskian metric tensor, which shall be called

in the following, the undeformed metric;
• ε = ε(x, y) a small deformation of γ (which is not necessarily invertible as a matrix);

By the supposition that γ and ε are 0-homogeneous w.r.t. y, we get that

F 2(x, y) = (γij + εij)y
iyj

defines a Finslerian function. The Finslerian metric defined by F 2 is, in this case,

g∗ij =
1

2

∂2F 2

∂yi∂yj
;

We should notice that g∗ does not necessarily coincide with gij, but we still have

g∗ijy
iyj = gijy

iyj = F 2.

In order to prove the above equality, let us remark that φij = gij − g∗ij generally depends
also on y, but being contracted two times with y, it vanishes: φijyiyj = 0. We have

2g∗kl = (F 2)·k·l = 2φkl(gij·k·lyiyj + 2glj·kyj + 2gkj·lyj)︸ ︷︷ ︸+ 2gkl .

From the 0-homogeneity of g = γ + ε as supposed above, we have gij·kyk = 0, gkj·lyl = 0
etc. This implies φklykyl = 0.

In the following, we shall mean by ” , ”, partial derivation w.r.t. x and by ” · ” , partial
derivative w.r.t. y.

Assumption: We shall neglect all nonlinear terms in ε and its derivatives: εijεkl � 0,
εijεkl,m� 0, εijεkl·a � 0 .

Let
εi j = γilεlj, εij = γjkεik.

Then, obviously, we have
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Proposition 2.1 If the metric γ is nondegenerate, then the deformed metric g = γ + ε is
also nondegenerate and its inverse is given by

gij = γij − εij.

Indeed, by taking into account the previous assumption, we have gijgjk = (γij − εij)
(γjk + εjk) = δik − εik + εik = δik.

As a remark, (εij) defined above does not denote the inverse of (εij), while, by (gij),
(γij), (vab) we mean the inverses of the respective matrices.

Let g = g(x, y) and v = v(x, y) be arbitrary metrics. If det(v∗ab) does not vanish
anywhere, where

v∗ab =
1

2

∂2

∂ya∂yb
(
vdey

dye
)
,

then the vertical component vab defines a canonical nonlinear connection on TM, [8]:

Na
i =

∂Ga
∂yb

δbi , Ga =
1

2
v∗ab

( ∂v00

∂yb∂xk
δkc y

c − ∂v00

∂xk
δkb

)
,

where the index 0 means transvection by y; in this case, the canonical metrical linear
connection is given by:

Li jk =
1

2
gih

(δghj
δxk

+
δghk
δxj

− δgjk
δxh

)
,

Labk =
∂Na

k

∂yb
+

1

2
vac

(δvbc
δxk

− ∂Nd
k

∂yb
vdc −

∂Nd
k

∂yc
vdb

)
,

Ci
jc =

1

2
gih

∂gjh
∂yc

,

Ca
bc =

1

2
vad

(∂vdb
∂yc

+
∂vdc
∂yb

− ∂vbc
∂yd

)
.

In the case when vab = vab(y) is a locally Minkowski metric, then the above expressions
are much simpler, together with those of the local expressions of torsion and curvature:

Proposition 2.2 [8]: If the vertical part vab of the metric (1) is locally Minkowski, then:
1) Na

j = 0, Li jk = γijk, Labk = 0;
2) T ijk = 0, Ra

ij = 0, P a
jb = 0, Sabc = 0;

3) R a
b jk = 0, P a

b kc = 0,
where γijk(x, y) denote the Christoffel symbols of g.

Now, we are able to determine the coefficients of the canonical linear connection.
By a straightforward computation, taking Proposition (2.2) into account, we get:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N j
a = 0

Li jk = γil(εlj,k + εlk,j − εjk,l) =: γijk

Labk = 0

Ca
bc = 1

2
vad(vdb·c + vdc·b − vbc·d)

Ci
jc =

0

Ci
jc − εil

0

C l
jc +1

2
γilεlj·c,

.

The only nonvanishing components of the torsion tensor are:

P i
jc = Ci

jc.
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By a direct computation, we obtain the components of the curvature which appear in
the expressions of the Ricci tensors:

R i
j kl = r i

j kl = γijk,l − γijl,k + γhjkγ
i
hl − γhjlγ

i
hk, (19)

P i
j kc =

1

2
(δisδ

l
j − γilγsj)γ

s
lk·c, (20)

P a
b kc = 0,

S a
b cd = S a

b cd(v)

where S a
b cd depends only on the vertical part (vab) of the metric.

Consequently, the Ricci tensors and the Ricci scalars are

Rjk = rjk, R = r,
1

P bj = P a
b ja = 0,

2

P jb = P i
j ib =

1

2
(δisδ

l
j − γilγsj)γ

s
li·b,

Sbc = Sbc(v), S = vacSac.

In vacuum, the second set of equations for our linearized model consists of identities.
We get

Theorem 1. The Einstein equations in vacuum for the linearized model (γ + ε, v) are:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rij −

1

2
rγij =

1

2
S(γij + εij)

(δisδ
l
j − γilγsj)γ

s
li·b = 0

Sab −
1

2
(r + S)vab = 0.

. (21)

Here γij = γij(y); εij = εij(x, y); vab = vab(y). Thus, we see that in Finsler space the
Einstein equations have become more complicated.

3 The case of small vertical component v

In the following, we shall assume for simplicity, that the vertical part v of the metric
structure G has vanishing Ricci curvature Sab, and it is small enough such that we can
neglect terms in the form rvab:

Sab = 0, rvab � 0.

In this case, the Einstein equations (21) become simply:

rij −
1

2
rγij = 0 (22)

(δisδ
l
j − γilγsj)γ

s
li·b = 0 (23)

As we easily notice, the first set of equations (22) involves only the x-derivatives of the
deformation ε, while the second ones, (23), contain mixed derivatives of second order of ε.

In order to integrate the first equations (22), we apply the same procedure as in
the classical Riemannian case: namely, we look for solutions satisfying the harmonicity
conditions

γijγhij = 0,
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which are actually

εij,i −
1

2
ε,j = 0. (24)

(There is no loss of generality by the above assumption: if ε does not satisfy (24), then, by

taking ε̄ij = εij −
1

2
vijε, the new unknown functions ε̄ will obey them).

Consequently, the first set of equations (22) becomes

�εij = 0; (25)

this gives a wave solution
εjh = Re

(
ajh(y)e

ikm(y)xm)
, (26)

where i denotes the imaginary unit. Thus, it turned out that the intuitive assumption made
in [5] is right, moreover, it also turned out that the wave vector is no longer isotropic, but
also depends on direction.

By (22) and (24), we infer that the quantities ajh(y) and km(y) should obey the algebraic
system {

γhlkhkl = 0

ai jki = 1
2
ai ikj

(27)

Remark 3.1 In the Riemannian case ε = ε(x), the quantities ajh and kj are constants.
Still, if γ depends on the directional variables yi, then, from the first equations above, we
deduce that both a and k depend on y. Really, for the equation

�εij = 0;

we look for a wave solution
εjh = Re

(
ajh(y)e

ikm(y)xm)
. (28)

We have
�εij = γhlεij,hl = −

(
γhlkhkl

)(
εaij(y) cos(kmx

m)︸ ︷︷ ︸),
and this has to identically vanish. So, either ε itself is zero, or we must have γhlkhkl = 0.

By taking into account equations (23), we infer that

Proposition 3.1 The harmonic wave solutions (28) of the Einstein equations (22, 23) are
given by the solutions of the system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

γhlkhkl = 0

ai jki = 1
2
ai ikj(

1
2
ai ikj

)
·b =

0

Ci
lb

{
2al jki − al ikj

}
.

(29)

We see that the amplitude ai j and the wave vector ki now depend on each other.
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4 Weak Finslerian perturbations of flat Minkowskian metric

Let us suppose that the dimension of M = R4 and

• the initial metric is the flat Minkowskian one γ = diag(1,−1,−1,−1);
• the vertical metric v is as in Section 3.

In this case, we have
0

Ci
lb= 0, so the system (29) becomes⎧⎪⎪⎨⎪⎪⎩

γhlkhkl = 0

ai jki = 1
2
ai ikj(

1
2
ai ikj

)
·b = 0.

(30)

We can easily see that, if we choose

k2 = −k1 =
D

c
, k3 = k4 = 0

(where D and c are constants with physical meaning), and

a3
3 = −a(y), a4

4 = a(y), ai j = 0 for all other (i, j),

then (30) is identically satisfied. We have thus obtained the solution

gij =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 + a(y) cos
(
D
c
(x1 − x2)

)
0

0 0 0 −1− a(y) cos
(
D
c
(x1 − x2)

)

⎞⎟⎟⎟⎟⎠ , (31)

where a(y) is (any) scalar 0-homogeneous function, small enough such that a2 � 0.

Remark 4.1 When a(y) is a constant, this metric reduces to the perturbed Minkowski
metric for the empty space. In this case the solutions of the geodesics equation and of the
eikonal equation are the known ones, (Section 1).

5 Weak perturbations of Berwald-Moor metric

Let, again the vertical part (vab) of the metric G be small, as in Section 3.
For the sake of simplicity of computations, we shall use in the following the flag Berwald-

Moor metric, [2], [11]:

γij =
1

12F 2

∂2F 4

∂yi∂yj
, F = 4

√
y1y2y3y4 (32)

More precisely, we shall consider as unperturbed metric tensor the following:

γ =
1

12F 2

⎛⎜⎜⎜⎜⎝
0 y3y4 y2y4 y2y3

y3y4 0 y1y4 y1y3

y2y4 y1y4 0 y1y2

y2y3 y1y3 y1y2 0

⎞⎟⎟⎟⎟⎠ . (33)
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The system (29), which gives the harmonic solutions of the Einstein equations, is
equivalent to: ⎧⎪⎪⎨⎪⎪⎩

γhlk
hkl = 0

ai jk
j = 1

2
ajjk

i

γlp(1
2
ai ikl)·b =

0

Ci
lb {2a

p
ik
l − al ik

p}.
(34)

Let us choose ⎧⎨⎩ k1 = η ∈ R\{0}, k2 = k3 = k4 = 0,

aij = λkikj , λ ∈ (0, δ) ⊂ R.

This is, the coefficients ki in the expression kmxm are

k1 = 0, kj(y) = γ1jk
1, j �= 1;

The condition k1 = 0 comes from k1 = γ1lk
l = γ11k

1 = 0 (and, in this case, it does not
imply k1 = 0).

We remark that {
a11 �= 0, aij = 0, ∀(i, j) �= (1, 1)

kiki = 0.
.

We have:
ai j = λkikj, aij = λkikj = λγ1iγ1jη

2.

By a direct computation, and having in view the equalities:

0

C11b=
1

2

∂γ11

∂yb
= 0, b = 1, ..., 4,

it follows that the system (34) is identically satisfied, and, taking into account the
considerations in Section 2, the Einstein equations in vacuum are also satisfied by the
perturbed metric γ + ε.

We have thus obtained

Theorem 2. The following perturbation

εjh(x, y) = λγ1jγ1hη
2 cos

{
η(γ12x

2 + γ13x
3 + γ14x

4)
}
, (35)

where λ and η are real constants, with λ ∈ (0, δ), and γij are the coefficients of the flag
Berwald-Moor metric (32), gives a wave solution of the linearized Einstein equations (21).

Remark 5.1 The contravariant perturbation (35) has only one nonvanishing component,
namely, ε11 :

ε11 = λη2 cos
{
η(γ12x

2 + γ13x
3 + γ14x

4)
}
�= 0, εij = 0, ∀(i, j) �= (1, 1).

This property is very useful when dealing with the eikonal equation we are going to obtain
in the next Section; also, it suggests that it would be advantageous to work on the dual space
T ∗M.
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6 Eikonal equation

Let us suppose that a plane wave is described by

f = ae−iψ(x,y).

In the first approximation, the eikonal ψ can be written as

ψ = ψ0 +
∂ψ

∂xi
dxi +

∂ψ

∂ya
dya.

In terms of adapted basis
(
δi =

δ

δxi
, ∂̇a =

∂

∂ya

)
, it gives

ψ = ψ0 +
δψ

δxi
dxi +

∂ψ

∂ya
δya.

By denoting

ki =
δψ

δxi
, Ka =

∂ψ

∂ya
, i, a = 1, ...4,

ki = gijkj , Ka = vabKb,

we obtain the following wave vector, which is globally defined on the tangent bundle TM :

K = kiδi +Ka∂̇a.

As a remark, the differential dψ can be written as dψ = kidx
i +Kaδy

a.

We can formally state the condition that the wave vector should be light-like, namely,
‖K‖ = 0. This has the form

gijk
ikj + vabK

aKb = 0,

equivalently,
gijkikj + vabKaKb = 0. (36)

The last expression will be called in the following, the generalized (extended) eikonal
equation.

In the Riemannian case, when ψ = ψ(x), the vertical partKa of the wave vector vanishes,
and the eikonal equation reduces to the classical one:

gij
∂ψ

∂xi
∂ψ

∂xj
= 0.

For the (35) the light-like vectors ‖K‖ = 0, are described by the equation

γijk
ikj + λη2 cos{η(γ12x

2 + γ13x
3 + γ14x

4)}(k1)
2 + vijK

iKj = 0,

where k1 = γ1jk
j .

The associated generalized eikonal equation has the form

γij
∂ψ

∂xi
∂ψ

∂xj
= ε11(x)

(
∂ψ

∂x1

)2

− vij(y)
∂ψ

∂yi
∂ψ

∂yj
.
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7 Geodesics of perturbed locally Minkovsian metric g = γ + ε

The Finslerian function F corresponding to the perturbed B-M metric, namely

F 2 =
(
γhl(y) + εhl(x, y)

)
yhyl

leads to the Euler-Lagrange equations

∂F 2

∂xi
− d

dt

(∂F 2

∂yi

)
= 0, (37)

which are equivalent to

g∗ij
dyj

dt
+

1

2

( ∂2F 2

∂yi∂xj
yj − ∂F 2

∂xi

)
= 0,

where t is the arclength t =
t∫

0

F (x(τ), y(τ))dτ, yi = ẋi and g∗ij is the usual Finsler metric

g∗ij =
1

2

∂2F 2

∂yi∂yj
. As shown in Section 1, we have g∗ij = φij + gij , with

φij =
1

2
(ghl·i·jyhyl + 2gil·jyl + 2gjl·iyl) (38)

The second term, namely, Gi :=
1

2

( ∂2F 2

∂yi∂xj
yj − ∂F 2

∂xi

)
is actually

Gi = γilhy
lyh +

1

2
εhl·i,jyhylyj,

where γilh = 1
2
(εil,h + εih,l − εlh,i).

The equations of geodesics have the form

g∗ij
dyj

dt
+ γi00 +

1

2
εhl·i,jyhylyj = 0, (39)

where:

• γi00 = γijky
jyk;

• g∗ij =
1
2
∂F 2

∂yi∂yj
is the (usual) Finsler metric generated by F ;

• the third term originates from the anisotropic deformation of the metric.

8 Discussion

The goal of this paper was to adjust the ideas underlying the theory of the OMPR effect
to the case when the geometry used for the description of the space-time is not Riemannian
but the Finslerian one. To do this we had first of all to make sure that the linearized Einstein
equations in empty space preserve the form of the wave equation for the metrics depending
on the direction. Such metric being found had to be used in the eikonal equation and in the
geodesic equation. Besides, the very forms of these equations might appear different from
those known for the Riemannian case.

The obtained results are the following. The Einstein equations in vacuum for the
linearized model (21) were constructed. They do produce the wave equation (25) with the
solution given by (28). The last expression differs from the regular plane wave: its amplitude
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and wave vector are no longer isotropic and depend on each other. If the unperturbed metric
tensor is the Minkowski one, then the anisotropic perturbation leads to (31) whose structure
is the same as that of (6) common for the GW investigations in Riemannian geometry. If
the unperturbed metric is the Berwald-Moor one (33), the structure of the wave solution
originating from the linear perturbation of the metric is more complicated and has the form
(35). In both these cases the eikonal equation should be generalized and take the form (36),
while the geodesic equation has the form (39). It should be also mentioned here that dealing
with Finsler geometry, one should consider the revision of Maxwell equations [9] and the
testable physical consequences of this. It is very interesting but separate question, because
the Bloch’s equations needed for the discussion of the OMPR and containing the EMW are
one-dimensional, that is they deal only with one direction connecting the space maser and
the Earth.
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