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The effect of the optic-metrical parametric resonance could provide the possibility to obtain
the experimental evidence of the gravitational waves existence. The effect might change, if the
geometry of the physical space-time is not Riemannian but Finslerian one. The investigation of
this situation is undertaken.

1 Introduction

Let us regard a two-level atom in the strong monochromatic quasi-resonant field. The
system of Bloch’s equations for the components of the density matrix components is

d .
P = P2 + 2iay cos(2 — k1y)(p21 — p12), (1)

0 0 , .
(— + v—)plz = —(712 +iw)p1a — 2iaq cos(QU — kyy)(pa2 — p11),
ot dy
p22 +pu1 = L.

Here pso and p;; are the populations of the levels, p15 and po; are the polarization terms,
v and 7y;2 are the longitudinal and transversal decay rates of the atom (since level 1 is the
ground level, y12 = 7/2); a1 = % is the Rabi parameter (Rabi frequency) proportional
to the intensity of the electromagnetic wave (EMW), u is the dipole momentum, E is the
electric stress, kjis the wave vector of the EMW, v is the atom velocity along the Oy-axis
pointing at the Earth, 7 < o is the condition of strong field.

Let this atom belong to the saturated space maser that is located in the field of the
periodic gravitational wave (GW) emitted by a pulsar or a short-period binary star and
propagating anti-parallel to the Ox-axis pointing at the GW-source. The GW acts on the
atomic levels, on the maser radiation and on the geometrical location of the atom. In [1]
it was shown that the first efect is much smaller than the other two effects. The action of

the GW on the monochromatic EMW could be accounted for by the solution of the eikonal

equation
5 0 O
ik 2 Y —
Ox' Oxk 0. )

The motion of the atom could be obtained from the solution of the geodesic equation

A2t ; dak dz!
252 TPy g =0 (3)
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(and not from the solution of the geodesic declination equation as in the calculations of the
displacements of the parts of the laboratory setups, designed for the detection of the GW).

The equations (1-3) are basic for the theory of the optic-metrical parametric resonance
(OMPR) effect which could provide the possibility to detect the GW in a principially new
way. This new way differs from the 18 ones known before [2] by the fact that it is the zero-
order and not the first-order effect in the non-dimensional amplitude of the GW. In papers
[3], [4], [5], the interpretation of the possible results of the investigation of the geometrical
properties of the physical space-time with the help of the OMPR effect is given. The regular
case of the isotropic space-time described in terms of Riemannian geometry is described
quantitatively and completely, while the case of an anisotropic space-time described by
Finsler geometry is described only qualitatively.

Let us give the result corresponding to Riemann geometry. The weak gravitational field
in empty space (far from masses) is described by the linearized Einstein equations. Then, for
the corrections to the flat space metric tensor, it suffices the wave equation. In the simplest
case of plane waves, it has the form

0? 1 02
(57— 2ot =0 @

The solution is the expression [6]
h*; = Re[A*; exp(ikoz®)] (5)

that satisfies the equation if k,k* = 0, i.e. k“ is the light-like vector. Then the metric tensor
can be written as

10 0

i 0 —1 0 0

gt = b X (6)
0 0 —1+hcosZ(2®—a') 0
0 0 0 —1—hcos (20 — 21)

where h is the dimensionless amplitude of the GW, D is the frequency of the GW.

The solution of (2) with regard to (6) shows that the action of the GW causes the phase
modulation of the EMW. Since h is very small, the phase modulated EMW can be presented
as a superposition [7]

E@%:EaMQﬁ—Mﬁ+E£%MmﬂK%—Dﬁ—km—m%«Q+Dﬁ—kw] (7)

The solution of (3) with regard to (6) gives [1]
y@wh%mﬂﬁ+@@ (8)

where k, is the GW wave vector. The expression (8) makes it possible to get the component
of the atom velocity directed towards the Earth

v = vy + vy cos Dt 9)

v; = he.

By substituting (9) and (7) into (1), one gets
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d

TP = P + 2i[ay cos(Q — ky) + ag cos((2 — D)t — ky) (10)
—agcos((Q2 + D)t — ky)|(pa1 — pi2), (11)
%Plz = —(m2 +iw)p12 — 2i[ay cos(U — ky) + az cos((2 — D)t — ky)
—az cos((+ D)t — ky)](p22 — p11), (12)
p22 +pu = 1,
wh

where ay = {501, and (9) was used in the the expression for the full derivative % = % +kv.
The solution of the system (10) is performed by the asymptotical extension method, the
small parameter being ¢ = - (notice, that 52 ~ ¢ too). If the OMPR conditions

gl

— =Tg T=001); =<1, (13)
1
(6% . (Uh/ . . o .
o 4D % a=0(1); e<1, (14)
k h
S o cen
1 1
(@ = Q+kw)? +4a} = D*+0() = D ~ 201 (16)

are fulfilled, then the principal term of the asymptotic expansion for Im(ps;) which
characterizes the scattered radiation energy flow can be calculated explicitly. The effect
of the OMPR is that at the frequency shifted by D from the central peak of the EMW (that
is from the signal of the space maser), the energy flow has the zero order in the powers of
the small parameter of the expansion, i.e. is proportional to £°, and has the form

Im(pa) ~ % cos2Dt + O(e) (17)

It means that the energy flow is periodically amplified and attenuated with the frequency
of the GW. The OMPR signal (17) may be absent while the regular observations due to
the time averaging, but it can be registered either with the help of a gate detector checking
only the subsequent half-periods, or with the help of the special statistical processing of the
radio telescope signal.

One of the assumptions of the qualitative analysis in [3], [4], [5] was that the Einstein
equations in empty space in case of the anisotropic space-time still have the form of the wave
equation (4) though its solution might become dependent on the direction. In order to prove
this assumption and to obtain the generalized model for the OMPR effect in Finsler space
the approach developed in (9], [8] will be used. What is actually to be done in this paper
(Part 1) is to find some suitable and simple expressions for the metric in the anisotropic
case and use them in the eikonal equation and in the geodesic equation. Besides, in the
anisotropic case the classical Riemannian forms of the both mentioned equations might
need revising. In the subsequent paper (Part 2), we expect to obtain the solutions of these
equations and use them for the calculation of the OMPR effect in Finsler case.

2 The weakly deformed model (y+¢,v)

Let M be a 4-dimensional manifold, and 7'M its tangent bundle. We denote by (z, ")

the coordinates in a local chart on M and by ((2 = %, 0; = 8i) the local adapted basis
xl yZ
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on T'M, adapted to a given nonlinear connection N. In the following Sections y® will be used

3} : . . . :
for a—xt’ where t denotes an arbitrary parameter and it must not be mixed with the physical

coordinate mentioned in the Introduction.

In the following, by "metric", we shall always mean a generalized Lagrange metric, (8],
this is, a (0,2)-type tensor n = n(x,y) with the property det(n;;) # 0, V(z,y) € TM.

In the following, we shall use (h, v)-metric structures on T'M in the form

G = gij(z,y)dz’ @ da’ +vay(y)0y' ® 0y, (18)
where the (0,2)-type tensors (g;;) and (vy) have the property

det(gij(z,y)) #0, det(va(y)) #0, Vy#0.

If, in some local chart, g;; or v, do not depend on the positional variables z*, then they
are called locally Minkowskian.
Let:

e v =10(y) be a locally Minkowskian metric (which can be specialized, for instance, as a
small deformation £, as in [12]- [14];

* 9ij(2,y) = 7i;(y) + €i;(x, y), where

e v = 7(y) is a 0-homogeneous locally Minkowskian metric tensor, which shall be called
in the following, the undeformed metric;

e ¢ = ¢(x,y) a small deformation of v (which is not necessarily invertible as a matrix);

By the supposition that v and € are 0-homogeneous w.r.t. y, we get that
F2(x,y) = (v + i)Y'y’
defines a Finslerian function. The Finslerian metric defined by F? is, in this case,

. 1P
9ij = 2 0ytoyi’

We should notice that g* does not necessarily coincide with g;;, but we still have
gy = giy'y’ = F*.

In order to prove the above equality, let us remark that ¢;; = g;; — g;; generally depends
also on y, but being contracted two times with vy, it vanishes: ¢;;y'y’ = 0. We have

205, = (F?) 3y = 2¢kl£gij-k-lyiyj + 29158y + 29kj-lyjz+ 20k -

From the 0-homogeneity of g = v + € as supposed above, we have g;;.xy* = 0, gijiy' = 0
etc. This implies ¢ny*y' = 0.

In the following, we shall mean by ” , 7, partial derivation w.r.t. x and by ” - 7, partial
derivative w.r.t. y.

Assumption: We shall neglect all nonlinear terms in € and its derivatives: ;e ~ 0,
€ij€kism = 0, €ij€k1.a =0 .

Let

Ez‘j _ ,yz‘lglj7 el = ik

Then, obviously, we have
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Proposition 2.1 If the metric 7y is nondegenerate, then the deformed metric g = v+ ¢ is
also nondegenerate and its inverse is given by

gl = A

Indeed, by taking into account the previous assumption, we have gYg;, = (797 — )
As a remark, (¢Y) defined above does not denote the inverse of (g;;), while, by (¢*),
(7), (v™) we mean the inverses of the respective matrices.
Let ¢ = ¢g(z,y) and v = v(x,y) be arbitrary metrics. If det(v},) does not vanish
anywhere, where
v = 1 82 (U d e)
ab — Qayaayb d@y y )

then the vertical component vy, defines a canonical nonlinear connection on 7'M, [8]:

a ag b a __ *ab 0@00 k. c 81)00
No=gp0% 9 =3¢ <8yb0xk50y Dk 55)

where the index 0 means transvection by y; in this case, the canonical metrical linear
connection is given by:

e ol
d d
Loy = + _” c(?;bzf - a(;zbkvdc - a(;;jckvdb),
: (?
e = 59" 50
(e )

In the case when vy, = v4(y) is a locally Minkowski metric, then the above expressions
are much simpler, together with those of the local expressions of torsion and curvature:

Proposition 2.2 [8/: If the vertical part vy, of the metric (1) is locally Minkowski, then:
Q) TZ]k - 07 Ra” - 07 Pa]b = O, Sabc = 0,
3) Rbajk{: 0, B% =0,
where v' ;. (x,y) denote the Christoffel symbols of g.

Now, we are able to determine the coefficients of the canonical linear connection.
By a straightforward computation, taking Proposition (2.2) into account, we get:

(

Ni. =0
Ly ="M ewn + €y — €iwt) = 7'
q L% =0

0 1ad
C%, = 50" (Vgp.c + Veb — Vbe-d)

i i i L Lyl
\Cjc:Cjc_glec 37 Eljcs

The only nonvanishing components of the torsion tensor are:

i i
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By a direct computation, we obtain the components of the curvature which appear in
the expressions of the Ricci tensors:

Rjikl = rjikl = V;k,z - W;Z,k + 'thk'yihl - thﬁihka (19)
i [ i s
Pj ke = 5(5555 -7 Z’Ysj)’V lk-c) (20)
Pb%ﬂc = 0’

Sya = 9%a(v)

where S,® , depends only on the vertical part (vg) of the metric.
Consequently, the Ricci tensors and the Ricci scalars are

Rj = Tjk, R = T,

1

ij = Pbtga = Oa

2 i Loaa g s
Pjy, = jib — 5(555]' -7 73]’)7 li-b>
She = Sbc(v>7 S = v"S,.

In vacuum, the second set of equations for our linearized model consists of identities.
We get

Theorem 1. The FEinstein equations in vacuum for the linearized model (y + €,v) are:

1 1
rij = 51 = 590 + i)
(5§5§‘ — ")V s =0 (21)

1
Sy — 5(1” + S)vg = 0.

Here 7 = 7;(y): € = €ij(2,y); vap = vap(y). Thus, we see that in Finsler space the
Einstein equations have become more complicated.

3 The case of small vertical component v

In the following, we shall assume for simplicity, that the vertical part v of the metric
structure GG has vanishing Ricci curvature S, and it is small enough such that we can
neglect terms in the form rv,:

S =0, 7rvg 0.

In this case, the Einstein equations (21) become simply:

1
/rij — 57“’77;]' =0 (22)
(difsé‘ - ’Yil’Vsj)’Ysli.b =0 (23)

As we easily notice, the first set of equations (22) involves only the z-derivatives of the
deformation &, while the second ones, (23), contain mixed derivatives of second order of .

In order to integrate the first equations (22), we apply the same procedure as in
the classical Riemannian case: namely, we look for solutions satisfying the harmonicity
conditions
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which are actually

. 1
5;77; — §€,j = 0. (24)

(There is no loss of generality by the above assumption: if € does not satisfy (24), then, by
taking &;; = €;; — §vij8, the new unknown functions £ will obey them).

Consequently, the first set of equations (22) becomes
Uei; = 0; (25)

this gives a wave solution ‘
Ein = Re(ajh(y)em’”(y)z ), (26)

where ¢ denotes the imaginary unit. Thus, it turned out that the intuitive assumption made
in [5] is right, moreover, it also turned out that the wave vector is no longer isotropic, but
also depends on direction.

By (22) and (24), we infer that the quantities a;,(y) and k,,(y) should obey the algebraic

system
hl —

i Lo 1 1.,
ajk;z—2ai/<:]

Remark 3.1 In the Riemannian case € = e(x), the quantities a;;, and k; are constants.
Still, if v depends on the directional variables ', then, from the first equations above, we
deduce that both a and k depend on y. Really, for the equation

DEij = 0;
we look for a wave solution 4
gjn = Re (ajh(y)elkm(y)x ) (28)

We have
ey = yMeijm = = (7" knki) (2ais (y) cos(kma™)).

v~

and this has to identically vanish. So, either ¢ itself is zero, or we must have Y kyk; = 0.
By taking into account equations (23), we infer that

Proposition 3.1 The harmonic wave solutions (28) of the Einstein equations (22, 23) are
given by the solutions of the system:

’}/hlkhkl =0

aijlf:i = %aiikj (29)
. 0.

(%azikj)_b :Czlb {Qaljki — alikj}.

We see that the amplitude o’ ; and the wave vector k; now depend on each other.
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4 Weak Finslerian perturbations of flat Minkowskian metric
Let us suppose that the dimension of M = R* and

e the initial metric is the flat Minkowskian one v = diag(1, —1, -1, —1);
e the vertical metric v is as in Section 3.

0
In this case, we have "= 0, so the system (29) becomes
Y hpki =0
i 1
a';k; = 5a';k; (30)
(3aik;),, = 0.
We can easily see that, if we choose

D
ko=—k1=—, ki=kys=0

C

(where D and ¢ are constants with physical meaning), and
a3 =—a(y), ay=a(y), a';=0 forall other (i,j),

then (30) is identically satisfied. We have thus obtained the solution

10 0 0
0 -1 0 0
9ij = D1 ) J (31)
0 0 —1+a(y)cos(2(z! —a?)) 0
0 0 0 —1 —a(y) cos(2(z! — 2?))

where a(y) is (any) scalar 0-homogeneous function, small enough such that a? ~ 0.

Remark 4.1 When a(y) is a constant, this metric reduces to the perturbed Minkowski
metric for the empty space. In this case the solutions of the geodesics equation and of the
etkonal equation are the known ones, (Section 1).

5 Weak perturbations of Berwald-Moor metric

Let, again the vertical part (v,) of the metric G be small, as in Section 3.
For the sake of simplicity of computations, we shall use in the following the flag Berwald-
Moor metric, [2], [11]:

]' a2F4 4 1,,2,,3,,4
Yij F = /y'y?ydy (32)

T 12F2 9yidyi’
More precisely, we shall consider as unperturbed metric tensor the following:
0 oyt o2yt y2yP
1 3,4 1,4 ,1,3
T 12F2 y2y4 104 Y ylyz ’ (33)
vy yy 0 gy
vy® vy y'y? 0

v
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The system (29), which gives the harmonic solutions of the Einstein equations, is
equivalent to:

Yukkl =0
a' k) = 3al K (34)
’le@aiikl)-b = 8ilb {20" k" — d k7Y
Let us choose
Et=neR\{0}, K =kK=k=0,
a? = \k'k?, A€ (0,0) CR.

This is, the coefficients k; in the expression k,,z™ are
kl = 07 k](y> = 71jk17 j # 17

The condition k; = 0 comes from k; = vkl = y1k' =0 (and, in this case, it does not
imply k' = 0).
We remark that

a'l 7& Oa a = 07 V(Za]) 7& (1a ]-)
kik; = 0. '

We have:
aij = \e'ky, ;= Mkikj = Ay’

By a direct computation, and having in view the equalities:

0 1 0v11
Cin= 58—yb =0,

it follows that the system (34) is identically satisfied, and, taking into account the
considerations in Section 2, the Einstein equations in vacuum are also satisfied by the
perturbed metric v + €.

We have thus obtained

Theorem 2. The following perturbation

€jh($a y) = )\Mﬂlth COS{U(%MQ + 713$3 + 714$4)}, (35)

where X and 1 are real constants, with A € (0,0), and ~,;; are the coefficients of the flag
Berwald-Moor metric (32), gives a wave solution of the linearized Einstein equations (21).

Remark 5.1 The contravariant perturbation (35) has only one nonvanishing component,
namely, 't :

et = M cos{n(nar® + yise® +yaxt)} A0, €Y =0, V(i,j) #(1,1),

This property is very useful when dealing with the eikonal equation we are going to obtain

in the next Section; also, it suggests that it would be advantageous to work on the dual space
T*M.
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6 Eikonal equation
Let us suppose that a plane wave is described by

f — ale_i"l}(xvy) .

In the first approximation, the eikonal 1) can be written as

N N

= _da’ dy®.
(0 w0+8x’ x +8y“ Yy
In terms of adapted basis <5z = 5(;’ Dy = —(93“)’ it gives
) .0
0= to+ Wi + g
oxt oy
By denoting
07 o
ki = — K, = , d,a=1,..4,
Y A oy na

k' = gk, K* = 0K,
we obtain the following wave vector, which is globally defined on the tangent bundle T'M :
K = k'§; + K°0,.

As a remark, the differential di) can be written as di) = k;dz® + K,0y".
We can formally state the condition that the wave vector should be light-like, namely,
| K|l = 0. This has the form
9iik Tk + v K°K? = 0,

equivalently, )
G kik; + v K, K, = 0. (36)

The last expression will be called in the following, the generalized (extended) eikonal
equation.

In the Riemannian case, when v = (), the vertical part K, of the wave vector vanishes,
and the eikonal equation reduces to the classical one:

G0
oxt 0xJ

For the (35) the light-like vectors || K|| = 0, are described by the equation
Yiik'K + An? cos{n(yi22® + Y137° + yaz?) }(k1)? + vy K'K7 = 0,

where k; = vljk;j.
The associated generalized eikonal equation has the form

s = (55) W
7 0w 007 ox! Voioy
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7 Geodesics of perturbed locally Minkovsian metric g =~ + ¢

The Finslerian function F' corresponding to the perturbed B-M metric, namely

F2 = (yu(y) +enlz,9)y"y'

leads to the FEuler-Lagrange equations

OF> OF>
5~ i(o) O

which are equivalent to

*dyj+1< *F? aF2) .
Jitqr T2 0yi0xjy oxi) 7
t
where t is the arclength ¢t = [F(2(7),y(7))dr, y* = &' and g;; is the usual Finsler metric
0
1 0*F*
2 Oytoy?

g5 = . As shown in Section 1, we have g; = ¢;; + gij, with

1
Pij = §(ghl.i.jyhyl + 29059 + 29513 (38)

O F j_8_F2), tuall
oy 57 5 ) 18 actually

1
The second term, namely, G; := 5(

1 )
Gi = vuny'y" + §5hl-i,jyhyly]7
where vy, = %(&l,h + €ing — Eihi)-
The equations of geodesics have the form
dy’

X 1 .
i g+ vioo + §5hl-i,jyhyly] =0, (39)

where:
® Yioo = %jkyjyk§
1 9F? . : .
55ugT the (usual) Finsler metric generated by F;
Yy oy
e the third term originates from the anisotropic deformation of the metric.

*
ngf

8 Discussion

The goal of this paper was to adjust the ideas underlying the theory of the OMPR effect
to the case when the geometry used for the description of the space-time is not Riemannian
but the Finslerian one. To do this we had first of all to make sure that the linearized Einstein
equations in empty space preserve the form of the wave equation for the metrics depending
on the direction. Such metric being found had to be used in the eikonal equation and in the
geodesic equation. Besides, the very forms of these equations might appear different from
those known for the Riemannian case.

The obtained results are the following. The Einstein equations in vacuum for the
linearized model (21) were constructed. They do produce the wave equation (25) with the
solution given by (28). The last expression differs from the regular plane wave: its amplitude
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and wave vector are no longer isotropic and depend on each other. If the unperturbed metric
tensor is the Minkowski one, then the anisotropic perturbation leads to (31) whose structure
is the same as that of (6) common for the GW investigations in Riemannian geometry. If
the unperturbed metric is the Berwald-Moor one (33), the structure of the wave solution
originating from the linear perturbation of the metric is more complicated and has the form
(35). In both these cases the eikonal equation should be generalized and take the form (36),
while the geodesic equation has the form (39). It should be also mentioned here that dealing
with Finsler geometry, one should consider the revision of Maxwell equations 9] and the
testable physical consequences of this. It is very interesting but separate question, because
the Bloch’s equations needed for the discussion of the OMPR and containing the EMW are
one-dimensional, that is they deal only with one direction connecting the space maser and
the Earth.
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