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PREFACE

This book presents the theory of linear connections in the differential geom-
etry of second order.

In the part one (Ch. 1 – Ch. 3) we shall study this theory in the 2-jet bundle
J2

0M.
Generally, the geometries of higher order defined as the study of the category

of bundles of k−jet (Jk
0 M , πk, M) (see Ch. Ehresmann, [45] , [46] and Refer-

ences) are based on a direct approach of the properties of objects and morphisms
in this category, without local coordinates.

But, many mathematical models from Lagrangian Mechanics, Theoretical
Physics and Variational Calculus used multivariate Lagrangians of higher order

accelerations, L(x,
dx

dt
(t), ... , 1

k!

dxk

dtk
(t) ), (see E. Cartan, [34], for k = 2).

From here one can see the reason of construction of the geometry of the
bundle of higher order accelerations (here, the tangent bundle of higher order, or
the osculator bundle of higher order) in local coordinates.

Recently, this construction was achived by R. Miron and the author in the
joint papers [89− 95].

Namely, replacing the bundle of k−jets (Jk
0 M,πk, M) by the bundle of ac-

celerations of order k, (or the k−osculator bundle (OsckM, πk,M)) denoted here
by (T kM, πk,M) one shows that the vertical distribution V1 decomposes in k
subdistributions from the sequence of inclusions V1 ⊃ V2 ⊃ ... ⊃ Vk, that there

exist k independent Liouville vector fields
1

C,
2

C, ... ,
k

C and a natural k−tangent
structure J: X (T kM) → X (

T kM
)
. Then, one defines the notion of k−semispray

S by the equation JS =
k

C. This allows the obtaining of a nonlinear connection
N from S, only. More precisely, S uniquely determines the dual coefficients of
N .

Now, the nonlinear connection N gives a direct decomposition

Tu(T kM) = N0 (u)⊗N1 (u)⊗ ...⊗Nk−1 (u)⊗ Vk, ∀u ∈ T kM, (0.1)

to which all geometric objects on T kM are described.
Thus N leads to define of the simplest linear connection D on T kM , that

which preserves by parallelism the distribution defining N and the 2−tangent
structure J is absolute parallel with respect to D, i.e. DXJ = 0, ∀X ∈ X (

T kM
)
,

(a JN - linear connection in this book, cf. with Def. 6.2, Ch. 2). It comes
out that JN preserves by parallelism the distributions from the decomposition
(0.1), too. The local coefficients characterising N are in the smallest possible
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number: JDΓ(N) = (La
bc , C

(β)

a
bc), (β = 1, ..., k). The whole Miron-Atanasiu’s

theory ([89]− [95]) is based on the decomposition (0.1) and the linear connection
JDΓ(N). These are exposed unitary in R.Miron’s monograph [84] .

In this book, for k = 2, also, we consider the decomposition (0.1):

Tu(T 2M) = N0 (u)⊕N1 (u)⊕ V2 (u) , ∀u ∈ T kM, (0.2)

but we use a linear connection D on T 2M which preserves by parallelism the
horizontal and verticals distributions N0, N1 and V2 on T 2M , only. This linear
connection is characterized by the local coefficients

DΓ(N) = ( L
(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc), (α = 0, 1, 2).

Moreover, there exist the natural almost contact structures F
α

: X
(
T̃ 2M

)
→

X
(
T̃ 2M

)
, (α = 0, 1, 2) on T̃ 2M (cf. with Section 1.8, Ch. 1) and we can define

the F
α
N -linear connections as an N−linear connection D for which DXF

α
= 0,

∀X ∈ T 2M , (α = 0, 1, 2). We have the inclusion:

JDΓ (N) ⊂ F
α
DΓ (N) ⊂ DΓ (N) , (α = 0, 1, 2) .

A detailed study of an N−linear connection DΓ(N) allows the introduction
of hα− and vβα- covariant derivatives, (α = 0, 1, 2;β = 1, 2). With these one
studies the parallelism of vector fields (Sect. 2.9 Ch. 2), the torsion, the curvature,
the structure equations (Sections 2.3, 2.7, 2.10, Ch. 2), the Ricci and Bianchi
identities (Sections 2.8 and 2.11, Ch. 2), etc.

Finally of the part one, in the Chapter 3, we study the metric structures
on T 2M and some remarkable metrics on T 2M, especially an (h1, v1, v2)−metric
G, h−Riemannian, v1−locally Minkowski and v2−locally accelerate, which can
be use to the geometrical model on tangent bundle on T 2M.

In the part two of the book (Ch. 4 – Ch. 6) we shall study the theory of linear
connections in the differential geometry of second order cotangent bundle.

The differential geometry of the second order cotangent bundle
(
T ∗2M,π∗2,M

)
introduced and studied, recently, by Acad. R. Miron [85], [86] and Acad.
R.Miron with his partners, [97], is based on the differential geometries of the
tangent bundle (TM, π, M) and the cotangent bundle (T ∗M, π∗,M), [134] (see
also, Gh.Atanasiu [7]-[13], S. Ianuş [55]-[57], R. Miron [78]-[83], V. Oproiu [110],
[111], etc.), namely

T ∗2M = TM ×M T ∗M. (0.3)

In this way, the point x ∈ M, the velocity y ∈ TM and the momenta
p ∈ T ∗M there exist, intrinsec in T ∗2M : (x, y, p) = (u) ∈ T ∗2M. They are fasten
in the Liouville 1−form ω, in the 2−form of presymplectic structure θ, in the
natural tangent structure J : χ

(
T ∗2M

) −→ χ
(
T ∗2M

)
, etc., by

ω = padxa, (0.4)
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θ = dω = dpa ∧ dxa, (0.5)

J
(

∂

∂xa

)
=

∂

∂ya
, J

(
∂

∂ya

)
= 0, J

(
∂

∂pa

)
= 0, (0.6)

(a = 1, 2, ..., n; n = dim M) .

But, in the tangent bundle of differentiable manifold T ∗2M,
(
TT ∗M, τ∗2,M

)
,

where τ∗2 is the canonical projection, there exist the natural subdistributions
V1 (u) =

{
∂

∂ya |u
}

and W2 (u) =
{

∂
∂pa

|u
}

and we have a direct decomposition
of vector spaces

TuT ∗2M = N (u)⊕ V1 (u)⊕W2 (u) , ∀u ∈ T ∗2M, (0.7)

where N is a nonlinear connection.
The main geometrical objects on T ∗2M can be reported to the direct sum

(0.7) and by use the natural tensors ω, θ, J, etc., expressed in the formulae (0.4),
(0.5), (0.6), etc.

For example, a linear connection in the R.Miron’s theory on the 2−cotangent
bundle T ∗2M have the smallest possible number:

MDΓ (N) =
(
Ha

bc, C
a

bc, Ca
bc

)
, (a, b, c = 1, ..., n) ,

(in this book, it is called a Miron N−linear connection).
Generally, in the monograph [97], the whole calculus: the parallelism of

vector fields, the torsion, the curvature, the Ricci identities, etc., are based on
the set of these coefficients.

In this book, a linear connection in the differential geometry of the
2−cotangent bundle T ∗2M will be more rich. It will have a set of nine coefficients:

DΓ (N) =
(

H
(00)

a
bc, H

(10)

a
bc, H

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)
a

bc, C
(12)

a
bc, C

(22)
a

bc

)

(here, it is called an N−linear connection)
This is an advantage in the physical applications in electrodynamics [103],

[104], elasticity [105], quantum field theories [40], [109], [119], in the deviations
of geodesics [29], [30], [133], etc., because the torsion, the curvature, remarkable
identities, etc., are much more substantials.

The calculus with these N−linear connections is not difficult and we develop
him in the Chapters 4,5 and 6.
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Chapter 1

The 2-tangent bundle(
T 2M,π2,M

)

1.1 The manifold T 2M

Let M be a real differentiable manifold of dimension n. A point of M will be
denoted by x and its local coordinate system by (U,ϕ), ϕ(x) = (xa). The indices
a,b,... run over set {1,2,...,n} and Einstein convention of summarizing is adopted
all over this work.

Let us consider two curves ρ, σ : I → M , having images in a domain of local
chart U ⊂ M . We say that ρ and σ have a ”contact or order 2” or the ”same
tangent line and the same curvature” in the point x0 ∈ U if: ρ(0) = σ(0) =
x0, (0 ∈ I), and for any function f ∈ F(U):

dβ

dtβ
(f ◦ ρ)(t)|t=0 =

dβ

dtβ
(f ◦ σ)(t)|t=0, (β = 1, 2). (1.1)

The relation ”contact of order 2” is an equivalence on the set of smooth
curves in M, which pas through the point x0. Let [ρ]x0be a class of equivalence.
It will be called a ”2-osculator space” in the point x0 ∈ M . The set of 2-osculator
spaces in the point x0 ∈ M will be denoted by Osc2M , and we put

Osc2M =
⋃

x0∈M

Osc2
x0

.

One considers the mapping π2 : Osc2M → M define by π2([ρ]x0) = x0. Clearly,
π2 is a surjection.

The set Osc2M is endowed with a natural differentiable structure, induced
by that of the manifold M, so that π2 is a differentiable mapping. It will be
described below.

1
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(
T 2M, π2, M

)

The curve ρ : I → M, (Im ρ ⊂ U) is analytically represented in the local
chart (U,ϕ) by xa = xa(t), t ∈ I, x0 = xa

o(= xa(0)). Taking the function f from
(1.1), successively equal to the coordinate functions xa, then a representative of
the class [ρ]x0 is given by

x∗a(t) = xa(0) + t
dxa

dt
(0) +

1
2
t2

d2xa

dt2
(0), t ∈ (−ε, ε) ⊂ I.

The previous polynomials are determined by the coefficients

xa
0 = xa(0), y(1)a =

dxa

dt
(0), y(2)a =

1
2

d2xa

dt2
(0). (1.2)

Hence, the pair
((

π2
)−1 (U) ,Φ

)
, with Φ

(
[ρ]x0

)
=

(
xa

0 , y(1)a, y(2)a
) ∈ R3n,

∀ [ρ]x0
∈ (

π2
)−1 (U) is a local chart on Osc2M . Thus a differentiable atlas

AM of the differentiable structure on the manifold M determines a differentiable
atlas AOsc2M on Osc2M and therefore the triple

(
Osc2M, π2,M

)
is a differen-

tiable bundle. We will denote the 2-osculator bundle
(
Osc2M, π2,M

)
also with(

T 2M,π2,M
)
.

By (1.2), a transformation of local coordinates
(
xa, y(1)a, y(2)a

) → (x̃a, ỹ(1)a,
ỹ(2)a) on the manifold T 2M is given by





x̃a = x̃a
(
x1, ..., xn

)
,det(

∂x̃a

∂xb
) 6= 0,

ỹ(1)a =
∂x̃a

∂xb
y(1)b,

2ỹ(1)a =
∂ỹ(1)a

∂xb
y(1)b + 2

∂ỹ(1)a

∂y(1)b
y(2)b.

(1.3)

One can see that T 2M is of dimension 3n.
Moreover, if M is a paracompact manifold, then T 2M is paracompact, too.
Let us present here some notations. A point u ∈ T 2M whose projection by

π2 is x, i.e. π2(u) = x, will be denoted by
(
x, y(1), y(2)

)
, its local coordinates

being
(
xa, y(1)a, y(2)a

)
.

The null section 0 : M → T 2M of the projection π2 is defined by 0 : (x) ∈
M → (x, 0, 0) ∈ T 2M we denote by T̃ 2M = T 2M\{0}.

The coordinate transformation (1.3) determines the transformation of the

natural basis
(

∂

∂xa
|u,

∂

∂y(1)a
|u,

∂

∂y(2)a
|u

)
, (a = 1, .., n), of the tangent space

TT 2M at the point u ∈ T 2M the following:

∂

∂xa
|u =

∂x̃b

∂xa

∂

∂x̃b
|u+

∂ỹ(1)b

∂xa

∂

∂ỹ(1)b
|u+

∂ỹ(2)b

∂xa

∂

∂ỹ(2)b
|u,

∂

∂y(1)a
|u =

∂ỹ(1)b

∂y(1)a

∂

∂ỹ(1)b
|u+

∂ỹ(2)b

∂y(1)a

∂

∂ỹ(2)b
|u,

∂

∂y(2)a
|u =

∂ỹ(2)b

∂y(2)a

∂

∂ỹ(2)b
|u.

(1.4)
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By means of (1.3) we obtain

∂x̃a

∂xb
=

∂ỹ(1)a

∂y(1)b
=

∂ỹ(2)a

∂y(2)b
,

∂ỹ(1)a

∂xb
=

∂y(2)a

∂y(1)b
. (1.4’)

Looking at the formula (1.4) we remark the existence of some natural object
fields on T 2M .

First of all, the tangent space V1u to the fibre (π2)−1(x) in the point u ∈ T 2M

is locally spanned by
{

∂

∂y(1)1
, ...,

∂

∂y(1)n
,

∂

∂y(2)1
, ...,

∂

∂y(2)n

}
. Therefore, the

mapping V1 : u ∈ T 2M → V1u ⊂ TuT 2M provides a regular distribution which is

generated by
{

∂

∂y(1)a
,

∂

∂y(2)a

}
, (a = 1, .., n). Consequently, V1 is an integrable

distribution on T 2M of local dimension 2n, called the vertical distribution on
T 2M . Similarly, the tangent space V2u to the fibre

(
π2

1

)−1 (x, y1) in the point
u ∈ T 2M , where π2

1 : (x, y(1), y(2)) ∈ T 2M → (x, y(1)) ∈ Osc1M = TM ,

is locally spanned by
{

∂

∂y(2)1
, ...,

∂

∂y(2)n

}
. Therefore, the mapping V2 : u ∈

T 2M → V2u ⊂ TuT 2M provides a new regular vertical distribution which is

generated by
{

∂

∂y(2)a

}
, (a = 1, ..., n). So, V2 is an integrable distribution on

T 2M of local dimension n and it is a subdistribution of V1.
Therefore, in every point u ∈ T 2M , we have the vector space V2(u), V1(u),

TuT 2M of dimensions n, 2n, 3n, respectively and satisfying the inclusions

V2(u) ⊂ V1(u) ⊂ TuT 2M, ∀u ∈ T 2M.

We denote
V (u) = V1(u)⊕ V2(u), ∀u ∈ T 2M. (1.5)

and we call V the vertical distribution on T 2M.

Taking in account (1.3), (1.4), it follow that

1

C = y(1)a ∂

∂y(2)a
, (1.6)

2

C = y(1)a ∂

∂y(1)a
+ 2y(2)a ∂

∂y(2)a
, (1.6’)

are two vertical vector fields, global define on T 2M and linear independent on

T̃ 2M .
1

C belongs to the distribution V2 and
2

C belongs to the distribution V1.
They are called the Liouville vector fields. The existence of the Liouville
vector field is very important in the study of geometry of the manifold T 2M.
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(
T 2M, π2, M

)

Let us consider the F(T2M) - linear mapping J:X (T 2M) → X (T 2M),

J

(
∂

∂xa

)
=

∂

∂y(1)a
, J

(
∂

∂y(1)a

)
=

∂

∂y(2)a
, J

(
∂

∂y(2)a

)
= 0. (1.7)

Theorem 1.1. The following properties hold:
1◦. J is globally defined on T2M.
2◦. J ◦ J ◦ J = 0, rank ‖J‖ = 2n.
3◦. Im J = V1, Ker J = V2, J(V1) = V2.
4◦. J is an integrable structure on T 2M.

5◦. J
2

C =
1

C, J
1

C = 0.

The proof can be found in [89], [90].

We say that J is the 2-tangent structure on T 2M.
The previous geometrical notions are useful in the next sections of this work.

1.2 Homogeneity

The notion of homogeneity, (see, De Léon M. and Vasquez E., [76]), of function
f ∈ F(T 2M) with respect to the variables y(1)a, y(2)a is necessary in our consid-
erations because some fundamental object fields on T 2M have the homogeneous
components.

In the osculator manifold Osc2M = T 2M, a point [ρ]x0 has a geometrical
meaning, i.e. changing of parametrization of the curve ρ : I → M does not change
the space [ρ]x0 . Taking into account the affine transformations of parameter

t = at + b, t ∈ I, a ∈ R∗+ (∗)

we obtain the transformation of coordinate of [ρ]x0 in the form

xc = xc, y(1)c = ay(1)c, y(2)c = a2y(2)c, (c = 1, 2, ..., n). (∗∗)

Therefore, the transformation of coordinates (1.3) on the manifold T 2M
preserve the transformations (∗∗).

Let H =
{
ht : R → R, t ∈ R∗+

}
be the group of homotheties of real numbers

field R. H acts as an uniparameter group of transformations on T 2M as follows

H × T 2M → T 2M, {(ht, u) → ht(u)} ,

where
ht(x, y(1), y(2)) =

(
x, ty(1), t2y(2)

)
.

Consequently, H acts as a group of transformations on T 2M , with preserving
of the fibres.
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The transformation group H of the homotethies is invariant under the trans-
formation of local coordinates on T 2M.

The orbit of a point u0 =
(
x0, y

(1)
0 , y

(2)
0

)
∈ T 2M is given by

xa = xa
0

y(1)a = ty
(1)a
0

y(2)a = t2y
(2)a
0 , t ∈ R∗+.

The tangent vector field to orbit in the point u0 = h1(u0) is given by

2

Cu0 = y
(1)a
0

(
∂

∂y(1)a

)

u0

+ 2y
(2)a
0

(
∂

∂y(2)a

)

u0

.

This is the Liouville vector field
2

C, (1.6’) in the point u0. For this vector field

(ht)t∈R∗+
is his uniparameter group. Let us consider the vector field

1

C = J
2

C,

where
1

C is the Liouville vector field given by (1.6).
Now, we can formulate:
Definition 2.1. A function f : T 2M → R differentiable on T̃ 2M and

continuos on the null section 0 : M → T 2M is called homogeneous of degree
r, (r ∈ Z), on the fibres on T 2M , (briefly r-homogeneous) if

f ◦ ht = trf,∀t ∈ R∗+. (2.1)

The following theorem of Euler type holds, [76]:
Theorem 2.1. A function f ∈ F (T 2M) differentiable on T̃ 2M and contin-

uous on the null sections is homogeneous of degree r on the fibres of T 2M if and
only if we have

L2
C
f = rf, (2.2)

L2
C

being the Lie derivative with respect to the Liouville vector field
2

C.

The equality (2.2) is equivalent to

y(1)a ∂f

∂y(1)a
+ 2y(2)a ∂f

∂y(2)a
= rf (2.2’)

The following properties hold:

1. f1, f2 r-homogeneous =⇒ λ1f1 + λ2f2, λ1, λ2 ∈ R is r-homogeneous,

2. f1 r-homogeneous, f2 s-homogeneous =⇒ f1 · f2 is (r + s)-homogeneous,
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3. f1 r-homogeneous, f2 6= 0 s-homogeneous =⇒ f1

f2
is (r − s)-homogeneous

By extension we can define the homogeneity of vector fields and 1-forms on
T 2M .

Definition 2.2. A vector field X ∈ X(T 2M) is r-homogeneous if

X ◦ ht = tr−1h∗t ◦X, ∀t ∈ R∗+.

It follows:
Theorem 2.2. A vector field X ∈ X(T̃ 2M) is r-homogeneous if and only

if we have
L2
C
X = (r − 1)X. (2.3)

Of course, L2
C
X = [

2

C, X] is the Lie derivative of X with respect to
2

C.
Consequently, we can prove:
Corollary 2.1.

1. The vector fields
∂

∂xa
,

∂

∂y(1)a
,

∂

∂y(2)a
are 1,0 and -1-homogeneous, respec-

tively.

2. If f ∈ F (T̃ 2M) is s-homogeneous and X ∈ X(T̃ 2M) is r-homogeneous
then fX is (r + s)-homogeneous.

3. The Liouville vector field
1

C is 0-homogeneous.

4. The Liouville vector field
2

C is 1-homogeneous.

Corollary 2.2.
1 ◦. A vector field on T̃ 2M :

X = X(0)a ∂

∂xa
+ X(1)a ∂

∂y(1)a
+ X(2)a ∂

∂y(2)a

is r-homogeneous if and only if X(0)a are functions (r − 1)-homogeneous, X(1)a

are functions r-homogeneous and X(2)a are functions (r + 1)-homogeneous.
2 ◦. If X ∈ X(T̃ 2M) is r-homogeneous and f ∈ F (T̃ 2M) is s-homogeneous,

then Xf ∈ F (T̃ 2M) is a (r + s− 1)-homogeneous function

3 ◦. If f ∈ F (T̃ 2M) is an arbitrary s-homogeneous function, then
∂f

∂y(2)a
is a

(s− 2)-homogeneous function and
∂2f

∂y(2)a∂y(2)b
is (s− 4)-homogeneous function.
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Proposition 2.1. If X1 ∈ X(T̃ 2M) and X2 ∈ X(T̃ 2M) are vector fields
r1- and r2- homogeneous, respectively then the bracket [X1, X2] are (r1 + r2 − 1)-
homogeneous vector field.

Proof. Indeed, we have

L2
C

[X1, X2] = [
2

C, [X1, X2]] = [X1, [
2

C, X2]]− [X2, [
2

C, X1]]

= [X1, (r2 − 1)X2]− [X2, (r1 − 1)X1] = (r1 + r2 − 2) [X1, X2] .

q.e.d.

In the case of q-form we can give:
Definition 2.3. A q-form ω ∈ Λq

(
T̃ 2M

)
is s-homogeneous if

ω ◦ h∗t = tsω, ∀t ∈ R∗+.

It follows:
Theorem 2.3. A q-form ω ∈ Λq

(
T̃ 2M

)
is s-homogeneous if and only if

L2
C
ω = sω. (2.4)

Corollary 2.3.
1 ◦. If ω ∈ Λq

(
T̃ 2M

)
is s-homogeneous and ω′ ∈ Λq′

(
T̃ 2M

)
is

s ′-homogeneous =⇒ ω ∧ ω′ is (s + s′)-homogeneous
2 ◦. If ω ∈ Λq

(
T̃ 2M

)
is s-homogeneous and X

1
, ..., X

q
are each r-

homogeneous =⇒ ω

(
X
1
, ..., X

q

)
is (r + s− 1)-homogeneous.

3 ◦. dxa (a = 1, ..., n) are 0-homogeneous 1-forms.

The applications of those properties in the problems of homogeneous lifts
of the Riemannian, Finslerian and Lagrangian structures on T 2M and in the
geometry of Finsler space of order two are numberless, [17], [18].

1.3 Second order semispray

In applications we shall use the operator

C = y(1)a ∂

∂xa
+ 2y(2)a ∂

∂y(1)a
. (3.1)

This operator is not a vector field on T 2M . By a direct calculation one
checks the following:

Lemma 3.1.
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1. Under a coordinate transformation (1.3) on T 2M , C changes as follows

C = C̃ +
(

y(1)b ∂ỹ(2)c

∂xb
+ 2y(2)b ∂ỹ(2)c

∂y(1)b

)
∂

∂ỹ(2)c
. (3.1’)

2. For any function f ∈ F (T 2M) having the property
∂f

∂y(2)a
= 0, with respect

to (1.3), we have
Cf = C̃f. (3.1”)

Now we can introduce the following definition:
Definition 3.1. A second order semispray S on T̃ 2M (briefly, a 2-

semispray) is a vector field S ∈ x(T̃ 2M) with the property:

JS =
2

C. (3.2)

If S is 2-homogeneous, then S will be called a 2-spray.
Not always there exists a vector field S with the property (3.2). Therefore,

the notion of local 2-semispray must be formulated taking S ∈ X (Ũ), Ũ being
an open set in the manifold T 2M.

Theorem 3.1.
1 ◦. A 2-semispray can be uniquely written in the form

S = y(1)a ∂

∂xa
+ 2y(2)a ∂

∂y(1)a
− 3Ga

(
x, y(1), y(2)

) ∂

∂y(2)a
. (3.3)

2 ◦. The set of functions Ga
(
x, y(1), y(2)

)
, (a = 1, ..., n), are changed with respect

to (1.3) as follows:

3G̃a = 3
∂x̃a

∂xb
Gb −

(
y(1)b ∂ỹ(2)a

∂xb
+ 2y(2)b ∂ỹ(2)a

∂y(1)b

)
. (3.4)

3 ◦. If the set of functions Ga are a apriori given on every domain of a local

chart in T̃ 2M , so that (3.4) holds, then S from (3.3) is a 2-semispray.

Proof.
1 ◦. If a vector field

S = fa
0

(
x, y(1), y(2)

) ∂

∂xa
+ fa

1

(
x, y(1), y(2)

) ∂

∂y(1)a
+ fa

2

(
x, y(1), y(2)

) ∂

∂y(2)a
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is a 2-semispray S, then JS =
2

C implies fa
0 = y(1)a, fa

1 = 2y(2)a and fa
2 (x, y(1),

y(2)) = −3Ga(x, y(1), y(2)). So that Ga are uniquely determined and (3.2) holds.
2 ◦. The formula (3.4) follows from (1.3), (1.4) and the fact that S is a vector

field on T̃ 2M , i.e.

S = C − 3Ga
(
x, y(1), y(2)

) ∂

∂y(2)a
= C̃ − 3G̃a

(
x̃, ỹ(1), ỹ(2)

) ∂

∂ỹ(2)a
= S̃.

3◦. Using the rule of transformation (3.4) of the set of functions Ga it follows

that S is a vector field which satisfies JS =
2

C.
q.e.d.

From the previous theorem, it results that S is uniquely determined by
Ga

(
x, y(1), y(2)

)
and conversely. Because of this reason, Ga are called the coef-

ficients of the 2-semispray.
Theorem 3.2. A 2-semispray S on T̃ 2M is a 2-spray if and only if its

coefficients Ga are 3-homogeneous functions with respect to y(2)a.

Proof. By means of 1◦ and 2◦, Corollary 2.1 it follows that y(1)a ∂

∂xa
is

2-homogeneous, y(2)a ∂

∂y(1)a
is 2-homogeneous,

∂

∂y(2)a
is (-1)-homogeneous vector

fields. Hence, S is 2-homogeneous if and only if Ga are 3-homogeneous functions
with respect to y(2)a.

q.e.d.
The integral curves of the 2-semispray S from (3.3) are given by

dxa

dt
= y(1)a,

dy(1)a

dt
= 2y(2)a,

dy(2)a

dt
= −3Ga

(
x, y(1), y(2)

)
. (3.5)

It follows that, on M, these curves are expressed as solutions of the following
differential equations

d3xa

dt3
+ 3!Ga

(
x,

dx

dt
,
1
2

d2x

dt2

)
= 0. (3.6)

The curves c : t ∈ I → (xa (t)) ⊂ U ⊂ M, solutions of (3.6), are called
the paths of the 2-semispray S. The differential equation (3.6) has geometrical
meaning. Conversely, if the differential equation (3.6) is given on a domain
of a local chart U of the manifold M, and this equation is preserved by the
transformations of local coordinates on M, then coefficients Ga(x, y(1), y(2)),(

y(1)a =
dxa

dt
, y(2)a = 1

2

d2xa

dt2

)
, obey the transformations (3.4). Hence Ga(x,

y(1), y(2)) are the coefficients of a 2-semispray. Consequently, we obtain:
Theorem 3.3. A 2-semispray S on T̃ 2M, with the coefficients Ga(x, y(1),

y(2)) is characterized by a system of differential equations (3.6), which has a
geometrical meaning.

Using the previous theorem we prove:
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Theorem 3.4. If the base manifold M is paracompact, then on T 2M there
exist 2-semisprays.

Proof. M being paracompact, there exist a Riemannian metric g on M with
local coefficients γab (x). Consider γa

bc (x) the Christoffel symbols of g. It is easy
to prove that

z(2)a = y(2)a +
1
2
γa

bc (x) y(1)by(1)c (3.7)

is a distinguished vector field, i.e., with respect to (1.3), we have z̃(2)a =
∂x̃a

∂xb
z(2)b.

It follows, that the function

L
(
x, y(1), y(2)

)
= γab (x) z(2)az(2)b (3.8)

does not depend on the transformations of coordinates (1.3). Then the set of
functions

Ga
(
x, y(1), y(2)

)
= 1

3!γ
ab (x)

{
y(1)c ∂

∂xc

(
∂L

∂y(2)b

)
+

+2y(2)c ∂

∂y(1)c

(
∂L

∂y(2)b

)
− ∂L

∂y(1)b

} (3.9)

is transformed, by means of a transformation (1.3), like in formula (3.4). Theorem
3.1 may be applied. It follow that the set of functions Ga are the coefficients of
a 2-semispray S.

q.e.d.
Finally, in this section, we consider the function determined by a 2-

semispray S:

N
1

a
b =

∂Ga

∂y(2)b
. (3.10)

Using the rule of transformation (3.4) of the coefficients Ga we can prove,
without difficulties:

Theorem 3.5. If Ga
(
x, y(1), y(2)

)
are the coefficients of a 2-semispray S

then the set of functions Na
b

(
x, y(1), y(2)

)
from (3.10) has the following rule of

transformation with respect to (1.3):

Ñ
1

a
c

∂x̃c

∂xb
= N

1

c
b

∂x̃a

∂xc
− ∂ỹ(1)a

∂xb
. (3.11)

The system of functions N
1

a
b

(
x, y(1), y(2)

)
is important to define the notion

of nonlinear connection on T 2M .

1.4 Nonlinear connection

We extend the classical definition of the nonlinear connection, [134] , on the total
space bundle

(
T 2M,π2,M

)
.
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Definition 4.1. A nonlinear connection on the manifold T 2M is a regular
distribution N on T 2M supplementary to the vertical distribution V, i.e.

TuT 2M = N(u)⊕ V (u), ∀u ∈ T 2M. (4.1)

Taking into account Proposition 1.1 it follow that the distribution N has the
property

TuT 2M = N(u)⊕ V1(u)⊕ V2(u) (4.1’)

Generally, we consider a nonlinear connection on T 2M from the point of
view of Definition 4.1. We denote it by N and call it a horizontal distribution.
According to (4.1) we deduce that the local dimension of N is n=dim M.

Proposition 4.1. If the manifold M is paracompact, then there exists non-
linear connections on T̃ 2M .

Indeed, the manifold M being paracompact, it result that T 2M is a paracom-
pact manifold. There exists at least a Riemannian metric G on T 2M . Considering
N as the orthogonal distribution to the vertical distribution V with respect to G,
the relation (4.1) is true. Thus, N is a nonlinear connection on T 2M .

q.e.d.
Let h and v be the horizontal and vertical projectors determined by the

distributions N and V. We have

h + v = I, h2 = h, v2 = v, hv = vh = 0. (4.2)

For simplicity, we denote

XH = hX, XV = vX, ∀X ∈ X (T 2M). (4.3)

Therefore, we have

X = XH + XV , ∀X ∈ X (T 2M). (4.4)

We call an horizontal lift an F(M)-linear map lh : X (M) → X (T 2M) with
the properties

v ◦ lh = 0, dπ2 ◦ lh = Id,

where dπ2 is the differential mapping of the projection π2, dπ2 : TT 2M → TM .
Consequently, locally, for any vector field X∈ X (M) it follows that lhX is a
uniquely determined vector field in the horizontal distribution N.

Then, we obtain a unique local basis
{

δ

δxa

}
, adapted to the horizontal

distribution N which is projected by dπ2 on to the natural basis
{

∂

∂xa

}
. It is

given by
δ

δxa
= lh

(
∂

∂xa

)
. (4.6)
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This can uniquely written in the form:

δ

δxa
=

∂

∂xa
−N

1

b
a

∂

∂y(1)b
−N

2

b
a

∂

∂y(2)b
. (4.7)

The system of differential functions (N
1

b
a(x, y(1), y(2)), N

2

b
a(x, y(1), y(2))),

a, b ∈ {1, 2, ..., n}, defined on the domain of local chart on T 2M , are called the

coefficients of the nonlinear connection N and
{

δ

δxa

}
is called the adapted

basis to N.
We can see that, with respect to (1.3), we have

δ

δxa
=

∂x̃b

∂xa

δ

δx̃b
. (4.8)

It is not difficult to prove the following property, [92]:
Theorem 4.1. With respect to a changing of local coordinates (1.3) on

T 2M the coefficients
(
N
1

b
a, N

2

b
a

)
of the nonlinear connection N on T 2M obey

the rule of transformation

Ñ
1

a
f

∂x̃f

∂xb
=

∂x̃a

∂xf
N
1

f
b −

∂ỹ(1)a

∂xb
,

Ñ
2

a
f

∂x̃f

∂xb
=

∂x̃a

∂xf
N
2

f
b +

∂ỹ(1)a

∂xf
N
1

f
b −

∂ỹ(2)a

∂xb
.

(4.9)

Conversely:
Theorem 4.2. If the systems of functions

(
N
1

a
b, N2

a
b

)
are given on every

domain of local chart of the manifold T 2M such that the equations (4.9) hold,
then

(
N
1

a
b, N2

a
b

)
are the coefficients of a nonlinear connection on T 2M .

Let N be a nonlinear connection on T 2M . The 2-tangent structure J, defined
by (1.7), applies the horizontal distribution N in a vertical subdistribution N1

from V1 of local dimension n, supplementary to the subdistribution V2. Setting
N0 = N, J(N0) = N1, we obtain from Theorem 1.1:

Theorem 4.3. The following direct decomposition of linear spaces holds

TuT 2M = N0(u)⊕N1(u)⊕ V2(u),∀u ∈ T 2M. (4.10)

N1 is called the J-vertical distribution.
Theorem 4.4. The adapted basis to the distribution N0, N1, V2 are given,

respectively, by
δ

δxa
=

∂

∂xa
−N

1

b
a

∂

∂y(1)b
−N

2

b
a

∂

∂y(2)b
,

δ

δy(1)a
=

∂

∂y(1)a
−N

1

b
a

∂

∂y(2)b
,

δ

δy(2)a
=

∂

∂y(2)a
.

(4.11)
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Consequently,
{

δ

δxa
,

δ

δy(1)a
,

δ

δy(2)a

}
=

{
δ

δy(α)a

}
, xa = y(0)a, (α = 0, 1, 2) , (4.12)

is a local basis adapted to the direct decomposition (4.10) and we have

δ

δy(β)a
=

∂x̃b

∂xa

δ

δỹ(β)b
, (β = 1, 2). (4.13)

Indeed, (4.8) is transformed by J in to (4.13).
As usually, let we denote

∂a =
∂

∂xa
, ∂̇1a =

∂

∂y(1)a
, ∂̇2a =

∂

∂y(2)a
,

and from now on we denote the basis (4.12) by
(
δa, δ1a, ∂̇2a

)
. (4.12’)

1.5 The dual coefficients of a nonlinear connec-
tion. Determination of a nonlinear connec-
tion from a 2-semispray

The dual basis (or adapted cobasis) of the adapted basis (4.12) will be denoted
by (

dxa, δy(1)a, δy(2)a
)

, (a = 1, ..., n) . (5.1)

The scalar product of the covector fields (5.1) and vector fields (4.12) are
expressed as follows:

δbcdxa = δa
b , δbcδy(1)a = 0, δbcδy(2)a = 0,

δ1bcdxa = 0, δ1bcδy(1)a = δa
b , δ1bcδy(2)a = 0,

δ2bcdxa = 0, δ2bcδy(1)a = 0, δ2bcδy(2)a = δa
b ,

(5.2)

(
δ2b = ∂̇2b

)
.

By a straightforward calculus we obtain:
Theorem 5.1.
1 ◦. The dual basis (5.1) of the adapted basis (4.12) is given by

δxa = dxb,

δy(1)a = dy(1)a + M
1

a
bdxb,

δy(2)a = dy(2)a + M
1

a
bdy(1)b+ M

2

a
bdxb,

(5.3)
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where
M
1

a
b = N

1

a
b,M

2

a
b = N

2

a
b + N

1

a
fN

1

f
b. (5.4)

2◦. Conversely, if the adapted cobasis (5.1) is given in the form (5.3), then
the adapted basis (4.12) is expressed in the form (4.11), where

N
1

a
b = M

1

a
b, N

2

a
b = M

2

a
b −M

1

a
fM

1

f
b. (5.4’)

These new coefficients M
1

a
b,M2

a
b will be called the dual coefficients of the

nonlinear connection N.
With respect to (1.3) the covector fields of the adapted cobasis (5.1) trans-

form as follows

δỹ(α)a =
∂x̃a

∂xb
δy(α)b (α = 0, 1, 2; δy(0) = dx). (5.5)

By a straightforward calculus the rule of transformations of a dual coefficients
M
1

a
b,M2

a
b with respect to (1.3), it is not difficult to obtain, [92]:

Theorem 5.2.
1◦. A transformation of coordinates (1.3) on the differentiable manifold T 2M

implies the following transformation of the dual coefficients

∂x̃a

∂xc
M
1

c
b = M̃

1

a
c

∂x̃c

∂xb
+

∂ỹ(1)a

∂xb

∂x̃a

∂xc
M
2

c
b = M̃

2

a
c

∂x̃c

∂xb
+ M̃

1

a
c

∂ỹ(1)c

∂yb
+

∂ỹ(2)a

∂xb
.

(5.6)

2◦. If on each domain of local chart on T 2M a set of function
(
M
1

a
b,M2

a
b

)
is

given, such that, with respect to (1.3), the equations (5.6) hold, then there exists
on T 2M an unique nonlinear connection N which has as dual coefficients just
the given set of functions.

One of the important problems concerning the notion of nonlinear connection
consists in its determinations from a 2-semispray.

Let us consider S a 2-semispray with the coefficients Ga
(
x, y(1), y(2)

)
:

S = y(1)a ∂

∂xa
+ 2y(2)a ∂

∂y(1)a
− 3Ga

(
x, y(1), y(2)

) ∂

∂y(2)a
. (5.7)

We have, [91]:
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Theorem 5.3. The set of functions

M
1

a
b =

∂Ga

∂y(2)b
,M

2

a
b =

1
2

(
SM

1

a
b + M

1

a
cM

1

c
b

)
(5.8)

gives the dual coefficients of a nonlinear connection N, determined by the 2-
semispray S only, with the coefficients Ga

(
x, y(1), y(2)

)
.

By a straightforward calculus we obtain:
Corollary 5.1. ([33]) The following functions

M
1

a
b =

∂Ga

∂y(2)b
,M

2

a
b =

∂Ga

∂y(1)b
(5.8’)

are geometrical object fields on T 2M , having the rules of transformations (5.6)
with respect to the changing of local coordinates (1.3).

These results are very important for the construction of the canonical non-
linear connections in the various geometries of second order.

1.6 Distinguished vector and covector fields

Let N be a nonlinear connection. Then, it given rise to the object decomposition
(4.10). Let h, v1, v2 be the projectors defined by the distributions N0, N1, V2.
They have the following properties:

h + v1 + v2 = I, h2 = h, v2
1 = v1, v

2
2 = v2,

h ◦ v1 = v1 ◦ h = 0, h ◦ v2 = v2 ◦ h = 0, v1 ◦ v2 = v2 ◦ v1 = 0.
(6.1)

If X∈ X (T̃ 2M) we denote:

XH = hX, XV1 = v1X,XV2 = v2X. (6.2)

Therefore we have the unique decomposition:

X = XH + XV1 + XV2 . (6.3)

Each of the components XH , XV1 , XV2 is called a d-vector field on T 2M.
In the adapted basis (4.12) we get

XH = X(0)aδa, XV1 = X(1)aδ1a, XV2 = X(2)a∂̇2a. (6.3’)

By means of (4.8) we have

X̃(0)a =
∂x̃a

∂xb
X(0)b, X̃(1)a =

∂x̃a

∂xb
X(1)b, X̃(2)a =

∂x̃a

∂xb
X(2)b. (6.4)
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But, these are the classical rule of the transformations of the local coordinates
of vector fields on the base manifold M. Therefore, X(o)a, X(1)a, X(2)a are called
d-vector fields.

For instance, the Liouville vector fields
1

C and
2

C have the properties

1

CH = 0,
1

CV1 = 0,
1

C =
1

CV2 = y(1)a∂̇2a,
2

CH = 0,
2

CV1 = y(1)aδ1a,
2

CV2 = (2y(2)a + N
1

a
by

(1)a)∂̇2a.

A similar theory can be done for distinguished 1-forms.
With respect to the direct decomposition (4.12) a 1-form ω ∈ X ∗(T̃ 2M) can

be written in the form
ω = ωH + ωV1 + ωV2 , (6.5)

where
ωH = ω0h, ωV1 = ω0v1, ω

V2 = ω0v2. (6.5’)

In the adapted cobasis (5.1), we have

ω = ω
(0)

adxa + ω
(1)

aδy(1)a + ω
(2)

aδy(2)a. (6.6)

The quantities ωH , ωV1 , ωV2 are called d-1-forms.
The coefficients ω

(0)
a, ω

(1)
a, ω

(2)
aare transformed by (1.3) as follows:

ω
(0)

a =
∂x̃b

∂xa
ω̃
(0)

b, ω
(1)

a =
∂x̃b

∂xa
ω̃
(1)

b, ω
(2)

a =
∂x̃b

∂xa
ω̃
(2)

b.

Hence ω
(0)

a, ω
(1)

a, ω
(2)

aare called d-covector fields.

Particularly, we remark that the differential of a function f ∈ F(T̃ 2M)
can be written in the form

df =
δf

δxa
dxa +

δf

δy(1)a
δy(1)a +

∂f

∂y(2)a
∂̇2a. (6.7)

Therefore

df = (df)H + (df)V1 + (df)V2

where

(df)H = δafdxa, (df)V1 = δ1afδy(1)a, (df)V2 = ∂̇2afδy(2)a.
(6.7’)

Let us consider a smooth parametrized curve γ : I ⊂ R → T̃ 2M such that
Im γ ⊂ (π2)−1(U). It can be analytical represented by:

xa = xa(t), y(1)a = y(1)a(t), y(2)a = y(2)a(t), t ∈ I (6.8)
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The tangent vector
dγ

dt
, in a point of the curve γ, can be written in the

form:

dγ

dt
=

(
dγ

dt

)H

+
(

dγ

dt

)V1

+
(

dγ

dt

)V2

=
dxa

dt
δa +

δy(1)a

dt
δ1a +

δy(2)a

dt
∂̇2a, (6.9)

where

δy(1)a

dt
=

dy(1)a

dt
+ M

1

a
b

dxb

dt
,
δy(2)a

δt
=

dy(2)a

dt
+ M

1

a
b

dy(1)b

dt
+ M

2

a
b

dy(2)b

dt
. (6.10)

The curve (6.8) is called horizontal if
dγ

dt
=

(
dγ

dt

)H

in every point of the
curve γ.

Proposition 6.1. An horizontal curve on T̃ 2M is characterized by the
following system of differential equations:

xa = xa(t),
δy(1)a

dt
= 0,

δy(2)a

dt
= 0, t ∈ I. (6.11)

Clearly, the system of differential equations (6.11) has local solutions, if the
initial point xa

0 = xa(t0), y
(1)a
0 , y

(2)a
0 on T 2M are given, t0 ∈ I.

Let c:I→ M be a parametrized curve on the base manifold M, given by
xa = xa(t), t ∈ I. Let us, also, consider to extension c̃(= γ) to T2M of the curve
c. The curve c:I→ M on the base manifold M is called an autoparallel curve of
the nonlinear connection N if its extension c̃(= γ) to T 2M is an horizontal curve.

Theorem 6.1. The autoparallel curve of the nonlinear connection N with
the dual coefficients

(
M
1

a
b,M2

a
b

)
are characterized by the system of differential

equations

y(1)a =
dxa

dt
, y(2)a = 1

2

d2xa

dt2
,

δy(1)a

dt
=

dy(1)a

dt
+ M

1

a
b

dxb

dt
= 0,

δy(2)a

dt
=

dy(2)a

dt
+ M

1

a
b

dy(1)b

dt
+ M

2

a
b

dxb

dt
= 0.

(6.12)

A theorem of existence and uniqueness of the autoparallel curves of a non-
linear connection can now be easy formulated.

Finally, we can represent the Liouville vector fields
1

C and
2

C from (1.6), (1.6’)
in the adapted basis (4.12). We get

1

C = z(1)a∂̇2a,
2

C = z(1)aδ1a + 2z(2)a∂̇2a, (6.13)

where
z(1)a = y(1)a, z(2)a = y(2)a +

1
2
M
1

a
by

(1)b. (6.14)

Therefore, z(1)a and z(2)a are d-vector fields. They are called the Liouville
d-vector fields.
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1.7 Lie brackets. Exterior differentials

In applications, the Lie brackets of the vector fields
{

δa, δ1a, ∂̇2a

}
from the

adapted basis to the direct decomposition (4.10), are important.
Proposition 7.1. The Lie brackets of the vector fields of the adapted basis

are given by
[δb, δc] = R

(01)

a
bcδ1a+ R

(02)

a
bc∂̇2a,

[δb, δ1c] = B
(11)

a
bcδ1a+ B

(12)

a
bc∂̇2a,

[
δb, ∂̇2c

]
= B

(21)

a
bcδ1a+ B

(22)

a
bc∂̇2a,

[δ1b, δ1c] = R
(12)

a
bc∂̇2a,

[
δ1b, ∂̇2c

]
= B

(21)

a
bc∂̇2a,

(7.1)

where
R

(01)

a
bc = δcN

1

a
b − δbN

1

a
c,

R
(02)

a
bc = δcN

2

a
b − δbN

2

a
c + N

1

a
f R
(01)

f
bc,

B
(11)

a
bc = δ1cN

1

a
b, B

(12)

a
bc = δ1cN

2

a
c − δbN

1

a
c + N

1

a
f B
(11)

f
bc,

B
(21)

a
bc = ∂̇2cN

1

a
b, B

(22)

a
bc = ∂̇2cN

2

a
b + N

1

a
f B
(21)

f
bc,

R
(12)

a
bc = δ1cN

1

a
b − δ1bN

1

a
c.

(7.2)

The proof of this relations can be done by a direct calculus.
Now we can establish, [14]:
Proposition 7.2. The exterior differentials of the 1-forms (dxa, δy(1)a,

δy(2)a), which determine the adapted cobasis (5.1), are given by

d(dxa) = 0,

d(δy(1)a) =
{

1
2 R
(01)

a
bcdxc + B

(11)

a
bcδy

(1)c + B
(21)

a
bcδy

(2)c

}
∧ dxb,

d(δy(2)a) =
{

1
2 R
(02)

a
bcdxc + B

(12)

a
bcδy

(1)c + B
(22)

a
bcδy

(2)c

}
∧ dxb+

+
{

1
2 R
(12)

a
bcδy

(1)c + B
(21)

a
bcδy

(2)c

}
∧ δy(1)b.

(7.3)

Indeed, from (5.3) we deduce

d(δy(1)a) = dM
1

a
b ∧ dxb, d(δy(2)a) = dM

1

a
b ∧ dy(1)b + dM

2

a
b ∧ dxb,

where we substitute dy(1)a and dy(2)a from (5.3) and take into account the rela-
tions (5.4) and the formulae (7.2).
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Let us consider the following coefficients from (7.1):

B
(11)

a
bc = δ1cN

1

a
b, B

(22)

a
bc = ∂̇2cN

2

a
b + N

1

a
f ∂̇2cN

1

f
b. (7.4)

By means of (4.9) it follows:
Proposition 7.3. The coefficients B

(11)

a
bc, B

(22)

a
bc have the same rule of trans-

formation with respect to the local changing of coordinates (1.3) on T 2M . This is

B̃
(ββ)

a
df

∂x̃d

∂xb

∂x̃f

∂xc
=

∂x̃a

∂xd
B

(ββ)

d
bc −

∂2x̃a

∂xb∂xc
, (β = 1, 2) . (7.5)

We will be see that these coefficients are the horizontal coefficients of an
N-linear connection on T 2M.

We obtain also:
Proposition 7.4. The coefficients: R

(01)

a
bc, R

(02)

a
bc, R

(12)

a
bc and

B
(12)

a
bc = δ1cN

2

a
b − δbN

1

a
c + N

1

a
fδ1cN

1

f
b,

B
(21)

a
bc = ∂̇2cN

1

a
b,

(7.6)

are d-tensor fields on T 2M.

We get:
Theorem 7.1. The horizontal distribution N is integrable if and only if for

any vector fields X, Y ∈ X
(
T 2M

)
we have

[XH , Y H ]V1 = [XH , Y H ]V2 = 0.

Indeed, the Lie bracket of any two horizontal vector fields XH , Y H belongs
to the horizontal distribution N if and only if the last two equations hold.

Also, we get:
Theorem 7.2. The J-vertical distribution N1 is integrable if and only if for

any vector field X, Y ∈ X
(
T 2M

)
we have:

[XV1 , Y V1 ]H = [XV1 , Y V1 ]V2 = 0.

Taking into account (7.1) we can formulate:
Theorem 7.3.

1◦ The horizontal distribution N is integrable if and only if the following
d-tensor fields vanish:

R
(01)

a
bc = 0, R

(02)

a
bc = 0. (7.7)

2◦ The J-vertical distribution N1 is integrable if and only if we have:

R
(12)

a
bc = 0. (7.8)
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1.8 The almost product structure P . The almost
(α)−contact structure F

α
, (α = 0, 1, 2)

Assuming that a nonlinear connection N is given, we define a F (
T 2(M)

)
-linear

mapping
P : X (T 2M) → X (T 2M),

by defined

P(XH) = XH ,P(XV1) = −XV1 ,P(XV2) = −XV2 , ∀X ∈ X (T 2M) (8.1)

We have, also



P ◦ P = I,
P = I − 2(v1 + v2) = 2h− I,
rankP = 3n.

(8.2)

We can prove, without difficulties, [90], [92]:
Theorem 8.1. A nonlinear connection N on T 2M is characterized by the

existence of an almost product structure P on T 2M whose eigenspaces corre-
sponding to the eigenvalue -1 coincide with the linear spaces of the vertical dis-
tribution V on T 2M .

The nonlinear connection N being fixed we have the direct decomposition
(4.1), (4.10) and the corresponding adapted basis (4.11).

Let us consider the F(T̃ 2M)-linear mapping:

F
0
(δa) = 0,F

0
(δ1a) = −∂̇2a,F

0
(∂̇2a) = δ1a. (8.3)

Then, we deduce:
Theorem 8.2. The mapping F

0
has the following properties:

1 ◦. It is globally defined on T 2M.
2 ◦. F

0
is a tensor field of type (1,1).

3 ◦. KerF
0
=N 0, ImF

0
=N 1 ⊕ V2.

4 ◦. rank F
0
=2n.

5 ◦. F
0

3 + F
0

= 0.

Proof.
1◦. Taking into account (4.13) we have

∂xa

∂x̃b
F
0
(

δ

δxa
) = 0, implies F

0
(

δ

δx̃a
) =

0. Also,
∂xa

∂x̃b
F
0
(

δ

δy(1)a
) = −∂xa

∂x̃b

∂

∂y(2)a
,

∂xa

∂x̃b
F
0
(

∂

∂y(2)a
) =

∂xa

∂x̃b

δ

δy(1)a
, lead to

F
0
(

δ

δỹ(1)b
) = − ∂

∂ỹ(2)b
and F

0
(

∂

∂ỹ(2)b
) =

δ

δỹ(1)b
.

2◦. F
0

is F(T2M)-linear mapping from X (T2M) to X (T2M).
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3◦. F
0
(

δ

δxa
)=0 implies F

0
|N0 is trivial and F

0
(N0 ⊕N1 ⊕ V2) = N1 ⊕ V2.

4◦. Evidently, by means of 3◦.
5◦. F

0

2(XV1)=F
0
(−XV2)=−XV1 ;F

0

3(XV1)=XV2 and F
0
(XV1)=−XV2 ;

F
0

2(XV2)=F
0
(XV1)=−XV2 ;F

0

3(XV2)=−XV1 and F
0
(XV2)=XV1 . So,

(
F
0

3 + F
0

)
(XH) = 0,

(
F
0

3 + F
0

)
(XV1) = 0,

(
F
0

3 + F
0

)
(XV2) = 0,

∀XH ∈ N0,∀XV1 ∈ N1, ∀XV2 ∈ V2.

Therefore 5◦ holds.
q.e.d.

Thus, F
0

is a F
0
(3,1)-structure. We can say that F

0
is a natural almost

(0)-contact structure determined by the nonlinear connection N.
Indeed, the dimension of T2M is 3n=n+2n. Let us consider a local basis{

ξ
1a

}
of the distribution N0 and

{
1a
η

}
its dual. Then the set

(
F
0
, ξ
1a

,
1a
η

)
, deter-

mine an almost n-contact structure. Namely, we have

F
0
( ξ
1a

) = 0,
1a
η (ξ)

1b

= δa
b ,

F
0

2(X) = −X +
n∑

a=1

1a
η (X) ξ

1a
,∀X ∈ X (T̃ 2M).

Let us consider the F(T̃ 2M)-linear mapping

F
1
(δa) = −∂̇2a,F

1
(δ1a) = 0,F

1
(∂̇2a) = δa. (8.4)

We have
Theorem 8.3. The mapping F

1
has the following properties

1 ◦. It is globally defined on T 2M.
2 ◦.F

1
is a tensor field of type (1,1).

3 ◦. KerF
1
=N 1, ImF

1
=N 0 ⊕ V2.

4 ◦. rank F
1
=2n.

5 ◦. F
1

3 + F
1

= 0.

The proof fallow the same manner.
We can say that F

1
is a natural almost (1)-contact structure determined

by the nonlinear connection N.
Analogous, let us consider the F(T̃ 2M) - linear mapping

F
2
(δa) = −δ1a,F

2
(δ1a) = δa,F

2
(∂̇2a) = 0. (8.5)

We have
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Theorem 8.4. The mapping F
2

has the following properties

1 ◦. It is globally defined on T 2M.
2 ◦. F

2
is a tensor field of type (1,1).

3 ◦. KerF
2
=V 2, ImF

2
=N 0 ⊕N1.

4 ◦. rank F
2
=2n.

5 ◦. F
2

3 + F
2

= 0.

We can say that F
2

is a natural almost (2)-contact structure determined
by the nonlinear connection N.

The Nijenhuis tensor of the structures F
α
, (α = 0, 1, 2), is given by:

NF(X,Y ) = F2[X, Y ] + [FX,FY ]− F[FX,Y ]− F[X,FY ], (F = F
α
),

and the normality condition of reads as follow:

NF(X,Y ) +
n∑

a=1
d

(
δy(2)a

)
(X, Y ) = 0, ∀X, Y ∈ X (T 2M),

(F = F
α
, α = 0, 1, 2).

(8.6)

Of course, in the adapted basis, using the formula (7.3) we can obtain the
explicit form of the equations (8.6), (α = 0, 1, 2).

The structures
(
F
α
,

α

ξ
1a

,
1a
η
α

)
will be used in the case when we have a Riemann

structure G on T 2M , so that the set
(
F
α
,

α

ξ
1a

,
1a
η
α

,G
)

will be the almost (α)-contact

Riemannian structures on T̃ 2M, (α = 0, 1, 2). The manifold T 2M endowed with
this structures gives us the geometrical models, H

(α)

3n =
{

T 2M,G,F
α

}
, (α =

0, 1, 2), for these spaces.
Taking into account (1.7) and (4.11), we obtain:

Proposition 8.1. The following equalities hold:

J(δa) = δ1a, J(δ1a) = ∂̇2a, J(∂̇2a) = 0. (8.7)

1.9 The Riemann structure on T̃ 2M

Let us consider a Riemannian structure G on the manifold T̃ 2M .
The following problem is arises: Can the Riemannian structure G determine

a nonlinear connection N on T̃ 2M?
In order to determine a nonlinear connection on T̃ 2M by means of G, it is

sufficient to determine the distribution vertical V2 orthogonal to the distributions
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N1 and N0. The solution is immediate. Namely, it is important to determine the
coefficients N

1

a
b, N2

a
b on N.

In the natural basis, G is given locally by

G = g
00

abdxa⊗ dxb + g
01

abdxa⊗ dy(1)b + g
02

abdxa⊗ dy(2)b + ... + g
22

abdy(2)a⊗ dy(2)b,

(9.1)
where the matrix || g

αβ
ab||, (α, β = 0, 1, 2), is positively defined.

Let
(
δa, δ1a, ∂̇2a

)
be the adapted basis of N given by (4.11).

The following conditions of orthogonality between N1 and V2, respectively,
N0 and V2:

G(δ1a, ∂̇2b) = 0,G(δa, ∂̇2b) = 0 (9.2)

give us the following system of equations for determining the coefficients N
1

a
b and

N
2

a
b :

g
12

ab −N
1

c
a g
22

bc = 0,

g
02

ab −N
1

c
a g
12

bc −N
2

c
a g
22

bc = 0.
(9.3)

The restriction of a Riemannian structure G on T 2M to the vertical distri-
bution V2 on T 2M is completely determined by

g
22

ab = G(∂̇2a, ∂̇2b), (a, b = 1, ..., n). (9.4)

Performing a change of coordinates on T2M it comes out that the functions
g
22

ab may be viewed as the components of a tensor field on M. Assuming that

rank(g
22

ab)=n, let (g
22

cd) be the inverse of matrix (g
22

ab).

Consequently, we have:

Theorem 9.1. A Riemannian structure G on T 2M determines uniquely a
nonlinear connection N, if the distribution V 2 is orthogonal to distributions N 1

and N 0. The coefficients N
1

a
b, N

2

a
b of N are given by

N
1

a
b = g

12
bc g

22

ca,

N
2

a
b = g

02
bc g

22

ca −N
1

c
bN1

a
c.

(9.5)

Corollary 9.1. If the distribution V 2 is orthogonal to distributions N 1

and N 0, then a Riemannian structure G on T 2M determines uniquely the dual
coefficients M

1

a
b, M

2

a
b of a nonlinear connection N by
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M
1

a
b = g

12
bc g

22

ca,M
2

a
b = g

02
bc g

22

ca. (9.6)

Let F
α

be the natural almost (α)-contact structures, (α = 0, 1, 2), determined
by the previous nonlinear connection N.

The following problem arises: When will the pair (G,F
α
) is a Riemannian

almost (α)-contact structure?
Of course, it is necessary to have:

G(F
α
X,Y ) = −G(X,F

α
Y ), ∀X,Y ∈ X (T̃ 2M), (α = 0, 1, 2).

Consequently, we get:
Theorem 9.2. The pair (G,F

0
) is a Riemannian almost (0)-contact struc-

ture on T 2M if and only if in the adapted basis determined by N 0, N 1 and V 2

the tensor G has the form

G(X,Y ) = gabdxa ⊗ dxb + habδy
(1)a ⊗ δy(1)b + habδy

(2)a ⊗ δy(2)b. (9.7)

Theorem 9.3. The pair (G,F
1
) is a Riemannian almost (1)-contact struc-

ture on T 2M if and only if in the adapted basis determined by N 0, N 1 and V 2

the tensor G has the form

G(X, Y ) = gabdxa ⊗ dxb + habδy
(1)a ⊗ δy(1)b + gabδy

(2)a ⊗ δy(2)b. (9.8)

Theorem 9.4. The pair (G,F
2
) is a Riemannian almost (2)-contact struc-

ture on T 2M if and only if in the adapted basis determined by N 0, N 1 and V 2

the tensor G has the form

G(X, Y ) = gabdxa ⊗ dxb + gabδy
(1)a ⊗ δy(1)b + habδy

(2)a ⊗ δy(2)b. (9.9)

Corollary 9.2. With respect to each the Riemannian structures (9.7), (9.8),
(9.9) the distributions N 0, N 1, V 2 are orthogonal respectively.

Remark The forms (9.7), (9.8), (9.9) will be used to define a lift to T 2M of
a metric structure given only by a nonsingular and symmetric d-tensor field gab.
Namely, we have

G(X,Y ) = gabdxa ⊗ dxb + gabδy
(1)a ⊗ δy(1)b + gabδy

(2)a ⊗ δy(2)b. (9.10)

We can prove:
Theorem 9.5. If the Riemannian structure G given by (9.1) satisfy:

G
(
∂a, ∂̇2b

)
= 0,G

(
∂̇1a, ∂̇2b

)
= 0 and G

(
∂̇2a, ∂̇2b

)
6= 0, (9.11)
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then we have
N
1

a
b = 0, N

2

a
b = 0

(
equiv.M

1

a
b = 0,M

2

a
b = 0

)
, (9.12)

δa = ∂a, δ1a = ∂̇1a, δy(1)a = dy(1)a, δy(2)a = dy(2)a. (9.13)

Proof. By (9.11) and (9.3) we obtain (9.12). The (4.11) and (5.3) given us
(9.13).

q.e.d.
Corollary 9.3. If the Riemannian structure (9.1) satisfy the equations

(9.11) then G has the following expression:

G = g
(00)

ab

(
x, y(1), y(2)

)
dxa ⊗ dxb +

2∑

β=1

g
(ββ)

ab

(
x, y(1), y(2)

)
dy(β)a ⊗ dy(β)b

(9.14)
if and only if we have

G
(
∂a, ∂̇1b

)
= 0, (9.15)

where
det( g

(00)
ab). det( g

(11)
ab). det( g

(22)
ab) 6= 0. (9.16)
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Chapter 2

Linear connections on the
manifold T 2M

The main topics of this chapter showing that there are linear connection com-
patible to the direct decomposition (4.10) determined by a nonlinear connection
N, on the total space of the bundle (T 2M,π2,M).

We are going to study the distinguished Tensor Algebra (or d-Tensor Alge-
bra), N-linear connections, torsions and curvatures, parallelism, structures equa-
tions, etc.

2.1 The d−tensor algebra

Let N be a nonlinear connection on T 2M . Then N determines the direct decom-
position (4.10), Ch. 1. With respect to (4.10), Ch.1, a vector field X and one
form ω can be uniquely written in the form (6.3) and (6.5), Ch. 1, respectively,
i.e.

X = XH + XV1 + XV2 ,
ω = ωH + ωV1 + ωV2 .

(1.1)

Definition 1.1. A distinguished tensor field (briefly: d-tensor field) on
T 2M of type (r,s) is a tensor field T of type (r,s) on T 2M with the property:

T (
1
ω, ...,

r
ω, X

1
, ..., X

s
) = T (

1
ωH , ...,

r
ωV2 , X

1

H , ..., X
s

V2), (1.2)

for any (
1
ω, ...,

r
ω)∈ X ∗(T 2M) and for any (X

1
, ..., X

s
)∈ X (T 2M).

For instance, every component XH , XV1 and XV2 of a vector field X∈
X (T 2M) is a d-vector field.

Also, every component ωH , ωV1 and ωV2 of the form ω ∈ X (T 2M) is a
d-1-form.

27
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If T∈ T r
s (T 2M) is not a d-tensor, then using (1.1) in T (

1
ω, ...,

r
ω, X

1
, ..., X

s
) we

get

T (
1
ωH +

1
ωV1 +

1
ωV2 , ..., X

s

H + X
s

V1 + X
s

V2) = T (
1
ωH , ..., X

s

H)+

+T (
1
ωH , ..., X

s

V1) + ... + T (
1
ωV2 , ..., X

s

V2).

Then, every term in the second member is a d-tensor field.

Let us consider the coordinates of a d-tensor field with respect to the adapted
basis (δa, δ1a, ∂̇2a) and cobasis (dxa, δy(1)a, δy(2)a)

T a1...ar

b1...bs
(x, y(1), y(2)) = T (dxa1 , ..., δy(2)ar , δb1 , ..., δ(2)bs

).

It follows that T of type (r,s) can be locally written in the form

T = T a1...ar

b1...bs
(x, y(1), y(2))δa1 ⊗ ...⊗ ∂̇2ar

⊗ dxb1 ⊗ ...⊗ δy(2)bs . (1.3)

Hence, the set {1,δa, δ1a, ∂̇2a} generates the algebra of the d-tensor fields over
the ring of functions F(T2M).

Examples

1◦. If f∈ F(T2M), then
δf

δxa
= δaf ,

δf

δy(1)a
= δ1af ,

∂f

∂y(2)a
= ∂̇2af are

d-1-covectors.
2◦. Let us consider a Riemannian structure G on T2M and assume that the

distributions N0, N1, V2 are orthogonal in pairs, with respect to G:

G(XH , Y V1) = G(XH , Y V2) = G(XV1 , Y V2) = 0, ∀X, Y ∈ X (T 2M). (1.4)

In this case G can be uniquely written as a sum of d-tensors:

G = GH + GV1 + GV2 , (1.4’)

where, for any X,Y∈ X (T 2M), we have

GH(X, Y ) = G(XH , Y H),
GV1(X,Y ) = G(XV1 , Y V1), GV2(X, Y ) = G(XV2 , Y V2). (1.4”)

Consequently, in the adapted cobasis, G can be uniquely written as

G = g
(0)

abdxa ⊗ dxb + g
(1)

abδy
(1)a ⊗ δy(1)b + g

(2)
abδy

(2)a ⊗ δy(2)b, (1.5)

where
g

(α)
ab(x, y(1), y(2)) = g

(α)
ba(x, y(1), y(2)), (α = 0, 1, 2), (1.5’)

rank|| g
(α)

ab|| = n, (α = 0, 1, 2) (1.5”)

The quantities g
(α)

ab, (α = 0, 1, 2) are d-tensors of type (0,2) on T 2M.
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2.2 N−linear connection

On the total space T 2M of the 2-osculator bundle (T 2M ,π2,M) there are linear
connections compatible with the direct decomposition (4.10), Ch.1. The advan-
tage of considering these linear connections is that in the adapted basis they have
as coefficients some geometrical objects, possibly to find in usual cases.

Definition 2.1. A linear connection D on T 2M is called a N-linear con-
nection if it preserves by parallelism the horizontal and vertical distributions N 0,
N 1 and V 2 on T 2M .

By a general theory of connections on manifolds, the horizontal and vertical
distributions are preserves by parallelism if for any X∈ X (T 2M), DX carries the
horizontal vector fields to the horizontal vector fields and the vertical vector fields
to the vertical vector fields. Thus DXY H is always an horizontal vector field and
DXY Vβ are verticals, (β = 1, 2).

Theorem 2.1. For any N-linear connection D we have

DXh = 0, DXv1 = 0, DXv2 = 0, (2.1)

DXP = 0, ∀X ∈ X (
T 2M

)
. (2.2)

Indeed, from (DXh)(Y)=DX(hY ) − h(DXY ) if Y=YH , and Y=YVβ ,(β =
1, 2) we obtain DXh = 0. Similarly, we get DXv1 = 0,DXv2 = 0.

Now, taking into account the expression (8.2), Ch. 1, of P it follows DXP = 0.

Theorem 2.2. A linear connection D on T 2M is a N-linear connection if
and only if the following properties are verified

(
DXY H

)Vβ = 0,
(
DXY Vβ

)H = 0, (β = 1, 2),(
DXY V1

)V2 = 0,
(
DXY V2

)V1 = 0, ∀X, Y ∈ X (T 2M).
(2.3)

Let us consider a vector field X∈ X (T 2M), written in the form (1.1). It
follows from the property of an N-linear connection that

DXY = DXH Y + DXV1 Y + DXV2 Y, ∀X,Y ∈ X (T 2M). (2.4)

Also, let us consider Y on T2M, written in the form (1.1).Since DXY is
F(T2M)-linear with respect to X, we have

DXY =
2∑

α=0

(
DXH Y Vα + DXV1 Y Vα + DXV2 Y Vα

)
,

∀X, Y ∈ X (T 2M), (V0 = H)
(2.5)

We find here new operators in the algebra of d-tensor fields: D
α

XH , D
α

XV1 ,

D
α

XV2 , (α = 0, 1, 2), denoted by

D
α

XH = D
α

H
X , D

α
XV1 = D

α

V1
X , D

α
XV2 = D

α

V2
X , (α = 0, 1, 2). (2.6)



30 CHAPTER 2. LINEAR CONNECTIONS ON THE MANIFOLD T 2M

We have



D
0

H
XY = DXH Y H , D

0

V1
X Y = DXV1 Y H , D

0

V2
X Y = DXV2 Y H ,

D
β

H
XY = DXH Y Vβ , D

β

V1
X Y = DXV1 Y Vβ , D

β

V2
X Y = DXV2 Y Vβ ,

(β = 1, 2) .

(2.7)

These operators are not covariant derivations in the algebra of d-tensor fields,
since D

α

H
Xf = XHf 6= Xf , etc. But they have similar properties with the covari-

ant derivations.
Theorem 2.3. The operators D

α

H , D
α

V1 , D
α

V2 , (α = 0, 1, 2), have the proper-
ties:

1 ◦. All equalities (2.3) are verified for X=X H , X = XV1 , X = XV2 and
D
α

H
X f = X H f ,D

α

V1
X f = X V1 f ,D

α

V2
X f = X V2 f ,

2 ◦. D
α

H
X(fY ) = XH(fY ) + fD

α

H
XY,D

α

Vβ

X (fY ) = XVβ (fY Vβ ) + fD
α

Vβ

X Y,

3 ◦.
(
D
α

H
XY

)
|U

= D
α

H

X|UY|U ,
(
D
α

Vβ

X Y
)
|U

= D
α

Vβ

X|U Y|U for any open set U⊂
T 2M,

4 ◦. D
α

H
X+Y = D

α

H
X + D

α

H
Y , D

α

Vβ

X+Y = D
α

Vβ

X + D
α

Vβ

Y ,

5 ◦. D
α

H
fX = fD

α

H
X , D

α

Vβ

fX = fD
α

Vβ

X ,

for any f ∈ F (T 2M) and any vector fields X,Y on T 2M, (α = 0, 1, 2; β =
1, 2).

D
α

H , D
α

V1 , D
α

V2 are called hα-, v1α-, and v2α-covariant derivatives respec-

tively, (α = 0, 1, 2).
We can extend the action of the hα-, v1α-, and v2α-derivatives to any tensor

field on T 2M , particularly to any d-tensor fields. So, for any ω ∈ X ∗(T 2M) and
for any X,Y∈ X (T 2M) we have

(
D
α

H
Xω

)
(Y ) = XHω(Y )− ω

(
D
α

H
XY

)
,(

D
α

Vβ

X ω
)

(Y ) = XVβ ω(Y )− ω
(
D
α

Vβ

X Y
)

, (α = 0, 1, 2;β = 1, 2).
(2.8)

If T∈ T r
s (T 2M), taking in D

α
XT, X = XH or X=XVβ , we have

(
D
α

H
XT

)(
1
ω, ...,

r
ω,X

1
, ..., X

s

)
= XHT

(
1
ω, ...,

r
ω,X

1
, ..., X

s

)
−

−T
(
D
α

H
X

1
ω, ...,

r
ω,X

1
, ..., X

s

)
− ...− T

(
1
ω, ...,

r
ω, X

1
, ..., D

α

H
XX

s

)
,

(
D
α

Vβ

X T
)(

1
ω, ...,

r
ω,X

1
, ..., X

s

)
= XVβ T

(
1
ω, ...,

r
ω,X

1
, ..., X

s

)
−

−T
(
D
α

Vβ

X
1
ω, ...,

r
ω,X

1
, ..., X

s

)
− ...− T

(
1
ω, ...,

r
ω, X

1
, ..., D

α

Vβ

X X
s

)
,

(α = 0, 1, 2; β = 1, 2)

(2.9)
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Now, let us consider a parametrized smooth curve γ : t ⊂ I → γ(t) ∈ T̃ 2M ,
having the image in a domain of a local chart.

Its tangent vector field γ̇=
dγ

dt
can be uniquely written in the form

γ̇ = γ̇H + γ̇V1 + γ̇V2 . (2.10)

In the case when γ is analytically given by the equation (6.8), Ch. 1, then
γ̇H , γ̇V1 , γ̇V2 are given by (6.9), Ch. 1. And we can define the horizontal curve.

A vector field Y defined along the curve γ has the covariant derivative

Dγ̇Y = DH
γ̇ Y + DV1

γ̇ Y + DV2
γ̇ Y.

The vector field Y(u(γ)) is called parallel along the curve γ if

Dγ̇Y = 0.

In particular, the curve γ is autoparallel with respect to an N-linear con-
nection D if Dγ̇ γ̇=0.

In a next section we will study these notions by means of adapted basis.

2.3 Torsion and curvature

The torsion T of an N-linear connection D is expressed, as usually, by

T(X,Y ) = DXY −DY X − [X, Y ]. (3.1)

It can be evaluated for the pairs of d-vector fields (XH , Y H), (XH , Y Vβ ),
(XVβ , Y Vγ ), (β, γ = 1, 2). We obtain the vector fields

T(XH , Y H),T(XH , Y Vβ ),T(XVβ , Y Vγ ), (β, γ = 1, 2).

Since D preserves by parallelism the distributions N0, N1, V2 and the distri-
butions N1, V2 are integrable it follows

Proposition 3.1. The following property of the torsion T holds:

hT(XVβ , XVγ ) = 0, (β, γ = 1, 2). (3.2)

Now, we deduce
Proposition 3.2. The tensor of torsion T of an N-linear connection D is

well determined by the following components, where in the right hand we have
d-tensor fields of type (1,2):
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T(XH , Y H) = hT(XH , Y H) +v1T(XH , Y H) +v2T(XH , Y H),
T(XH , Y Vβ ) = hT(XH , Y Vβ ) +v1T(XH , Y Vβ ) +v2T(XH , Y Vβ ),

(β = 1, 2),
T(XV1 , Y Vβ ) = v1T(XV1 , Y Vβ ) +v2T(XV1 , Y Vβ ),

(β = 1, 2),
T(XV2 , Y V2) = v1T(XV2 , Y V2) +v2T(XV2 , Y V2).

(3.3)

The d-tensor fields from the right hand of (3.3) are called the d-tensors of
torsion of the N-linear connection D.

For instance, we have

T(XH , Y Vα) = D
α

H
XY Vα −D

0

Vα
Y XH − [XH , Y Vα ], (α = 0, 1, 2), V 0 = H.

We shall say that hT(XH , Y H) is h(hh)-tensor of torsion of D, v1T(XH , Y H)
is v1(hh)-tensor of torsion of D and so on.

The curvature tensor R of D is given by

R(X, Y )Z = (DXDY −DY DX)Z −D[X,Y ]Z, ∀X, Y, Z ∈ X (T 2M). (3.4)

We will express R by means of the components (2.4), taking into account
the decomposition (1.1) for the vector fields on T 2M.

We prove
Theorem 3.1. The curvature tensor R of the N-linear connection D has

the properties

vβR(X, Y )ZH = 0, hR(X,Y )ZVβ = 0, (β = 1, 2),
R(X, Y )Z = hR(X, Y )ZH + v1R(X, Y )ZV1 + v2R(X, Y )ZV2 .

(3.5)

Proof. Since D preserves by parallelism the verticals and horizontal distribu-
tions, by (3.4) the operator R(X,Y) carries horizontal vector fields to horizontals
and verticals vector fields to verticals. Thus the first four equations from (3.5)
hold. The next one is an easy consequence of the first four.

q.e.d.
By Theorem 3.1 and the equation R(X, Y ) = −R(Y, X),∀X, Y ∈ X (T 2M)

we get
Theorem 3.2. The curvature tensor of a d-linear connection D on the total

space T 2M of a 2-osculator bundle (T 2M, π2,M) is completely determined by
the following d-tensor fields:

R(XH , Y H)ZH = D
0

H
XD

0

H
Y ZH −D

0

H
Y D

0

H
XZH −

2∑
α=0

D
0

Vα

[XH ,Y H ] ZH ,

R(XH , Y H)ZVγ = D
γ

H
XD

γ

H
Y ZVγ −D

γ

H
Y D

γ

H
XZVγ −

2∑
α=0

D
γ

Vα

[XH ,Y H ] ZVγ ,

(γ = 1, 2),
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R(XVβ , Y H)ZH = D
0

Vβ

X D
0

H
Y ZH −D

0

H
Y D

0

Vβ

X ZH −
2∑

α=0
D
0

Vα

[XH ,Y H ] ZH ,

(β = 1, 2),

R(XVβ , Y H)ZVγ = D
γ

Vβ

X D
γ

H
Y ZVγ −D

γ

H
Y D

γ

Vβ

X ZVγ −
2∑

α=0
D
γ

Vα

[XVβ ,Y H ] Z
Vγ ,

(β, γ = 1, 2),

(3.6)

R(XVβ , Y Vγ )ZH = D
0

Vβ

X D
0

Vγ

Y ZH −D
0

Vγ

Y D
0

Vβ

X ZH −
2∑

ε=1
D
0

Vε

[XVβ ,Y Vγ ]Z
H ,

(β, γ = 1, 2, β ≤ γ),

R(XVβ , Y Vγ )ZVδ = D
δ

Vβ

X D
δ

Vγ

Y ZVδ −D
δ

Vγ

Y D
δ

Vβ

X ZVδ −
2∑

ε=1
D
δ

Vε

[XVβ ,Y Vγ ]Z
Vδ ,

(β, γ, δ = 1, 2, β ≤ γ),

where V 0 = H.
The d-tensors (3.6) are called d-tensors of curvature of the N-linear con-

nection D.
In applications it is suitable to consider the equalities (3.6) as Ricci identities.

We shall establish such identities for vector fields only, although these may be
written for every tensor fields. A simple aranjament of (3.6) gives us

Theorem 3.3. For any N-linear connection D the following Ricci identities
hold:

D
0

H
XD

0

H
Y ZH −D

0

H
Y D

0

H
XZH = R(XH , Y H)ZH + D

0

H
[XH ,Y H ] Z

H +
2∑

ε=1
D
0

Vε

[XH ,Y H ] ZH ,

D
0

Vβ

X D
0

H
Y ZH −D

0

H
Y D

0

Vβ

X ZH = R(XVβ , Y H)ZH + D
0

H

[XVβ ,Y H ]Z
H +

2∑
ε=1

D
0

Vε

[XVβ ,Y H ]Z
H ,

(β = 1, 2),

D
0

Vβ

X D
0

Vγ

Y ZH −D
0

Vγ

Y D
0

Vβ

X ZH = R(XVβ , Y Vγ )ZH +
2∑

ε=1
D
0

Vε

[XVβ ,Y Vγ ]Z
H ,

(β, γ = 1, 2, β ≤ γ),
(3.71)

D
γ

H
XD

γ

H
Y ZVγ −D

γ

H
Y D

γ

H
XZVγ = R(XH , Y H)ZVγ + D

γ

H
[XH ,Y H ] Z

Vγ +
2∑

ε=1
D
γ

Vε

[XH ,Y H ] ZVγ ,

(γ = 1, 2),

D
γ

Vβ

X D
γ

H
Y ZVγ −D

γ

H
Y D

γ

Vβ

X ZVγ = R(XVβ , Y H)ZVγ + D
γ

H

[XVβ ,Y H ]Z
Vγ +

2∑
ε=1

D
γ

Vε

[XVβ ,Y H ]Z
Vγ ,

(β, γ = 1, 2),

D
δ

Vβ

X D
δ

Vγ

Y ZVδ −D
δ

Vγ

Y D
δ

Vβ

X Zδ = R(XVβ , Y Vγ )ZVδ +
2∑

ε=1
D
δ

Vε

[XVβ ,Y Vγ ]Z
Vδ ,

(β, γ, δ = 1, 2, β ≤ γ),
(3.72)

where V 0 = H

As a consequence, we obtain
Theorem 3.4. For any N-linear connection D the following identities hold
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[DX , DY ]
β

C= R(X, Y )
β

C−D[X,Y ]

β

C, (β = 1, 2), (3.8)

where
1

C,
2

C are the Liouville vector fields on T 2M.
The d-tensors of torsion and curvature of a d-linear connection D are not

independent. As it is well knows the torsion T and curvature R of every linear
connection D on T2M satisfies the following classical Bianchi identities:

∑
[(DXT) (Y, Z)− R (X, Y )Z + T (T (X,Y ) , Z)] = 0, (3.9)

∑
[(DXR) (U, Y, Z) + R(T (X,Y ) , Z)U ] = 0, (3.10)

where
∑

means cyclic sum over X, Y, Z.
If D is a N-linear connection on T 2M ,then by the Theorem 3.1 and

vβ (DXR)
(
UH , Y, Z

)
= 0 , h (DXR)

(
UVβ , Y, Z

)
= 0,

vβ (DXR)
(
UVγ , Y, Z

)
= 0 , (β, γ = 1, 2, β 6= γ) ,

the identities (3.9) and (3.10) become:
∑

[h (DXT) (Y, Z) − hR (X, Y )Z+

+ hT (hT (X, Y ) , Z) +
2∑

γ=1
hT (vγT (X, Y ) , Z)] = 0,

∑
[vβ (DXT) (Y, Z) − vβR (X, Y )Z+

+ vβT (hT (X, Y ) , Z) +
2∑

γ=1
vβT (vγT (X, Y ) , Z)] = 0,

(3.11)
(β = 1, 2)

∑
[h (DXR) (U, Y, Z) + hR (hT (X, Y ) , Z)U+

+
2∑

γ=1
hR (vγT (X,Y ) , Z)U ] = 0,

∑
[vβ (DXR) (U, Y, Z) + vβR (hT (X, Y ) , Z)U+

+
2∑

γ=1
vβR (vγT (X,Y ) , Z)U ] = 0, (β = 1, 2) .

(3.12)

2.4 The coefficients of an N−linear connection

An N-linear connection is characterized by its coefficients in the adapted basis

δa =
δ

δxa
, δ1a =

δ

δy(1)a
, ∂̇2a =

∂

∂y(2)a
.

These coefficients obey particular rules of transformation with respect to the
changes of local coordinates on manifold T 2M .
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We can prove
Theorem 4.1.
1◦. An N-linear connection D can be uniquely represented, in the adapted

basis
(
δa, δ1a, ∂̇2a

)
in the form





Dδc
δb = L

(00)

a
bcδa, Dδc

δ1b = L
(10)

a
bcδ1a, Dδc ∂̇2b = L

(20)

a
bc∂̇2a,

Dδ1c
δb = C

(01)

a
bcδa, Dδ1c

δ1b = C
(11)

a
bcδ1a, Dδ1c ∂̇2b = C

(21)

a
bc∂̇2a,

D∂̇2c
δb = C

(02)

a
bcδa, D∂̇2c

δ1b = C
(12)

a
bcδ1a, D∂̇2c

∂̇2b = C
(22)

a
bc∂̇2a.

(4.1)

2◦. With respect to the coordinate transformations (1.3), Ch.1, the coeffi-

cients L
(α0)

a
bc

(
x, y(1), y(2)

)
obey the rule of transformation:

L̃
(α0)

a
df

∂x̃d

∂xb

∂x̃f

∂xc
=

∂x̃a

∂xf
L

(α0)

f
bc −

∂2x̃a

∂xb∂xc
(α = 0, 1, 2) . (4.2)

3◦. The coefficients C
(αβ)

a
bc, (α = 0, 1, 2; β = 1, 2) are d-tensor fields of type

(1,2):

C̃
(αβ)

a
bc =

∂x̃a

∂xd

∂xe

∂x̃b

∂xf

∂x̃c
C

(αβ)

d
ef , (α = 0, 1, 2, β = 1, 2) . (4.2’)

Indeed, we can uniquely write

Dδcδb = L
(00)

a
bcδa +

1

L
(00)

a
bcδ1a +

2

L
(00)

a
bc∂̇2a,

and taking into account that DXδb belongs to the horizontal distribution N0,

we get
1

L
(00)

a
bc = 0,

2

L
(00)

a
bc = 0. Hence, we have the first equality (4.2) for α = 0.

Similarly, we prove the following equalities of (4.2). The statements 2◦ and 3◦ can
be proved by a direct calculus, taking into account the rule of transformations
(4.13), Ch. 1, for δa, δ1a, ∂̇2a.

q.e.d.
The system of functions:

DΓ (N) =
(

L
(00)

a
bc, L

(10)

a
bc, L

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)

a
bc, C

(12)

a
bc, C

(22)

a
bc

)
(4.3)

are called the coefficients of the N-linear connection D.
The inverse statement of Theorem 4.1 holds also.
Theorem 4.2. If the systems of functions (4.3) are a priori given over every

domain of local chart on the manifold T 2M , having the rule of transformation
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mentioned in Theorem 4.1, then there exists an unique N-linear connection D
whose coefficients are just the system of given functions.

Corollary 4.1. The following formula hold

Dδc
dxa = − L

(00)

a
bcdxb, Dδc

δy(1)a = − L
(10)

a
bcδy

(1)b, Dδc
δy(2)a = − L

(20)

a
bcδy

(2)b,

Dδ1c
dxa = − C

(01)

a
bcdxb, Dδ1c

δy(1)a = − C
(11)

a
bcδy

(1)b, Dδ1c
δy(2)a = − C

(21)

a
bcδy

(2)b,

D∂̇2c
dxa = − C

(02)

a
bcdxb, D∂̇2c

δy(1)a = − C
(12)

a
bcδy

(1)b, D∂̇2c
δy(2)a = − C

(22)

a
bcδy

(2)b.

(4.4)
Indeed, the formula (4.1), the condition of duality between

(
δa, δ1a, ∂̇2a

)
and(

dxa, δy(1)a, δ(2)a
)

lead to formula (4.4).

2.5 The hα-, v1α- and v2α-covariant derivatives in
local adapted basis

Let us consider a d-tensor field T, of type (r,s) in the adapted basis
(
δa, δ1a, ∂̇2a

)

and its dual
(
dxa, δy(1), δy(2)a

)
, (1.3), Ch. 1:

T = T a1..ar

b1...bs
δa1 ⊗ ...⊗ ∂̇2ar ⊗ dxb1 ⊗ ...⊗ δy(2)bs . (5.1)

For X = XH =
(0)

X aδa, applying (4.1), (4.4) and using the properties of the
operators D

α

H
X we deduce:

D
α

H
XT =

(0)

X dT a1...ar

b1...bs |αdδa1 ⊗ ...⊗ ∂̇2ar ⊗ dxb1 ⊗ ...⊗ δy(2)bs , (α = 0, 1, 2) , (5.2)

where

T a1...ar

b1...bs |αd = δdT
a1...ar

b1...bs
+ L

(α0)

a1
cdT

ca2...ar

b1...bs
+ ...+

+ L
(α0)

ar

cdT
a1...ar−1c
b1...bs

− L
(α0)

c
b1dT

a1...ar

cb2...bs
− ...− L

(α0)

c
bsdT

a1...ar

b1...bs−1c,

(α = 0, 1, 2) .

(5.2’)

The operators ”|αd” are called hα-covariant derivatives with respect to
DΓ (N) , (α = 0, 1, 2) .

Let us consider the operators D
α

V1
X , for the vector fields XV1 =

(1)

X aδ1a,

(α = 0, 1, 2), we obtain for the d-tensor field T from (5.1) the formula:

D
α

V1
X T =

(1)

X dT a1...ar

b1...bs

(1)

| αdδa1 ⊗ ...⊗ ∂̇2ar ⊗ dxb1 ⊗ ...⊗ δy(2)bs , (α = 0, 1, 2) , (5.3)
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where

T a1...ar

b1...bs

(1)

| αd = δ1dT
a1...ar

b1...bs
+ C

(α1)

a1
cdT

ca2...ar

b1...bs
+ ...+

+ C
(α1)

ar

cdT
a1...ar−1c
b1...bs

− C
(α1)

c
b1dT

a1...ar

cb2...bs
− ...− C

(α1)

c
bsdT

a1...ar

b1...bs−1c,

(α = 0, 1, 2) .

(5.3’)

The operators ”
(1)

| αd” are called v1α-covariant derivatives with respect to
DΓ (N) , (α = 0, 1, 2) .

Finally, taking , X = XV2 =
(2)

X a∂̇2a, then for D
α

V2
X T we get

D
α

V2
X T =

(2)

X dT a1...ar

b1...bs

(2)

| αdδa1 ⊗ ...⊗ ∂̇2ar ⊗ dxb1 ⊗ ...⊗ δy(2)bs , (α = 0, 1, 2) , (5.4)

where

T a1...ar

b1...bs

(2)

| αd = ∂̇2dT
a1...ar

b1...bs
+ C

(α2)

a1
cdT

ca2...ar

b1...bs
+ ...+

+ C
(α2)

ar

cdT
a1...ar−1c
b1...bs

− C
(α2)

c
b1dT

a1...ar

cb2...bs
− ...− C

(α2)

c
bsdT

a1...ar

b1...bs−1c,

(α = 0, 1, 2) .

(5.4’)

The operators ”
(2)

| αd” are called v2α-covariant derivatives with respect to
DΓ (N) , (α = 0, 1, 2).

It is not difficult to prove:
Proposition 5.1. The quantities:

T a1...ar

b1...bs|αd, T
a1...ar

b1...bs

(1)

| αd, T
a1...ar

b1...bs

(2)

| αd, (α = 0, 1, 2) ,

are d-tensor fields of type (r,s+1).

Proposition 5.2. The operators ” |αd”, ”
(1)

| αd” and ”
(2)

| αd”, (α = 0, 1, 2),
have the properties:

1 ◦. f |αd = δdf, f
(1)

| αd = δ1df, f
(2)

| αd = ∂̇2df, ∀f ∈ F
(
T 2M

)
.

2 ◦. They are distributive with respect to the adition of the d-tensor of the
same type.

3 ◦. They commute with the operation of contraction.
4 ◦. They verify the Leibnitz rule with respect to the tensor product.

As an application, let us consider ”the
(
z(1)

)
- and

(
z(2)

)
-deflection ten-

sor fields”, where z(1)a and z(2)a are the Liouville d-vector fields of the N linear
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connection D (see (6.14), Ch.1):

(1)

D
α

a
b = z(1)a

|αb,
(11)

d
α

a
b = z(1)a

(1)

| αb,
(12)

d
α

a
b = z(1)a

(2)

| αb,

(2)

D
α

a
b = z(2)a

|αb,
(21)

d
α

a
b = z(2)a

(1)

| αb,
(22)

d
α

a
b = z(2)a

(2)

| αb,

(5.5)

(α = 0, 1, 2) .

Proposition 5.3. The (z (1))-deflection tensor fields have the expression

(1)

D
α

a
b = −N

1

a
b + z(1)c L

(α0)

a
cb,

(11)

d
α

a
b = δa

b + z(1)c C
(α1)

a
cb,

(12)

d
α

a
b = z(1)c C

(α2)

a
cb (5.5’)

(α = 0, 1, 2) .

These equalities are easy to prove, if one notice

z
(1)a

|αb = δbz
(1)a + z(1)c L

(α0)

a
cb, z

(1)a
(β)

| αb = δβbz
(1)a + z(1)c C

(αβ)

a
cb,

(
α = 0, 1, 2, β = 1, 2, δ2b = ∂̇2b

)
.

Also, we have:
Proposition 5.4. The (z (2))-deflection tensor fields are given by

(2)

D
α

a
b = − 1

2

(
N
2

a
b + M

2

a
b

)
+ 1

2z(1)cδbN
1

a
c +z(2)c L

(α0)

a
cb,

(21)

d
α

a
b = 1

2N
1

a
b + 1

2z(1)c B
(11)

a
cb +z(2)c C

(α1)

a
cb,

(22)

d
α

a
b = δa

b + 1
2z(1)c B

(21)

a
cb +z(2)c C

(α2)

a
cb,

(5.5”)

(α = 0, 1, 2) .

We conclude this section with the following theorem of existence of N-linear
connection on T 2M.

Theorem 5.1. If the manifold M is paracompact and N is a nonlinear
connection on T 2M , with the coefficients N

1

a
b, N2

a
b, then there exists a N-linear

connection on T 2M .
Proof. Since M is paracompact, there exists a linear connection on M of

local coefficients, say Γa
bc (x). Let N

1

a
b

(
x, y(1), y2

)
and N

2

a
b

(
x, y(1), y2

)
be the

local coefficients of the nonlinear connection N. We set L
(00)

a
bc = Γa

bc (x), L
(10)

a
bc =
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δ1bN
1

a
c, L

(20)

a
bc = ∂̇2bN

2

a
c + N

1

a
d∂̇2cN

1

d
b. Thus, taking into account the Proposition

7.3, Ch. 1, we obtain three set of functions which transform, with respect to
(1.3),Ch.1, by (4.2), Ch.1. It result that DΓ (N) given by

DΓ (N) =
(

Γa
bc (x) , B

(11)

a
cb, B

(22)

a
cb, 0, 0, 0, 0, 0, 0

)

defines an N-linear connection on T 2M.
Definition 5.1. An N-linear connection D on T 2M with coefficients

DΓ (N) =
(

La
bc, B

(11)

a
cb, B

(22)

a
cb, 0, C

(11)

a
bc, 0, 0, 0, C

(22)

a
bc

)

is called an N-linear connection of Berwald type on T 2M .

2.6 F
α
N−and JN−linear connections, (α = 0, 1, 2)

Generally, an N-linear connection D on T 2M is not compatible with the natural
(α)-contact structures F

α
(α = 0, 1, 2), determined by the nonlinear connection,

given by (8.3), (8.4), (8.5), Ch. 1.
Definition 6.1. An N-linear connection D on T 2M is called F

α
N - linear

connection (α = 0, 1, 2) if F
α

is absolutely parallel with respect to D:

DXF
α

= 0, ∀X ∈ X (
T 2M

)
, (α = 0, 1, 2) . (6.1)

By direct calculus we prove:
Theorem 6.1.
1◦. An F

0
N -linear connection on T 2M is characterized by the coefficients

F
0
DΓ (N) given by (4.3) where

L
(20)

a
bc = L

(10)

a
bc, C

(21)

a
bc = C

(11)

a
bc, C

(22)

a
bc = C

(12)

a
bc. (6.2)

2◦. An F
1
N -linear connection on T 2M is characterized by the coefficients

F
1
DΓ (N) given by (4.3) where

L
(20)

a
bc = L

(00)

a
bc, C

(21)

a
bc = C

(01)

a
bc, C

(22)

a
bc = C

(02)

a
bc. (6.3)

3◦. An F
2
N -linear connection on T 2M is characterized by the coefficients

F
2
DΓ (N) given by (4.3) where

L
(10)

a
bc = L

(00)

a
bc, C

(11)

a
bc = C

(01)

a
bc, C

(12)

a
bc = C

(02)

a
bc, (6.4)
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i.e.,

F
2
DΓ (N) =

(
L

(00)

a
bc, L

(20)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)

a
bc, C

(22)

a
bc

)
. (6.4’)

Remarks

A. F
0
D (Γ) (N) = F

1
D (Γ) (N) =

(
L

(00)

a
bc, L

(10)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(02)

a
bc, C

(12)

a
bc

)
.

B. The essential lifts to T 2M a one pairs of metric structures given by non-
singular and symmetric d-tensor fields (gab, hab) are (9.7) and (9.9), Ch. 1.

Also, an N-linear connection D on T2M is not compatible with the natural
2-tangent structure J, given by (1.7), Ch. 1.

Definition 6.2. An N-linear connection D on T 2M is called JN-linear
connection if J is absolutely parallel with respect to D:

DXJ = 0, ∀X ∈ X (
T 2M

)
. (6.5)

Theorem 6.2. A JN-linear connection on T 2M is characterized by the
coefficients JDΓ (N) given by (4.3), where

L
(00)

a
bc = L

(10)

a
bc = L

(20)

a
bc (= La

bc),

C
(01)

a
bc = C

(11)

a
bc = C

(21)

a
bc (= C

(1)

a
bc),

C
(02)

a
bc = C

(12)

a
bc = C

(22)

a
bc (= C

(2)

a
bc).

(6.6)

Proof. Indeed, by (1.7), Ch.1, we can write

(DδcJ) (δb) = DδcJ (δb)−J (Dδcδb) = Dδcδ1b−J

(
L

(00)

a
bcδa

)
=

(
L

(10)

a
bc − L

(00)

a
bc

)
δ1b,

(DδcJ) (δ1b) = DδcJ (δ1b)−J (Dδcδ1b) = Dδc ∂̇2b−J

(
L

(10)

a
bcδ1a

)
=

(
L

(20)

a
bc − L

(10)

a
bc

)
∂̇2a.

Hence, (6.5) gives us the first equalities (6.6). Similarly, we prove the others.
q.e.d.

Remarks
1◦. We have

{JDΓ (N)} ⊂
{
F
α
DΓ (N)

}
⊂ {DΓ (N)} , (α = 0, 1, 2) .

2◦. For any JN-linear connection, the hα- and vβα-covariant derivatives,
(α = 0, 1, 2, β = 1, 2), one reduce to h-, v1- and v2-covariant derivatives. Also,

” |αc”, (α = 0, 1, 2), one reduce to ” |c”, only and ”
(β)

| αc”, (α = 0, 1, 2, β = 1, 2),

one reduce to ”
(1)

| c” and ”
(2)

| c”, respectively.
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3◦. For any JN-linear connection with the coefficients

JDΓ (N) =
(

La
bc, C

(1)

a
bc, C

(2)

a
bc

)
(6.7)

the deflection d-tensor fields have the expression

(β)

D a
b = z

(β)a
|b,

(β1)

d a
b = z(β)a

(1)

| b,
(β2)

d a
b = z(β)a

(2)

| b, (β = 1, 2) . (6.8)

All these correspond to Miron-Atanasiu’s theory on Osc2M = T 2M [89–94].

2.7 The local expression of torsion and curvature

In order to determine the local expressions of d-tensors of torsion and curvature
of an N-linear connection we use the covariant derivatives in the adapted basis.

Theorem 7.1. The d-tensors of torsion of an N-linear connection D with

coefficients DΓ (N) =
(

L
(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc

)
, (α = 0, 1, 2), in the adapted basis

(4.12), Ch.1., have the following expressions:

hT (δc, δb) = T
(00)

a
bcδa, vγT (δc, δb) = T

(0γ)

a
bcδγa,

(γ = 1, 2) ,

hT (δβc, δb) = P
(β0)

a
bcδa, vγT (δβc, δb) = P

(βγ)

a
bcδγa,

(β, γ = 1, 2, δ2a = ∂̇2a),
(7.1)

vγT
(
∂̇2c, δ1b

)
= Q

(2γ)

a
bcδγa,

(γ = 1, 2, δ2a = ∂̇2a),

vγT (δβc, δβb) = S
(βγ)

a
bcδγa,

(β, γ = 1, 2, δ2a = ∂̇2a),

where

T
(00)

a
bc = L

(00)

a
bc − L

(00)

a
cb , T

(01)

a
bc = R

(01)

a
bc , T

(02)

a
bc = R

(02)

a
bc,

P
(10)

a
bc = C

(01)

a
bc , P

(11)

a
bc = B

(11)

a
bc − L

(10)

a
cb , P

(12)

a
bc = B

(12)

a
bc,

P
(20)

a
bc = C

(02)

a
bc , P

(21)

a
bc = B

(21)

a
bc , P

(22)

a
bc = B

(22)

a
bc − L

(20)

a
cb,

S
(11)

a
bc = C

(11)

a
bc − C

(11)

a
cb , S

(12)

a
bc = R

(12)

a
bc,

Q
(21)

a
bc = C

(12)

a
bc , Q

(22)

a
bc = B

(21)

a
bc − C

(21)

a
cb,

S
(21)

a
bc = 0 , S

(22)

a
bc = C

(22)

a
bc − C

(22)

a
cb.

(7.2)
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Indeed, (7.1),Ch. 1 and(4.1), Ch.2, imply (7.1) and (7.2).
Especially, we have

T
(00)

a
bc = L

(00)

a
bc − L

(00)

a
cb, S

(11)

a
bc = C

(11)

a
bc − C

(11)

a
cb, S

(22)

a
bc = C

(22)

a
bc − C

(22)

a
cb. (7.3)

Therefore,
Proposition 7.1. The following statements are equivalent

1. T
(00)

a
bc = S

(11)

a
bc = S

(22)

a
bc = 0,

2. L
(00)

a
bc = L

(00)

a
cb, C

(11)

a
bc = C

(11)

a
cb, C

(22)

a
bc = C

(22)

a
cb.

We pay attention to the N-linear connection given in following definition:
Definition 7.1. An N-linear connection on T 2M is called semisymmetric

if

T
(00)

a
bc =

1
2

(δa
b σc − δa

c σb) , S
(ββ)

a
bc =

1
2

(
δa
b τ
(β)

c − δa
c τ
(β)

b

)
, (β = 1, 2) , (7.4)

where σ, τ
(1)

, τ
(2)
∈ X ∗ (

T 2M
)
.

In the next calculus we have need of the following d-tensor fields:
α

T
(0)

a
bc = L

(α0)

a
bc − L

(α0)

a
cb,

α

P
(ββ)

a
bc = B

(ββ)

a
bc − L

(α0)

a
cb,

α

Q
(22)

a
bc = B

(21)

a
bc − C

(α1)

a
cb,

α

S
(β)

a
bc = C

(αβ)

a
bc − C

(αβ)

a
cb,

(α = 0, 1, 2, β = 1, 2) .

(7.5)

We remark that we have
0

T
(0)

a
bc = T

(00)

a
bc,

β

P
(ββ)

a
bc = P

(ββ)

a
bc,

2

Q
(22)

a
bc = Q

(22)

a
bc,

β

S
(β)

a
bc = S

(ββ)

a
bc, (β = 1, 2) .

(7.6)

Proposition 7.2. For any JN-linear connection with coefficients JDΓ (N) =(
La

bc, C
(1)

a
bc, C

(2)

a
bc

)
we get (β = 1, 2)

0

T
(0)

a
bc =

1

T
(0)

a
bc =

2

T
(0)

a
bc = La

bc − La
cb

(
= T

(0)

a
bc

)
,

0

P
(ββ)

a
bc =

1

P
(ββ)

a
bc =

2

P
(ββ)

a
bc = B

(ββ)

a
bc − La

cb

(
= P

(ββ)

a
bc

)
,

0

Q
(22)

a
bc =

1

Q
(22)

a
bc =

2

Q
(22)

a
bc = B

(21)

a
bc − C

(1)

a
cb

(
= Q

(22)

a
bc

)
,

0

S
(β)

a
bc =

1

S
(β)

a
bc =

2

S
(β)

a
bc = C

(β)

a
bc − C

(β)

a
cb

(
= S

(β)

a
bc

)
,

(7.7)
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Now, it is easy to write the d-tensors of torsion for the F
α
N -linear connection

F
(α)

DΓ (N) , (α = 0, 1, 2), given in Theorem 6.1, and for the JN-linear connection

JDΓ (N), given by (6.7). For instance, we have
Corollary 7.1. ([91]) The d-tensors of torsion of a JN-linear connection

with the coefficients JDΓ (N) =
(

La
bc, C

(1)

a
bc, C

(2)

a
bc

)
are the following:

T
(0)

a
bc, R

(01)

a
bc, R

(02)

a
bc,

C
(1)

a
bc, P

(11)

a
bc, B

(12)

a
bc, C

(2)

a
bc, B

(21)

a
bc, P

(22)

a
bc,

S
(1)

a
bc, R

(12)

a
bc, Q

(22)

a
bc, S

(2)

a
bc.

(7.8)

Indeed, (6.6), (7.2) and (7.7), imply (7.8).
The local expressions of the d-tensors of curvature of an N-linear connection

D with the coefficients DΓ (N) =
(

L
(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc

)
(α = 0, 1, 2), in the

adapted basis (4.12), Ch.1, can be found from the formulae (3.4).
If X,Y∈

{
δa, δ1a, ∂̇2a

}
we denote R (X, Y ) by

R (δb, δc) = R
(0)

bc, R (δβb, δc) = P
(β)

bc,
(
β = 1, 2, δ2a = ∂̇2a

)
,

R
(
∂̇2b, δ1c

)
= Q

(2)
bc, R (δβb, δβc) = S

(β)
bc,

(
β = 1, 2, δ2a = ∂̇2a

)
,

(7.9)

and the action of R (X, Y ) on Z∈
{

δa, δ1a, ∂̇2a

}
we denote by

R
(0)

dcδαb = R
(0α)

a
b cdδαa, P

(β)
dcδαb = P

(βα)

a
b cdδαa,

Q
(2)

dcδαb = Q
(2α)

a
b cdδαa, S

(β)
dcδαb = S

(βα)

a
b cdδαa,

(7.10)

(α = 0, 1, 2, y(0) = x, δ0a = δa, δ2a = ∂̇2a; β = 1, 2).

By a direct computation, taking into account the Lie brackets (7.1), Ch.1,
we get

Theorem 7.2. An N-linear connection D with the coefficients DΓ (N) =(
L

(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc

)
(α = 0, 1, 2) has the d-tensors of curvature (7.10) ex-

pressed by the following formulae:

R
(0α)

a
b cd = δd L

(α0)

a
bc −δc L

(α0)

a
bd + L

(α0)

f
bc L

(α0)

a
fd − L

(α0)

f
bd L

(α0)

a
fc+

+ C
(α1)

a
bf R

(01)

f
cd + C

(α2)

a
bf R

(02)

f
cd,



44 CHAPTER 2. LINEAR CONNECTIONS ON THE MANIFOLD T 2M

P
(βα)

a
b cd = δβd L

(α0)

a
bc − C

(αβ)

a
bd|αc + C

(α1)

a
bf

α

P
(β1)

f
cd + C

(α2)

a
bf

α

P
(β2)

f
cd, (7.11)

Q
(2α)

a
b cd = ∂̇2d C

(α1)

a
bc −δ1c C

(α2)

a
bd + C

(α1)

f
bc C

(α2)

a
fd − C

(α2)

f
bd C

(α1)

a
fc+

+ C
(α2)

a
bf P

(21)

f
cd,

S
(βα)

a
b cd = δβd C

(αβ)

a
bc −δβc C

(αβ)

a
bd + C

(αβ)

f
bc C

(αβ)

a
fd − C

(αβ)

f
bd C

(αβ)

a
fc+

+ C
(α2)

a
bf R

(β2)

f
cd,

(
α = 0, 1, 2, β = 1, 2,

α

P
(12)

a
bc = P

(12)

a
bc,

α

P
(21)

a
bc = P

(21)

a
bc, R

(22)

a
bc = 0, y(0) = x, δ2a = ∂̇2a

)
.

Taking into account (6.6), (7.8) and (7.11), we obtain
Corollary 7.2. The essential d-tensors of curvature of a JN-linear connec-

tion with the coefficients DΓ (N) =
(

La
bc, C

(1)

a
bc, C

(2)

a
bc

)
are as follows

R a
b cd

(
= R

(00)

a
b cd = R

(01)

a
b cd = R

(02)

a
b cd

)
,

P
(β)

a
b cd

(
= P

(β0)

a
b cd = P

(β1)

a
b cd = P

(β2)

a
b cd

)
, (β = 1, 2) ,

Q a
b cd

(
= Q

(20)

a
b cd = Q

(21)

a
b cd = Q

(22)

a
b cd

)
,

S
(β)

a
b cd

(
= S

(β0)

a
b cd = S

(β1)

a
b cd = S

(β)

a
b cd

)
, (β = 1, 2) .

(7.12)

From (7.11), the expression of these d-tensors of curvature are easy to write,
[14], [91].

2.8 The Ricci identites in the adapted basis

Theorem 8.1. For any N-linear connection D with the coefficients DΓ (N) =(
L

(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc

)
, (α = 0, 1, 2), the following Ricci identities hold:

Xa
|αb|αc −Xa

|αc|αb = Xf R
(0α)

a
f bc −

α

T
(0)

f
bcX

a
|αf−

− R
(01)

f
bcX

a
(1)

| αf − R
(02)

f
bcX

a
(2)

| αf ,

Xa
|αb

(1)

| αc −Xa
(1)

| αc|αb = Xf P
(1α)

a
f bc − C

(α1)

f
bcX

a
|αf−

−
α

P
(11)

f
bcX

a
(1)

| αf − P
(12)

f
bcX

a
(2)

| αf ,
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Xa
|αb

(2)

| αc −Xa
(2)

| αc|αb = Xf P
(2α)

a
f bc − C

(α2)

f
bcX

a
|αf−

− P
(21)

f
bcX

a
(1)

| αf −
α

P
(22)

f
bcX

a
(2)

| αf ,

(8.1)

Xa
(1)

| αb

(2)

| αc −Xa
(2)

| αc

(1)

| αb = Xf Q
(2α)

a
f bc − C

(α2)

f
bcX

a
(1)

| αf−

−
α

Q
(22)

f
bcX

a
(2)

| αf ,

Xa
(β)

| αb

(β)

| αc −Xa
(β)

| αc

(β)

| αb = Xf S
(βα)

a
f bc −

α

S
(β)

f
bcX

a
(1)

| αf−

− R
(β2)

f
bcX

a
(2)

| αf ,

(α = 0, 1, 2, β = 1, 2) ,

where R
(22)

a
bc = 0 and

α

T
(0)

a
bc,

α

P
(ββ)

a
bc,

α

Q
(22)

a
bc,

α

S
(β)

a
bc, (α = 0, 1, 2, β = 1, 2) are given

by (7.6).
Remark
Using the previous considerations we can express the Ricci identities for any

JN-linear connections with coefficients DΓ (N) =(La
bc, C

(1)

a
bc, C

(2)

a
bc), [91], [92].

As usually, we extend the Ricci identities for any d-tensor field, given by
(5.1).

As a first application let us consider a Riemannian metric G on T 2M in the
form

G = g
(0)

abdxa ⊗ dxb + g
(1)

abδy
(1)a ⊗ δy(1)b + g

(2)
abδy

(2)a ⊗ δy(2)b, (8.2)

having the properties

g
(α)

ab|αc = 0, g
(α)

ab

(1)

| αc = 0, g
(α)

ab

(2)

| αc = 0, (α = 0, 1, 2) , (8.3)

with respect to an N-linear connection D.
Then we have:
Theorem 8.2. If the Riemannian metric G, (8.2), verifies the conditions

(8.3), then the following d-tensors




R
(0α)

abcd = g
(α)

fb R
(0α)

f
a cd, P

(βα)
abcd = g

(α)
fb P

(βα)

f
a cd,

Q
(2α)

abcd = g
(α)

fb Q
(2α)

f
a cd, S

(βα)
abcd = g

(α)
fb S

(βα)

f
a cd, (α = 0, 1, 2) ,

(8.3’)
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are skew-symmetric in the first two indices (ab).

Indeed, writting the Ricci identities for d-tensor fields g
(α)

ab and taking into

account by the equations (8.3) we deduce

g
(α)

af R
(0α)

f
b cd + g

(α)
bf R

(0α)

f
a cd = 0, ...

And using (8.3), we get R
(0α)

bacd + R
(0α)

abcd = 0, (α = 0, 1, 2),etc.

The Ricci identities (8.1) applied to the Liouville d-vector fields z(1)a, z(2)a

lead to the some fundamental identities.
Theorem 8.3. For any N-linear connection D with the coefficients

DΓ (N) =
(

L
(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc

)
, (α = 0, 1, 2) the deflection tensor fields satisfy

the following identities:

(β)

D
α

a
b|αc −

(β)

D
α

a
c|αb = z(β)f R

(0α)

a
f bc −

(β)

D
α

a
f

α

T
(0)

f
bc−

−
(β1)

d
α

a
f R
(01)

f
bc −

(β2)

d
α

a
f R
(02)

f
bc,

(β)

D
α

a
b

(1)

| αc −
(β1)

d
α

a
c|αb = z(β)f P

(1α)

a
f bc −

(β)

D
α

a
f C
(α1)

f
bc−

−
(β1)

d
α

a
f

(α)

P
(11)

f
bc −

(β2)

d
α

a
f P
(12)

f
bc,

(β)

D
α

a
b

(2)

| αc −
(β2)

d
α

a
c|αb = z(β)f P

(2α)

a
f bc −

(β)

D
α

a
f C
(α2)

f
bc−

−
(β1)

d
α

a
f P
(21)

f
bc −

(β2)

d
α

a
f

(α)

P
(22)

f
bc,

(8.4)

(β1)

d
α

a
b

(2)

| αc −
(β2)

d
α

a
c

(1)

| αb = z(β)f Q
(2α)

a
f bc−

−
(β1)

d
α

a
f C
(α2)

f
bc −

(β2)

d
α

a
f

(α)

Q
(22)

f
bc,

(βγ)

d
α

a
b

(γ)

| αc −
(βγ)

d
α

a
c

(γ)

| αb = z(β)f S
(γα)

a
f bc−

−
(βγ)

d
α

a
f

γ

S
(α)

f
bc −

(β2)

d
α

a
f R
(γ2)

f
bc,

(α = 0, 1, 2, β, γ = 1, 2, R
(22)

a
bc = 0).
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Also, if the
(
z(1)

)
-deflection tensors and

(
z(2)

)
-deflection tensors have the

following particular form




(1)

D
α

a
b = 0,

(11)

d
α

a
b = δa

b ,
(12)

d
α

a
b = 0,

(2)

D
α

a
b = 0,

(21)

d
α

a
b = 0,

(22)

d
α

a
b = δa

b ,

(8.5)

then, the fundamental identities from (8.4) are very important, especially for
applications.

Proposition 8.1. If the deflection tensors are given by (8.5), then the
following identities hold:

z(β)f R
(0α)

a
f bc = R

(0β)

a
bc, z(1)f P

(2α)

a
f bc = P

(21)

a
bc, z(2)f P

(1α)

a
f bc = P

(12)

a
bc,

z(β)f P
(βα)

a
f bc =

α

P
(ββ)

a
bc, z(1)f Q

(2α)

a
f bc = C

(α2)

a
bc, z(2)f Q

(2α)

a
f bc =

α

Q
(22)

a
bc,

z(β)f S
(βα)

a
f bc =

β

S
(α)

a
bc, z(1)f S

(2α)

a
f bc = 0, z(2)f S

(1α)

a
f bc = R

(12)

a
bc,

(α = 0, 1, 2;β = 1, 2) .

(8.6)

Let us consider the covariant hα- and vβα-deflection tensors of DΓ (N)

(β)

D
α

ab = g
(α)

ac

(β)

D
α

c
b,

(βγ)

d
α

ab = g
(α)

ac

(βγ)

d
α

c
b(α = 0, 1, 2;β, γ = 1, 2).

Theorem 8.4. If the Riemann metric G, (8.2), verifies the conditions (8.3),
then the covariant deflection tensors satisfy the following identities:

(β)

D
α

bc|αd −
(β)

D
α

bd|αc = z(β)f R
(0α)

fbcd −
(β)

D
α

bf

α

T
(0)

f
cd−

−
(β1)

d
α

bf R
(01)

f
cd −

(β2)

d
α

bf R
(02)

f
cd,

(β)

D
α

bc

(1)

| αd −
(β1)

d
α

bd|αc = z(β)f P
(1α)

fbcd −
(β)

D
α

bf C
(α1)

f
cd−

−
(β1)

d
α

bf

α

P
(11)

f
cd −

(β2)

d
α

bf P
(12)

f
cd,

(β)

D
α

bc

(2)

| αd −
(β2)

d
α

bd|αc = z(β)f P
(2α)

fbcd −
(β)

D
α

bf C
(α2)

f
cd−

−
(β1)

d
α bf P

(21)

f
cd −

(β2)

d
α

bf

α

P
(22)

f
cd,

(8.7)

(β1)

d
α

bc

(2)

| αd −
(β2)

d
α

bd

(1)

| αc = z(β)f Q
(2α)

fbcd−

−
(β1)

d
α

bf C
(α2)

f
cd −

(β2)

d
α bf Q

(22)

f
cd,
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(βγ)

d
α

bc

(γ)

| αd −
(βγ)

d
α

bd

(γ)

| αc = z(β)f S
(γα)

fbcd−

−
(βγ)

d
α

bf

γ

S
(α)

f
cd −

(β2)

d
α

bf R
(γ2)

f
bc,

(
α = 0, 1, 2;β, γ = 1, 2; R

(22)

a
bc = 0

)
.

2.9 Parallelism of the vector fields on the mani-
fold T 2M

Let D be an N-linear connection with the coefficients DΓ (N) = ( L
(α0)

a
bc, C

(α1)

a
bc,

C
(α2)

a
bc), (α = 0, 1, 2) , in the adapted basis

(
δa, δ1a, ∂̇2a

)
.

Let us consider a smooth parametrized curve γ : I → T 2M having the
image in a domain of a chart of T2M.

Thus, γ has an analytical expression of the form

xa = xa (t) , y(1)a = y(1)a (t) , y(2)a = y(2)a (t) , t ∈ I (9.1)

The tangent vector field γ̇ = dγ
dt , by means of (6.9), Ch. 1, can be written as

follows:

γ̇ =
dxa

dt
δa +

δy(1)a

dt
δ1a +

δy(2)a

dt
∂̇2a, (9.2)

where

δy(1)a

dt
=

dy(1)a

dt
+ M

1

a
b

dxb

dt
,
δy(2)a

dt
=

dy(2)a

dt
+ M

1

a
b

dy(1)b

dt
+ M

2

a
b

dxb

dt
. (9.3)

Let us denote

Dγ̇X =
DX

dt
,DX =

DX

dt
dt, ∀X ∈ X (

T 2M
)
. (9.4)

The quantity DX is the covariant differential of the vector X, and
DX

dt
is

the covariant differential along the curve γ.
If X is written in the form

X = XH + XV1 + XV2 = X(0)aδa + X(1)aδ1a + X(2)a∂̇2a

and we put

Dγ̇ = Dγ̇H +Dγ̇V1 +Dγ̇V2 = DH
γ̇ +DV1

γ̇ +DV2
γ̇ =

dxa

dt
Dδa+

δy(1)a

dt
Dδ1a+

δy(2)a

dt
D∂̇2a

,
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then, after a straightforward calculus, we have

DX =
(

dX(0)a + X(0)f ω
(0)

a
f

)
δa+

+
(

dX(1)a + X(1)f ω
(1)

a
f

)
δ1a +

(
dX(2)a + X(2)f ω

(2)

a
f

)
∂̇2a.

(9.5)

where
ω
(α)

a
b = L

(α0)

a
bcdxc + C

(α1)

a
bcδy

(1)c + C
(α2)

a
bcδy

(2)c, (α = 0, 1, 2) . (9.6)

The 1-forms ω
(0)

a
b, ω

(1)

a
b, ω

(2)

a
b from (9.6) are called 1-forms of connections of D.

Putting

ω
(a)

a
b

dt
= L

(α0)

a
bc

dxc

dt
+ C

(α1)

a
bc

δy(1)c

dt
+ C

(α2)

a
bc

δy(2)c

dt
, (9.6’)

the covariant differential along the curve γ is given by

DX

dt
=


dX(0)a

dt
+ X(0)f

ω
(0)

a
f

dt


 δa+

+


dX(1)a

dt
+ X(1)f

ω
(1)

a
f

dt


 δ1a +


dX(2)a

dt
+ X(2)f

ω
(2)

a
f

dt


 ∂̇2a.

(9.7)

The theory of the parallelism of the vector fields along a curve γ presented in
Section 2 of this chapter can be applied here. We obtain:

Theorem 9.1. The vector field X = X(0)aδa+X(1)aδ1a+X(2)a∂̇2a is parallel
along the parametrized curve γ, with respect to D if and only if its coordinates
X (0)a, X(1)a, X(2)a are solutions of the differential equations

dX(α)a

dt
+ X(α)f

ω
(α)

a
f

dt
= 0, (α = 0, 1, 2) . (9.8)

The proof is immediate, by means of the expression (9.7) for
DX

dt
.

A theorem of existence and uniqueness for the parallel vector fields along a
given parametrized curve in T 2M can be formulated in the classical manner.

The vector field X∈ X (
T 2M

)
is called absolutely parallel with respect to

the N-linear connection DΓ (N), if DX=0 for any curve γ. It is equivalent to the
integrability of the following system of Pfaff equations

dX(α)a + X(α)f ω
(α)

a
f = 0, (α = 0, 1, 2) . (9.9)
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The system (9.9) is equivalent to the system

X
(α)a

|αb = X(α)
(1)

| αb = X(α)
(2)

| αb = 0, (α = 0, 1, 2) (9.9’)

which must be integrable.
Using the Ricci identities, the system (9.9’) is integrable if and only if the

coordinates X(α)a, (α = 0, 1, 2), of the vector X satisfy the following equations

X(α)f R
(0α)

a
f bc = 0, X(α)f P

(βα)

a
f bc = 0, X(α)f Q

(2α)

a
f bc = 0, X(α)f S

(βα)

a
f bc = 0

(9.10)
(α = 0, 1, 2; β = 1, 2) .

The manifold T 2M is called with absolutely parallelism of vectors with respect
to D, if any vector field on T 2M is absolutely parallel.

In this case the system (9.10) are verified for any vector field X. It follows:
Theorem 9.2. The manifold T 2M is with absolutely parallelism of vec-

tors, with respect to the N-linear connection D if, and only if, all d-tensors of
curvatures of D vanish.

The curve γ is autoparallel with respect to D if Dγ̇ γ̇ = 0.
By means of (9.2) and (9.7) we deduce

Dγ̇

dt
=


d2xa

dt2
+

dxb

dt

ω
(0)

a
b

dt


 δa+

+


 d

dt

δy(1)a

dt
+

δy(1)b

dt

ω
(1)

a
b

dt


 δ1a +


 d

dt

δy(2)a

dt
+

δy(2)b

dt

ω
(2)

a
b

dt


 ∂̇2a.

(9.11)

Theorem 9.3. A smooth parametrized curve (9.1) is an autoparallel curve
with respect to the N-linear connection D if and only if the functions xa (t),
y(1)a (t), y(2)a (t), t ∈ I, verify the following system of differential equations

d2xa

dt2
+

dxb

dt

ω
(0)

a
b

dt
= 0,

d

dt

δy(1)a

dt
+

δy(1)a

dt

ω
(1)

a
b

dt
= 0,

d

dt

δy(2)a

dt
+

δy(2)a

dt

ω
(2)

a
b

dt
= 0.

(9.12)

Evidently, the theorem of existence and uniqueness for the autoparallel curve
can be easily formulated.
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We recall that γ is an horizontal curve if γ̇ = γ̇H . The horizontal curve are
characterized by

xa = xa (t) ,
δy(1)a

dt
= 0,

δy(2)a

dt
= 0. (9.13)

Definition 9.1. The horizontal path of an N-linear connection D is an
horizontal autoparallel curve with respect to D.

Theorem 9.4. The horizontal paths of an N-linear connection D are char-
acterized by the system of differential equations:

d2xa

dt2
+ L

(α0)

a
bc

(
x, y(1), y(2)

) dxb

dt

dxc

dt
= 0,

δy(1)a

dt
= 0,

δy(2)a

dt
= 0, (9.14)

(α = 0, 1, 2) .

Indeed, the equations (9.13), (9.6’) and (9.12) imply (9.14).
A parametrized curve γ is vβ-vertical curve in the point x0 ∈ M if its tangent

vector field γ̇ belongs to the distributions N1and V2, respectively, (β = 1, 2).
Of course, a v1-vertical curve γ in the point x0 ∈ M is analytically repre-

sented by the equations of the form

xa = xa
0 , y(1)a = y(1)a (t) , y(2)a = 0, t ∈ I, (9.15)

and a v2-vertical curve γ in the point x0 ∈ M is analytically represented by the
equations of the form

xa = xa
0 , y(1)a = 0, y(2)a = y(2)a (t) , t ∈ I. (9.15’)

We define a vβ-path (β = 1, 2) in the point x0 ∈ M with respect to D to
be a vβ-vertical curve in the point x0 ∈ M , which is an autoparellel curve with
respect to D.

By means of (9.15), (9.15’) and (9.11) we can prove:
Theorem 9.5.
1◦. The v1-vertical paths in the point x 0 ∈ M are characterized by the system

of differential equations

xa = xa
0 ,

d2y(1)a

dt2
+ C

(α1)

a
bc

(
x0, y

(1), 0
) dy(1)b

dt

dy(1)c

dt
= 0, y(2)a = 0, (α = 0, 1, 2) .

2◦. The v2-vertical paths in the point x 0 ∈ M are characterized by the system

of differential equations

xa = xa
0 , y

(1)a = 0,
d2y(2)a

dt2
+ C

(α2)

a
bc

(
x0, 0, y(2)

) dy(2)b

dt

dy(2)c

dt
= 0, (α = 0, 1, 2) .

Remarks
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1. We assume that there exists the coefficients C
(α1)

a
bc(x0, y(1), 0) and C

(α2)

a
bc(x0,

0, y(2)a).

2. By Theorem 6.2, we can write the results of this section with respect to the
JN-linear connection JD on T 2M, [91], [92].

2.10 Structure equations of N−linear connection

For an N-linear connection D, with the coefficients DΓ (N) = ( L
(α0)

a
bc, C

(α1)

a
bc,

C
(α2)

a
bc), (α = 0, 1, 2), in the adapted basis

(
δa, δ1a, ∂̇2a

)
we can prove:

Lemma 10.1.

1◦. Each of following geometrical object fields

d (dxa)− dxb ∧ ω
(α)

a
b, d

(
δy(β)a

)
− δy(β)b ∧ ω

(α)

a
b, (α = 0, 1, 2, β = 1, 2) ,

are d-vector fields.
2◦. The geometrical object fields

d ω
(α)

a
b − ω

(α)

c
b ∧ ω

(α)

a
c, (α = 0, 1, 2) ,

and d-tensor fields, with respect to indices a and b.

Using the previous Lemma we can prove, by a straightforward calculus, a
fundamental result in the geometry of T2M.

Theorem 10.1. For any N-linear connection D, with the coefficients

DΓ (N) =
(

L
(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc

)
, (α = 0, 1, 2) , the following structure equa-

tions hold good:

d (dxa)− dxb ∧ ω
(α)

a
b = −

(0)

Ω
(α)

a,

d
(
δy(1)a

)− δy(1)b ∧ ω
(α)

a
b = −

(1)

Ω
(α)

a,

d
(
δy(2)a

)− δy(2)b ∧ ω
(α)

a
b = −

(2)

Ω
(α)

a, (α = 0, 1, 2) ,

(10.1)

and

d ω
(α)

a
b − ω

(α)

f
b ∧ ω

(α)

a
f = −Ω

(α)

a
b, (α = 0, 1, 2) , (10.2)
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where
(0)

Ω
(α)

a,
(1)

Ω
(α)

a,
(2)

Ω
(α)

a, (α = 0, 1, 2) are the 2-forms of torsion

(0)

Ω
(α)

a = 1
2

α

T
(0)

a
bcdxb ∧ dxc+

+ C
(α1)

a
bcdxb ∧ δy(1)c + C

(α2)

a
bcdxb ∧ δy(2)c,

(1)

Ω
(α)

a = 1
2 R
(01)

a
bcdxb ∧ dxc+

+
α

P
(11)

a
bcdxb ∧ δy(1)c + P

(21)

a
bcdxb ∧ δy(2)c+

+ 1
2

α

S
(1)

a
bcδy

(1)b ∧ δy(1)c + C
(α2)

a
bcδy

(1)b ∧ δy(2)c,

(10.3)

(2)

Ω
(α)

a = 1
2 R
(02)

a
bcdxb ∧ dxc+

+ P
(12)

a
bcdxb ∧ δy(1)c +

α

P
(22)

a
bcdxb ∧ δy(2)c+

+
1
2

R
(12)

a
bcδy

(1)b ∧ δy(1)c +
α

Q
(22)

a
bcδy

(1)b ∧ δy(2)c +
1
2

α

S
(2)

a
bcδy

(2)b ∧ δy(2)c,

and where Ω
(α)

a
b, (α = 0, 1, 2),are the 2-forms of curvature

Ω
(α)

a
b = 1

2 R
(0α)

a
b cddxc ∧ dxd +

+ P
(1α)

a
b cddxc ∧ δy(1)d + P

(2α)

a
b cddxc ∧ δy(2)d +

(10.4)

+
1
2

S
(1α)

a
b cdδy

(1)c ∧ δy(1)d + Q
(2α)

a
b cdδy

(1)c ∧ δy(2)d +
1
2

S
(2α)

a
b cdδy

(2)c ∧ δy(2)d.

Remarks
1◦. The theorem 10.1 is extremely important in a theory of submanifold

embedding in the total space T 2M of the bundle
(
T 2M, π2,M

)
.

2◦. For any JN-linear connection JD with coefficients JDΓ (N) = (La
bc,

C
(1)

a
bc, C

(2)

a
bc) we have

(0)

Ω
(0)

a =
(0)

Ω
(1)

a =
(0)

Ω
(2)

a =
(0)

Ω a,
(1)

Ω
(0)

a =
(1)

Ω
(1)

a =
(1)

Ω
(2)

a =
(1)

Ω a,

(2)

Ω
(0)

a =
(2)

Ω
(1)

a =
(2)

Ω
(2)

a =
(2)

Ω a, Ω
(0)

a
b = Ω

(1)

a
b = Ω

(2)

a
b = Ωa

b.

(10.5)

Then, by Theorem 6.2 the structure equations for the JN-linear connection
are easy to write, [14].



54 CHAPTER 2. LINEAR CONNECTIONS ON THE MANIFOLD T 2M

2.11 The Bianchi identities in the adapted basis

For applications, the form of the Bianchi identities (3.11) and (3.12) in the
adapted basis

(
δa, δ1a, ∂̇2a

)
is needed. In order to get it we shall insert in (3.11)

and (3.12) the vector fields X, Y, Z as in the following table:

X δd δ1d ∂̇2d δ1d δ1d ∂̇2d δ1d ∂̇2d ∂̇2d ∂̇2d

Y δc δc δc δ1c ∂̇2c ∂̇2c δ1c δ1c ∂̇2c ∂̇2c

Z δb δb δb δb δb δb δ1b δ1b δ1b ∂̇2b

and U will be taken successively equal to δa, δ1a, ∂̇2a. Then taking into account
(7.1), (7.2), (7.5) and (7.10) we prove

Theorem 11.1. For any N-linear connection D with the coefficients

DΓ (N) =
(

L
(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc

)
, (α = 0, 1, 2), the following Bianchi identities

hold:

0∑[
T

(0α)

a
bc|αd +

α

T
(0)

f
bc T

(0α)

a
df+

+ T
(01)

f
bc P

(1α)

a
df + T

(02)

f
bc P

(2α)

a
df −

α

R
(00)

a
b cd

]
= 0,

(α = 0, 1, 2) ,

(11.11)

where
0

R
(00)

a
b cd = R

(00)

a
b cd,

β

R
(00)

a
b cd = 0, (β = 1, 2) ,

T
(0α)

a
bc

(1)

| αd − P
(1α)

a
bd|αc + P

(1α)

a
cd|αb−

−
α

T
(0)

f
bc P

(1α)

a
fd − C

(1α)

f
bd T

(0α)

a
cf + C

(1α)

f
cd T

(0α)

a
bf+

+ T
(01)

f
bc S

(1α)

a
df −

α

P
(11)

f
bd P

(1α)

a
cf +

α

P
(11)

f
cd P

(1α)

a
bf+

+ T
(02)

f
bc Q

(2α)

a
df − P

(12)

f
bd P

(2α)

a
cf + P

(12)

f
cd P

(2α)

a
bf −

α

A
(10)

a
b cd = 0,

(α = 0, 1, 2) ,

(11.21)

where
0

A
(10)

a
b cd = P

(10)

a
b cd − P

(10)

a
c bd,

1

A
(10)

a
b cd = R

(01)

a
d bc,

2

A
(10)

a
b cd = 0,



2.11. THE BIANCHI IDENTITIES IN THE ADAPTED BASIS 55

T
(0α)

a
bc

(2)

| αd − P
(2α)

a
bd|αc + P

(2α)

a
cd|αb−

−
α

T
(0)

f
bc P

(2α)

a
fd − P

(20)

f
bd T

(0α)

a
cf + P

(20)

f
cd T

(0α)

a
bf−

− T
(01)

f
bc Q

(2α)

a
fd − P

(21)

f
bd P

(1α)

a
cf + P

(21)

f
cd P

(1α)

a
bf−

− T
(02)

f
bc S

(2α)

a
fd −

α

P
(22)

f
bd P

(2α)

a
cf +

α

P
(22)

f
cd P

(2α)

a
bf −

α

A
(20)

a
b cd = 0,

(α = 0, 1, 2) ,

(11.31)

where
0

A
(20)

a
b cd = P

(20)

a
b cd − P

(20)

a
c bd,

1

A
(20)

a
b cd = 0,

2

A
(20)

a
b cd = R

(02)

a
d bc,

P
(1α)

a
bc

(1)

| αd − P
(1α)

a
bd

(1)

| αc + S
(1α)

a
cd|αb−

− C
(α1)

f
bc P

(1α)

a
fd + C

(α1)

f
bd P

(1α)

a
fc+

+
α

P
(11)

f
bc S

(1α)

a
df −

α

P
(11)

f
bd S

(1α)

a
cf +

α

S
(1)

f
cd P

(1α)

a
bf+

+ P
(12)

f
bc Q

(2α)

a
df − P

(12)

f
bd Q

(2α)

a
cf + S

(12)

f
cd P

(2α)

a
bf −

α

A
(11)

a
b cd = 0,

(α = 0, 1, 2) ,

(11.41)

where
0

A
(11)

a
b cd = S

(10)

a
b cd,

1

A
(11)

a
b cd = P

(11)

a
d bc − P

(11)

a
c bd,

2

A
(11)

a
b cd = 0,

P
(2α)

a
bc

(1)

| αd − P
(1α)

a
bd

(2)

| αc − Q
(2α)

a
dc|αb−

− C
(α2)

f
bc P

(1α)

a
fd + C

(α1)

f
bd P

(2α)

a
fc − C

(α2)

f
dc P

(1α)

a
bf+

+ P
(21)

f
bc S

(1α)

a
df +

α

P
(11)

f
bd Q

(2α)

a
fc −

α

Q
(22)

f
dc P

(2α)

a
bf+

+
α

P
(22)

f
bc Q

(2α)

a
df + P

(12)

f
bd S

(2α)

a
fc −

α

A
(12)

a
b cd = 0,

(α = 0, 1, 2) ,

(11.51)

where
0

A
(12)

a
b cd = 0,

1

A
(12)

a
b cd = P

(21)

a
d bc,

2

A
(12)

a
b cd = − P

(12)

a
c bd,



56 CHAPTER 2. LINEAR CONNECTIONS ON THE MANIFOLD T 2M

P
(2α)

a
bc

(2)

| αd − P
(2α)

a
bd

(2)

| αc + S
(2α)

a
cd|αb−

− C
(α2)

f
bc P

(2α)

a
fd + C

(α2)

f
bd P

(2α)

a
fc +

α

S
(2)

f
cd P

(2α)

a
bf−

− P
(21)

f
bc Q

(2α)

a
fd + P

(21)

f
bd Q

(2α)

a
fc−

− P
(22)

f
bc S

(2α)

a
fd + P

(22)

f
bd S

(2α)

a
fc −

α

A
(22)

a
b cd = 0,

(α = 0, 1, 2) ,

(11.61)

where
0

A
(22)

a
b cd = S

(20)

a
b cd,

1

A
(22)

a
b cd = 0,

2

A
(22)

a
b cd = P

(22)

a
d bc − P

(22)

a
c bd,

0∑
[

S
(1β)

a
bc

(1)

| βd +
β

S
(1)

f
bc S

(1β)

a
df + S

(12)

f
bc Q

(2α)

a
df −

β

S
(11)

a
b cd

]
= 0,

(β = 1, 2) ,

(11.71)

where
1

S
(11)

a
b cd = S

(11)

a
b cd,

2

S
(11)

a
b cd = 0,

S
(1β)

a
bc

(2)

| βd − Q
(2β)

a
bd

(1)

| βc + Q
(2β)

a
cd

(1)

| βb−

−
β

S
(1)

f
bc Q

(2β)

a
fd − C

(β2)

f
bd S

(1β)

a
cf + C

(β2)

f
cd S

(1β)

a
bf−

− S
(12)

f
bc S

(2β)

a
fd −

β

Q
(22)

f
bd Q

(2β)

a
cf +

β

Q
(22)

f
cd Q

(2β)

a
bf −

β

B
(21)

a
b cd = 0,

(β = 1, 2) ,

(11.81)

where
1

B
(21)

a
b cd = Q

(21)

a
b cd − Q

(21)

a
c bd,

2

B
(21)

a
b cd = S

(12)

a
d bc,

Q
(2β)

a
bc

(2)

| βd − Q
(2β)

a
bd

(2)

| βc + S
(2β)

a
cd

(1)

| βb−

− C
(β2)

f
bc Q

(2β)

a
fd + C

(β2)

f
bd Q

(2β)

a
fc +

β

S
(2)

f
cd Q

(2β)

a
bf−

− Q
(22)

f
bc S

(2β)

a
fd + Q

(22)

f
bd S

(2β)

a
fc −

β

B
(22)

a
b cd = 0,

(β = 1, 2) ,

(11.91)

where
1

B
(22)

a
b cd = S

(21)

a
b cd,

2

B
(22)

a
b cd = Q

(22)

a
d bc − Q

(22)

a
c bd,
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0∑ [
S

(22)

a
bc

(2)

| 2d + S
(22)

f
bc S

(22)

a
df − S

(22)

a
b cd

]
= 0, (11.101)

and

0∑[
R

(0α)

e
a bc|αd + R

(oα)

e
a bf

α

T
(0)

f
cd+

+ P
(1α)

e
a bf R

(01)

f
cd+ P

(2α)

e
a bf R

(02)

f
cd

]
= 0, (α = 0, 1, 2) ,

(11.12)

R
(0α)

e
a bc

(1)

| αd − P
(1α)

e
a bd|αc + P

(1α)

e
a cd|αb−

−
α

T
(0)

f
bc P

(1α)

e
a df − C

(α1)

f
bd R

(0α)

e
a cf + C

(α1)

f
cd R

(0α)

e
a bf+

+ R
(01)

f
bc S

(1α)

e
a df −

α

P
(11)

f
bd P

(1α)

e
a cf +

α

P
(11)

f
cd P

(1α)

e
a bf+

+ R
(02)

f
bc Q

(2α)

e
a df − P

(12)

f
bd P

(2α)

e
a cf + P

(12)

f
cd P

(2α)

e
a bf = 0,

(11.22)

(α = 0, 1, 2) ,

R
(0α)

e
a bc

(2)

| αd − P
(2α)

e
a bd|αc + P

(2α)

e
a cd|αb−

−
α

T
(0)

f
bc P

(2α)

e
a fd − C

(α2)

f
bd R

(0α)

e
a cf + C

(α2)

f
cd R

(0α)

e
a bf−

− R
(01)

f
bc Q

(2α)

e
a fd − P

(21)

f
bd P

(1α)

e
a cf + P

(21)

f
cd P

(1α)

e
a bf+

+ R
(02)

f
bc S

(2α)

e
a df −

α

P
(22)

f
bd P

(2α)

e
a cf +

α

P
(22)

f
cd P

(2α)

e
a bf = 0,

(11.32)

(α = 0, 1, 2) ,

P
(1α)

e
a bc

(1)

| αd − P
(1α)

e
a bd

(1)

| αc + S
(1α)

e
a cd

(1)

| αb−

− C
(α1)

f
bc P

(1α)

e
a fd + C

(α1)

f
bd P

(1α)

e
a fc+

+
α

P
(11)

f
bc S

(1α)

e
a df +

α

P
(11)

f
bd S

(1α)

e
a fc +

α

S
(1)

f
cd P

(1α)

e
a bf+

+ P
(12)

f
bc Q

(2α)

e
a df − P

(12)

f
bd Q

(2α)

e
a cf + S

(12)

f
cd P

(2α)

e
a bf = 0,

(11.42)

(α = 0, 1, 2) ,

P
(2α)

e
a bc

(1)

| αd − P
(1α)

e
a bd

(2)

| αc − Q
(2α)

e
a dc|αb−

− C
(α2)

f
bc P

(1α)

e
a fd + C

(α1)

f
bd P

(2α)

e
a fc+
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+ P
(21)

f
bc S

(1α)

e
a df +

α

P
(11)

f
bd Q

(2α)

e
a fc − C

(α2)

f
dc P

(1α)

e
a bf+

+
α

P
(22)

f
bc Q

(2α)

e
a df + P

(12)

f
bd S

(2α)

e
a fc −

α

Q
(22)

f
dc P

(2α)

e
a bf = 0,

(11.52)

(α = 0, 1, 2) ,

P
(2α)

e
a bc

(2)

| αd − P
(2α)

e
a bd

(2)

| αc + S
(2α)

e
a cd|αb−

− C
(α2)

f
bc P

(2α)

e
a fd + C

(α2)

f
bd P

(2α)

e
a fc−

− P
(21)

f
bc Q

(2α)

e
a fd + P

(21)

f
bd Q

(2α)

e
a fc−

−
α

P
(22)

f
bc S

(2α)

e
a fd +

α

P
(12)

f
bd S

(2α)

e
a fc −

α

S
(2)

f
cd P

(2α)

e
a bf = 0,

(11.62)

(α = 0, 1, 2) ,

0∑ [
S

(1α)

e
a bc

(1)

| αd +
α

S
(1)

f
bc S

(1α)

e
a df + S

(12)

f
bc Q

(2α)

e
a df

]
= 0, (11.72)

(α = 0, 1, 2) ,

S
(1α)

e
a bc

(2)

| αd − Q
(2α)

e
a bd

(1)

| αc + Q
(2α)

e
a cd

(1)

| αb−

−
α

S
(1)

f
bc Q

(2α)

e
a fd − C

(α2)

f
bd S

(1α)

e
a cf + C

(α2)

f
cd S

(1α)

e
a bf−

− S
(12)

f
bc S

(2α)

e
a fd −

α

Q
(22)

f
bd Q

(2α)

e
a cf +

α

Q
(22)

f
cd Q

(2α)

e
a bf = 0,

(11.82)

(α = 0, 1, 2) ,

Q
(2α)

e
a bc

(2)

| αd − Q
(2α)

e
a bd

(2)

| αc + S
(2α)

e
a cd

(1)

| αb−

− C
(α2)

f
bc Q

(2α)

e
a fd + C

(α2)

f
bd Q

(2α)

e
a fc −

α

S
(2)

f
cd Q

(2α)

e
a bf−

−
α

Q
(22)

f
bc S

(2α)

e
a fd +

α

Q
(22)

f
bd S

(22)

e
a fc = 0,

(11.92)

(α = 0, 1, 2) ,

0∑[
S

(2α)

e
a bc

(2)

| αd +
α

S
(22)

f
bc S

(22)

e
a df

]
= 0, (11.102)

(α = 0, 1, 2) .

Here, everywhere,
0∑

means cyclic sum over (d,c,b).
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Remarks.
1◦. These identities become simpler if

T
(00)

a
bc = 0, S

(11)

a
bc = 0, S

(22)

a
bc = 0.

2◦. By Theorem 6.2, Proposition 7.2 and Corolarlly 7.2, the Bianchi iden-
tities for the JN-linear connection, with the coefficients JDΓ (N) = (La

bc, C
(1)

a
bc,

C
(2)

a
bc) are not difficult to write (see [27]).
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Chapter 3

Metric structures on the
manifold T 2M

3.1 Metric N−linear connections on T 2M

Definition 1.1. A metric structure on the manifold T 2M is a symmetric co-
variant tensor field G of the type (0,2) which is non degenerate at each point
u ∈ T 2M and of constant signature on T 2M . If G is positive definite we say it
defines a Riemannian structure on T 2M .

As in the Section 9, Ch. 1, we can prove that there is uniquely a nonlinear
connection such that the distribution V2 is orthogonal to distribution N1 and N0

, with respect to G, i.e.:

G
(
XV1 , Y V2

)
= 0, G

(
XH , Y V2

)
= 0. (1.1)

Proposition 1.1. A metric structure G on T 2M determines uniquely a
nonlinear connection N, if the distribution V2 is orthogonal to distributions N1

and N0. The coefficients N
1

a
b, N

2

a
b of N are given by

N
1

a
b = g

12
bc g

22

ca, N
2

a
b = g

02
bc g

22

ca −N
1

a
cN

1

c
b, (1.2)

where

g
αβ

ab = G
(
∂̇αa, ∂̇βb

)
, (α, β = 0, 1, 2) , ∂̇0a = ∂̇a, ||g

22

ab|| = ||g
22

ab||−1. (1.3)

In this Section we shall use only this nonlinear connection.
Also, we suppose that the distribution N0 is orthogonal to distribution N1,

with respect to G, namely:

G
(
XH , Y V1

)
= 0. (1.4)

61
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Proposition 1.2 If the distribution N
0

is orthogonal to distribution N
1

with

respect to G, is necessary that between the components g
αβ

ab, (α, β = 0, 1, 2) of G

there exists the following relation

g
01

ab −N
1

c
a g
11

cb − N
2

c
a g
12

cb − g
02

acN
1

c
b+

+ N
1

c
aN

1

d
b g
12

cd + N
2

c
aN

1

d
b g
22

cd = 0.
(1.5)

Proof. By (4.11), Ch. 1, (1.3) and (1.4) we get (1.5).
q.e.d.

Corollary 1.1. If the distributions N
0
, N

1
, V2 are orthogonals in pairs with

respect to a metric structure G and rank( g
22

ab)=n, then between the components

g
αβ

ab of G, (1.3), necessary exists the following relation

g
01

ab −
(

g
12

ac g
11

db + g
02

ac g
12

db

)
g
22

cd + g
12

ac g
12

db g
12

fg g
22

cf g
22

dg = 0. (1.5’)

Let us consider a metric structure G on T 2M and the distributions N
0
, N

1
, V2

are orthogonals in pairs with respect to a metric structure G. By (1.1) and (1.4)
we have the following decomposition of G:

G(X, Y ) = G(XH , Y H) + G(XV1 , Y V1) + G(XV2 , Y V2), X, Y ∈ X (T 2M). (1.6)

With the other words, G decomposes into sum of three d-tensor fields:
GH of type (0,2) defined by GH(X, Y ) = G(XH , Y H), GV1 of type (0,2) de-
fined by GV1(X, Y ) = G(XV1 , Y V1), GV2 of type (0,2) defined by GV2(X,Y ) =
G(XV2 , Y V2).

Locally, these d-tensor fields can be written as

GH = g
(0)

abdxa⊗dxb, GV1 = g
(1)

abδy
(1)a⊗ δy(1)a, GV2 = g

(2)
abδy

(2)a⊗ δy(2)b, (1.7)

where
g
(0)

ab = G (δa, δb) , g
(1)

ab = G (δ1a, δ1b) , g
(2)

ab = G
(
∂̇2a, ∂̇2b

)
, (1.8)

rank|| g
(α)

ab|| = n, (α = 0, 1, 2) . (1.9)

Thus the decomposition (1.6) looks locally as follows:

G = g
(0)

abdxa ⊗ dxb + g
(1)

abδy
(1)a ⊗ δy(1)b + g

(2)
abδy

(2)a ⊗ δy(2)b. (1.10)

Definition 1.2. An N-linear connection D on T 2M endowed with a metric
structure G is said to be a metric N-linear connection if DXG = 0 for every
X ∈ X

(
T 2M

)
.
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Proposition 1.3. If a linear connection D on T 2M has the properties:
a) D preserves by parallelism the vertical distributions N1 and V2,
b) DXG = 0, X ∈ X(T 2M)
then it is a metric N-linear connection.
Proof. It suffices to prove that D preserves by parallelism the horizontal

distribution u → N
0
(u). Using a), (1.1) and (1.4) in

(DXG)
(
Y H , ZVβ

)
= XG

(
Y H , ZVβ

)−G
(
DXY H , ZVβ

)−G
(
Y H , DXZVβ

)
= 0,

(β = 1, 2) ,

one gets G
(
DXY H , ZVβ

)
= 0, (β = 1, 2),for every Z ∈ X (

T 2M
)
. Thus, by (1.1)

and (1.4), DXY H is an horizontal vector field,
q.e.d.

Proposition 1.4. An N-linear connection D on T 2M endowed with a metric
structure G is a metric N-linear connection if and only if

D
0

H
XGH = 0, D

0

V1
X GH = 0, D

0

V2
X GH = 0,

D
β

H
XGVβ = 0, D

β

V1
X GVβ = 0, D

β

V2
X GVβ = 0, (β = 1, 2) .

(1.11)

Proof. The equation DXG = 0 implies DH
XG = 0, DV1

X G = 0 and DV2
X G =

0. By (1.6) we have

(D
0

H
XGH) (Y, Z) + (D

1

H
XGV1) (Y,Z) + (D

2

H
XGV2) (Y, Z) = (DH

XG)(Y, Z) = 0, (*)

(D
0

V1
X GH) (Y,Z)+(D

1

V1
X GV1) (Y,Z)+(D

2

V1
X GV2) (Y,Z) = (DV1

X G)(Y,Z) = 0, (**)

(D
0

V2
X GH) (Y, Z) + (D

1

V2
X GV1) (Y, Z) + (D

2

V2
X GV2) (Y, Z) = (DV2

X G)(Y, Z) = 0.

(***)
Taking in (*) Y=YH , Z=ZH one gets D

0

H
XGH = 0, taking Y=YV1 , Z=ZV1 one

gets D
1

H
XGV1 = 0, taking Y=YV2 , Z=ZV2 one obtains D

2

H
XGV2 = 0. Now, putting

in (**) Y=YH , Z=ZH one obtains D
0

V1
X GH = 0, putting Y=YV1 , Z=ZV1 one gets

D
1

V1
X GV1 = 0 and then Y=YV2 , Z=ZV2 one gets D

2

V1
X GV2 = 0. Similarly, taking in

(***) Y=YH , Z=ZH one obtains D
0

V2
X GH = 0, putting Y=YV1 , Z=ZV1 one gets

D
1

V2
X GV1 = 0, and then Y=YV2 , Z=ZV2 one obtains D

2

V2
X GV2 = 0. Conversely,

using (1.11) in (*) one results DH
XG = 0, using (1.11) in (**) one results DV1

X G =
0, and then by (***) one deduces DV2

X G = 0. From these three equations it
follows DXG = 0.
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q.e.d.
We shall now discuss the existence of metric N-linear connection on T 2M .
First we prove

Theorem 1.1. If
∗
D is a fixed N-linear connection on T 2M , then the

N-linear connection given by the following formulae is metric with respect to G:

2GH(D
0

H
XY, Z) = XH(GH)(Y, Z) + Y H(GH)(Z, X)− ZH(GH)(X,Y )−

− GH(X, [Y H , ZH ]) + GH(Y, [ZH , XH ]) + GH(Z, [XH , Y H ]),

D
β

H
XY =

∗
D
β

H
XY + A

(β0)

(
Y Vβ , XH

)
, such that

2
(
GVβ

)
( A
(β0)

(Y Vβ , XH), Z) = (
∗
D
β

H
XGVβ )(Y Vβ , ZVβ ), (β = 1, 2) ,

D
δ

V1
X Y =

∗
D
δ

V1
X Y + A

(δ1)

(
Y Vδ , XV1

)
, such that

2
(
GVδ

)
( A
(δ1)

(Y Vδ , XV1), Z) = (
∗
D
δ

V1
X GVδ)(Y Vδ , ZVδ), (δ = 0, 2) , V0 = H,

2GV1(D
1

V1
X Y , Z) = XV1(GV1)(Y,Z) + Y V1(GV1)(Z, X)− ZV1(GV1)(X,Y )−

−GV1(X, [Y V1 , ZV1 ]) + GV1(Y, [ZV1 , XV1 ]) + GV1(Z, [XV1 , Y V1 ]),
(1.12)

D
ε

V2
X Y =

∗
D
ε

V2
X Y + A

(ε2)

(
Y Vε , XV2

)
, such that

2
(
GVε

)
( A
(ε2)

(Y Vε , XV2), Z) = (
∗
D
ε

V2
X Gε)(Y Vε , ZVε), (ε = 0, 1) , V0 = H,

2GV2(D
2

V2
X Y , Z) = XV2(GV2)(Y,Z) + Y V2(GV2)(Z, X)− ZV2(GV2)(X,Y )−

−GV2(X, [Y V2 , ZV2 ]) + GV2(Y, [ZV2 , XV2 ]) + GV2(Z, [XV2 , Y V2 ]).

Proof. It is obvious that the formulae (1.12) uniquely determine DH
X , DV1

X

and DV2
X , hence they uniquely determine an N-linear connection on T 2M . By a

direct computation one checks that DH
X , DV1

X and DV2
X verify (1.11). Thus D is

a metric N-linear connection. We note that the h(hh)-, v1(v1v1)- and v2(v2v2)-
tensors of torsion of D vanish.

q.e.d.
Next, we have:
Theorem 1.2. Let G be a metric structure on T 2M . There exist metric

N-linear connections on T 2M which depend on G, only. One of them is given by
(1.12), in which
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∗
D
β

H
XY = [XH , Y Vβ ]Vβ , (β = 1, 2) ,

∗
D
δ

V1
X Y = [XV1 , Y Vδ ]H , (δ = 0, 2) , V0 = H,

∗
D
ε

V2
X Y = [XV2 , Y Vε ]Vε , (ε = 0, 1) , V0 = H.

(1.13)

Proof. It is evident that D
0

H
XY = DXH Y H , D

1

V1
X Y = DXV1 Y V1 and

D
2

V2
X Y = DXV2 Y V2 given by the first, the fourth and the six equations from

(1.12) depend on G only. If we chose the N-linear connection
∗
DXsuch that

vβ

∗
T

(
XH , Y Vβ

)
= 0, vβ

∗
T

(
Y Vβ , XV1

)
= [XV1 , Y Vβ ]Vβ , h

∗
T

(
XH , Y Vβ

)
= 0,

(β = 1, 2), then the equations (1.13) hold and by the second, the third and

the five equations from (1.12), D
1

H
XY , D

2

H
XY , D

0

V1
X Y , D

2

V1
X Y and D

0

V2
X Y , D

1

V2
X Y ,

respectively, depend on G, only.

q.e.d.

Now, we shall express a metric N-linear connection and related results in
terms of local coordinate systems.

As we have seen, a metric structure G uniquely determines a nonlinear con-
nection N and if this metric satisfies (1.4), then G takes the local form (1.10),
where the basis (dxa, δy(1)a, δy(2)a), was used.

Traslating the Proposition 1.4 in local coordinates one obtains:

Proposition 1.5. An N-linear connection on T 2M is a metric N-linear
connection if and only if

g
(α)

ab|αc = 0, g
(α)

ab

(1)

| αc = 0, g
(α)

ab

(2)

| αc = 0, (α = 0, 1, 2) . (1.14)

If we proceed similarly with the Theorem 1.2 we deduce:

Theorem 1.3. If the manifold T 2M is endowed with the metric structure G
given by (1.10) then there exists on T 2M a metric N-linear connection, depending
only on G, whose h(hh)-, v1(v1v1)- and v2(v2v2)- tensors of torsion vanish. Its

local coefficients D
c

Γ(N) = (
c

L
(α0)

a
bc.

c

C
(α1)

a
bc,

c

C
(α2)

a
bc), (α = 0, 1, 2), are as follows:
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c

L
(00)

a
bc = 1

2 g
(0)

ad(δc g
(0)

bd + δb g
(0)

dc − δd g
(0)

bc),

c

L
(β0)

a
bc = B

(ββ)

a
cb + 1

2 g
(β)

ad(δc g
(β)

bd − B
(ββ)

f
cb g

(β)
fd − B

(ββ)

f
cd g

(β)
bf ), (β = 1, 2) ,

c

C
(δ1)

a
bc = 1

2 g
(δ)

adδ1c g
(δ)

bd, (δ = 0, 2) ;
c

C
(ε2)

a
bc = 1

2 g
(ε)

ad∂̇2c g
(ε)

bd, (ε = 0, 1) ,

c

C
(ββ)

a
bc = 1

2 g
(β)

ad(δβc g
(β)

bd + δβb g
(β)

dc − δβd g
(β)

bc), (β = 1, 2) , δ2a = ∂̇2a.

(1.15)
Definition 1.3. The metric N-linear connection given by (1.15) will be

called the canonical N-linear connection associated with G.
Let D

∗
Γ(N) = (

∗
L

(α0)

a
bc.

∗
C

(α1)

a
bc,

∗
C

(α2)

a
bc), (α = 0, 1, 2), be an N-linear connection

on T 2M which is endowed with a metric structure G.

If we denote by
∗
|αc,

(1)
∗
| αc,

(2)
∗
| αc the hα- and vβα- covariant derivations

(α = 0, 1, 2; β = 1, 2), with respect to D
∗
Γ (N), then by a direct calculation one

checks that the N-linear connection whose local coefficients are given by

L
(α0)

a
bc =

∗
L

(α0)

a
bc + 1

2 g
(α)

ad g
(α)db

∗
|αc

,

C
(α1)

a
bc =

∗
C

(α1)

a
bc + 1

2 g
(α)

ad g
(α)

db

(1)
∗
| αc,

C
(α2)

a
bc =

∗
C

(α2)

a
bc + 1

2 g
(α)

ad g
(α)

db

(2)
∗
| αc, (α = 0, 1, 2) ,

(1.16)

is a metrical N-linear connection.
This method of metrisation of an N-linear connection is called the Kawaguchi

metrisation process, [44].
Let us associate to G the following operators of Obata type:

α

O
1

cd
ab =

1
2
(δc

aδd
b − g

(α)
ab g

(α)

cd),
α

O
2

cd
ab =

1
2
(δc

aδd
b + g

(α)
ab g

(α)

cd), (α = 0, 1, 2) . (1.17)

Theorem 1.4. The set of all metric N-linear connections with respect to G
on the manifold T 2M is given by

L
(α0)

a
bc =

c

L
(α0)

a
bc +

α

O
1

fa
bd

α

Xd
fc,

C
(α1)

a
bc =

c

C
(α1)

a
bc +

α

O
1

fa
bd

α

Y d
fc,

C
(α2)

a
bc =

c

C
(α2)

a
bc +

α

O
1

fa
bd

α

Zd
fc, (α = 0, 1, 2) ,

(1.18)
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where
(

c

L
(α0)

a
bc,

c

C
(α1)

a
bc,

c

C
(α2)

a
bc

)
is the canonical N-linear connection (1.15) and

α

Xa
bc,

α

Y a
bc,

α

Za
bc, (α = 0, 1, 2), are arbitrary d-tensor fields.

Proof. See V. Cruceanu, R. Miron [44], V. Oproiu [111].

3.2 Metric N−linear connections with the tor-
sion prescribed

We have proved above the existence of metric N-linear connections whose h(hh)-,
v1(v1v1)- and v2(v2v2)- tensors of torsion vanish. But there are certain prob-
lems, especially related to the theory of relativity, in which metrical N-linear
connections with h(hh)-, v1(v1v1)- and v2(v2v2)- tensors of torsion prescribed
are needed. In the following we show that such metric N-linear connections do
exist.

Definition 2.1. An N-linear connection D on T 2M is h0v11v22-metric with
respect to a metric structure G if

D
0

H
XGH = 0, D

1

V1
X GV1 = 0, D

2

V2
X GV2 = 0, X ∈ X (

T 2M
)
. (2.1)

An easy computation in local coordinates leads to

Proposition 2.1. An N-linear connection D
c

Γ(N) = ( L
(α0)

a
bc. C

(α1)

a
bc, C

(α2)

a
bc)

is h0v11v22-metric with respect to G = g
(0)

abdxa ⊗ dxb + g
(1)

abδy
(1)a ⊗ δy(1)b +

g
(2)

abδy
(2)a ⊗ δy(2)b if and only if

g
(0)

ab|0c = 0, g
(1)

ab

(1)

| 1c = 0, g
(2)

ab

(2)

| 2c = 0. (2.1’)

Let us consider an N-linear connection of the Berwald type

B
c

Γ(N) = (
c

L
(00)

a
bc. B

(11)

a
cb, B

(22)

a
cb, 0,

c

C
(11)

a
bc, 0, 0, 0,

c

C
(22)

a
bc), (2.2)

where
c

L
(00)

a
bc = 1

2 g
(0)

ad(δc g
(0)

bd + δb g
(0)

dc − δd g
(0)

bc),

c

C
(11)

a
bc = 1

2 g
(1)

ad(δ1c g
(1)

bd + δ1b g
(1)

dc − δ1d g
(1)

bc),

c

C
(22)

a
bc = 1

2 g
(2)

ad(∂̇2c g
(2)

bd + ∂̇2b g
(2)

dc − ∂̇2d g
(2)

bc).

(2.3)

We have:
Proposition 2.2.
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1 ◦. The N-linear connection of the Berwald type (2.2) is h0v11v22-metric.
It depends on the metric structure G, only.

2 ◦. The d-tensors of torsions of B
c

Γ (N) are given by

T
(00)

a
bc = 0, R

(01)

a
bc, R

(02)

a
bc,

P
(β0)

a
bc = 0, P

(ββ)

a
bc = 0, (β = 1, 2) , P

(12)

a
bc, P

(21)

a
bc

Q
(21)

a
bc = 0, Q

(22)

a
bc = P

(21)

a
bc, S

(12)

a
bc = R

(12)

a
bc, S

(ββ)

a
bc = 0, (β = 1, 2) .

3◦. The d-tensors of curvature of B
c

Γ (N) have the following expressions:

R
(00)

a
b cd = δd

c

L
(00)

a
bc − δc

c

L
(00)

a
bd +

c

L
(00)

f
bc

c

L
(00)

a
fd −

c

L
(00)

f
bd

c

L
(00)

a
fc,

R
(0β)

a
b cd = δd B

(ββ)

a
cb − δc B

(ββ)

a
db + B

(ββ)

f
cb B

(ββ)

a
df − B

(ββ)

f
db B

(ββ)

a
cf+

+
c

C
(ββ)

a
bf R

(0β)

f
cd, (β = 1, 2) ,

P
(β0)

a
b cd = δβd

c

L
(00)

a
bc, (β = 1, 2, δ2a = ∂̇2a),

P
(ββ)

a
b cd = δβd B

(ββ)

a
cb −

c

C
(ββ)

a
bd|βc, (β = 1, 2, δ2a = ∂̇2a),

P
(12)

a
b cd = δ1d B

(22)

a
cb +

c

C
(22)

a
bf B

(12)

f
cd,

P
(21)

a
b cd = ∂̇2d B

(11)

a
cb +

c

C
(11)

a
bf B

(21)

f
cd,

Q
(20)

a
b cd = 0, Q

(21)

a
b cd = ∂̇2d

c

C
(11)

a
bc,

Q
(22)

a
b cd = −δ1c

c

C
(22)

a
bd +

c

C
(22)

a
bf B

(21)

f
cd,

S
(10)

a
b cd = 0, S

(12)

a
b cd = C

(22)

a
bf R

(12)

f
cd,

S
(ββ)

a
b cd = δβd

c

C
(ββ)

a
bc − δβc

c

C
(ββ)

a
bd +

c

C
(ββ)

f
bc

c

C
(ββ)

a
fd −

c

C
(ββ)

f
bd

c

C
(ββ)

a
fc,

(β = 1, 2, δ2a = ∂̇2a).

The N-linear connection (2.2) will be called the canonical Berwald type
connection on T 2M .

Now, we shall prove:
Theorem 2.1. There exists an unique h0v11v22-metric N-linear connection

of the Berwald type with prescribed h(hh)-, v1(v1v1)- and v2(v2v2)- tensors of
torsion .
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Proof. Let us fix the Berwald connection B
c

Γ (N) introduced in the above.
Then, by the general theory of connections, every other N-linear connection of
the Berwald type is of the form

( L
(00)

a
bc + τ

(0)

a
bc, B

(11)

a
bc, B

(22)

a
cb, 0, C

(11)

a
bc + τ

(1)

a
bc, 0, 0, 0, C

(22)

a
bc + τ

(2)

a
bc)

where τ
(0)

a
bc, τ

(1)

a
bc and τ

(2)

a
bc are arbitrary d-tensor fields. Let T

(00)

a
bc, S

(11)

a
bc and

S
(22)

a
bc be three d-tensor fields which are skew-symmetric with respect to the

covariance indices. We shall determine the d-tensor fields τ
(0)

a
bc, τ

(1)

a
bc and τ

(2)

a
bc

such that the Berwald type connection of general form given above to be h0v11v22-
metric and to have T

(00)

a
bc, S

(11)

a
bc and S

(22)

a
bc as h(hh)-, v1(v1v1)- and v2(v2v2)-

tensors of torsion, respectively. These conditions show us that τ
(0)

a
bc, τ

(1)

a
bc and

τ
(2)

a
bc must satisfy the following systems of equations:





τ
(0)

a
bc − τ

(0)

a
cb = T

(00)

a
bc

τ
(0)

d
ac g

(0)
db + τ

(0)

d
bc g

(0)
ad = 0,

(2.4)





τ
(β)

a
bc − τ

(β)

a
cb = S

(ββ)

a
bc

τ
(β)

d
ac g

(β)
db + τ

(β)

d
bc g

(β)
ad = 0, (β = 1, 2) .

(2.5)

If in the second equation (2.4) we cyclicly permute the indices a, b, c then
we add the equations such obtained and take into account the first equation (2.4)
we obtain

τ
(0)

a
bc =

1
2

g
(0)

ad( g
(0)

df T
(00)

f
bc − g

(0)
bf T

(00)

f
dc + g

(0)
fc T

(00)

f
bd). (2.6)

If we similarly proceed with the equations (2.5) we deduce

τ
(β)

a
bc =

1
2

g
(β)

ad( g
(β)

df S
(ββ)

f
bc − g

(β)
bf S

(ββ)

f
dc + g

(β)
fc S

(ββ)

f
bd), (β = 1, 2) . (2.7)

Consequently τ
(0)

a
bc and τ

(β)

a
bc, (β = 1, 2), are uniquely determined,

q.e.d.
From (1.16) we see directly that the Kawaguchi metrisation process leaves

unchanged the h(hh)-, v1(v1v1)- and v2(v2v2)- tensors of torsion. Thus we have:
Theorem 2.2. Let T 2M be endowed with a metric structure G given by

(1.10). There exists on T 2M a metric N-linear connection completely determined
by G whose h(hh)-, v1(v1v1)- and v2(v2v2)- tensors of torsion are prescribed. It
is obtained from the h0v11v22- metric Berwald type connection given by Theorem
2.1 via the Kawaguchi metrization process and has the following local coefficients

L
(00)

a
bc = 1

2 g
(0)

ad(δc g
(0)

bd + δb g
(0)

dc − δd g
(0)

bc) + τ
(0)

a
bc,

L
(β0)

a
bc =

c

L
(β0)

a
bc, (β = 1, 2) , C

(01)

a
bc =

c

C
(01)

a
bc,
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C
(11)

a
bc = 1

2 g
(1)

ad(δ1c g
(1)

bd + δ1b g
(1)

dc − δ1d g
(1)

bc) + τ
(1)

a
bc, (2.8)

C
(ε2)

a
bc =

c

C
(ε2)

a
bc, (ε = 0, 1) , C

(21)

a
bc =

c

C
(21)

a
bc,

C
(22)

a
bc = 1

2 g
(2)

ad(∂̇2c g
(2)

bd + ∂̇2b g
(2)

dc − ∂̇2d g
(2)

bc) + τ
(2)

a
bc,

where τ
(0)

a
bc and τ

(β)

a
bc, (β = 1, 2), are given by (2.6) and (2.7), respectively.

3.3 The Levi-Civita connection on T 2M

It is well known that there exists an unique linear connection on T 2M which
is metric with respect to G and symmetric, that is, it has no tensor of torsion.
This is called the Levi-Civita connection of G. Note that it is not an N-linear
connection of G on T 2M .

We shall give the local coefficients of the Levi-Civita connection G in the
adapted basis (δa, δ1a, ∂̇2a ). These coefficients will be expressed by using the local

coefficients of the canonical metrical N-linear connection D
c

Γ(N) from (1.15).
If we denote by ∇ the Levi-Civita connection of G, then by a well known

fact about the difference of two linear connections, we can write:

∇X =
c

DX + τX , X ∈ X (
T 2M

)
, (3.1)

where τX is a tensor field of the type (1,1) on T 2M . Taking into account that

the linear connections ∇ and
c

D are metric with respect to G and ∇ is without
torsion the following system of equations for the determination of τX is obtained:

G(τ(Y, X), Z) + G(Y, τ(Z, X)) = 0

τ(X, Y )− τ(Y, X) =
c

T (X, Y ), X, Y ∈ X (T 2M),
(3.2)

where we have set τX(Y ) = τ(Y,X) and
c

T is the torsion of
c

D.
In the adapted basis (δa, δ1a, ∂̇2a ) the Levi-Civita connection looks as follows:

∇δcδb = L
(0)

a
bcδa + L

(1)

a
bcδ1a + L

(2)

a
bc∂̇2a,

∇δcδβb = K
(β0)

a
bcδa + K

(β1)

a
bcδ1a + K

(β2)

a
bc∂̇2a, (β = 1, 2) , δ2a = ∂̇2a,

∇δ1cδb =
1

M
(0)

a
bcδa +

1

M
(1)

a
bcδ1a +

1

M
(2)

a
bc∂̇2a,

∇δ1cδβb =
1

F
(β0)

a
bcδa +

1

F
(β1)

a
bcδ1a +

1

F
(β2)

a
bc∂̇2a, (β = 1, 2) , δ2a = ∂̇2a,

(3.3)
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∇∂̇2c
δb =

2

M
(0)

a
bcδa +

2

M
(1)

a
bcδ1a +

2

M
(2)

a
bc∂̇2a,

∇∂̇2c
δβb =

2

F
(β0)

a
bcδa +

2

F
(β1)

a
bcδ1a +

2

F
(β2)

a
bc∂̇2a, (β = 1, 2) , δ2a = ∂̇2a,

Writing the system of equations (3.2) in the adapted basis (δa, δ1a, ∂̇2a ) one
gets a system of equations which allows us to determine the local components of
∇X . Inserting these local components in the local form of the equation (3.1) one
obtains:

Theorem 3.1 The local coefficients of the Levi-Civita connection ∇ of the
metric structure G on the manifold T 2M are as follows:

L
(0)

a
bc =

c

L
(00)

a
bc, L

(β)

a
bc = − 1

2

c

R
(0β)

a
bc −

c

C
(0β)

f
bd g

(0)
fc g

(β)

da, (β = 1, 2) ,

K
(β0)

a
bc = ( 1

2

c

R
(0β)

f
dc g

(β)
fb +

c

C
(0β)

f
db g

(0)
fc) g

(0)

da, K
(ββ)

a
bc =

c

L
(β0)

a
bc +

β

O
(1)

fa
bd

c

P
(ββ)

a
cf ,

(β = 1, 2)

K
(12)

a
bc = 1

2 (
c

P
(12)

a
cb −

c

P
(21)

f
cd g

(1)
fb g

(2)

da), K
(21)

a
bc,= ( 1

2

c

P
(21)

a
cb −

c

P
(12)

f
cd g

(2)
fb g

(1)

da),

β

M
(0)

a
bc = K

(β0)

a
cb, (β = 1, 2) ,

β

M
(β)

a
bc = −

β

O
(2)

fa
cd

c

P
(ββ)

d
bf , (β = 1, 2) ,

1

M
(2)

a
bc = − 1

2 (
c

P
(12)

a
bc +

c

P
(21)

f
bd g

(1)
fc g

(2)

da),
2

M
(1)

a
bc = − 1

2 (
c

P
(21)

a
bc +

c

P
(12)

f
bd g

(2)
fc g

(1)

da),

β

F
(γ0)

a
bc = 1

2 (
c

P
(γβ)

f
db g

(β)
fc +

c

P
(βγ)

f
dc g

(γ)
fb)gda,

β

F
(ββ)

a
bc =

c

C
(ββ)

a
bc, (β, γ = 1, 2) ,

(3.4)
1

F
(12)

a
bc = − 1

2

c

S
(12)

a
bc − 1

2 (
c

C
(12)

f
cd g

(1)
bf +

c

C
(12)

f
bd g

(1)
cf ) g

(2)

da,

2

F
(11)

a
bc = 1

2

c

S
(12)

f
db g

(2)
fc g

(1)

da +
1

O
(2)

fa
bd

c

C
(12)

d
fc,

2

F
(12)

a
bc = −

2

O
(2)

fa
cd Q

(22)

d
bf ,

1

F
(21)

a
bc = 1

2

c

S
(12)

f
dc g

(2)
fb g

(1)

da +
1

O
(2)

fa
cd

c

C
(12)

d
fb,

1

F
(22)

a
bc =

c

C
(21)

a
bc +

2

O
(1)

fa
bd

c

Q
(22)

d
cf ,

2

F
(21)

a
bc = 1

2 (
c

Q
(22)

f
db g

(2)
fc +

c

Q
(22)

f
dc g

(2)
fb) g

(1)

da.

3.4 Some remarkable metrics on T 2M

Recall that a given metrical structure G on the manifold T 2M determines a
nonlinear connection and with respect to it G decomposes into a sum of three
d-tensor fields which may be viewed as defining metrical structures in horizontal
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and verticals distributions, respectively. Conversely, if a nonlinear connection,
as well as some metrical structures in horizontal and verticals distributions are
given, a metrical structure on T 2M may be obtained.

From now on we fix a nonlinear connection N(N
1

a
b, N2

a
b) in the tangent bundle

of second order (T 2M,π2,M).
Definition 4.1.
1 ◦. An h-metric on T 2M is a d-tensor field GH = g

(0)
abdxa ⊗ dxb,

where g
(0)

ab

(
x, y(1), y(2)

)
= g

(0)
ba

(
x, y(1), y(2)

)
, det(gab(x, y(1), y(2))) 6= 0 and the

quadratic form g
(0)

abξ
aξb has constant signature.

2 ◦. A v1-metric on T 2M is a d-tensor field GV1 = g
(1)

abδy
(1)a⊗δy(1)b, where

g
(1)

ab has the same properties as g
(0)

ab.

3 ◦. A v2-metric on T 2M is a d-tensor field GV2 = g
(2)

abδy
(2)a⊗δy(2)b, where

g
(2)

ab has the same properties as g
(0)

ab.

4 ◦. An (h,v1,v2)- metric on T 2M is the d-tensor field G = GH +GV1 +GV2 ,
i.e.

G = g
(0)

ab

(
x, y(1), y(2)

)
dxa ⊗ dxb +

2∑

β=1

g
(β)

ab

(
x, y(1), y(2)

)
δy(β)a ⊗ δy(β)b. (4.1)

Obviously, the metric structure (9.9), Ch.1

G = gabdxa ⊗ dxb + gabδy
(1)a ⊗ δy(1)b + habδy

(2)a ⊗ δy(2)b, (4.2)

the metric structure (9.8), Ch. 1

G = gabdxa ⊗ dxb + habδy
(1)a ⊗ δy(2)b + gabδy

(2)a ⊗ δy(2)b, (4.3)

the metric structure (9.7), Ch. 1

G = gabdxa ⊗ dxb + habδy
(1)a ⊗ δy(2)b + habδy

(2)a ⊗ δy(2)b, (4.4)

and the metric structure (9.10), Ch. 1

G = gabdxa ⊗ dxb + gabδy
(1)a ⊗ δy(1)b + gabδy

(2)a ⊗ δy(2)b, (4.5)

where gab

(
x, y(1), y(2)

)
and hab

(
x, y(1), y(2)

)
has the same properties as g

(0)
ab, are

the (h,v1,v2)-metric structures on T 2M .
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By using Theorem 1.3 we can write the metric N-linear connections depend-
ing only on G given by (4.2)-(4.5)

For instance, we have
Theorem 4.1. If the manifold T 2M is endowed with the metric structure G

given by (4.4) then the metrical canonical N-linear connection has the coefficients:

c

L
(00)

a
bc = 1

2gad(δcgbd + δbgdc − δdgbc),
c

L
(β0)

a
bc = B

(ββ)

a
cb + 1

2had(δchbd − B
(ββ)

f
cbhfd − B

(ββ)

f
cdhbf ), (β = 1, 2) ,

c

C
(0β)

a
bc = 1

2gadδβcgbd,
(
β = 1, 2, δ2a = ∂̇2a

)
, (4.6)

c

C
(21)

a
bc = 1

2hadδ1chbd,
c

C
(12)

a
bc = 1

2had∂̇2chbd,

c

C
(ββ)

a
bc = 1

2had(δβchbd + δβbhdc − δβdhbc), (β = 1, 2, δ2a = ∂̇2a).

Theorem 4.2. If the manifold T 2M is endowed with the metric structure G
given by (4.5) then the metrical canonical N-linear connection has the coefficients:

c

L
(00)

a
bc = 1

2gad(δcgbd + δbgdc − δdgbc),
c

L
(β0)

a
bc = B

(ββ)

a
cb + 1

2gad(δcgbd − B
(ββ)

f
cbgfd − B

(ββ)

f
cdgbf ), (β = 1, 2) ,

c

C
(01)

a
bc =

c

C
(21)

a
bc = 1

2gadδ1cgbd, (4.7)

c

C
(02)

a
bc =

c

C
(12)

a
bc = 1

2gad∂̇2cgbd,

c

C
(ββ)

a
bc = 1

2gad(δβcgbd + δβbgdc − δβdgbc),

(
β = 1, 2, δ2a = ∂̇2a

)

Definition 4.2.
1 ◦. The (h,v1,v2)-metric G given by (4.1) is said to be h-Riemannian if

( g
(0)

ab) do not depend on y(1)a and y(2)a.

2 ◦. The (h,v1,v2)-metric G given by (4.1) is said to be v1-Riemannian if
( g

(1)
ab) do not depend on y(1)a and y(2)a.

3 ◦. The (h,v1,v2)-metric G given by (4.1) is said to be v2-Riemannian if
( g

(2)
ab) do not depend on y(1)a and y(2)a.
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It is now clearly what G is (h,v1,v2)-Riemannian means.
We have

Proposition 4.1.

a. G is an h-Riemannian metric if and only if
c

C
(01)

a
bc and

c

C
(02)

a
bc from (1.15)

vanish.
b. G is a v1-Riemannian metric if and only if

c

C
(11)

a
bc and

c

C
(12)

a
bc from (1.15)

vanish.
c. G is a v2-Riemannian metric if and only if

c

C
(21)

a
bc and

c

C
(22)

a
bc from (1.15)

vanish.
d. G is an (h,v1,v2)-Riemannian metric on T 2M if and only if

c

C
(0β)

a
bc = 0,

c

C
(12)

a
bc = 0,

c

C
(21)

a
bc = 0,

c

C
(ββ)

a
bc = 0, (β = 1, 2) . (4.8)

Coming back to the Theorem 1.3, we obtain
Proposition 4.2. If the (h,v1,v2)-metric G given by (4.1) is (h,v1,v2)-

Riemannian metric then about (4.8) we have also

i)
c

L
(00)

a
bc = {a

bc},
c

L
(β0)

a
bc = 1

2 g
(β)

ad∂c g
(β)

bd, (β = 1, 2) ,

ii)
c

T
(00)

a
bc = 0,

c

P
(10)

a
bc = 0,

c

P
(20)

a
bc = 0,

c

S
(11)

a
bc = 0,

c

Q
(21)

a
bc = 0,

c

Q
(22)

a
bc = B

(21)

a
bc,

c

S
(22)

a
bc = 0,

iii)
c

R
(00)

a
b cd = r a

b cd,
c

P
(βα)

a
b cd = 0

c

Q
(2α)

a
b cd = 0 ,

c

S
(βα)

a
b cd = 0,

(
α = 0, 1, 2; β = 1, 2, δ2a = ∂̇2a

)
,

where {a
bc} are the Christofell symbols and the r a

b cd the curvature tensor
constructed with (gab (x)). The superscript c refer to the metrical canonical

N-linear connection D
c

Γ (N) .
As in the case of the tangent bundle Osc1M = TM, cf. with S. Ikeda,

[Some Physical Aspects Underlying the Lagrangian Theory of Relativity, in the R.
Miron and M. Anastasiei’s book: Fibrate Vectoriale. Spatii Lagrange. Aplicatii
in teoria relativitatii, Ed. Acad. Romania, 1987], (see [87]), the cases when G is
h-, v1- and v2- Riemannian ”seams to have no essential physical meaning”, but
these are of theoretic interest.

Definition 4.3.

1 ◦. The (h,v1,v2)-metric G given by (4.1) is said to be h- not accelerate
metric if ( g

(0)
ab) do not depend on y(2)a.
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2 ◦. The (h,v1,v2)-metric G given by (4.1) is said to be v1- not accelerate
metric if ( g

(1)
ab) do not depend on y(2)a.

3 ◦. The (h,v1,v2)-metric G given by (4.1) is said to be v2- not accelerate
metric if ( g

(2)
ab) do not depend on y(2)a.

It is evidently what means G is (h,v1,v2) - not accelerate metric.
We have

Proposition 4.3.

a. G is an h-not accelerate metric if and only if
c

C
(02)

a
bc from (1.15) vanishes.

b. G is a v1-not accelerate metric if and only if
c

C
(12)

a
bc from (1.15) vanishes.

c. G is a v2-not accelerate metric if and only if
c

C
(22)

a
bc from (1.15) vanishes.

d. G is an (h,v1,v2)-not accelerate metric if and only if

c

C
(02)

a
bc = 0,

c

C
(12)

a
bc = 0,

c

C
(22)

a
bc = 0 (4.9)

If is not difficult to write the metrical canonical N-linear connections in the
above cases for G in the forms (4.1) - (4.5). For example, we have

Theorem 4.3. If the manifold T 2M is endowed with the (h,v1,v2)- not
accelerate metric structure G:

G = gab

(
x, y(1)

)
dxa⊗dxb+gab

(
x, y(1)

)
δy(1)a⊗δy(1)b+gab

(
x, y(1)

)
δy(2)a⊗δy(2)b,

then the metrical canonical N-linear connection has the coefficients given by (4.9)
and by following expressions:

c

L
(00)

a
bc = 1

2gad (∂cgbd + ∂bgdc − ∂dgbc)− σ
(0)

a
bc

c

L
(β0)

a
bc = B

(ββ)

a
cb + 1

2gad(∂cgbd − B
(ββ)

f
cbgfd − B

(ββ)

f
cdgbf )− σ

(β)

a
bc

c

C
(01)

a
bc =

c

C
(21)

a
bc = 1

2gad∂̇1cgbd

(4.10)

c

C
(11)

a
bc = 1

2gad
(
∂̇1cgbd + ∂̇1bgdc − ∂̇1dgbc

)
, (β = 1, 2) ,

where
σ
(0)

a
bc = 1

2gab(N
1

f
c∂̇fgbd + N

1

f
b∂̇fgdc −N

1

f
d∂̇fgbc),

σ
(1)

a
bc = σ

(2)

a
bc = 1

2gadN
1

f
c∂̇1fgbd.
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The following metric structures can be interesting for physics., [44], [118],
[136], [137].

Definition 4.4. We shall say that the metric G given by (4.1) is vβ-locally
Minkowski if for every point u∈ T 2M there exists a local chart around it on T 2M
such that on its domain ( g

(β)
ab) depends on y(1) only, (β = 1 or/and 2).

Since on the manifold Osc1M = TM , there exists h-Riemannian and v-
locally Minkowski metric, [cf with R. Miron, M. Anastasiei: The Geometry of
Lagrange Space. Theory and Applications, Kluwer Acad. Publ., FTPH, no. 59,
1994], [88] , by the prolongations to Osc2M = T 2M of this metric structure (see,
[93]), one obtains an h-Riemannian and v1-, v2- locally Minkowski metric on
T 2M . This prove the existence of vβ-locally Minkowski metric (β = 1 or/and 2)
on T 2M.

Theorem 4.4. If the (h,v1,v2)-metric G given by (4.1) is h-Riemannian and
v1-, v2- locally Minkowski metric then the metrical canonical N-linear connection
has the coefficients:

c

L
(00)

a
bc = 1

2 g
(0)

ad(∂c g
(0)

bd + ∂b g
(0)

dc − ∂d g
(0)

bc),

c

L
(β0)

a
bc = B

(ββ)

a
bc − 1

2 g
(β)

ad(N
1

f
c∂̇1f g

(β)
bd + B

(ββ)

f
bc g

(β)
fd + B

(ββ)

f
cd g

(β)
bc), (β = 1, 2) ,

c

C
(01)

a
bc = 0,

c

C
(02)

a
bc = 0,

c

C
(12)

a
bc = 0,

c

C
(22)

a
bc = 0 (4.11)

c

C
(11)

a
bc = 1

2 g
(1)

ad(∂̇1c g
(1)

bd + ∂̇1b g
(1)

dc − ∂̇1d g
(1)

bc)

c

C
(21)

a
bc = 1

2 g
(2)

ad∂̇1c g
(2)

bd.

Proof. Indeed, by (1.15) we get (4.11).
Also, we get
Theorem 4.5. If the manifold T 2M is endowed with the (h,v1,v2)-metric

structure G, h-Riemannian and v1-, v2-locally Minkowski given by

G = gab(x)dxa ⊗ dxb + hab(y(1))δy(1)a ⊗ δy(1)b + hab(y(1))δy(2)a ⊗ δy(2)b,

then we have
i)

c

L
(00)

a
bc = {a

bc}x,
c

C
(11)

a
bc = {a

bc}y(1) , C
(21)

a
bc = 1

2had∂̇1chbd,

c

L
(β0)

a
bc = B

(ββ)

a
cb − 1

2had(N
1

f
c∂̇1fhbd + B

(ββ)

f
cbhfd + B

(ββ)

f
cdhbc), (β = 1, 2) ,

c

C
(01)

a
bc = 0,

c

C
(02)

a
bc = 0,

c

C
(12)

a
bc = 0,

c

C
(22)

a
bc = 0,

ii)
c

T
(00)

a
bc = 0,

c

P
(10)

a
bc = 0,

c

P
(20)

a
bc = 0,
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c

S
(11)

a
bc = 0,

c

Q
(21)

a
bc = 0,

c

S
(22)

a
bc = 0,

iii)
c

R
(00)

a
b cd = r

(0)

a
b cd (x) ,

c

R
(0β)

a
b cd = δd

c

L
(β0)

a
bc − δc

c

L
(β0)

a
bd +

c

L
(β0)

f
bc

c

L
(β0)

a
fd −

c

L
(β0)

f
bd

c

L
(β0)

a
fc+

+
c

C
(β1)

a
bf R

(01)

f
cd, (β = 1, 2) ,

c

P
(β0)

a
b cd = 0, (β = 1, 2) ,

c

P
(11)

a
b cd = δ1d

c

L
(10)

a
bc −

c

C
(11)

a
bd|1c +

c

C
(11)

a
bf

c

P
(11)

f
cd,

c

P
(22)

a
b cd = ∂̇2d

c

L
(20)

a
bc +

c

C
(21)

a
bf

c

P
(21)

f
cd,

c

Q
(2α)

a
b cd = 0, (α = 0, 1, 2) ,

c

S
(β0)

a
b cd = 0,

c

S
(β2)

a
b cd = 0, (β = 1, 2),

c

S
(11)

a
b cd = r

(1)

a
b cd

(
y(1)

)
,

where {a
bc}x (resp. {a

bc}y(1)) are the Christofell symbols and r
(0)

a
b cd (x)

(resp. r
(1)

a
b cd

(
y(1)

)
) the curvature tensor constructed with gab (x) and ∂a (resp.

hab

(
y(1)

)
and ∂̇1a). The superscript c refers to the metrical canonical N-linear

connection D
c

Γ (N) .
Proof. Since gab (resp. hab) depend only x (resp y(1)) it follows δa = ∂a

(resp. δ1a = ∂̇1a) and by (2.3) one gets
c

L
(00)

a
bc = {a

bc}x (resp.
c

C
(11)

a
bc = {a

bc}y(1))

and
c

C
(22)

a
bc = 0. Then a glance to (4.6), (7.2) Ch. 2 and (7.11) Ch.2, say us the

other equations.
q.e.d.

Definition 4.5. We shall say that the metric G given by (4.1) is vβ- locally
accelerate if for every point u ∈ T 2M there exist a local chart around it on T 2M
such that on its domain g

(β)
ab depends on y(2) only, (β = 1 or/and 2).

Let (T 2M,π2,M) be the tangent bundle of second order endowed with a
nonlinear connection N. Suppose that its vectorial distribution V2 is endowed
with a norm | | | | : V2 → R+. If v2 = va

2ea, where (ea) is a basis of V2, we set
||v2|| = f(v1

2 , ..., vn
2 ) = f(va) and suppose that f is differentiable at least of class

C3 for v2 6= 0. The set

{T/T ∈ GL(n,R), ||Tv2|| = ||v2||, v2 ∈ V }

is a Lie group. Let H2 be a subgroup of it.
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Definition 4.6. We say that the tangent bundle of second order (T 2M, π2,M)
admits a H2-structure (or it is a {V2,H2}-bundle) if there exists a bundle at-
las {(Uα, ϕα, V2)} such that the mappings ϕβ,x ◦ ϕ−1

α,x belongs to H2 for every
x ∈ Uα ∩ Uβ 6= Φ.

The local fibres of a {v2,H2}- bundle are isomorphic and isometric each of
others.

Using the bundle atlas (Uα, ϕα, V2) it comes out that the norm f defines a
function on T 2M , say F, such that in any atlas on T 2M the matrix

hab

(
x, y(1), y(2)

)
=

1
2

∂2F 2

∂y(2)a∂y(2)b
(4.12)

is nonsingular and the quadratic form habη
aηb (η ∈ Rn) is positive definite.

If we consider on T 2M the atlas indeed by the bundle atlas (Uα, ϕα, V2) then
F and (hab) depend on y(2) only.

Now let gab(x) be the local coefficients of a Riemannian metric on the man-
ifold M. It is clear that G given by (4.4) with this gab (x) and hab

(
y(2)

)
from

(4.12) is an h-Riemannian, v1- and v2- locally accelerate metric on T 2M.
If is not difficult to prove
Theorem 4.6. If the (h,v1,v2)-metric G given by (4.1) is h-Riemannian,

v1-locally Minkowski and v2-locally accelerate metric then the metrical canonical
N-linear connection has the coefficients:

c

L
(00)

a
bc = 1

2 (∂c g
(0)

bd + ∂bc g
(0)

dc − ∂d g
(0)

bc),

c

L
(β0)

a
bc = B

(ββ)

a
bc − 1

2 g
(β)

ad(N
(β)

f
c∂̇βf g

(β)
bd + B

(ββ)

f
cb g

(β)
fd + B

(ββ)

f
cd g

(β)
bf ),

c

C
(01)

a
bc = 0,

c

C
(02)

a
bc = 0,

c

C
(12)

a
bc = 0,

c

C
(11)

a
bc = 1

2 g
(1)

ad(∂̇1c g
(1)

bd + ∂̇1b g
(1)

dc − ∂̇1d g
(1)

bc) ,
(4.13)

c

C
(21)

a
bc = − 1

2 g
(2)

adN
1

f
c∂̇2f g

(2)
bd,

c

C
(22)

a
bc = 1

2 g
(2)

ad(∂̇2c g
(2)

bd + ∂̇2b g
(2)

dc − ∂̇2d g
(2)

bc).

Finally, we recall if G given by (4.1) satisfies the equations (1.1) and (1.4)
we get

G = g
(0)

ab(x, y(1), y(2))dxa ⊗ dxb +
2∑

β=1

g
(β)

ab

(
x, y(1), y(2)

)
dy(β)a ⊗ dy(β)b. (4.14)

We can prove:
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Theorem 4.7. If the manifold T 2M is endowed with the (h,v1,v2)-metric
structure G, h-Riemannian, v1-locally Minkowski and v2-locally accelerate met-
rics given by

G = gab (x) dxa⊗dxb +hab(y(1))dy(1)a⊗dy(1)b +mab(y(2))dy(2)a⊗dy(2)b, (4.15)

then
i) The metrical canonical N-linear connection D

c

Γ (N) has the coefficients:

c

L
(00)

a
bc = {a

bc},
c

L
(10)

a
bc = 0,

c

L
(20)

a
bc = 0,

c

C
(01)

a
bc = 0,

c

C
(11)

a
bc = 1

2had(∂̇1chbd + ∂̇1bhdc − ∂̇1dhbc),
c

C
(21)

a
bc = 0,

c

C
(02)

a
bc = 0,

c

C
(12)

a
bc = 0,

c

C
(22)

a
bc = 1

2mad(∂̇2cmbd + ∂̇2bmdc − ∂̇2dhbc).

ii) The metrical N-linear connection D
c

Γ (N) coincides with the Levi-Civita
connection on G, that is, all its tensors of torsion vanish.

iii) The tensors of curvature of D
c

Γ (N) are as follows:

R
(00)

a
b cd = r a

b cd, R
(0β)

a
b cd = 0, (β = 1, 2) ,

P
(β0)

a
b cd = 0, P

(ββ)

a
b cd = −

c

C
(ββ)

a
bd|βc, (β = 1, 2) ,

P
(21)

a
b cd = 0, P

(12)

a
b cd = 0, Q

(2α)

a
b cd = 0, (α = 0, 1, 2) ,

S
(β0)

a
b cd = 0, (β = 1, 2) , S

(21)

a
b cd = 0, S

(12)

a
b cd = 0,

S
(ββ)

a
b cd = ∂̇βd

c

C
(ββ)

a
bc − ∂̇βc

c

C
(ββ)

a
bd +

c

C
(ββ)

f
bc

c

C
(ββ)

a
fd −

c

C
(ββ)

f
bd

c

C
(ββ)

a
fc,

(β = 1, 2).

Proof. By the Theorem 9.5, Ch.1, we have N
1

a
b = 0, N

2

a
b = 0, δa = ∂a, δ1a =

∂̇a and then by (4.13) we obtain i). Then an easy computation shows that the

tensors of torsion of D
c

Γ (N) vanish, that is D
c

Γ (N) coincides with the Levi-Civita
connection of the Riemannian metric G on T 2M . By i) and ii) we obtain iii) on
account of (7.11), Ch.2.

q.e.d.

Remark. The previous theorem has, as a consequence, the fact that D
c

Γ (N)

is just the Riemannian-Christoffel connection of G on T 2M . Therefore, D
c

Γ (N)
is very convenient for an anisotropic theory of relativity. It seams that this case
corresponds to the stand-point of ”unified” field obtained by direct-product of
the external (x)-field domined by gab (x) and the internal (y(1))- and (y(2))- fields
dominated by hab

(
y(1)

)
and mab

(
y(2)

)
, respectively.
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Chapter 4

The dual bundle of a
2−tangent bundle

4.1 The manifold T ∗2M

Let M be a real differentiable manifold of dimension n. A point of M will be
denoted by x and its local coordinate system by (U,ϕ) , ϕ (x) = (xa) . The indices
a, b, ... run over set {1, ..., n} and Einstein convention of summarizing is adapted
all over this work. Let (TM, π, M) be the tangent bundle of the manifold M and
(T ∗M, π∗,M) its cotangent bundle, [80], [82], [134].

Definition 1.1 We call the dual bundle of the 2−tangent bundle (T 2M,
π2,M), the differentiable bundle (T ∗2M, π∗2,M) whose total space is

T ∗2M = TM ×M T ∗M. (1.1)

Sometime we denote
(
T ∗2M, π∗2,M

)
by T ∗2M.A point u ∈ T ∗2M will be

denoted by u = (x, y, p) having the local coordinates (xa, ya, pa) . The projection
π∗2 (u) = π∗2 (x, y, p) = x. Evidently, we take the projections on the factors
of the fibered products (1.1):π∗21 : T ∗2M −→ TM, π : TM −→ M as being
π∗21 (x, y, p) = (x, y) and π∗ (x, y) = x; also, π∗ : T ∗2M −→ T ∗M is given by
π∗ (u) = π∗ (x, y, p) = (x, p) .

The change of local coordinates on the manifold T ∗2M is:




x̃a = x̃a
(
x1, ..., xn

)
, det

(
∂x̃a

∂xb

)
6= 0,

ỹa =
∂x̃a

∂xb
yb,

p̃a =
∂xb

∂x̃a
pb.

(1.2)

The dimension of the manifold T ∗2M is 3n.

81
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The null section 0 : M → T ∗2M of the projection π∗2 is defined by 0 : (x) ∈
M → (x, 0, 0) ∈ T ∗2M we denote by T̃ ∗2M = T ∗2M \ {0} .

Let us consider the tangent bundle of the differentiable manifold T ∗2M ,(
TT ∗2M, τ∗2, T ∗2M

)
, where τ∗2 is the canonical projection and the vertical

distribution V : u ∈ T ∗2M −→ V (u) ⊂ TuT ∗2M,, generated by the vector

fields
{

∂

∂ya
|u,

∂

∂pa
|u

}
, ∀u ∈ T ∗2M. As usually, the natural basis, let us denote

∂a =
∂

∂xa
,
·
∂a =

∂

∂ya
,
·
∂a =

∂

∂pa
. (1.3)

By means of (1.2), we can consider the following subdistributions of V :

V1 : u ∈ T ∗2M −→ V1 (u) ⊂ TuT ∗2M, (1.4)

and
W2 : u ∈ T ∗2M −→ W2 (u) ⊂ TuT ∗2M, (1.4’)

locally generated by the vector fields
{ ·

∂a |u, u ∈ T ∗2M
}

and
{ ·

∂a |u, u ∈ T ∗2M
}

,

respectively. Clearly,we have

V (u) = V1 (u)⊕W2 (u) , ∀u ∈ T ∗2M. (1.5)

Some important geometrical objects fields can be introduced:
(i) the Liouville vector field on T ∗2M :

C (u) = ya
·
∂a |u, ∀u ∈ T ∗2M, (1.6)

(ii) the Hamilton vector field on T ∗2M :

C∗ (u) = pa

·
∂a |u, ∀u ∈ T ∗2M, (1.7)

(iii) the scalar field
ϕ = paya. (1.8)

We remark that C ∈ V1 and C∗ ∈ W2.
Also, let us consider the following forms

ω = padxa (Liouville 1-form), (1.9)

θ = dω = dpa ∧ dxa. (1.10)

Theorem 1.1 1◦.The differential forms ω and θ are globally defined on the
manifold T ∗2M.

2◦. The 2-form θ is closed and rank θ is 2n.
3◦.θ is a presymplectic structures on T ∗2M.

The two Poisson bracket {}0 , {}1 , can be defined on the manifold T ∗2M by
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{f, g}0 =
∂f

∂xα

∂g

∂pa
− ∂f

∂pa

∂g

∂xα
,

{f, g}1 =
∂f

∂yα

∂g

∂pa
− ∂f

∂pa

∂g

∂yα
.

(1.11)

Theorem 1.2 Every bracket {}0 and {}1 defines a canonical Poisson struc-
ture on the manifold T ∗2M.

Now, the following F (
T ∗2M

)
-linear mapping

J : X (
T ∗2M

) → X (
T ∗2M

)
,

defined by

J (∂a) =
·
∂a, J

( ·
∂a

)
= 0, J

( ·
∂a

)
= 0, ∀u ∈ T̃ ∗2M, (1.12)

has geometrical meaning. It is not difficult to prove:
Theorem 1.3 1 ◦. J is a tensor field of type (1, 1) on manifold T ∗2M.

2 ◦. J is a tangent structure on T ∗2M , i.e. J0J = 0.
3 ◦. J is a integrable structure.
4 ◦. J0J = J2 = 0.
5 ◦. KerJ = V1 ⊕W2, Im J = V1.

With these object fields we can construct the geometry of the manifold
T ∗2M.

4.2 Nonlinear connections on T ∗2M

We extend the classical definition [123], of the nonlinear connection on the total
space of the dual bundle

(
T ∗2M,π∗2,M

)
.

Definition 2.1 A nonlinear connection of the manifold T ∗2M is a regular
distribution N on T ∗2M, supplementary to the vertical distribution V, i.e.

TuT ∗2M = N (u)⊕ V (u) , ∀u ∈ T ∗2M. (2.1)

Taking into account (1.5) it follows that the distribution N has the property

TuT ∗2M = N (u)⊕ V1 (u)⊕W2 (u) ,∀u ∈ T ∗2M. (2.2)

Therefore, the main geometrical objects on T ∗2M will be reported to the
direct sum (2.2) of vector spaces.

We denote by {
δ

δxa
,

∂

∂ya
,

∂

∂pa

}
, (a = 1, ..., n) , (2.3)

a local adapted basis to N,V1,W2. Clearly, we have

δ

δxa
=

∂

∂xa
−N b

a

∂

∂yb
+ Nab

∂

∂pb
. (2.4)
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The system of functions
(
N b

a (x, y, p) , Nab (x, y, p)
)

are the coefficients of the
nonlinear connection N.

With respect to the coordinate transformations (1.2), we have the rule:

δ

δxa
=

∂x̃b

∂xa

δ

δx̃b
,

∂

∂ya
=

∂x̃b

∂xa

∂

∂ỹb
,

∂

∂pa
=

∂xa

∂x̃b

∂

∂p̃b
. (2.4’)

Theorem 2.1 With respect to (1.2) the coefficients (Na
b, Nab) of a nonlinear

connection N on T ∗2M obey the rule

Ña
c

∂x̃c

∂xb
= N c

b

∂x̃a

∂xc
− ∂ỹa

∂xb
, (2.5)

Ñab =
∂xc

∂x̃a

∂xd

∂x̃b
Ncd + pc

∂2xc

∂x̃a∂x̃b
.

Conversely, if the system of functions (Na
b, Nab) are given on the every do-

main of local chart of the manifold T ∗2M, such that the equations (2.5) hold,
then (Na

b, Nab) are the coefficients of a nonlinear connection on T ∗2M.
Assuming that the manifold M is paracompact it follows that the manifold T ∗2M

is paracompact, too. Let γab (x) , x ∈ M be a Riemannian metric on M and
γa

bc (x) its Christoffel symbols. Setting

fb = γa
bc (x) payc. (2.6)

Then, the system of functions

Na
b =

·
∂afb, Nab =

·
∂bfa, (2.7)

are geometrical object fields on T ∗2M, having the rules of transformations (2.5),
with respect to the changing of local coordinates (1.2). Hence:

Theorem 2.2 If the base manifold M is paracompact, then there exist non-
linear connection on the manifold T ∗2M.

From now we denote the basis (2.3) by:
{

δa,
·
∂a,

·
∂a

}
. (2.3’)

The dual basis of the adapted basis (2.3) is given by

{dxa, δya, δpa} , (2.8)

where
δya = dya + Na

bdxb, δpa = dpa −Nbadxb. (2.8’)

With respect to (1.2), the covector fields (2.8) are transformed by the rules:

dx̃a =
∂x̃a

∂xb
dxb, δỹa =

∂x̃a

∂xb
δyb, δp̃a =

∂xb

∂x̃a
δpb, (2.8”)
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Also, we remark that the differential of a function f ∈ F (
T ∗2M

)
can be

written in the form

df =
δf

δxa
dxa +

∂f

∂ya
δya +

∂f

∂pa
δpa. (2.9)

4.3 The distinguished vector and covector fields.
The algebra of d−tensor fields

Let N be a nonlinear connection on T ∗2M. Let h, v1, w2 be the projectors defined
by the distributions N, V1,W2 of the direct decomposition (2.2). We have

h + v1 + w2 = I, h2 = h, v2
1 = v1, w2

2 = w2, (3.1)
h ◦ v1 = v1 ◦ h = 0, h ◦ w2 = w2 ◦ h = 0, v1 ◦ w2 = w2 ◦ v1 = 0.

If X ∈ χ
(
T̃ ∗2M

)
we denote

XH = hX, XV1 = v1X, XW2 = w2X. (3.2)

Therefore we have the unique decomposition:

X = XH + XV1 + XW2 . (3.3)

Each of components XH , XV1 , XW2 are called d−vector fields on T̃ ∗2M.
In the adapted basis (2.3) we get

XH = X(0)aδa, XV1 = X(1)a
·
∂a, XW2 = X

(2)
a

·
∂a. (3.3’)

By means of (2.4’) we have

X̃(0)a =
∂x̃a

∂xb
X(0)b, X̃(1)a =

∂x̃a

∂xb
X(1)b, X̃

(2)
a =

∂xb

∂x̃a
X
(2)

b, (3.4)

i.e., the classical rules of the transformations of the local coordinates of vector
and covector fields on M. Therefore, X(0)a, X(1)a are called d−vector fields
and X

(2)
a is called a d−covector field on the manifold T ∗2M.

For instant, the Liouville vector field C and the Hamilton vector field C∗
have the properties

CH = 0, CV1 = ya
·
∂a = C, CW2 = 0,

C∗H = 0, C∗V1 = 0, C∗W2 = pa

·
∂a = C∗.

The following result is important
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Proposition 3.1 The distribution N is integrable if and only if for any
vector fields X, Y ∈ χ

(
T ∗2M

)
we have:

[
XH , Y H

]V1 = 0,
[
XH , Y H

]W2 = 0.

Indeed, the Lie bracket of any two horizontal vector fields XH , Y H belongs
to the horizontal distribution N if and only if the last two equations hold.

We remark that the distributions V1 and W2 are both integrable.
A similar theory can be done for distinguished 1−forms.
With respect to the direct decomposition (2.2) a 1−form ω ∈ χ∗

(
T ∗2M

)
can be uniquely written in the form:

ω = ωH + ωV1 + ωW2 , (3.5)

where
ωH = ω ◦ h, ωV1 = ω ◦ v1, ωW2 = ω ◦ w2. (3.5’)

În the adapted cobasis (2.8), we have

ω = ω
(0)

adxa + ω
(1)

aδya + ω(2)aδpa. (3.6)

The quantities ωH , ωV1 , ωW2 are called d− 1−forms.
The coefficients ω

(0)
a, ω

(1)
a, ω(2)a are transformed by (1.2) as follows:

ω
(0)

a =
∂x̃b

∂xa
ω̃
(0)

a, ω
(1)

a =
∂x̃b

∂xa
ω̃
(1)

b, ω̃(2)a =
∂x̃a

∂xb
ω(2)b. (3.7)

Hence ω
(0)

a and ω
(1)

a are called d−covector fields and ω(2)a is called a d−vector

field.
If the nonlinear connection N is a priori given, then some remarkable d −

1−forms can be associated in a natural way. Namely, let us consider:

ω = ωH = padxa

α = αV1 = paδya

β = βW2 = yaδpa

(3.8)

One use these d−forms for studying the Hamilton geometry of order 2 on
T ∗2M. (see [114], [116], [129]).

Now, let us consider a function f on T ∗2M. Its differential can be written in
the form (2.9). Therefore





df = (df)H + (df)V1 + (df)W2 , where

(df)H = (δaf) dxa, (df)V1 =
( ·

∂af

)
δya, (df)W2 =

( ·
∂af

)
δpa.

(3.9)



4.3. THE DISTINGUISHED VECTOR AND COVECTOR FIELDS 87

As an application, let us consider a smooth parametrized curve γ : I ⊂ R −→
T̃ ∗2M, such that Im γ ⊂ (

π∗2
)−1 (U) . It can be analytical represented by:

xa = xa (t) , ya = ya (t) , pa = pa (t) , t ∈ I. (3.10)

The tangent vector
dγ

dt
, in a point of the curve γ, can be written in the form:

dγ

dt
=

(
dγ

dt

)H

+
(

dγ

dt

)V1

+
(

dγ

dt

)W2

=
dxa

dt
δa +

δya

dt

·
∂a +

δpa

dt

·
∂a, (3.11)

where
δya

dt
=

dya

dt
+ Na

b

dxb

dt
,
δpa

dt
=

dpa

dt
−Nba

dxb

dt
. (3.12)

The curve (3.10) is called horizontal if
dγ

dt
=

(
dγ

dt

)H

in every point of the
curve γ.

Proposition 3.2 An horizontal curve on T̃ ∗2M is characterized by the fol-
lowing system of differentiable equations:

xa = xa (t) ,
δya

δt
= 0,

δpa

δt
= 0, t ∈ I. (3.13)

Clearly, the system of differential equations (3.13) has local solutions, if the
initial points xa

0 = xa (t0) , ya
0 , p0

a on T ∗2M are given, t0 ∈ I.
The horizontal curves with the property

ya =
dxa

dt
(3.14)

are called autoparallel curves of the nonlinear connection N. These curves are
characterized by (3.13) with supplementary condition (3.14).

Definition 3.1 A distinguished tensor (briefly, d−tensor field) on the
manifold T ∗2M is a d−tensor field T of type (r, s) on T ∗2M, with the property:

T
(

1
ω, ...,

r
ω, X

1
, ..., X

s

)
= T

(
1
ωH , ...,

r
ωW2 , X

1

H , ..., X
s

W2

)
, (3.15)

∀ 1
ω, ...,

r
ω ∈ χ∗

(
T ∗2M

)
, ∀X

1
, ..., X

s
∈ χ

(
T ∗2M

)
.

For instance, every components XH , XV1 , XW2 of a vector field X is a
d−tensor field of type (1, 0) , and every components ωH , ωV1 , ωW2 of a 1−form ω is
a d−tensor field of type (0, 1).

In the adapted basis
(

δa,
·
∂a,

·
∂a

)
and its dual basis (dxa, δya, δpa) a

d−tensor field T of type (r, s) can written in the form:
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T = T a1...ar

b1...bs
(x, y, p) δa1 ⊗ ...⊗

·
∂bs ⊗ dxb1 ⊗ ...⊗ δpar , (3.16)

where

T a1...ar

b1...bs
(x, y, p) = T

(
dxb1 , ..., δpar , δa1 , ...,

·
∂bs

)
.

It follows that the set
{

1, δa,
·
∂a,

·
∂a

}
generates the algebra of the d−tensor

fields over the ring of functions F (
T ∗2M

)
, (see R. Miron [86], [97]).

With respect to the transformation of the coordinates on T ∗2M, the local
coefficients T a1...ar

b1...bs
of T are transformed by classical rule:

T̃ c1...cr

d1...ds
=

∂x̃c1

∂xa1
...

∂x̃cr

∂xar

∂xb1

∂x̃d1
...

∂xbs

∂x̃ds
T a1...ar

b1...bs
. (3.17)

4.4 Lie brackets. Exterior differentials

In applications, the Lie brackets of the vector fields
(

δa,
·
∂a,

·
∂a

)
, from the

adapted basis to the direct decomposition (2.2), are important.
By a direct calculus, we have:
Proposition 4.1 The Lie brackets of the vector fields of the adapted basis

are given by

[δb, δc] = R
(01)

a
bc

·
∂a + R

(02)
abc

·
∂a,

[
δb,

·
∂c

]
= B

(11)

a
bc

·
∂a + B

(12)
abc

·
∂a,

[
δb,

·
∂c

]
= B

(21)

a
b
c
·
∂a + B

(22)
ab

c
·
∂a,

[ ·
∂b,

·
∂c

]
= 0,

[ ·
∂b,

·
∂c

]
= 0,

[ ·
∂b,

·
∂c

]
= 0,

(4.1)

where
R

(01)

a
bc = δcN

a
b − δbN

a
c, R

(02)
abc = δbNca − δcNba,

B
(11)

a
bc =

·
∂cN

a
b, B

(12)
abc = −

·
∂cNba,

B
(21)

a
b
c =

·
∂cNa

b, B
(22)

ab
c = −

·
∂cNba.

(4.2)

Proposition 4.2 The exterior differentials of the 1−forms {dxa, δya, δpa}
which determine the adapted cobasis (2.8’), are given by
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d (dxa) = 0,

d (δya) =





1
2

R
(01)

a
bcdxc + B

(11)

a
bcδy

c + B
(21)

a
b
cδpc



 ∧ dxb,

d (δpa) =
{

1
2

R
(0)

abcdxc + B
(1)

abcδy
(c) + B

(2)
ab

cδpc

}
∧ dxb.

(4.3)

Let us consider the followings coefficients from (4.1):

B
(11)

a
bc =

·
∂cN

a
b, − B

(22)
ab

c =
·
∂cNba

(
= − B

(22)

c
ab

)
. (4.4)

By means of (2.5) it follows
Proposition 4.3 The coefficients B

(11)

a
cb = U

(11)

a
bc , − B

(22)

a
bc = U

(22)

a
bc have

the same rule of transformation with respect to the local changing of coordinates
(1.2) on T ∗2M. This is

Ũ
(ββ)

a

df
∂xd

∂xb

∂xf

∂xc
=

∂x̃a

∂xd
U

(ββ)

d
bc − ∂2x̃a

∂xb∂xc
, (β = 1, 2) . (4.5)

We will be see that these coefficients are the horizontal coefficients of an
N−linear connections on T ∗2M.

By a direct computation, we obtain
Proposition 4.4 The coefficients R

(01)

a
bc, R

(02)
abc and

B
(21)

a
b
c =

·
∂cNa

b, B
(12)

abc = −
·
∂cNba, (4.6)

are d−tensor fields on T ∗2M, of type (1, 2) , (0, 3) , (2, 1) and, respectively, (0, 3)
i.e.

R̃
(01)

d
cf =

∂x̃d

∂xa

∂xb

∂x̃c

∂xc

∂x̃f
R

(01)

a
bc, etc.

We will see that (4.6) can be the vertical coefficients of N−linear connection
on T ∗2M.

By (4.1) and the Proposition 3.1, we get
Theorem 4.1 The nonlinear connection N is integrable if and only if the

following d−tensor fields vanish:

R
(01)

a
bc = 0, R

(0)
abc = 0. (4.7)
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4.5 The almost product P. The almost contact
structure F.

Assuming that a nonlinear connection N is given, we define a F (
T ∗2M

)− linear
mapping

P : χ
(
T ∗2M

) −→ χ
(
T ∗2M

)
,

by defined

P
(
XH

)
= XH , P

(
XV1

)
= −XV1 , P

(
XW2

)
= −XW2 , ∀X ∈ χ

(
T ∗2M

)
. (5.1)

We have 



P ◦ P = I,
P = I− 2 (v1 + w2) = 2h− I,

rang P = 3n.
(5.2)

Theorem 5.1 A nonlinear connection N on T ∗2M is characterized by the
existence of an almost product structure P on T ∗2M whose eigenspaces corre-
sponding to the eigenvalue−1 coincide with the linear spaces of the vertical dis-
tribution V on T ∗2M.

Much more, taking into account that the Nijenhuis tensor of the structure P
is given by

NF (X,Y ) = P2 [X, Y ] + [PX,PY ]− P [PX, Y ]− P [X,PY ] , (5.3)

we obtain

NF
(
XH , Y H

)
= 4v

[
XH , Y H

]
, (5.4)

NF
(
XH , Y V

)
= 0,

NF
(
XV , Y V

)
= 0,

and we can formulate
Proposition 5.1 The almost product structure P is integrable if and only if

the horizontal distribution N is integrable.
The nonlinear connection N being fixed we have the direct decomposition

(2.1), (2.2) and the corresponding adapted basis (2.3).
Let us consider the F (

T ∗2M
)−linear mapping:

F : χ
(
T ∗2M

) −→ χ
(
T ∗2M

)
,

determined by

F (δa) = −
·
∂a, F

( ·
∂a

)
= δa, F

( ·
∂a

)
= 0. (5.5)

Then, we deduce
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Theorem 5.2 The mapping F has the following properties:

1 ◦. It is globally defined on T̃ ∗2M.

2 ◦. F is a tensor field of type (1, 1) .

3 ◦. Ker F = W2, ImF = N ⊕ V1.

4 ◦. rank F = 2n.

5 ◦. F3 + F = 0.

Proof. 1◦. Taking into account (2.4’) we have
∂xa

∂x̃b
F

(
δ

δxa

)
= −∂xa

∂x̃b

∂

∂ya
,

implies F
(

δ

δx̃b

)
= − ∂

∂ỹb
. Also,

∂xa

∂x̃b
F

(
∂

∂ya

)
=

∂xa

∂x̃b

δ

δxa
and

∂x̃b

∂xa
F

(
∂

∂pa

)
=

0, lead to F
(

∂

∂ỹb

)
=

δ

δx̃b
and F

(
∂

∂p̃a

)
= 0.

For 2◦−5◦ see [97] pg.259.
We can say that F is a natural almost contact structure determined by

the nonlinear connection N.

4.6 The Riemann structures on T̃ ∗2M.

Let us consider a Riemannian structure G on the manifold T̃ ∗2M.

In the natural basis, G is given locally by

G = g
(00)

abdxa⊗dxb + g
(01)

abdxa⊗dyb + g
(02)

a
bdxa⊗dpb + ...+ g

(22)

abdpa⊗dpb, (6.1)

where the matrix ‖ g
(αβ)

‖ is positively defined.

Let {δa} , (a = 1, ..., n) , be the adapted basis on N :

δa = ∂a −N b
a

·
∂b + Nab

·
∂b. (6.2)

The following problem is arises: Can the Riemannian structure G determine
a nonlinear connection N on T ∗2M ?

The conditions of orthogonality between N and V :

G
(

δa,
·
∂b

)
= 0, G

(
δa,

·
∂b

)
= 0, (a, b = 1, ..., n) , (6.3)

give us the following system of equations for determining the coefficients
N b

a and Nab : 



g
(11)

cbN
c
a − g

(12)
b
cNac = g

(01)
ab,

g
(21)

c
bN c

a − g
(22)

cbNac = g
(02)

a
b,

(6.4)
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where, the matrix ∥∥∥∥∥∥∥

g
(11)

cb g
(12)

b
c

g
(21)

c
b g

(22)

cb

∥∥∥∥∥∥∥
(6.4’)

is nonsingular.
Therefore, the system (6.4) has an unique solution. Whether, take into

account the rule of transformation of the coefficients g
(αβ)

from G we can prove

that the solution (Na
b, Nab) of (6.4) has the rule of transformation (2.5), by

means of the transformations of local coordinates on T ∗2M. Consequently, we
have:

Theorem 6.1 A Riemannian structure G on T ∗2M determines uniquely a
nonlinear connection N if the distribution N is orthogonal to the distribution V.
The coefficients Na

band Nab of N are given by the system of equations (6.4).
Let F be the natural contact structure determined by the previous nonlinear

connection N.
The following problem arises: When the pair (G,F) is a Riemannian almost

structure?
Evidently, is necessary to have:

G (FX, Y ) = −G (X,FY ) , ∀X, Y ∈ χ
(
T̃ ∗2M

)
.

Consequently, we get:
Theorem 6.2 The pair (G,F) is a Riemannian almost structure if and only

if in the adapted basis determined by N and V the tensor G has the form

G = gabdxa ⊗ dxb + gabδy
a ⊗ δyb + habδpa ⊗ δpb. (6.5)

Corollary 6.1 With respect to the Riemannian structure (6.5) the distribu-
tions N,V1,W2 are orthogonal respectively.



Chapter 5

Linear connections on the
manifold T ∗2M

5.1 N−linear connections

A linear connection on T ∗2M is an application

D : χ
(
T ∗2M

)× χ
(
T ∗2M

) −→ χ
(
T ∗2M

)
, (X, Y ) 7−→ DXY,

with the properties:
1. DX1+X2Y = DX1Y + DX2Y,

DfXY = fDXY, ∀f ∈ F (
T ∗2M

)
, ∀X, X1, X2, Y ∈ χ

(
T ∗2M

)
.

2. DX (Y1 + Y2) = DXY1 + DXY2, ∀X, Y1, Y2 ∈ χ
(
T ∗2M

)
.

3. DX (fY ) = (Xf)Y + fDXY, ∀X, Y ∈ χ
(
T ∗2M

)
, ∀f ∈ F (

T ∗2M
)
.

We consider X,Y ∈ χ
(
T ∗2M

)
. With respect to decompositions of type

(2.2), §4.2, we have

DXY =
2∑

α=0

(
DXH Y Vα + DXV1 Y Vα + DXW2 Y Vα

)
, (1.1)

where V0 = H and V2 = W2.

The components DXH Y Vα , DXV1 Y Vα , DXW2 Y Vα , (V0 = H, V2 = W2) , are
vector fields, not necessary distinguished.

The linear connection D on T ∗2M is uniquely determined by its 27 coeffi-
cients, written in the adapted basis in the form

93
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



Dδcδb =
0

H
(00)

a
bcδa +

1

H
(00)

a
bc

·
∂a +

2

H
(00)

abc

·
∂a,

Dδc

·
∂b =

0

H
(10)

a
bcδa +

1

H
(10)

a
bc

·
∂a +

2

H
(10)

abc

·
∂a,

Dδc

·
∂ b =

0

H
(20)

ab
cδa +

1

H
(20)

ab
c

·
∂a −

2

H
(20)

a
b
c

·
∂a,

((1.2)0)





D ·
∂c

δb =
0

C
(01)

a
bcδa +

1

C
(01)

a
bc

·
∂a +

2

C
(01)

abc

·
∂a,

D ·
∂c

·
∂b =

0

C
(11)

a
bcδa +

1

C
(11)

a
bc

·
∂a +

2

C
(11)

abc

·
∂a,

D ·
∂c

·
∂ b =

0

C
(21)

ab
cδa +

1

C
(21)

ab
c

·
∂a −

2

C
(21)

a
b
c

·
∂a,

((1.2)1)





D ·
∂c

δb =
0

C
(02)

a
b
cδa +

1

C
(02)

a
b
c
·
∂a +

2

C
(02)

ab
c
·
∂a,

D ·
∂c

·
∂b =

0

C
(12)

a
b
cδa +

1

C
(12)

a
b
c
·
∂a +

2

C
(12)

ab
c
·
∂a,

D ·
∂c

·
∂ b =

0

C
(22)

abcδa +
1

C
(22)

abc
·
∂a −

2

C
(22)

a
bc
·
∂a.

((1.2)2)

To work with these 27 coefficients is not impossible, but is laborious.
We will use in continuation the N−linear connections whose coefficients are

much easy to shunt.
Let N be a nonlinear connection on T ∗2M.
Definition 1.1 A linear connection D on T ∗2M is called an N-linear

connection if it preserves by parallelism the horizontal and vertical distributions
N, V1 and W2 on T ∗2M.

By other words, a linear connection D is N−linear connection if and only if,
for any X ∈ χ

(
T ∗2M

)
, DX carries the horizontal vector fields to the horizontal

vector fields and the vertical vector fields to the vertical vectors. Thus DXY H ∈
N, DXY V1 ∈ V1 and DXY W2 ∈ W2, written in the form

DX (hY ) = hDXY,
DX (v1Y ) = v1DXY,
DX (w2Y ) = w2DXY.

(1.3)

Consequently we have
Theorem 1.1 A linear connection D is an N−linear connection if and only

if, for any X ∈ χ
(
T ∗2M

)
, we have

DXh = 0, DXv1 = 0, DXw2 = 0. (1.4)

Corollary 1.1 For any N−linear connection D we obtain

DXP = 0, ∀X ∈ χ
(
T ∗2M

)
. (1.5)
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Also, we have
Theorem 1.2 A linear connection D on T ∗2M is an N−linear connection

if and only if

(
DXY H

)Vβ = 0,
(
DXY Vβ

)H = 0, (β = 1, 2;V2 = W2) ,(
DXY V1

)W2 = 0,
(
DXY W2

)V1 = 0, ∀X, Y ∈ χ
(
T ∗2M

)
.

(1.6)

From (1.6) result, for an N−linear connection D, in decomposition (1.1), the
components

D
α

XH Y := DXH Y Vα , D
α XVβ Y := DXVβ Y Vα , (1.7)

(α = 0, 1, 2, β = 1, 2; V0 = H, V2 = W2) , are d−vector fields and thus

D
α

H
X := D

α
XH , D

α

V1
X := D

α
XV1 , D

α

W2
X := D

α
XW2 , (α = 0, 1, 2) , (1.8)

are derivation operators in the algebra of d−tensor fields. We have





D
0

H
XY = DXH Y H , D

0

V1
X Y = DXV1 Y H , D

0

W2
X Y = DXW2 Y H ,

D
β

H
XY = DXH Y Vβ , D

β

V1
X Y = DXV1 Y Vβ , D

β

W2
X Y = DXW2 Y Vβ ,

(β = 1, 2;V2 = W2) .

(1.9)

These operators are not covariant derivations, because for f ∈ F (
T ∗2M

)
,

we have DH
Xf = XHf 6= Xf, etc., but they have similar properties with the

covariant derivations, respectively:
1. The operators D

α

H
X , D

α

V1
X , D

α

W2
X , verified the equalities (1.6).

2. D
α

H
Xf = XHf, D

α

V1
X f = XV1f, D

α

W2
X f = XW2f.

3. D
α

H
X (fY ) = XH (fY )+fD

α

H
XY, D

α

V1
X (fY ) = XV1 (fY )+fD

α

V1
X Y, D

α

W2
X (fY ) =

= XW2 (fY ) + fD
α

W2
X Y.

4.
(
D
α

H
XY

)
|U

= D
α

H
X|UY|U ,

(
D
α

V1
X Y

)
|U

= D
α

V1
X|UY|U ,

(
D
α

W2
X Y

)
|U

=

D
α

W2
X|U Y|U , for any open set U ⊂ T ∗2M.

5. D
α

H
X+Y = D

α

H
X + D

α

H
Y , D

α

V1
X+Y = D

α

V1
X + D

α

V2
Y , D

α

W2
X+Y = D

α

W2
X + D

α

W2
Y .

6. D
α

H
fX = fD

α

H
X , D

α

V1
fX = fD

α

H
X , D

α

W2
fX = fD

α

W2
X ,

for any f ∈ F (
T ∗2M

)
and any vector fields X,Y ∈ χ

(
T ∗2M

)
, (α = 0, 1, 2) .

Definition 1.2 The operators D
α

H , D
α

V1 , D
α

W2 are called the hα−,v1α−, and,

w2α−covariant derivatives, (α = 0, 1, 2) .

For the 1−form filed ω ∈ χ∗
(
T ∗2M

)
we have
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(
D
α

H
Xω

)
(Y ) = XHω (Y )− ω

(
DH

XY
)
,(

D
α

V1
X ω

)
(Y ) = XV1ω (Y )− ω

(
DV1

X Y
)

,(
D
α

W2
X ω

)
(Y ) = XW2ω (Y )− ω

(
DW2

X Y
)

.

(1.10)

The action of operators DH
X , DV1

X , DW2
X can be extended to any tensor field,

particularly to any d−tensor field on T ∗2M.
Let T ∈ T r

s

(
T ∗2M

)
be a d−tensor field .

1. For X = XH we have
(
D
α

H
XT

)(
1
ω, ...,

r
ω, X

1
, ..., X

s

)
:= XHT

(
1
ω, ...,

r
ω,X

1
, ..., X

s

)
−

−T
(
D
α

H
X

1
ω, ...,

r
ω, X

1
, ..., X

s

)
− ...− T

(
1
ω, ...,

r
ω, X

1
, ..., D

α

H
XX

s

)
, (α = 0, 1, 2) .

(1.11)
2. For X = XV1 we have

(
D
α

V1
X T

)(
1
ω, ...,

r
ω, X

1
, ..., X

s

)
:= XV1T

(
1
ω, ...,

r
ω, X

1
, ..., X

s

)
−

−T
(
D
α

V1
X

1
ω, ...,

r
ω, X

1
, ..., X

s

)
− ...− T

(
1
ω, ...,

r
ω, X

1
, ..., D

α

V1
X X

s

)
, (α = 0, 1, 2) .

(1.11’)
3. For X = XW2 we have

(
D
α

W2
X T

)(
1
ω, ...,

r
ω, X

1
, ..., X

s

)
:= XW2T

(
1
ω, ...,

r
ω, X

1
, ..., X

s

)
−

−T
(
D
α

W2
X

1
ω, ...,

r
ω, X

1
, ..., X

s

)
− ...− T

(
1
ω, ...,

r
ω, X

1
, ..., D

α

W2
X X

s

)
, (α = 0, 1, 2) .

(1.11”)

5.2 The coefficients of an N−linear connection

Let D be an N−linear connection on T ∗2M. In the adapted basis
{

δa =
δ

δxa
,
·
∂a =

∂

∂ya
,
·
∂a =

∂

∂pa

}
,

have places the relations (1.2)α, (α = 0, 1, 2) , and taking into account that,

for example, Dδcδb belongs to the horizontal distribution. Hence,
1

H
(00)

a
bc =

0,
2

H
(00)

abc = 0, this means that for an N−linear connection D on T ∗2M we

have

Dδcδb =
0

H
(00)

a
bcδa =: H

(00)

a
bcδa.

We proceed analogous with other relations (1.2)α, (α = 0, 1, 2) , and we ob-
tain
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Theorem 2.1 1◦. An N−linear connection can be uniquely written in the

adapted basis
(

δa,
·
∂a,

·
∂a

)
in the form





Dδcδb = H
(00)

a
bcδa, Dδc

·
∂b = H

(10)

a
bc

·
∂a, Dδc

·
∂b = − H

(00)
a

b
c

·
∂a,

D ·
∂c

δb = C
(01)

a
bcδa, D ·

∂c

·
∂b = C

(11)

a
bc

·
∂a, D ·

∂c

·
∂b = − C

(21)
a

b
c

·
∂a,

D ·
∂c

δb = C
(02)

a
b
cδa, D ·

∂c

·
∂b = C

(12)

a
b
c
·
∂a, D ·

∂c

·
∂b = − C

(22)
a

bc
·
∂a.

(2.1)

2◦. With respect to the coordinate transformation (1.2),§ 4.1, the coeffi-

cients H
(α0)

a
bc,

(
α = 0, 1, 2; H

(20)

a
bc := H

(20)
b
a

c

)
obey the rule of transformation:

H̃
(α0)

a
de

∂x̃d

∂xb

∂x̃e

∂xc
=

∂x̃a

∂xe
H

(α0)

e
bc − ∂2x̃a

∂xb∂xc
. (2.2)

3◦.The system of functions C
(α1)

a
bc, C

(α2)

a
b
c, (α = 0, 1, 2; C

(21)

a
bc := C

(21)
b
a

c;

C
(22)

a
b
c := C

(22)
b
ac ) are d−tensor fields of type (1, 2) and (2, 1) , respectively.

The assertions 2◦ and 3◦ can be prove by a direct calculus, taking into

account the rule of transformations (2.4’), § 4.1, for
(

δa,
·
∂a,

·
∂a

)
.

The system of functions

DΓ (N) :=
(

H
(00)

a
bc, H

(10)

a
bc, H

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)
a

bc, C
(12)

a
bc, C

(22)
a

bc

)
,

(2.3)
are called the coefficients of the N−linear connection D on T ∗2M.

The inverse statement of Theorem 2.1 holds also: if on each domain of local
chart on T ∗2M having the system of functions of type (2.3), which of local chart
(1.2),§ 4.1, on T ∗2M have been transformed by the rule of transformations 2◦ and
3◦ of Theorem 2.1, then, on T ∗2M, there exists an unique N−linear connection
D whose admit these functions as coefficients

Taking into account (1.10), (2.1) and the condition of duality between vec-
tors of adapted basis and 1−forms of cobasis we assuming the rule of covariant
derivatives for cobasis fields (dxa, δya, δpa) as following:

Dδcdxa = − H
(00)

a
bcdxb, Dδcδy

a = − H
(10)

a
bcδy

b, Dδcδpb = H
(20)

a
bcδpa,

D ·
∂c

dxa = − C
(01)

a
bcdxb, D ·

∂c

δya = − C
(11)

a
bcδy

b, D ·
∂c

δpb = C
(21)

a
bcδpa,

D ·
∂c

dxa = − C
(02)

a
b
cdxb, D ·

∂c
δya = − C

(12)

a
b
cδyb, D ·

∂c
δpb = C

(22)

a
b
cδpa.

(2.4)

We have the following theorem of existence of an N−linear connection on
T ∗2M.
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Theorem 2.2 If the manifold M is paracompact and N is a nonlinear
connection on T ∗2M with coefficients Na

b, Nab, then there exists an N−linear
connection on T ∗2M.

Proof. Because M is paracompact, there exists an a linear connection on
M of local coefficients, say Γa

bc (x) . Let Na
b (x, y, p) and Nab (x, y, p) be the local

coefficients of the nonlinear connection N. We set H
(00)

a
bc = Γa

bc (x) , H
(10)

a
bc =

·
∂bN

a
c, H

(20)

a
bc =

·
∂aNbc. Thus, taking into account Proposition 4.3, § 4.4, we

obtain three set of function which transform, with respect to (1.2),§ 4.1, by
(2.1) (α = 0, 1, 2) . It result that DΓ (N) given by

DΓ (N) =
(

Γa
bc (x) , B

(11)

a
cb,− B

(22)

a
bc, 0, 0, 0, 0, 0, 0

)
, (2.5)

defines an N−linear connection on T ∗2M
q.e.d.

In applications, we will use the N−linear connections of the form

BΓ (N) =
(

L
(00)

a
bc, B

(11)

a
cb,− B

(22)

a
bc, 0, C

(11)

a
bc, 0, 0, 0, C

(22)

ac
b

)
(2.6)

called N−linear connection of Berwald type on T ∗2M.

5.3 The local expressions of hα−, v1α− and w2α−
covariant derivatives, (α = 0, 1, 2)

Let us consider a d−tensor fields T of type (r, s) . In the adapted basis (2.3), and
(2.8), § 4.2, T can be written in the form

T = T a1...ar

b1...bs
(x, y, p) δa1 ⊗ ...⊗

·
∂bs ⊗ dxb1 ⊗ ...⊗ δpar . (3.0)

Let X = XH = X(0)aδa be a d−vector field. Taking into account the
properties of the operators D

α

H
XT = X(0)dD

α

W2
δd

T, (α = 0, 1, 2) and the formulae

(2.1), (2.4) we obtain

D
α

H
XT = X(0)dT a1...ar

b1...bspαdδa1 ⊗ ...⊗
·
∂bs ⊗ dxb1 ⊗ ...⊗ δpar , (3.1)

where

T a1...ar

b1...bspαd = δdT
a1...ar

b1...bs
+ H

(α0)

a1
cdT

ca2...ar

b1...bs
+ ... + H

(α0)

ar
cdT

a1...c
b1...bs

−

− H
(α0)

c
b1dT

a1...ar

cb2...bs
− ...− H

(α0)

c
bsdT

a1...ar

b1...c . (3.2)
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The operators ”pα” are called the hα−covariant derivatives with respect
to DΓ (N) , (α = 0, 1, 2) .

Let us consider the operators D
α

V1
X , for the d−vector field XV1 = X(1)d

·
∂d,

applied of T given by (3.0). We obtain

D
α

V1
X T = X(1)dT a1...ar

b1...bs
|αd δa1 ⊗ ...⊗

·
∂bs ⊗ dxa1 ⊗ ...⊗ δpar

, (3.1’)

where

T a1...ar

b1...bs
|αd=

·
∂dT

a1...ar

b1...bs
+ C

(α1)

a1
cdT

ca2...ar

b1...bs
+ ... + C

(α1)

ar
cdT

a1...c
b1...bs

−

− C
(α1)

c
b1dT

a1...ar

cb2...bs
− ...− C

(α1)

c
bsdT

a1...ar

b1...c . (3.2’)

The operators ”|α ” are called v1α−covariant derivatives with respect to
DΓ (N) , (α = 0, 1, 2) .

Analogous, for X = XW2 = X
(2)

a

·
∂a, we have

D
α

W2
X T = X

(2)
dT

a1...ar

b1...bs
|αd δa1 ⊗ ...⊗

·
∂bs ⊗ dxa1 ⊗ ...⊗ δpar , (3.1”)

where

T a1...ar

b1...bs
|αd=

·
∂dT a1...ar

b1...br
+ C

(α2)
c
a1dT ca2...ar

b1...bs
+ ... + C

(α2)
c
ardT a1...c

b1...bs
−

− C
(α2)

b1
cdT a1...ar

cb2...bs
− ...− C

(α2)
bs

cdT a1...ar

b1...c . (3.2”)

The operators ”|α ” are called w2α−covariant derivatives with respect
to DΓ (N) , (α = 0, 1, 2) .

By a direct calculus, we obtain
Proposition 3.1 The quantities

T a1...ar

b1...bspαd , T a1...ar

b1...bs
|αd, T a1...ar

b1...bs
|αd, (α = 0, 1, 2) ,

are d−tensor fields. The first six are of type (r, s + 1) , the last three are of type
(r + 1, s) .

Proposition 3.2 The operators pα, |α, |α, (α = 0, 1, 2) have the properties

1◦. fpαd = δdf, f |αd=
·
∂df, f |αd=

·
∂df, ∀f ∈ F (

T ∗2M
)
.

2◦.These operators are distributive with respect to the adition of the
d−tensor field of the same type.

3 ◦.They commute with the operation of contaction.
4 ◦.They verify the Leibnitz rule with respect to the tensor product.

Now, we shall give two applications of this paragraph.
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Application 3.1 Let us study the ”(y)
α
− deflection tensor fields” of

the N−linear connection DΓ (N) , where ya is the Liouville d−vector field (the
speed). They are defined by

D
α

a
b = ya

pαb, d
α

a
b = ya |αb, d

α

ab = ya |αb, (α = 0, 1, 2) . (3.3)

Proposition 3.3 The (y)
α
−deflection tensor fields, (α = 0, 1, 2) , have the

following expressions

D
α

a
b = −Na

b + yc H
(α0)

a
cb, d

α

a
b = δa

b + yc C
(α1)

a
cb, d

α

ab = yc C
(α2)

c
ab. (3.3’)

These equalities are easy to prove, if we notice that

ya
pαb = δby

a + yc H
(α0)

a
cb, ya |αb=

·
∂dy

a + yc C
(α1)

a
cb, ya |αb=

·
∂dya + yc C

(α2)

a
cb,

(α = 0, 1, 2) .

Analogous, we introduced ”(p)
α
− deflection tensor fields”, where pa is

Hamilton d−covector field (the momentum), by

4
α

ab = papαb, ϑ
α

ab = pa |αb, ϑ
α

a
b = pa |αb, (α = 0, 1, 2) . (3.4)

Proposition 3.4 (p)
α
−deflection tensor fields, (α = 0, 1, 2) , have the follow-

ing expressions

4
α

ab = Nba − pc H
(α0)

c
ab, ϑab = −pc C

(α1)

c
ab, ϑa

b = δb
a − pc C

(α2)

c
ab,

(α = 0, 1, 2) . (3.4’)

Proof. Using (3.2), (3.2’) and (3.2”) applied of pa we obtain the expressions
(3.4’).

q.e.d.
The deflection tensors will used in determination of some important iden-

tities as particular case of Ricci identities, applied of d−tensor fields ya and
pa, (a = 1, ..., n) .

Application 3.2 The distinguished tensor field gab (x, y, p) used in § 4.6,
formula (6.5), has hα−, v1α− and w2α− covariant derivatives with respect to the
N−linear connection DΓ (N) , (2.3), given by:





gabpαc = δcgab − H
(α0)

d
acgdb − H

(α0)

d
bcgad,

gab |αc=
·
∂cgab − C

(α1)

d
acgdb − C

(α1)

d
bcgad,

gab |αc=
·
∂cgab − C

(α2)
a

dcgdb − C
(α2)

b
dcgad.

(3.5)
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5.4 N−linear connections of Miron type on T ∗2M

An important particular case of N−linear connection is given by
Definition 4.1 An N−linear connection D on T ∗2M is called an MN−linear

connection (N−linear connection of Miron type ) if:
1◦.The 1−tangent structure J is absolute parallel with respect to D.
2◦.The presymplectic structure θ is absolute parallel with respect to D.

Because

(DXJ)
(
Y H

)
= DX

(
JY H

)− J
(
DXY H

)
,

(DXJ)
(
Y V1

)
= DX

(
JY V1

)− J
(
DXY V1

)
,

(DXJ)
(
Y W2

)
= DX

(
JY W2

)− J
(
DXY W2

)
,

we can formulate
Theorem 4.1 An N−linear connection D is an MN−linear connection on

the manifold T ∗2M if and only if:

1◦. DX

(
JY H

)
= J

(
DXY H

)
, (4.1)

DX

(
JY V1

)
= J

(
DXY V1

)
,

DX

(
JY W2

)
= J

(
DXY W2

)
, ∀X, Y ∈ χ

(
T ∗2M

)
.

2◦. Dθ = 0. (4.2)

We remark that the latest two equalities from (4.1) are coorsely, because a
N−linear connection D preserves by parallelism the distributions V1 and W2 and
J

(
Y V1

)
= 0, J

(
Y W2

)
= 0.

Theorem 4.2 An MN−linear connection on T ∗2M is characterized by the
coefficients MDΓ (N) given by (2.3) where

H
(00)

a
bc = H

(10)

a
bc = H

(20)

a
bc =: Ha

bc,

C
(01)

a
bc = C

(11)

a
bc = C

(21)

a
bc =: Ca

bc,

C
(02)

a
b
c = C

(12)

a
b
c = C

(22)

a
b
c =: Ca

b
c,

(4.3)

Proof. By the first equalities (4.1) we can write

Dδc (Jδb) = J (Dδcδb) , that is Dδc

·
∂b = H

(00)

a
bcJ (δa) , where H

(10)

a
bc = H

(00)

a
bc.

D ·
∂c

(Jδb) = J
(
D ·

∂c

δb

)
, that is D ·

∂c

·
∂b = C

(01)

a
bcJ (δa) , and therefore C

(11)

a
bc = C

(01)

a
bc.

D ·
∂c

(Jδb) = J
(
D ·

∂c
δb

)
, that is D ·

∂c

·
∂b = C

(02)

a
b
cJ (δa) , where C

(12)

a
b
c = C

(02)

a
b
c.

The equalities H
(20)

a
bc = H

(00)

a
bc, C

(21)

a
bc = C

(01)

a
bcand C

(22)

a
b
c = C

(02)

a
b
c

are obtaining from Dδcθ = 0.
q.e.d.

Also, we obtain



102 CHAPTER 5. LINEAR CONNECTIONS ON THE MANIFOLD T ∗2M

Proposition 4.1 For any MN -linear connection MDΓ (N) =
(
Ha

bc, C
a

bc, Ca
bc

)

we have
DXF = 0, ∀X ∈ χ

(
T ∗2M

)
. (4.4)

Indeed, by (DXF) (Y ) = DXF (Y )− F (DXY ) , we obtain

(Dδc
F) (δb) = Dδc

F (δb)− F (Dδc
δb) = Dδc

(
−
·
∂b

)
−Ha

bcF (δb) =

= −
(

Ha
bc −Ha

cb

) ·
∂a = 0, etc.

Remark 4.1 1◦.We have {MDΓ (N)} ⊂ {DΓ (N)} .
2◦.For any MN−linear connection, the hα−, v1α− and w2α−covariant

derivatives, (α = 0, 1, 2) , one reduce to h−, v1− and w2− covariant derivatives.
Also “ pαc ”, (α = 0, 1, 2) one reduce to “ pc ” only, “ |αc ”, (α = 0, 1, 2) one reduce
to “ |c ” and “ |αc ” one reduce to “ |c ”, (c = 1, ..., n) , respectively.

3◦. For any MN−linear connection with the coefficients

MDΓ (N) =
(

Ha
bc, C

a
bc, Ca

bc

)
, (4.5)

the deflection d−tensor fields have the expressions

Da
b = yapb, da

b = ya |b, dab = ya |b,
4ab = papb, δab = pa |b, δa

b = pa |b,
(4.6)

etc.
Whole these correspond of R. Miron theory on the Hamilton spaces of higher

order recently achieved and published in prestigious Kluwer Acad. Press, in two
volume of speciality [86], [97].

From this paragraph we clearly see how results of this paper generalize the
works remarked before. To work with nine coefficients for a linear connection
on T ∗2M (replaced three) is an advantage in the physical applications in elec-
trodynamics [103], [104], elasticity [105],quantum field theories [109], [119], in
the deviations of geodesics [29], [30], [133], etc., because, after who shall see, the
torsion, the curvature, remarkable identities, etc., are much more substantial.

5.5 The torsion of an N−linear connection

Let D be an N−linear connection. The torsion of D is given by

T (X,Y ) = DXY −DY X − [X, Y ] , ∀X,Y ∈ χ
(
T ∗2M

)
. (5.1)

It can be evaluated for the pairs of d−vector fields
(
XH , Y H

)
,

(
XH , Y V1

)
,(

XH , Y W2
)
,

(
XV1 , Y V1

)
,

(
XV1 , Y W2

)
and

(
XW2 , Y W2

)
. We obtain the vector

fields,
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T
(
XH , Y H

)
, T

(
XH , Y Vβ

)
, T

(
XVβ , Y Vγ

)
, (β, γ = 1, 2, β ≤ γ, V2 = W2) .

Since, D preserves by parallelism the distributions N, V1,W2 and the distri-
butions V1,W2 are integrable it follows

Proposition 5.1 The following properties of the torsion T holds:

hT
(
XV1 , Y V1

)
= 0, hT

(
XV1 , Y W2

)
= 0, hT

(
XW2 , Y W2

)
= 0,

w2T
(
XV1 , Y V1

)
= 0, v1T

(
XW2 , Y W2

)
= 0. (5.2)

From this assertion, we deduce
Proposition 5.2 The tensor field of torsion T of an N−linear connection

D is uniquely determined by the following components



T

(
XH , Y H

)
= hT

(
XH , Y H

)
+ v1T

(
XH , Y H

)
+ w2T

(
XH , Y H

)
,

T
(
XH , Y V1

)
= hT

(
XH , Y V1

)
+ v1T

(
XH , Y V1

)
+ w2T

(
XH , Y V1

)
,

T
(
XH , Y W2

)
= hT

(
XH , Y W2

)
+ v1T

(
XH , Y W2

)
+ w2T

(
XH , Y W2

)
,

((5.3)1){
T

(
XV1 , Y V1

)
= v1T

(
XV1 , Y V1

)
T

(
XV1 , Y W2

)
= v1T

(
XV1 , Y W2

)
+ w2T

(
XV1 , Y W2

)
,

((5.3)2)

T
(
XW2 , Y W2

)
= w2T

(
XW2 , Y W2

)
, ((5.3)3)

where in the right part of each equalities we have d−tensor fields of type (1, 2) .
These terms, will call d−tensors of torsion of the N−linear connection D.
More exactly, hT

(
XH , Y H

)
is called h (hh)−tensor of torsion of D,

v1T
(
XH , Y H

)
is called v1 (hh)−tensor of torsion of D and so on.

By direct calculus we prove
Theorem 5.1 The d−tensors of torsion of an N−linear connection D on

T ∗2M, with the coefficients

DΓ (N) =
(

H
(00)

a
bc, H

(10)

a
bc, H

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)

a
b
c, C

(12)

a
b
c, C

(22)

a
b
c

)
,

in the adapted basis (2.3), § 4.2, have the expressions:




hT (δc, δb) =
0

T
(00)

a
bcδa,

v1T (δc, δb) =
1

T
(00)

a
bc

·
∂a, w2T (δc, δb) =

2

T
(00)

abc

·
∂a,

hT
( ·

∂c, δb

)
=

0

P
(01)

a
bcδa,

v1T
( ·

∂c, δb

)
=

1

P
(01)

a
bc

·
∂a, w2T

( ·
∂c, δb

)
=

2

P
(01)

abc

·
∂a,

hT
( ·

∂c, δb

)
=

0

P
(02)

a
b
cδa,

v1T
( ·

∂c, δb

)
=

1

P
(02)

a
b
c
·
∂a, w2T

( ·
∂c, δb

)
=

2

P
(02)

ab
c
·
∂a,

((5.4)1)



104 CHAPTER 5. LINEAR CONNECTIONS ON THE MANIFOLD T ∗2M





v1T
( ·

∂c,
·
∂b

)
=

1

S
(11)

a
bc

·
∂a,

v1T
( ·

∂c,
·
∂b

)
=

1

Q
(12)

a
b
c
·
∂a, w2T

( ·
∂c,

·
∂b

)
=

2

Q
(12)

ab
c
·
∂a,

((5.4)2)

w2T
( ·

∂c,
·
∂b

)
=

2

S
(22)

a
bc
·
∂a, ((5.4)3)

where




0

T
(00)

a
bc = H

(00)

a
bc − H

(00)

a
cb,

1

T
(00)

a
bc = R

(01)

a
bc,

2

T
(00)

abc = R
(02)

abc,

0

P
(01)

a
bc = C

(01)

a
bc,

1

P
(01)

a
bc = B

(11)

a
bc − H

(10)

a
cb,

2

P
(01)

abc = B
(12)

abc,

0

P
(02)

a
b
c = C

(02)

a
b
c,

1

P
(02)

a
b
c = B

(21)

a
b
c,

2

P
(02)

ab
c = B

(22)
ab

c + H
(20)

c
ab,

((5.5)1)





1

S
(11)

a
bc = C

(11)

a
bc − C

(11)

a
cb,

1

Q
(12)

a
b
c = C

(12)

a
b
c =: C

(12)

ac
b,

2

Q
(12)

ab
c = C

(21)
a

c
b =: C

(21)

c
ab,

((5.5)2)

2

S
(22)

a
bc = −

(
C

(22)
a

bc − C
(22)

a
cb

)
. ((5.5)3)

Proof. We take into account the Lie brackets, Proposition 4.1, the formulae
(4.1), (4.2), § 4.4,and of the write of an N−linear connection in the adapted
basis, the formulae (2.1), § 5.2. We obtain, successively

hT (δc, δb) = hDδcδb − hDδb
δc − h [δc, δb] = H

(00)

a
bc − H

(00)

a
cb,

and the first equality (5.5)1 is true. Now

v1T
( ·

∂c, δb

)
= v1D ·

∂c

δb − v1Dδb

·
∂c − v1

[ ·
∂c, δb

]
= − H

(10)

a
cb + B

(11)

a
bc,

and the 5thequality (5.5)1 is correct. Then, for exemple

w2T
( ·

∂c, δb

)
= w2D ·

∂c
δb − w2Dδb

·
∂c − w2

[ ·
∂c, δb

]
= H

(20)
a

c
b + Bab

c,

and the 9thequality (5.5)1 is true. In same manner, we obtain the other equalities
q.e.d.
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Remark 5.1 The tensor field of torsion T of an N−linear connection D on
T ∗2M is formed by 13 d−tensor fields of torsion, components of T. Especially,
we have

0

T
(00)

a
bc = H

(00)

a
bc− H

(00)

a
cb,

1

S
(11)

a
bc = C

(11)

a
bc− C

(11)

a
cb,

2

S
(22)

a
bc = −

(
C

(22)
a

bc − C
(22)

a
cb

)
.

(5.6)
Therefore,
Proposition 5.3 The following statements are equivalent

1 ◦.
0

T
(00)

a
bc = 0,

1

S
(11)

a
bc = 0,

2

S
(22)

a
bc = 0.

2 ◦. H
(00)

a
bc = H

(00)

a
cb, C

(11)

a
bc = C

(11)

a
cb, C

(22)
a

bc = C
(22)

a
cb.

We pay attention to the N−linear connection given in following definition.
Definition 5.1 An N−linear connection on T ∗2M is called semisymmet-

ric if

0

T
(00)

a
bc =

1
2

(δa
b σc − δa

c σb) ,

1

S
(11)

a
bc =

1
2

(δa
b τc − δa

c τb) ,
2

S
(22)

a
bc = −1

2
(
δb
aυc − δc

aυb
)

(5.7)

where σ, τ ∈ χ∗
(
T ∗2M

)
and υ ∈ χ

(
T ∗2M

)
.

In the next calculus we have need of the following d−tensor fields:

0

T
(α0)

a
bc = H

(α0)

a
bc − H

(α0)

a
cb, P

(α1)

a
bc = B

(11)

a
bc − H

(α0)

a
cb, P

(α2)
ab

c = B
(22)

ab
c + H

(α0)

c
ab,

α

S
(α1)

a
bc = C

(α1)

a
bc − C

(α1)

a
cb,

α

S
(α2)

a
bc = −

(
C

(α2)
a

bc − C
(α2)

a
cb

)
,

(α = 0, 1, 2) .
(5.8)

We remark that we have

P
(11)

a
bc =

1

P
(01)

a
bc, P

(22)
ab

c =
2

P
(02)

ab
c. (5.9)

Particularly, we have
Proposition 5.4 For any N−linear connection of Miron type, MDΓ (N) =(

Ha
bc, C

a
bc, Ca

bc

)
we obtain

0

T
(00)

a
bc =

0

T
(10)

a
bc =

0

T
(20)

a
bc = Ha

bc −Ha
cb =: T a

bc

P
(01)

a
bc = P

(11)

a
bc = P

(21)

a
bc = B

(11)

a
bc −Ha

cb =: P
(1)

a
bc

P
(02)

ab
c = P

(12)

a
bc = P

(22)

a
bc = B

(22)
ab

c + Hc
ab =: P

(2)
ab

c

(5.10)
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Now, it is easy to write the d−tensors of torsion of an N−linear connection
of Miron type. By the formulae (4.3), the Theorem 4.2, we have

Proposition 5.5 The d−tensors of torsion, components of torsion tensor

field T of an MN−linear connection with coefficients MDΓ (N) =
(

Ha
bc, C

a
bc,

Ca
bc

)
are

Ha
bc −Ha

cb =: T a
bc, R

(01)

a
bc, R

(01)
abc,

Ca
bc, B

(11)

a
bc −Ha

cb =: P
(1)

a
bc, B

(12)
abc,

Ca
b
c =: Cb

ac, B
(21)

a
b
c =: B

(21)
b
ac, B

(22)
ab

c + Hc
ab =: P

(2)

c
ab,

Ca
bc − Ca

cb =: Sa
bc,−

(
Ca

bc − Ca
cb

)
=: Sa

bc.

(5.11)

Remark 5.2 The tensor field T of an N−linear connection of Miron type
on T ∗2M is given by 11 d−torsion tensor fields, components of T.

5.6 The curvature of an N−linear connection

Let D be an N−linear connection on T ∗2M. The curvature of D is given by

R (X, Y ) Z = (DXDY −DY DX)Z −D[X,Y ]Z, ∀X,Y, Z ∈ χ
(
T ∗2M

)
. (6.1)

We will express R by his components, taking into account the decomposition
(3.3), §4.3, for the vector fields on T ∗2M.

We prove
Theorem 6.1 The curvature tensor field R of the N−linear connection on

T ∗2M have the properties

v1R (X, Y )ZH = 0, w2R (X, Y )ZH = 0,
hR (X,Y ) ZV1 = 0, hR (X, Y )ZW2 = 0,
R (X,Y )Z = hR (X, Y )ZH + v1R (X,Y ) ZV1 + w2R (X, Y )ZW2 .

(6.2)

Proof. Because D preserves by parallelism the horizontal and verticals
distributions, by (6.1), the operator R (X, Y ) carries horizontal vector fields to
horizontal and verticals vector fields to verticals. Thus the first four equations
form (6.2) hold. The next one is an easy consequence of the first four.

q.e.d.
By Theorem 6.1 and the equation R (X,Y ) = −R (Y, X) ,∀X, Y ∈ T ∗2M,

we get
Theorem 6.2 The curvature tensor R of an N−linear connection D on

the total space T ∗2M of a 2−cotangent bundle
(
T ∗2M,π∗2,M

)
is completely

determined by the following d−tensor fields:
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R
(
XH , Y H

)
ZH = D

0

H
XD

0

H
Y ZH −D

0

H
Y D

0

H
XZH −

2∑
α=0

D
0

Vα

[XH ,Y H ]Z
H ,

R
(
XH , Y H

)
ZVγ = D

γ

H
XD

γ

H
Y ZVγ −D

γ

H
Y D

γ

H
XZVγ −

2∑
α=0

D
γ

Vα

[XH ,Y H ]Z
Vγ , (γ = 1, 2) ,

R
(
XVβ , Y H

)
ZH = D

0

Vβ

X D
0

H
Y ZH −D

0

H
Y D

0

Vβ

X ZH −
2∑

α=0
D
0

Vα

[XH ,Y H ]Z
H , (β = 1, 2) ,

R
(
XVβ , Y H

)
ZVγ = D

γ

Vβ

X D
γ

H
Y ZVγ −D

γ

H
Y D

γ

Vβ

X ZVγ −
2∑

α=0
D
γ

Vα

[XVβ ,Y H ]Z
Vγ ,

(β, γ = 1, 2) ,

R
(
XVβ , Y Vγ

)
ZH = D

0

Vβ

X D
0

Vγ

Y ZH −D
0

Vγ

Y D
0

Vβ

X ZH −
2∑

ε=1
D
0

Vε

[XVβ ,Y Vγ ]Z
H ,

(β, γ = 1, 2, β ≤ γ) ,

R
(
XVβ , Y Vγ

)
ZVδ = D

δ

Vβ

X D
δ

Vγ

Y ZVδ −D
δ

Vγ

Y D
δ

Vβ

X ZVδ −
2∑

ε=1
D
δ

Vε

[XVβ ,Y Vγ ]Z
Vδ ,

(β, γ, δ = 1, 2, β ≤ γ) ,
(6.3)

where V0 = H and V2 = W2.
The d−tensors fields from the right part of the following equalities are called

d−tensors of curvature of the N−linear connection D.
Local expressions of d−tensors of curvature of N−linear connection D with

the coefficients

DΓ (N) =
(

H
(00)

a
bc, H

(10)

a
bc, H

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)
a

bc, C
(12)

a
bc, C

(22)
a

bc

)

can be obtained by (6.3). With notations

R (δd, δc) δb = R
(000)

b
a

cdδa, R (δd, δc)
·
∂b = R

(100)
b
a

cd

·
∂a,

R (δd, δc)
·
∂a = − R

(200)
b
a

cd

·
∂b,

R

( ·
∂d, δc

)
δb = R

(001)
b
a

cdδa, R

( ·
∂d, δc

) ·
∂b = R

(101)
b
a

cd

·
∂a,

R

( ·
∂d, δc

) ·
∂a = − R

(201)
b
a

cd

·
∂b,

R

( ·
∂d, δc

)
δb = R

(002)
b
a

c
dδa, R

( ·
∂d, δc

) ·
∂b = R

(102)
b
a

c
d
·
∂a,

R

( ·
∂d, δc

) ·
∂a = − R

(202)
b
a

c
d
·
∂b,

R

( ·
∂d,

·
∂c

)
δb = R

(011)
b
a

cdδa, R

( ·
∂d,

·
∂c

) ·
∂b = R

(111)
b
a

cd

·
∂a,

R

( ·
∂d,

·
∂c

) ·
∂a = − R

(211)
b
a

cd

·
∂b,

R

( ·
∂d,

·
∂c

)
δb = R

(012)
b
a

c
dδa, R

( ·
∂d,

·
∂c

) ·
∂b = R

(112)
b
a

c
d
·
∂a,

(6.4)
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R

( ·
∂d,

·
∂c

) ·
∂a = − R

(212)
b
a

c
d
·
∂b,

R

( ·
∂d,

·
∂c

)
δb = R

(022)
b
acdδa, R

( ·
∂d,

·
∂c

) ·
∂b = R

(122)
b
acd

·
∂a,

R

( ·
∂d,

·
∂c

) ·
∂a = − R

(222)
b
acd

·
∂b,

we get
Theorem 6.3 An N−linear connection D with the coefficients

DΓ (N) =
(

H
(00)

a
bc, H

(10)

a
bc, H

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)
a

bc, C
(12)

a
bc, C

(22)
a

bc

)

has the d−tensors of curvature (6.4) expressed by the following formulae





R
(α00)

b
a

cd = δd H
(α0)

a
bc − δc H

(α0)

a
bd + H

(α0)

f
bc H

(α0)

a
fd − H

(α0)

f
bd H

(α0)

a
fc+

+C
(α1)

a
bf R

(01)

f
cd + C

(α2)
b
af R

(02)
fcd,

R
(α01)

b
a

cd =
·
∂d H

(α0)

a
bc − C

(α1)

a
bdpαc + C

(α1)

a
bf P

(α1)

f
bc + C

(α2)
b
af B

(12)
fcd,

R
(α00)

b
a

c
d =

·
∂d H

(α0)

a
bc − C

(α2)
b
adpαc + C

(α1)

a
bf B

(21)

f
c
d + C

(α2)
b
af P

(α2)
fc

d,

(α = 0, 1, 2) ,

(6.5)





R
(α11)

b
a

cd =
·
∂d C

(α1)

a
bc −

·
∂c C

(α1)

a
bd + C

(α1)

f
bc C

(α1)

a
fd − C

(α1)

f
bd C

(α1)

a
fc,

R
(α12)

b
a

c
d =

·
∂d C

(α1)

a
bc −

·
∂c C

(α2)
b
ad + C

(α1)

f
bc C

(α2)
f

ad − C
(α2)

b
fd C

(α1)

a
fc,

R
(α22)

b
acd =

·
∂d C

(α2)
b
ac −

·
∂c C

(α2)
b
ad + C

(α2)
b
fc C

(α2)
f

ad − C
(α2)

b
fd C

(α2)
f

ac,

(α = 0, 1, 2) .

(6.6)

Proof. Taking into account the formulae (4.1),(4.2), §4.4, (2.1), §5.2, and
the notations (5.8) and (6.4). We obtain, for example

R

( ·
∂d, δc

) ·
∂a = − R

(201)
b
a

cd

·
∂d =

(
D ·

∂d

Dδc −DδcD ·
∂d

) ·
∂a −D� ·

∂d,δc

� ·∂a =

= −D ·
∂d

(
H
(20)

a
fc

·
∂f

)
+ Dδc

(
C

(21)

a
fd

·
∂f

)
+ D

B
(11)

f
cd

·
∂f+ B

(12)
fcd

·
∂f

·
∂a =

= −
( ·

∂d H
(20)

a
bc

) ·
∂b + H

(20)

a
fc C

(21)

f
bd

·
∂b +

(
δc C

(21)

a
bd

) ·
∂b − C

(21)

a
fd H

(20)

f
bc

·
∂b−

− B
(11)

f
cd C

(21)

a
bf

·
∂b − B

(12)
fcd C

(22)
b
af
·
∂b.

We have, therefore
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R
(201)

b
a

cd =
·
∂d H

(20)

a
bc − H

(20)

a
fc C

(21)

f
bd − δc C

(21)

a
bd + H

(20)

f
bc C

(21)

a
fd+

+ C
(21)

a
bf B

(11)

f
cd + C

(22)
b
af B

(12)
fcd.

But, by formula (3.2) we get

C
(21)

a
bdp2c = δc C

(21)

a
bd + H

(20)

a
fc C

(21)

f
bd − H

(20)

f
bc C

(21)

a
fd − H

(20)

f
dc C

(21)

a
bf .

Interchanging the underline terms, in the last equations, results

R
(201)

b
a

cd =
·
∂d H

(20)

a
bc − C

(21)

a
bdp2c + C

(21)

a
bf P

(21)

f
bc + C

(22)
b
af B

(12)
fcd,

namely the 6th relation of the lot (6.5) (α = 2) . The other equalities are given in
same manner.

q.e.d.

Remark 6.1 The tensor field of curvature R of an N−linear connection D
on T ∗2M is given by 18 d−tensor fields of curvature, components of R.

Particularly, we have
Proposition 6.1 For any N−linear connection of Miron type , MDΓ (N) =(

Ha
bc, C

a
bc, Ca

bc
)

we obtain





R
(000)

b
a

cd = R
(100)

b
a

cd = R
(200)

b
a

cd =: Rb
a

cd,

R
(001)

b
a

cd = R
(100)

b
a

cd = R
(200)

b
a

cd =: P b
a

cd,

R
(002)

b
a

c
d = R

(102)
b
a

c
d = R

(202)
b
a

c
d =: P b

a
c
d,

(6.7)





R
(011)

b
a

cd = R
(111)

b
a

cd = R
(211)

b
a

cd =: Sb
a

cd,

R
(012)

b
a

c
d = R

(112)
b
a

c
d = R

(212)
b
a

c
d =: Sb

a
c
d,

R
(022)

b
acd = R

(122)
b
acd = R

(222)
b
acd =: Sb

acd.

(6.8)

The writing of d−tensors of curvature from an N−linear connection of Miron
type, is immediately by Theorem 6.3 and formulae (4.3), § 5.4.

Proposition 6.2 There exist only 6 the essentially d−tensors of curvature,
components of the tensor field of curvature R of an MN−linear connection with
coefficients MDΓ (N) =

(
Ha

bc, C
a

bc, Ca
bc

)
namely
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



Rb
a

cd = δdH
a

bc − δcH
a

bd + Hf
bcH

a
fd −Hf

bdH
a

fc+

+Ca
bf R

(01)

f
cd + Cb

af R
(02)

fcd,

P b
a

cd =
·
∂dH

a
bc − Ca

bdpc + Ca
bf P

(1)

f
bc + Cb

af B
(12)

fcd,

P b
a

c
d =

·
∂dHa

bc − Cb
ad
pc + Ca

bf B
(21)

f
c
d + Cb

af P
(2)

fc
d,

(6.9)





Sb
a

cd =
·
∂dC

a
bc −

·
∂cC

a
bd + Cf

bcC
a

fd − Cf
bdC

a
fc,

Sb
a

c
d =

·
∂dCa

bc −
·
∂cCb

ad + Cf
bcCf

ad − Cb
fdCa

fc,

Sb
acd =

·
∂dCb

ac −
·
∂cCb

ad + Cb
fcCf

ad − Cb
fdCf

ac.

(6.10)

5.7 The Ricci identities

In the application it is suitable to consider the equalities (6.3) as Ricci identi-
ties. A simple aranjament of (6.3), gives us

Theorem 7.1 For any N−linear connection D on T ∗2M the following Ricci
identities hold:

D
0

H
XD

0

H
Y ZH −D

0

H
Y D

0

H
XZH = R

(
XH , Y H

)
ZH + D

0

H

[XH ,Y H ]Z
H+

+
2∑

ε=1
D
0

Vε

[XH ,Y H ]Z
H ,

D
0

Vβ

X D
0

H
Y ZH −D

0

H
Y D

0

Vβ

X ZH = R
(
XVβ , Y H

)
ZH + D

0

H

[XVβ ,Y H ]Z
H+

+
2∑

ε=1
D
0

Vε

[XVβ ,Y H ]Z
H , (β = 1, 2) ,

D
0

Vβ

X D
0

Vγ

Y ZH −D
0

Vγ

Y D
0

Vβ

X ZH = R
(
XVβ , Y Vγ

)
ZH +

2∑
ε=1

D
0

Vε

[XVβ ,Y Vγ ]Z
H ,

(β, γ = 1, 2, β ≤ γ) ,
((7.1)1)

D
γ

H
XD

γ

H
Y ZVγ −D

γ

H
Y D

γ

H
XZVγ = R

(
XH , Y H

)
ZVγ + D

γ

H

[XH ,Y H ]Z
Vγ +

+
2∑

ε=1
D
γ

Vε

[XH ,Y H ]Z
Vγ , (γ = 1, 2) ,

D
γ

Vβ

X D
γ

H
Y ZVγ −D

γ

H
Y D

γ

Vβ

X ZVγ = R
(
XVβ , Y H

)
ZVγ + D

γ

H

[XVβ ,Y H ]Z
Vγ +

+
2∑

ε=1
D
γ

Vε

[XVβ ,Y H ]Z
Vγ , (β, γ = 1, 2) ,

D
δ

Vβ

X D
δ

Vγ

Y ZVδ −D
δ

Vγ

Y D
δ

Vβ

X ZVδ = R
(
XVβ , Y Vγ

)
ZVδ +

2∑
ε=1

D
δ

Vε

[XVβ ,Y Vγ ]Z
Vδ ,

(β, γ, δ = 1, 2, β ≤ γ) ,
((7.1)2)
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where V0 = H and V2 = W2.

We can establish these identities for a vector field, although they could be
write for any tensor field.

Theorem 7.2 For any vector field X ∈ χ
(
T ∗2M

)
we have following Ricci

identities

Xapαbpαc −Xapαcpαb = Xf R
(α00)

f
a

bc −
0

T
(α0)

f
bcX

apαf−
− R

(01)

f
bcX

a |αf − R
(02)

fbcX
a |αf ,

Xapαb |αc −Xa |αcpαb= Xf R
(α01)

f
a

bc − C
(α1)

f
bcX

apαf−
− P

(α1)

f
bcX

a |αf − B
(12)

fbcX
a |αf ,

Xapαb |αc −Xa |αc pαb = Xf R
(α02)

f
a

b
c − C

(α2)
b
fcXapαf−

− B
(21)

f
b
cXa |αf − P

(α2)
fb

cXa |αf ,

Xa |αb|αc −Xa |αc|αb= Xf R
(α11)

f
a

bc − S
(α1)

f
bcX

a |αf ,

Xa |αb|αc −Xa |αc|αb= Xf R
(α12)

f
a

b
c − C

(α2)
b
fcXa |αf − C

(α1)

c
fbX

a |αf ,

Xa |αb|αc −Xa |αc|αb= Xf R
(α22)

f
abc − S

(α2)
f

bcXa |αf ,

(α = 0, 1, 2) .

(7.2)

Remark 7.1 Using the previous considerations we can express the Ricci
identities for any MN−linear connections with coefficients MDΓ (N)

=

(
Ha

bc, C
a

bc, Ca
bc

)
, [86], [97].

Application 7.1 As a first application let us consider a Riemannian metric
G on T ∗2M in the form

G = g
(0)

abdxa ⊗ dxb + g
(1)

abδy
a ⊗ δyb + g

(2)

abδpa ⊗ δpb, (7.3)

having the properties

g
(α)

abpαc = 0, g
(α)

ab |αc= 0, g
(α)

ab |αc= 0, (α = 0, 1, 2) , (7.4)

where ‖ g
(2)

ab ‖=‖ g
(2)

ab ‖−1 .

Then we have
Theorem 7.3 If the Riemannian metric G, (7.3), verifies the conditions
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(7.4), then the following d−tensor fields

R
(α00)

abcd = g
(α)

fb R
(α00)

a
f

cd, R
(α01)

abcd = g
(α)

fb R
(α01)

a
f

cd,

R
(α02)

abc
d = g

(α)
fb R

(α02)
a

f
c
d,

R
(α00)

abcd = g
(α)

fb R
(α11)

a
f

cd, R
(α12)

abc
d = g

(α)
fb R

(α12)
a

f
c
d,

R
(α22)

ab
cd = g

(α)
fb R

(α22)
a

fcd,

(α = 0, 1, 2) .

(7.5)

are skew-symmetrics in the first two indices (ab) .
Indeed, writing the Ricci identities for d−tensor fields g

(α)
ab and taking into

account the equations (7.4). We deduce

g
(α)

af R
(α00)

b
f

cd + g
(α)

bf R
(α00)

a
f

cd = 0, ...

Using (7.5) and we get R
(α00)

bacd + R
(α00)

abcd = 0, (α = 0, 1, 2) , etc.

q.e.d.
Application 7.2 The Ricci identities applied to the Liouville d−vector field

ya and the Hamilton d−covector field pa lead to the some fundamental identities
for electromagnetic theory on T ∗2M.

Theorem 7.4 For any N−linear connection D with the coefficients

DΓ (N) =
(

H
(00)

a
bc, H

(10)

a
bc, H

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)
a

bc, C
(12)

a
bc, C

(22)
a

bc

)

the d−deflection tensor fields (3.3), and (3.4), § 5.3, satisfies the following iden-
tities

D
α

a
bpαc −D

α

a
cpαb = yf R

(α00)
f

a
bc −D

α

a
f

0

T
(α0)

f
bc−

−d
α

a
f R
(01)

f
bc − d

α

af R
(01)

fbc,

D
α

a
b |αc −d

α

a
cpαb = yf R

(α01)
f

a
bc −D

α

a
f C
(α1)

f
bc−

−d
α

a
f P
(α1)

f
bc − d

α

af B
(12)

fbc,

D
α

a
b |αc −d

α

acpαb = yf R
(α02)

f
a

b
c −D

α

a
f C
(α2)

f
bc−

−d
α

a
f B
(21)

f
b
c − d

α

af P
(α2)

fb
c,

d
α

a
b |αc −d

α

a
c |αb= yf R

(α11)
f

a
bc − d

α

a
f S
(α1)

f
bc,

d
α

a
b |αc −d

α

ac | αb = yf R
(α12)

f
a

b
c − d

α

a
f C
(α2)

b
fc − d

α

af C
(α1)

c
fb,

d
α

ab |αc −d
α

ac |αb= yf R
(α22)

f
abc − d

α

af S
(α2)

f
bc,

(α = 0, 1, 2) ,

(7.6)
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respectively

4
α

abpαc −4
α

acpαb = −pf R
(α00)

a
f

bc −4
α

af

0

T
(α0)

f
bc−

−ϑ
α

af R
(01)

f
bc − ϑ

α
a

f R
(02)

fbc,

4
α

ab |αc −ϑ
α

acpαb = −pf R
(α01)

a
f

bc −4
α

af C
(α1)

f
bc−

−ϑ
α

af P
(α1)

f
bc − ϑ

α
a

f B
(12)

fbc,

4
α

ab |αc −ϑ
α

a
cpαb = −pf R

(α02)
a

f
b
c −4

α
af C

(α2)
b
fc−

−ϑ
α

af B
(21)

f
b
c − ϑ

α
a

f P
(02)

fb
c,

ϑ
α

ab |αc −ϑ
α

ac |αb= −pf R
(α11)

a
f

bc − ϑ
α

af S
(α1)

f
bc,

ϑ
α

ab |αc −ϑ
α

a
c |αb= −pf R

(α12)
a

f
b
c − ϑ

α
af C

(α2)
b
fc − ϑ

α
a

f C
(α1)

c
fb,

ϑ
α

a
b |αc −ϑ

α
a

c |αb= −pf R
(α22)

a
fbc − ϑ

α
a

f S
(α2)

f
bc,

(α = 0, 1, 2) .

(7.7)

We pay attention to an important particular case.
If the (ya)- deflection tensor and the (pa)−deflection tensor have the follow-

ing particular forms




D
α

a
b = 0, d

α

a
b = δa

b , d
α

ab = 0,

4
α

ab = 0, ϑ
α

ab = 0, ϑ
α

a
b = δa

b .
(7.8)

then, the fundamental identities from Theorem 7.4 are very important, especially
for applications.

Proposition 7.1 If the d−deflection tensors are given by (7.8) then, the
following identities hold:





yf R
(α00)

f
a

bc = R
(01)

a
bc, yf R

(α01)
f

a
bc = P

(α1)

a
bc, yf R

(α02)
f

a
b
c = B

(21)

a
b
c,

yf R
(α11)

f
a

bc = S
(α1)

a
bc, yf R

(α12)
f

a
b
c = C

(α2)
b
ac, yf R

(α22)
f

abc = 0,

(α = 0, 1, 2) ,

(7.9)

and respectively





pf R
(α00)

a
f

bc = − R
(02)

abc, pf R
(α01)

a
f

bc = − B
(12)

abc, pf R
(α02)

a
f

b
c = − P

(α2)
ab

c,

pf R
(α11)

a
f

bc = 0, pf R
(α12)

a
f

b
c = − C

(α1)

c
ab, pf R

(α22)
a

fbc = − S
(α2)

a
bc,

(α = 0, 1, 2) .
(7.10)
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5.8 Parallelism of vector fields on the manifold
T ∗2M

Let D be an N−linear connection on cotangent bundle of second order, with the
coefficients DΓ (N) given by (2.3), § 5.2.

Let us consider a smooth parametrized curve γ : I −→ T ∗2M having the
image in a domain of a chart of T ∗2M. Thus, γ has an analytical expression of
the form

xa = xa (t) , ya = ya (t) , pa = pa (t) , t ∈ I. (8.1)

The tangent vector field
·
γ =

dγ

dt
, by means of form (3.11), § 3.4, can be

written as follows
·
γ =

dxa

dt
δa +

δya

dt

·
∂a +

δpa

dt

·
∂a, (8.2)

where
δya

dt
=

dya

dt
+ Na

b
dxa

dt
,

δpa

dt
=

dpa

dt
−Nab

dxa

dt
. (8.3)

Let us denote

D ·
γ
X =

DX

dt
, DX =

DX

dt
dt, ∀X ∈ χ

(
T ∗2M

)
. (8.4)

The quantity DX is the covariant differential of the vector X and
DX

dt
is the covariant differential along the curve along the curve γ.

If X is written in the form

X = XH + XV1 + XW2 = X(0)aδa + X(1)a
·
∂a + X

(2)
a

·
∂a

and we put

D ·
γ

= D ·
γH

+ D ·
γV1

+ D ·
γW2

= DH
·
γ

+ DV1
·
γ

+ DW2
·
γ

=

=
dxa

dt
Dδa +

δya

dt
D ·

∂a

+
δpa

dt
D ·

∂a
,

then, after a straightforward calculus, we have

DX =
(

dX(0)a + X(0)f ω
(0)

a
f

)
δa+

+
(

dX(1)a + X(1)f ω
(1)

a
f

) ·
∂a+

+
(

dX
(2)

a − X
(2)

f ω
(2)

fa

) ·
∂a, (8.5)
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where
ω
(α)

a
b = H

(α0)

a
bcdxc + C

(α1)

a
bcδy

c + C
(α2)

b
acδpc, (α = 0, 1, 2) . (8.6)

The 1-forms ω
(0)

a
b, ω

(1)

a
b, ω

(2)

a
b from (8.6) are called 1−forms of connections

of D.
Putting

ω
(α)

a
b

dt
= H

(α0)

a
bc

dx

dt
+ C

(α1)

a
bc

δyc

dt
+ C

(α2)
b
ac δpc

dt
, (8.6’)

then, the covariant differential along the curve γ is given by

DX

dt
=


DX(0)a

dt
+ X(0)f

ω
(α)

a
f

dt


+

+


dX(1)a

dt
+ X(1)f

ω
(1)

a
f

dt


 +




dX
(2)

a

dt
− X

(2)
f

ω
(2)

f
a

dt


 . (8.7)

From (8.7) results that the parallelism of the vector fields along the curve γ, can
be used. We obtain, directly

Theorem 8.1 The vector field

X = X(0)aδa + X(1)a
·
∂a + X

(2)
a

·
∂a

is parallel along the parametrized curve γ, with respect to D, if and only if its
coordinates X(0)a, X(1)a, X

(2)
a are solutions of the differential equations

dX(β)a

dt
+ X(β)f

ω
(β)

a
f

dt
= 0,

X
(2)

a

dt
− X

(2)
f

ω
(2)

f
a

dt
= 0, (β = 0, 1) . (8.8)

A theorem of existence and uniqueness for the parallel vector fields along a
given parametrized curve on T ∗2M can be formulated in the classical manner.

The vector field X ∈ χ
(
T ∗2M

)
is called absolute parallel with respect to

the N−linear connection DΓ (N) , if DX = 0 for any curve γ. It is equivalent to
the fact that the following system of Pfaff equations is integrable:

dX(β)a + X(β)f ω
(β)

a
f = 0, dX

(2)
a − X

(2)
f ω
(2)

f
a = 0, (β = 0, 1) . (8.9)

The system (8.9) is equivalent to the system
{

X(β)apαb = X(β)a |αb= X(β)a |αb= 0,
X
(2)

apαb = X
(2)

a |αb= X
(2)

a |αb= 0,

(β = 0, 1; α = 0, 1, 2) .

(8.9’)
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Using Ricci identities, the system (8.9’) is integrable if and only if the coor-
dinates X(β)a, X

(2)
a, (β = 0, 1) of the vector field X satisfy the following equations





X(β)f R
(β00)

f
a

bc = 0, X(β)f R
(β01)

f
a

bc = 0, X(β)f R
(β02)

f
a

b
c = 0,

X(β)f R
(β11)

f
a

bc = 0, X(β)f R
(β12)

f
a

b
c = 0, X(β)f R

(β22)
f

abc = 0,

(β = 0, 1) ,

(8.10)

and 



X
(2)

f R
(200)

a
f

bc = 0, X
(2)

f R
(201)

a
f

bc = 0, X
(2)

f R
(202)

a
f

bc = 0,

X
(2)

f R
(211)

a
f

bc = 0, X
(2)

f R
(212)

a
f

b
c = 0, X

(2)
f R
(222)

a
fbc = 0.

(β = 0, 1) .

(8.11)

The manifold T ∗2M is called with absolute parallelism of vectors with
respect to D, if any vector field on T ∗2M is absolute parallel. In this case the
system of equations (8.10) and (8.11) are verified for any vector field X. It follows:

Theorem 8.2 The manifold T ∗2M is with absolute parallelism of vectors,
with respect to the N−linear connection D, if and only if , all d−tensors of
curvature of D, vanish.

The curvature γ is autoparallel with respect to D if D ·
γ

·
γ = 0.

By means of (8.2) and (8.7) we deduce

Dγ̇

Dt
=


d2xa

dt2
+

dxf

dt

ω
(0)

a
f

dt


 δa+

+


 d

dt

δya

dt
+

δyf

dt

ω
(1)

a
f

dt


 ∂̇a +


 d

dt

δpa

dt
− δpa

dt

ω
(2)

f
a

dt


 , (8.12)

which we permit to formulate
Theorem 8.3 A smooth parametrized curve (8.1) is an autoparallel

curve with respect to the N−linear connection D if and only if the functions
xa (t) , ya (t) ,
pa (t) , t ∈ I, verify the following system of differential equations

d2xa

dt2
+

dxf

dt

ω
(0)

a
f

dt
= 0,

d

dt

δya

dt
+

δyf

dt

ω
(1)

a
f

dt
= 0,

d

dt

δpa

dt
− δpf

dt

ω
(2)

f
a

dt
= 0. (8.13)
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Evidently, the theorem of existence and uniqueness for the autoparallel curve
can be easily formulated.

We recall that γ is an horizontal curve if γ̇ = γ̇H . The horizontal curve
are characterized by

xa = xa (t) ,
δya

dt
= 0,

δpa

dt
= 0. (8.14)

We pay attention to the special horizontal curves:
Definition 8.1 The horizontal path of an N−linear connection D, is an

horizontal autoparallel curve with respect to D.
We have
Theorem 8.4 The horizontal paths of an N−linear connection D on T ∗2M

are characterized by the system of differential equations:

d2xa

dt2
+ H

(α0)

a
bc (x, y, p)

dxb

dt

dxc

dt
= 0,

δya

dt
= 0,

δpa

dt
= 0,

(α = 0, 1, 2) .
(8.15)

Proof. The equations (8.14), (8.6’) and (8.13) imply (8.15)
q.e.d.

Now, the following notions are easily explained.
A parametrized curve γ is v1−vertical curve in the point x0 ∈ M if its

tangent vector field γ̇ is belongs to the distributions V1.
A parametrized curve γ is w2−vertical curve in the point x0 ∈ M if its

tangent vector field γ̇ is belongs to the distributions W2.
Of course, a v1−vertical curve γ in the point x0 ∈ M is analytically repre-

sented by the equations of the form

xa = xa
0 , ya = ya (t) , pa = 0, t ∈ I, (8.16)

and a w2−vertical curve γ in the point x0 ∈ M is analytically represented by the
equations of the form

xa = xa
0 , ya = 0, pa = pa (t) , t ∈ I. (8.17)

e define a v1−path in the point x0 ∈ M with respect to D, to be a
v1−vertical curve in the point x0 ∈ M , which is an autoparallel curve with
respect to D. It is clear, what is mean w2−path in the point x0 ∈ M with
respect to D.

By means of (8.16), (8.17) and (8.11) we can immediately prove
Theorem 8.5 1◦.The v1−vertical paths in the point x0 ∈ M are character-

ized by the system of differentiable equations

xa = xa
0 ,

d2ya

dt2
+ C

(α1)

a
bc (x0, y, 0)

dyb

dt

dyc

dt
= 0, pa = 0,

(α = 0, 1, 2)
(8.18)



118 CHAPTER 5. LINEAR CONNECTIONS ON THE MANIFOLD T ∗2M

2◦.The w2−vertical paths in the point x0 ∈ M are char-
acterized by the system of differentiable equations

xa = xa
0 , ya = 0,

d2pa

dt2
− C

(α2)
a

bc (x0, 0, pa)
dpb

dt

dpc

dt
= 0,

(α = 0, 1, 2)
(8.19)

Remark 8.1 In Theorem 8.5, we assume that there exists the coefficients
C

(α1)
(x0, y, 0) and C

(α2)
(x0, 0, p) , (α = 0, 1, 2).

Remark 8.2 By Theorem 4.2, and formulae (4.3), § 5.4, we can obtain the
results of this section, with respect to the MN−linear connection MDΓ (N) =(

Ha
bc, C

a
bc, Ca

bc

)
on T ∗2M . These coincide with the results of R. Miron and

his collaborators [86], [97].
Remark 8.3 In the case of Berwald connection (2.5), § 5.2, the characteri-

zations for v1−paths and w2−paths appear in a very simple form, because C
(α1)

a
bc

= 0 and C
(α2)

a
bc = 0.

5.9 Structure equations of an N−linear connec-
tion

For an N−linear connection D, with the coefficients DΓ (N) given by the formu-
laes (2.3), in the adapted basis

(
δa, ∂̇a.∂̇a

)
on T ∗2M we can prove

Lemma 9.1 1◦. Each of the geometrical object fields

d (dxa)− dxb ∧ ω
(α)

a
b, d (δya)− δyb ∧ ω

(α)

a
b,

(α = 0, 1, 2) , is a d−vector field, and each of geometrical object fields

d (dpa) + δpb ∧ ω
(α)

b
a,

(α = 0, 1, 2) , is a d−covector field.
2 ◦. The geometrical object fields

d ω
(α)

a
b − ω

(α)

c
b ∧ ω

(α)

a
c, (α = 0, 1, 2) ,

are d−tensor fields,with respect to indices a and b.
Using the previous Lemma we can prove, by a straightforward calculus, a

fundamental result in the geometry of 2−cotangent bundle.
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Theorem 9.1 For any N−linear connection DΓ (N) the following structure
equations hold good:

d (dxa)− dxb ∧ ω
(α)

a
b = −

0

Ω
(α)

a,

d (δya)− δyb ∧ ω
(α)

a
b = −

1

Ω
(α)

a,

d (δpa) + δpb ∧ ω
(α)

b
a = −Ω

(α)
a,

(9.1)

and
d ω
(α)

a
b − ω

(α)

a
c ∧ ω

(α)

c
b = −Ω

(α)

a
b, (9.2)

where
0

Ω
(α)

a,
1

Ω
(α)

a, and Ω
(α)

, (α = 0, 1, 2) are the 2−forms of torsion

0

Ω
(α)

a =
1
2

T
(α0)

a
bcdxb ∧ dxc+

+ C
(α1)

a
bcdxb ∧ δyc + C

(α2)
b
acdxb ∧ δpc,

1

Ω
(α)

a =
1
2

R
(01)

a
bcdxb ∧ dxc+

+ P
(α1)

a
bcdxb ∧ δyc + B

(21)

a
b
cdxb ∧ δpc+

+
1
2

S
(α1)

a
bcδy

b ∧ δyc + C
(α2)

b
acδyb ∧ δpc,

Ω
(α)

a =
1
2

R
(02)

abcdxb ∧ dxc+

+ B
(12)

abcdxb ∧ δyc + P
(21)

ab
cdxb ∧ δpc+

+ C
(α1)

c
abδy

b ∧ δpc +
1
2

S
(α2)

a
bcδpb ∧ δpc,

(9.3)

and where Ω
(α)

a
b, (α = 0, 1, 2) are 2−forms of curvature

Ω
(α)

a
b =

1
2

R
(α00)

b
a

cddxc ∧ dxd + R
(α01)

b
a

cddxc ∧ δyd + R
(α02)

b
a

c
ddxc ∧ δpa+

+
1
2

R
(α11)

b
a

cdδy
a ∧ δyd + R

(α12)
b
a

c
dδyb ∧ δpb +

1
2

R
(α22)

b
acdδpc ∧ δpa,

(α = 0, 1, 2) (9.4)

Remark 9.1 The theorem 9.1 is extremely important in a theory of
submanifold embedding in the total space T ∗2M of the 2−cotangent bundle(
T ∗2M,π∗2,M

)
.

Remark 9.2 For any MN−linear connection with coefficients
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MΓ (N) =
(

Ha
bc, C

a
bc, Ca

bc,

)
we have

0

Ω
(0)

a =
0

Ω
(1)

a =
0

Ω
(2)

a =:
0

Ωa,

1

Ω
(0)

a =
1

Ω
(1)

a =
1

Ω
(2)

a =:
1

Ωa,

Ω
(0)

a = Ω
(1)

a = Ω
(2)

a =: Ωa,

Ω
(0)

a
b = Ω

(1)

a
b = Ω

(2)

a
b =: Ωa

b.

(9.5)

and then, by Theorem 4.2, formulae (4.3), § 5.4, we obtain the structure equations
of an N−linear connection of Miron type ([97], pg. 282, formulae (8.6) and (8.7)).



Chapter 6

Metric structures on the
manifold T ∗2M

6.1 Metric N−linear connections on T ∗2M

Definition 1.1 A metric structure on the manifold T ∗2M is a symmetric
covariant tensor field G of the type (0.2) , which is non degenerate at each point
u = (x, y, p) ∈ T ∗2M and of constant signature on T ∗2M. If G is positive definite
we say it G defines a Riemannian structure on T ∗2M.

As in the Section 4.6, where was used a Riemannian structure on T ∗2M, we
can prove that there is an uniquely nonlinear connection such that the distribu-
tion N will be orthogonal to distribution V = V1 ⊕ W2, namely orthogonal on
both V1 and W2 :

G
(
XH , Y V1

)
= 0, G

(
XH , Y W2

)
= 0. (1.1)

By using adapted basis
(
δa, ∂̇a, ∂̇a

)
, we have

G
(
δa, ∂̇a

)
= 0, G

(
δa, ∂̇a

)
= 0. (1.1’)

The system of equations (1.1’) is equivalently with the following system of equa-
tions for the determination of coefficients Na

b and Nab



g
(11)

cbN
c
a − g

(12)
b
cNac = g

(01)
ab

g
(21)

c
bN c

a − g
(22)

cbNac = g
(02)

a
b,

(1.2)

where, matrix ∥∥∥∥∥∥∥

g
(11)

cb g
(12)

b
c

g
(21)

c
b g

(22)

cb

∥∥∥∥∥∥∥
(1.3)

121
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is nonsingular.
We denoted

g
(00)

ab = G (∂a, ∂b) , g
(01)

ab = G
(
∂a, ∂̇a

)
, g
(02)

a
b = G

(
∂a, ∂̇b

)
,

g
(12)

a
b = G

(
∂̇a, ∂̇b

)
, etc.

(1.4)

Also, we suppose that in V the distributions V1 and W2 are orthogonal with
respect to G, namely

G
(
XV1 , Y W2

)
= 0 (1.5)

We have
G

(
∂̇a, ∂̇b

)
= 0 ⇐⇒ g

(12)
a

b = 0 (1.6)

relation which together with (1.2) we permit to formulate
Theorem 1.1 A metric structure G on T ∗2M determine an unique nonlinear

connection N, if the distributions horizontal N and verticals V1 and W2 are
orthogonal in pairs. The coefficients Na

b and Nab of N are given by

Na
b = g

(11)

ac g
(01)

bc, Nab = g
(22)

bc g
(02)

a
c (1.7)

where

rank ‖ g
(11)

ab ‖= rank ‖ g
(22)

ab ‖= n, ‖ g
(11)

ab ‖=‖ g
(11)

ab ‖−1, ‖ g
(22)

ab ‖=‖ g
(22)

ab ‖−1 .

In this chapter we shall use only this nonlinear connection.
Let us consider a metric structureG on T ∗2M and the distributions N, V1,W2

are orthogonal in pairs with respect to the metric structure G. By (1.1) and (1.5)
we have the following decomposition of G :

G (X,Y ) = G
(
XH , Y H

)
+G

(
XV1 , Y V1

)
+G

(
XW2 , Y W2

)
, (1.8)

∀X, Y ∈ χ
(
T ∗2M

)

With the other words, G decomposes in a sum of three d−tensor fields:

(0) GH of type (0, 2) defined by GH (X, Y ) = G
(
XH , Y H

)
,

(1) GV1of type (0, 2) defined by GV1 (X,Y ) = G
(
XV1 , Y V1

)
,

(2) GW2of type (0, 2) defined by GW2 (X, Y ) = G
(
XW2 , Y W2

)
.

Locally, these d−tensor fields can be written as

GH = g
(0)

abdxa ⊗ dxb,

GV1 = g
(1)

abδy
a ⊗ δyb,

GW2 = g
(2)

abδpa ⊗ δpb,

(1.9)
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where
g
(0)

ab = G (δa, δb) , g
(1)

ab = G
(
∂̇a, ∂̇b

)
, g

(2)

ab = G
(
∂̇a, ∂̇b

)
, (1.9’)

rank ‖ g
(α)

ab ‖= n, (α = 0, 1, 2) , ‖ g
(2)

ab ‖=‖ g
(2)

ab ‖−1 . (1.10)

Thus, the decomposition (1.8) looks locally as following:

G = g
(0)

abdxa ⊗ dxb + g
(1)

abδy
a ⊗ δyb + g

(2)

abδpa ⊗ δpb. (1.11)

Definition 1.2 An N−linear connection D on T ∗2M endowed with a metric
structure G is said to be a metric N−linear connection if DXG = 0 for every
X ∈ T ∗2M.

Proposition 1.1 If a linear connection D on T ∗2M has the proprieties:
(a) D preserves by parallelism the vertical distributions V1 and W2,
(b) DXG = 0, ∀X ∈ T ∗2M , then it is a metric N−linear connection.

Proof. It is enough to prove that D preserves by parallelism the horizontal
distribution u −→ N (u) . Using (a) , (1.1) and (1.5) in the equalities

0 = (DXG)
(
Y H , ZV1

)
= XG

(
Y H , ZV1

)−G (
DXY H , ZV1

)−G (
Y H , DXZV1

)
,

0 = (DXG)
(
Y H , ZW2

)
= XG

(
Y H , ZW2

)−G (
DXY H , ZW2

)−G (
Y H , DXZW2

)
,

one gets

G
(
DXY H , ZV1

)
= 0, G

(
DXY H , ZW2

)
= 0, ∀Z ∈ χ

(
T ∗2M

)
.

Thus, by (1.1) and (1.5) we have that DXY H is an horizontal vector field
q.e.d.

Proposition 1.2 An N−linear connection D on T ∗2M endowed with a
metric structure G is a metric N−linear connection if and only if

D
0

H
XGH = 0, D

0

V1
XGH = 0, D

0

W2
X GH = 0,

D
1

H
XGV1 = 0, D

1

V1
XGV1 = 0, D

1

W2
X GV1 = 0,

D
2

H
XGW2 = 0, D

2

V1
XGW2 = 0, D

2

W2
X GW2 = 0.

(1.12)

Proof. The equation DXG = 0 implies

DH
XG = 0, D

V1
XG = 0, D

W2
X G = 0.

By (3.3), Ch. 4 and (1.8) we have

0 =
(
DH

XG
)

(Y, Z) =
(
D
0

H
XGH

)
(Y, Z) +

(
D
1

H
XGV1

)
(Y, Z)

+
(
D
2

H
XGW2

)
(Y,Z) ,

((∗))



124 CHAPTER 6. METRIC STRUCTURES ON THE MANIFOLD T ∗2M

0 =
(
D

V1
XG

)
(Y, Z) =

(
D
0

V1
XGH

)
(Y,Z) +

(
D
1

V1
XGV1

)
(Y, Z) +

+
(
D
2

V1
XGW2

)
(Y,Z) ,

((∗∗))

0 =
(
D

W2
X G

)
(Y,Z) =

(
D
0

W2
X GH

)
(Y, Z) +

(
D
1

W2
X GV1

)
(Y,Z)+

+
(
D
2

W2
X GW2

)
(Y,Z) .

((∗∗∗))

Taking in (*), Y = Y H , Z = ZH , one gets D
0

H
XGH = 0, taking Y = Y V1 ,

Z = ZV1 , one gets D
1

H
XGV1 = 0 and taking Y = Y W2 , Z = ZW2 , we obtain

D
2

H
XGW2 = 0.Now, putting in (**), Y = Y H , Z = ZH one obtains D

0

V1
XGH = 0,

putting Y = Y V1 , Z = ZV1 one gets D
1

V1
XGV1 = 0 and if Y = Y W2 , Z = ZW2 ,

we obtain D
2

V1
XGW2 = 0. Analogous, putting in (***), Y = Y H , Z = ZH and

results D
2

W2
X GW2 = 0, putting Y = Y V1 , Z = ZV1 one gets D

1

W2
X GV1 = 0 and then

Y = Y W2 , Z = ZW2 , we obtain D
2

W2
X GW2 = 0. Conversely using (1.12) in (*) one

results DH
XG =0, using (1.12) in (**) one results D

V1
XG =0 and then by (***) one

deduce D
W2
X G =0.From these lasts three equations it follows DXG = 0.

q.e.d.
We shall now discuss the existence of metric N−linear connections on T ∗2M.
First, we prove

Theorem 1.2 If
∗
D is a fixed N−linear connection on T ∗2M, then the

N−linear connection given by the following formulae is metric with respect to G:

2GH
(
D
0

H
XY, Z

)
= XH

(
GH

)
(Y, Z) + Y H

(
GH

)
(Z, X)− ZH

(
GH

)
(X,Y )−

−GH
(
X,

[
Y H , ZH

])
+GH

(
Y,

[
ZH , XH

])
+GH

(
Z,

[
XH , Y H

])
,

D
1

H
XY =

∗
D
1

H
XY + A

(10)

(
Y V1 , XH

)
, such that

2
(
GV1

)(
A

(10)

(
Y V1 , XH

)
, Z

)
=

( ∗
D
1

H
XGV1

) (
Y V1 , ZV1

)
,

D
2

H
XY =

∗
D
2

H
XY + A

(20)

(
Y W2 , XH

)
, such that

2
(
GW2

)(
A

(20)

(
Y W2 , XH

)
, Z

)
=

( ∗
D
2

H
XGW2

) (
Y W2 , ZW2

)
,

D
0

V1
X Y =

∗
D
0

V1
X Y + A

(01)

(
Y H , XV1

)
, such that

2
(
GH

) (
A

(01)

(
Y H , XV1

)
, Z

)
=

( ∗
D
0

V1
XGH

) (
Y H , ZH

)
,

2GV1

(
D
1

V1
X Y,Z

)
= XV1 (GV1 ) (Y, Z) + Y V1 (GV1 ) (Z,X)− ZV1 (GV1 ) (X,Y )−

−GV1 (X, [Y V1 , ZV1 ]) +GV1 (Y, [ZV1 , XV1 ]) +GV1 (Z, [XV1 , Y V1 ]) ,
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D
2

V1
X Y =

∗
D
2

V1
X Y + A

(21)

(
Y W2 , XV1

)
, such that

2
(
GW2

)(
A

(21)

(
Y W2 , XV1

)
, Z

)
=

( ∗
D
2

V1
XGW2

) (
Y W2 , ZW2

)
,

D
0

W2
X Y =

∗
D
0

W2
X Y + A

(02)

(
Y H , XW2

)
, such that

2
(
GH

)(
A

(02)

(
Y H , XW2

)
, Z

)
=

( ∗
D
0

W2
X GH

) (
Y H , ZH

)
,

D
0

W2
X Y =

∗
D
1

W2
X Y + A

(12)

(
Y V1 , XW2

)
, such that

2
(
GV1

)(
A

(12)

(
Y V1 , XW2

)
, Z

)
=

( ∗
D
1

W2
X GV1

) (
Y V1 , ZV1

)
,

2GW2

(
D
2

W2
X Y,Z

)
= XW2 (GW2 ) (Y,Z) + Y W2 (GW2 ) (Z, X)− ZW2 (GW2 ) (X,Y )−

−GW2 (X, [Y W2 , ZW2 ]) +GW2 (Y, [ZW2 , XW2 ]) +GW2 (Z, [XW2 , Y W2 ]) .
(1.13)

Proof. It is obvious that the formulae (1.13) uniquely determine on
DH

X , D
V1
X and D

W2
X , hence they uniquely determine an N−linear connection on

T ∗2M. By a direct computation one checks DH
X , D

V1
X and D

W2
X verify (1.12).

Thus D is a metric N−linear connection
q.e.d.

We note that h (hh)−, v1 (v1v1)− and w2 (w2w2)− tensors of torsion of D
vanish.

Next we have:
Theorem 1.3 Let G be a metric structure on T ∗2M . There exist metric

N−linear connections on T ∗2M depending only on G. One of them is given by
(1.13) in which

∗
D
1

H
XY =

[
XH , Y V1

]V1
,
∗
D
2

H
XY =

[
XH , Y W2

]W2
,

∗
D
0

V1
X Y =

[
XV1 , Y H

]H
,
∗
D
2

V1
X Y =

[
XV1 , Y W2

]H
,

∗
D
0

W2
X Y =

[
XW2 , Y H

]H
,
∗
D
1

W2
X Y =

[
XW2 , Y V1

]V1
,

(1.14)

Proof. Ii is evident that D
0

H
X = DXH Y H , D

1

V1
X = DXV1 Y V1 and D

2

W2
X =

DXW2 Y W2 given by the first, the fifth and the ninth equations from (1.13) depend

on G only. If we chose the N−linear connection
∗
DX such that

v1

∗
T

(
XH , Y V1

)
= 0, w2

∗
T

(
XH , Y W2

)
= 0, v1

∗
T

(
Y V1 , XV1

)
=

[
XV1 , Y V1

]V1 ,

w2

∗
T

(
Y W2 , XV1

)
=

[
XV1 , Y W2

]W2
, h

∗
T

(
XH , Y V1

)
= 0, h

∗
T

(
XH , Y W2

)
= 0,

then the equations (1.14) hold by the second, the sixth, the seventh and the eight
equations from (1.13), D

1

H
XY, D

2

H
XY, D

0

V1
X Y, D

2

V1
X Y and D

0

W2
X Y, D

1

W
XY, respectively,

depend by G only. q.e.d.
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Now, we shall express a metric N−linear connection and related results in
terms of local coordinate system.

As we have seen, a metric structure G uniquely determines a nonlinear con-
nection N and if this metric satisfy (1.7), then G takes the local form (1.11),
where the dual basis (dxa, δya, δpa) was used.

Translating the Proposition 1.2 in local coordinate, we obtain
Proposition 1.3 An N−linear connection on T ∗2M is a metric N−linear

connection if and only if

g
(β)

abpαc = 0, g
(β)

ab |αc= 0, g
(2)

ab |αc= 0, (1.15)

(β = 0, 1;α = 0, 1, 2) .

Remark 1.1 The conditions (1.15) are, respectively, equivalent with the
conditions

g
(β)

ab
pαc = 0, g

(β)

ab |αc= 0, g
(2)

ab |αc= 0, (1.15’)

where ‖ g
(α)

ab ‖=‖ g
(α)

ab ‖−1, (α = 0, 1, 2) .

If we proceed similarly with Theorem 1.2 we deduce
Theorem 1.4 If the manifold T ∗2M is endowed with the metric structure

G given by (1.11), then there exists on T ∗2M a metric N−linear connection ,
depending only on G, whose h (hh)−, v1 (v1v1)− and w2 (w2w2)− tensors of
torsion vanish. Its local coefficients

DΓ (N) =
(

H
(00)

a
bc, H

(10)

a
bc, H

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)
a

bc, C
(12)

a
bc, C

(22)
a

bc

)
,

are as follows:

c

H
(00)

a
bc =

1
2
gad

(
δc g

(0)
bd + δb g

(0)
dc − δd g

(0)
bc

)
,

c

H
(10)

a
bc = B

(11)

a
cb +

1
2

g
(1)

ad

(
δc g

(1)
bd − B

(11)

f
cb g

(1)
fd − B

(11)

f
cd g

(1)
bf

)
,

c

H
(20)

a
bc = − B

(22)

a
bc +

1
2

g
(2)

ad

(
δc g

(2)
bd + B

(22)

f
bc g

(2)
fd + B

(22)

f
dc g

(2)
bf

)
,

c

C
(01)

a
bc =

1
2

g
(0)

ad∂̇c g
(0)

bd,

c

C
(11)

a
bc =

1
2

g
(1)

ad

(
∂̇c g

(1)
bd + ∂̇b g

(1)
dc − ∂̇d g

(1)
bc

)
,

c

C
(21)

a
bc =

1
2

g
(2)

ad∂̇c g
(2)

bd,

c

C
(02)

a
bc = −1

2
g
(0)

ad∂̇c g
(0)

bd,

(1.16)
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c

C
(12)

a
bc = −1

2
g
(1)

ad∂̇
c g
(1)

bd,

c

C
(22)

a
bc = −1

2
g
(2)

ad

(
∂̇c g

(2)

bd + ∂̇b g
(2)

dc − ∂̇d g
(2)

bc

)
.

Definition 1.3 The metric N−linear connection given by (1.16) will be
called the canonical N−linear connection associated with G.

Let

D
∗
Γ (N) =

( ∗
H
(00)

a
bc,

∗
H
(10)

a
bc,

∗
H
(20)

a
bc,

∗
C

(01)

a
bc,

∗
C

(11)

a
bc,

∗
C

(21)

a
bc,

∗
C

(02)
a

bc,
∗
C

(12)
a

bc,
∗
C

(22)
a

bc

)

be an N -linear connection on T ∗2M which is endowed with a metric structureG.

If we denote by
∗
pαc,

∗
|αc,

∗
| αc the hα−,v1α− and w2α− covariant derivations

with respect to D
∗
Γ (N) , then by a direct calculation one checks that the N−linear

connection whose local coefficients are given by

H
(α0)

a
bc =

∗
H

(α0)

a
bc +

1
2

g
(α)

ad g
(α)db

∗
pαc

,

C
(α1)

a
bc =

∗
C

(α1)

a
bc +

1
2

g
(α)

ad g
(α)

db

∗
|αc,

C
(α2)

a
bc =

∗
C

(α2)
a

bc − 1
2

g
(α)

ad g
(α)

db
∗
| αc.

(1.17)

is a metrical N−linear connection .
This method of metrisation of an N−linear connection is called the

Kawaguchi metrisation process, [7], [86].
Let us associate to G the following operators of Obata type:

α

O
1

cd
ab =

1
2

(
δc
aδd

b − g
(α)

ab g
(α)

cd

)
,

α

O
2

cd
ab =

1
2

(
δc
aδd

b + g
(α)

ab g
(α)

cd

)
, (1.18)

(α = 0, 1, 2) .

Theorem 1.5 The set of all metric N−linear connections with respect to G
on the manifold T ∗2M is given by (α = 0, 1, 2):

H
(α0)

a
bc =

c

H
(α0)

a
bc +

α

O
1

fa
bd

α

Xd
fc,

C
(α1)

a
bc =

c

C
(α1)

a
bc +

α

O
1

fa
bd

α

Y d
fc,

C
(α2)

a
bc =

c

C
(α2)

a
bc +

α

O
1

bd
fa

α

Zd
fc,

(1.19)

where
(

c

H
(α0)

a
bc,

c

C
(α1)

a
bc,

c

C
(α2)

a
bc

)
is the canonical N−linear connection (1.16),

α

Xa
bc,

α

Y a
bc are arbitrary d−tensor fields of type (1, 2) and

α

Za
bc are arbitrary

d−tensor fields of type (2, 1).



128 CHAPTER 6. METRIC STRUCTURES ON THE MANIFOLD T ∗2M

For demonstration we can see V. Cruceanu, R. Miron [44], V. Oproiu
[110], [111].

6.2 Metric N−linear connections with the tor-
sion prescribed

In the previous paragraph we have proved the existence of metric N−linear con-
nection whose h (hh)−, v1 (v1v1)− and w2 (w2w2)− tensors of torsion vanish.
But there are certain problems, especially related to the theory of relativity, in
which metrical N−linear connections with h (hh)−, v1 (v1v1)− and w2 (w2w2)−
tensors of torsion prescribed are needed.

In the following we show that such metric N−linear connections do exists.
Definition 2.1 An N−linear connection D on T ∗2M is called an h0v11w22−

metric with respect to a metric structure G if

D
0

H
XGH = 0, D

1

V1
XGV1 = 0, D

2

W2
X GW2 = 0, ∀X ∈ χ

(
T ∗2M

)
. (2.1)

An easy computation in local coordinates leads to

Proposition 2.1 An N−linear connection DΓ (N) =
(

H
(α0)

a
bc, C

(α1)

a
bc, C

(α2)
a

bc

)
,

(α = 0, 1, 2) is h0v11, w22− metric with respect to G = g
(0)

abdxa⊗ dxb + g
(1)

abδy
a⊗

δyb + g
(2)

abδpa ⊗ δpa if and only if

g
(0)

abp0c = 0, g
(1)

ab |1c= 0, g
(2)

ab |2c= 0. (2.2)

Let us consider an N−linear connection of the Berwald type (formula (2.6),
§5.2)

B
c

Γ (N) =
(

c

H
(α0)

a
bc, B

(11)

a
cb,− B

(22)

a
cb, 0,

c

C
(11)

a
bc, 0, 0, 0,

c

C
(22)

a
bc

)
, (2.3)

where
c

H
(00)

a
bc =

1
2

g
(0)

ad

(
δb g

(0)
dc + δc g

(0)
bd − δd g

(0)
bc

)
,

c

C
(11)

a
bc =

1
2

g
(1)

ad

(
∂̇b g

(1)
dc + ∂̇c g

(1)
bd − ∂̇d g

(1)
bc

)
,

c

C
(22)

a
bc = −1

2
g
(2)

ad

(
∂̇b g

(2)

dc + ∂̇c g
(1)

bd − ∂̇d g
(2)

bc

)
.

(2.4)

Taking into account (1.15), (1.16), §6.1, the formulae (5.5), (6.5) and (6.6),
§5.5 and §5.6, we have
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Proposition 2.2 1◦.The N−linear connection of the Berwald type (2.3) is
h0v11w22−metric. It depends on the metric G, only .

2◦.The d−tensors of torsions of B
c

Γ (N) are given by

0

T
(00)

a
bc = 0, R

(01)

a
bc, R

(02)
abc,

0

P
(01)

a
bc = 0,

1

P
(01)

a
bc = 0, B

(12)
abc,

0

P
(02)

a
b
c = 0, B

(21)

a
b
c,

2

P
(02)

ab
c = 0,

1

S
(11)

a
bc = 0,

1

Q
(12)

a
b
c = 0,

2

Q
(12)

ab
c = 0,

2

S
(22)

a
bc = 0,

(2.5)

3◦. The d−tensors of curvature of B
c

Γ (N) has the following expressions:




R
(000)

b
a

cd = δd

c

H
(00)

a
bc − δc

c

H
(00)

a
bd +

c

H
(00)

f
bc

c

H
(00)

a
fd −

c

H
(00)

f
bd H

(00)

a
fc,

R
(100)

b
a

cd = δd B
(11)

a
cb − δc B

(11)

a
db + B

(11)

f
cb B

(11)

a
df − B

(11)

f
db B

(11)

a
cf+

+
c

C
(11)

a
bf R

(01)

f
cd,

R
(200)

b
a

cd = −δd B
(22)

a
bc + δc B

(22)

a
bd + B

(22)

f
bc B

(22)

a
fd − B

(22)

f
bd B

(22)

a
fc+

+
c

C
(22)

b
af R

(02)
fcd,

((2.6)1)





R
(001)

b
a

cd = ∂̇d

c

H
(00)

a
bc, R

(201)
b
a

cd = ∂̇d

c

H
(20)

a
bc +

c

C
(22)

b
af B

(12)
fcd,

R
(101)

b
a

cd = ∂̇d

c

H
(10)

a
bc −

c

C
(11)

a
bdp1c +

c

C
(11)

a
bf

(
B

(11)

f
cd −

c

C
(10)

f
dc

) ((2.6)2)





R
(002)

b
a

c
d = ∂̇d

c

H
(00)

a
bc, R

(102)
b
a

c
d = ∂̇d

c

H
(10)

a
bc +

c

C
(11)

a
bf B

(21)

f
c
d,

R
(202)

b
a

c
d = ∂̇d

c

H
(20)

a
bc −

c

C
(22)

b
adp2c +

c

C
(22)

b
af

(
B

(22)

d
fc +

c

H
(20)

d
fc

)
,

((2.6)3)





R
(011)

b
a

cd = 0, R
(211)

b
a

cd = 0,

R
(111)

b
a

cd = ∂̇d C
(11)

a
bc − ∂̇c C

(11)

a
bd + C

(11)

f
bc C

(11)

a
fd − C

(11)

f
bd C

(11)

a
fc

((2.6)4)

R
(012)

b
a

c
d = 0, R

(112)
b
a

c
d = ∂̇d

c

C
(11)

a
bc, R

(212)
b
a

c
d = −∂̇c

c

C
(22)

b
ad, ((2.6)5)





R
(022)

b
acd = 0, R

(122)
b
acd = 0,

R
(222)

b
acd = ∂̇d

c

C
(22)

b
ac − ∂̇c

c

C
(22)

b
ad +

c

C
(22)

b
fc C

(22)
f

ad − C
(22)

b
fd C

(22)
f

ac.
((2.6)6)
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The N−linear connection (2.3) will be called the canonical Berwald type
connection on T ∗2M

Now we shall prove:
Theorem 2.1 There exists an unique h0v11w22−metric N−linear connec-

tion of the Berwald type with h (hh)−, v1 (v1v1)− and w2 (w2w2)−tensors of
torsion prescribed.

Proof. Let us fix the Berwald connection B
c

Γ (N) introduced in the above.
Then, by the general theory of connections, every other N−linear connection of
the Berwald type is of the form

(
H
(00)

a
bc + τ

(0)

a
bc, B

(11)

a
cb,− B

(22)

a
bc, 0, C

(11)

a
bc + τ

(1)

a
bc, 0, 0, 0, C

(22)
a

bc + τ
(2)

a
bc

)
,

where τ
(0)

a
bc, τ

(1)

a
bc and τ

(2)
a

bc are arbitrary d−tensor fields. Let T
(00)

a
bc, S

(11)

a
bc

and S
(22)

a
bc be three d−tensor fields which are skew-symmetric,first and second

with respect to the covariant indices the third with respect to the contravari-
ant indices. We shall determine the d−tensor fields τ

(0)

a
bc, τ

(1)

a
bc and τ

(2)
a

bc such

that the Berwald type connection of general form given in the above to be
h0v11w22−metric and to have T

(00)

a
bc, S

(11)

a
bc and S

(22)
a

bc as h (hh)−, v1 (v1v1)−
and w2 (w2w2)−tensors of torsion.

These conditions show us that τ
(0)

a
bc, τ

(1)

a
bc and τ

(2)
a

bc must satisfies the fol-

lowing systems of equations:

τ
(0)

a
bc − τ

(0)

a
cb = T

(00)

a
bc, τ

(0)

d
bc g

(0)
ad + τ

(0)

d
ac g

(0)
db = 0, (2.7)

τ
(1)

a
bc − τ

(1)

a
cb = S

(11)

a
bc, τ

(1)

d
bc g

(1)
ad + τ

(1)

d
ac g

(1)
db = 0, (2.8)

τ
(2)

a
bc − τ

(2)
a

cb = −S
(2)

a
bc, τ

(2)
d

bc g
(2)

ad + τ
(2)

d
ac g

(2)

db = 0. (2.9)

If in the second equation (2.7) (resp., the second equation (2.8)) we cyclicly
permute the indices a, b, c, then we add by the Christoffel sum method (we sum
the first equation with the third equation and we subtract the second equation)
we obtain

τ
(0)

a
bc =

1
2

g
(0)

ad

(
g
(0)

df T
(00)

f
bc − g

(0)
bf T

(00)

f
dc + g

(0)
fc T

(00)

f
bd

)
, (2.7’)

τ
(1)

a
bc =

1
2

g
(1)

ad

(
g
(1)

df S
(11)

f
bc − g

(1)
bf S

(11)

f
dc + g

(1)
fc S

(11)

f
bd

)
, (2.8’)

If we similarly proceed with the equation (2.9) we deduce
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τ
(2)

a
bc = −1

2
g
(2)

ad

(
g
(2)

df S
(22)

f
bc − g

(2)

bf S
(22)

f
dc + g

(2)

fc S
(22)

f
bd

)
. (2.9’)

Consequently τ
(0)

a
bc, τ

(1)

a
bc and τ

(2)
a

bc are uniquely determined.

q.e.d.
Now, from (1.17) we see directly that the Kawaguchi metrisation process

leaves unchanged the h (hh)−, v1 (v1v1)− and w2 (w2w2)−tensors of torsion.
Thus we have:

Theorem 2.2 Let T ∗2M be endowed with a metric structure G. There
exists on T ∗2M a metric N−linear connection completely determined by G whose
h (hh)−, v1 (v1v1)− and w2 (w2w2)−tensors of torsion are prescribed. It is
obtained from the h0v11w22 −metric Berwald type connection given by Theorem
2.1 via the Kawaguchi metrisation process and has the following local coefficients:





H
(00)

a
bc =

1
2

g
(0)

ad

(
δc g

(0)
bd + δb g

(0)
dc − δd g

(0)
bc

)
+ τ

(0)

a
bc,

H
(10)

a
bc =

c

H
(10)

a
bc, H

(20)

a
bc =

c

H
(20)

a
bc,

((2.10)0)





C
(01)

a
bc =

c

C
(01)

a
bc, C

(21)

a
bc =

c

C
(21)

a
bc,

C
(11)

a
bc =

1
2

g
(1)

ad

(
∂̇c g

(1)
bd + ∂̇b g

(1)
dc − ∂̇d g

(1)
bc

)
+ τ

(1)

a
bc,

((2.10)1)





C
(02)

a
bc =

c

C
(02)

a
bc, C

(12)
a

bc =
c

C
(21)

a
bc,

C
(22)

a
bc = −1

2
g
(2)

ad

(
∂̇c g

(2)

bd + ∂̇b g
(2)

dc − ∂̇d g
(2)

bc

)
+ τ

(2)
a

bc,
((2.10)2)

where τ
(0)

a
bc, τ

(1)

a
bc and τ

(2)
a

bc are given by (2.7’), (2.8’) and (2.9’), respectively.

6.3 The Levi-Civita connection on T ∗2M

It is well known there exists an unique linear connection on T ∗2M metric with
respect to G and symmetric, it has no tensor of torsion, (torsion is vanish). This
is called the Levi-Civita connection of G. Note it is not an N−linear connection
of G on T ∗2M.

We shall give the local coefficients of the Levi-Civita connection G in the
adapted basis

(
δa, ∂̇a, ∂̇a

)
.

These coefficients will be expressed by using the local coefficients of the

canonical metrical N−linear connection D
c

Γ (N) given by form (1.16).
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If we denote by 5 the Levi-Civita connection of G, then by a well known
fact about the difference of two linear connections, we can write

5X =
c

DX + τX , ∀X ∈ χ
(
T ∗2M

)
, (3.1)

where τX is a tensor fields of type (1, 1) on T ∗2M. Taking into account that the

linear connection 5 and
c

D are metric with respect to G and 5 is without torsion
the following system of equations for the determining of τX is obtained:

G (τ (Y, X) , Z) + G (Y, τ (Z, X)) = 0,

τ (X, Y )− τ (Y, X) =
c

T (X, Y ) ,
∀X, Y ∈ χ

(
T ∗2M

) (3.2)

where we have set τX (Y ) = τ (Y,X) and
c

T is the torsion of
c

D.

In the adapted basis
(
δa, ∂̇a, ∂̇a

)
the Levi-Civita connection looks as follows





5δcδb = H
(000)

a
bcδa + H

(001)

a
bc∂̇a + H

(002)
abc∂̇

a,

5δc ∂̇b = H
(100)

a
bcδa + H

(101)

a
bc∂̇a + H

(102)
abc∂̇

a,

5δc ∂̇
b = H

(200)

ab
cδa + H

(201)

ab
c∂̇a + H

(202)
a

b
c∂̇

a,

((3.3)1)





5∂̇c
δb = M

(010)

a
bcδa + M

(011)

a
bc∂̇a + M

(012)
abc∂̇

a,

5∂̇c
∂̇b = M

(110)

a
bcδa + M

(111)

a
bc∂̇a + M

(112)
abc∂̇

a,

5∂̇c
∂̇b = M

(210)

ab
cδa + M

(211)

ab
c∂̇a + M

(212)
ac

b∂̇a,

((3.3)2)





5∂̇cδb = K
(020)

a
b
cδa + K

(021)

a
b
c∂̇a + K

(022)
ab

c∂̇a,

5∂̇c ∂̇b = K
(120)

a
b
cδa + K

(121)

a
b
c∂̇a + K

(122)
ab

c∂̇a,

5∂̇c ∂̇b = K
(220)

abcδa + K
(221)

abc∂̇a + K
(222)

a
bc∂̇a.

((3.3)3)

Writing the system of equations (3.2) in the adapted basis
(
δa, ∂̇a, ∂̇a

)
we

obtain a system of equations which allows us to determine the local components
of 5X . Inserting these local components in the local form of the equation (3.1)
one obtains:

Theorem 3.1 The local coefficients of the Levi-Civita connection 5 of the
metric structure G on the manifold T ∗2M one given as follows formulae:




H
(000)

a
bc =

c

H
(00)

a
bc, H

(001)

a
bc = −1

2

c

R
(01)

a
bc −

c

C
(01)

f
bd g

(0)
fc g

(1)

da,

H
(002)

abc = −1
2

c

R
(02)

abc − C
(02)

b
fd g

(0)
fc g

(2)
da
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



H
(100)

a
bc =

(
1
2

c

R
(01)

f
dc g

(1)
fb +

c

C
(01)

f
db g

(0)
fc

)
g
(0)

da

H
(101)

a
bc =

c

H
(10)

a
bc +

1

O
(1)

fa
bd

c

P
(11)

d
cf , H

(102)
abc =

1
2

(
B

(12)
acb − B

(21)

f
c
d g
(1)

fb g
(2)

da

)
,





H
(200)

ab
c =

(
1
2

c

R
(02)

fcd g
(2)

fb +
c

C
(02)

f
d

b g
(0)

fc

)
g
(0)

da

H
(201)

ab
c =

(
1
2

B
(21)

a
c
b − B

(12)
fcd g

(2)

fb g
(1)

da

)
, H

(202)
b
a

c =
c

H
(20)

a
bc + O

1

fa
bd

c

P
(22)

d
cf ,





M
(010)

a
bc = H

(100)

a
cb, M

(011)

a
bc = −

1

O
(2)

fa
cd

c

P
(11)

d
bf ,

M
(012)

abc = −1
2

(
B

(12)
abc + B

(21)

f
b
d g
(1)

fc g
(2)

da

)
,





M
(110)

a
bc =

1
2

(
c

P
(11)

f
db g

(1)
fc +

c

P
(11)

f
dc g

(1)
fb

)
g
(1)

da, M
(111)

a
bc =

c

C
(11)

,

M
(112)

abc = −1
2

B
(12)

abc − 1
2

(
c

C
(12)

c
fd g

(1)
bf +

c

C
(12)

b
fd g

(1)
cf

)
g
(2)

da,





M
(210)

ab
c =

1
2

(
B

(21)

f
d
b g
(1)

fc + B
(12)

fdc g
(2)

fb

)
g
(1)

da,

M
(211)

ab
c =

1
2

B
(12)

fdc g
(2)

fb g
(1)

da +
1

O
(2)

fa
cd

c

C
(12)

f
bd,

M
(212)

bc
a =

c

C
(21)

a
bc +

2

O
(1)

fa
bd

c

C
(21)

d
cf





K
(020)

a
c
b = H

(200)

ab
c, K

(021)

a
c
b = −1

2

(
B

(21)

a
c
b + B

(12)
fcd g

(2)

fb g
(1)

da

)
,

K
(022)

bc
a = −

2

O
(2)

fa
cd P

(22)

d
bf ,





K
(120)

a
c
b =

1
2

(
B

(12)
fdc g

(2)

fb + B
(21)

f
d

b g
(1)

fc

)
g
(1)

da,

K
(121)

a
c
b =

1
2

c

C
(12)

d
fb g

(2)
fc g

(1)

da +
1

O
(2)

fa
cd

c

C
(12)

f
da, K

(122)
bc

a = −
2

O
(2)

fa
cd

c

C
(21)

d
bf





K
(220)

abc =
1
2

(
c

P
(22)

d
fd g

(2)

fc +
c

P
(22)

c
fd g

(2)

fb

)
g
(0)

da

K
(221)

abc =
1
2

(
c

C
(21)

b
fd g

(2)

fc +
c

C
(21)

c
fd g

(2)

fb

)
g
(1)

da, K
(222)

a
bc =

c

C
(22)

a
bc.
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6.4 Some remarkable metrics on T ∗2M

Recall that a given metrical structure G on the manifold T ∗2M determines a
nonlinear connection and with respect to it G decomposes into a sum of three
d−tensor fields which may be viewed as defining metrical structures in horizontal
and verticals distributions, respectively. Conversely if a nonlinear connection, as
well as some metrical structures in horizontal and verticals distributions are given,
a metrical structure on T ∗2M may be obtained.

From now on we fix a nonlinear connection N (N c
b, Nab) in the cotangent

bundle of second order T ∗2M .
Definition 4.1 1◦. An h−metric on T ∗2M is a d−tensor field GH =

g
(0)

abdxa ⊗ dxb, where g
(0)

ab (x, y, p) = g
(0)

ba (x, y, p) , det ‖ g
(0)

ab (x, y, p) ‖6= 0 and

the quadratic form g
(0)

abξ
aξb has constant signature.

2◦. A v1−metric on T ∗2M is a d−tensor field GV1 = g
(1)

abδy
a⊗ δyb,

where g
(1)

ab has the same properties as g
(0)

ab.

3◦. A w2−metric on T ∗2M is a d−tensor field GW2 = g
(2)

abδpa⊗δpb,

where g
(2)

ab ,with‖ g
(2)

ab ‖=‖ g
(2)

ab ‖−1, has the same properties as g
(0)

ab.

4◦. An (h,v1,w2)−metric on T ∗2M is the d− tensor field G =
GH +GV1 +GW2 , i.e.

G = g
(0)

ab (x, y, p) dxa⊗dxb+ g
(1)

ab (x, y, p) δya⊗δyb+ g
(2)

ab (x, y, p) δpa⊗δpb, (4.1)

Obvious, the metric structure (6.5),§4.6

G = gabdxa ⊗ dxb + gabδy
a ⊗ δyb + habδpa ⊗ δpb, (4.2)

and the metric structure

G = gabdxa ⊗ dxb + gabδy
a ⊗ δyb + gabδpa ⊗ δpb, (4.3)

where gab (x, y, p) and hab (x, y, p) ,with‖ hab ‖=‖ hab ‖−1, has the same proper-

ties as g
(0)

ab, are the (h, v1, w2)−metric structures on T ∗2M.

By using Theorem 1.4, we can written the metric N−linear connections
depending only on G given by (4.2), respectively (4.3).

For instance, we have
Theorem 4.1 If the manifold T ∗2M is endowed with the metric structure

G given by (4.2) then the metrical canonical N−linear connection has the coef-
ficients:
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



c

H
(00)

a
bc =

1
2
gad (δcgbd + δbgdc − δdgbc) ,

c

H
(10)

a
bc = B

(11)

a
cb +

1
2
gad

(
δcgbd − B

(11)

f
cbgfd − B

(11)

f
cdgbf

)
,

c

H
(20)

a
bc = − B

(22)

a
bc +

1
2
had

(
δchbd + B

(22)

f
bchfd + B

(22)

f
dchbf

)
,





c

C
(01)

a
bc =

1
2
gad∂̇cgbd,

c

C
(21)

a
bc =

1
2
had∂̇chbd,

c

C
(11)

a
bc =

1
2
gad

(
∂̇cgbd + ∂̇cgdc − ∂̇dgbc

)
,

(4.4)





c

C
(02)

a
bc =

c

C
(12)

a
bc = −1

2
gad∂̇

cgbd,

c

C
(22)

a
bc = −1

2
had

(
∂̇chbd + ∂̇bhdc − ∂̇dhbc

)
.

Theorem 4.2 If the manifold T ∗2M is endowed with the metric structure
G given by (4.3) then the metrical canonical N−linear connection has the coef-
ficients:





c

H
(00)

a
bc =

1
2
gad (δcgbd + δbgdc − δdgbc) ,

c

H
(10)

a
bc = B

(11)

a
cb +

1
2
gad

(
δcgbd − B

(11)

f
cbgfd − B

(11)

f
cdgbf

)
,

c

H
(20)

a
bc = − B

(22)

a
bc +

1
2
gad

(
δcgbd + B

(22)

f
bcgfd + B

(22)

f
dcgbf

)
,





c

C
(01)

a
bc =

c

C
(21)

a
bc =

1
2
gad∂̇cgbd,

c

C
(11)

a
bc =

1
2
gad

(
∂̇cgbd + ∂̇cgdc − ∂̇dgbc

)
,

(4.5)





c

C
(02)

a
bc =

c

C
(12)

a
bc = −1

2
gad∂̇

cgbd,

c

C
(22)

a
bc = −1

2
gad

(
∂̇cgbd + ∂̇bgdc − ∂̇cgbc

)
.

In next, we study others (h, v1, w2)−metric structures.
Definition 4.2 1◦.The (h, v1, w2)−metric G given by (4.1) is said to be

h−Riemannian if g
(0)

ab do not depend on ya and pa.

2◦.The (h, v1, w2)−metric G given by (4.1) is said to be
v1−Riemannian if g

(1)
ab do not depend on ya and pa.
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3◦.The (h, v1, w2)−metric G given by (4.1) is said to be
w2−Riemannian if g

(0)

ab do not depend on ya and pa.

It is now clearly what means G is (h,v1,w2)−Riemannian. We have

Proposition 4.1 a). G is an h−Riemannian metric if and only if
c

C
(01)

a
bc

and
c

C
(02)

a
bc from (1.16) vanish.

b). G is an h−Riemannian metric if and only if
c

C
(11)

a
bc and

c

C
(12)

a
bc from (1.16) vanish.

c). G is an h−Riemannian metric if and only if
c

C
(21)

a
bc and

c

C
(22)

a
bc from (1.16) vanish.

d). G is an (h, v1, w2)−Riemannian metric if and only if

c

C
(α1)

a
bc = 0,

c

C
(α2)

a
bc = 0, (α = 0, 1, 2) . (4.6)

Coming back to the Theorem 1.4, we obtain
Proposition 4.2 If (h, v1, w2)−metric G given by (4.1) is (h, v1, w2)−Riemannian

metric then about (4.6) we have also

i)
c

H
(00)

a
bc = {a

bc} ,
c

H
(β0)

a
bc =

1
2

g
(β)

ad∂c g
(β)

bd, (β = 1, 2)

ii)
0

T
(00)

a
bc = 0,

0

P
(01)

a
bc = 0,

0

P
(02)

a
bc = 0

S
(11)

a
bc = 0,

1

Q
(12)

a
b
c = 0,

2

Q
(12)

ab
c = 0, S

(22)
a

bc = 0,

iii) R
(000)

b
a

cd = rb
a

cd, R
(α01)

b
a

cd = 0, R
(α02)

b
a

cd = 0,

R
(α11)

b
a

cd = 0, R
(α12)

b
a

c
d = 0, R

(α22)
b
acd = 0,

(α = 0, 1, 2) ,

where {a
bc} are the Christoffel symbols constructed with g

(0)
ab (x) and the rb

a
cd is

the curvature tensors constructed with {a
bc} .

As in the case of the tangent bundle of the first order (TM, π,M) (cf.
with Satoshi Ikeda from University of Tokyo), the case when G is h−, v1 and
w2−Riemannian ”seams to have no essential physical meaning”, but these are
theoretically interesting.

Definition 4.3 1◦.The (h, v1, w2)−metric G given by (4.1) is said to be an
h−elliptical metric of moment, if g

(0)
ab do not depend by pa.
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2◦. (h, v1, w2)−metrics G given by (4.1) is said to be an
v1−elliptical metric of moment, if g

(1)
ab do not depend by pa.

3◦. (h, v1, w2)−metrics G given by (4.1) is said to be an
w2−elliptical metric of moment, if g

(2)

ab do not depend by pa.

It is evidently what means G is (h, v1, w2)−elliptical metric of moment. Such
metrics exist on T ∗2M . They, can be obtained, for example, by the prolongation

at T ∗2M of an Lagrange metric gab (x, y) =
1
2

∂2L

∂ya∂yb
on the tangent bundle of the

first order (TM, π,M) at the cotangent bundle of second order
(
T ∗2M,π∗2,M

)
:

G = gab (x, y)dxa ⊗ dxb + gab (x, y)δya ⊗ δyb + gab (x, y)δpa ⊗ δpb, (4.7)

We have
Proposition 4.3 a). G given by (4.1) is a h−elliptical metric of moment if

and only if
c

C
(02)

a
bc from (1.16) vanish

b). G given by (4.1) is a v1−elliptical metric of moment if and

only if
c

C
(12)

a
bc from (1.16) vanish

c). G given by (4.1) is a w2−elliptical metric of moment if and

only if
c

C
(22)

a
bc from (1.16) vanish

d). G given by (4.1) is o (h, v1, w2)−elliptical metric of mo-
ment if and only if in a form (1.16)

c

C
(α2)

a
bc = 0, (α = 0, 1, 2) . (4.8)

Theorem 4.3 If the manifold T ∗2M is endowed with the (h, v1, w2)−elliptical
metric structure of moment G given by (4.7) then the metrical canonical
N−linear connection has the coefficients given by (4.8) and the following ex-
pressions





c

H
(00)

a
bc = {a

bc} − σ
(0)

a
bc

c

H
(10)

a
bc = B

(11)

a
cb +

1
2
gad

(
∂cgbd − B

(11)

f
cbgfd − B

(11)

f
cbgbf

)
− σ

(1)

a
bc,

c

H
(20)

a
bc = − B

(22)

a
bc +

1
2
gad

(
∂cgbd + B

(22)

f
bcgfd + B

(22)

f
dcgbf

)
− σ

(2)

a
bc,





c

C
(01)

a
bc =

c

C
(21)

a
bc =

1
2
gad∂̇cgbd

c

C
(11)

a
bc =

1
2
gad

(
∂̇cgbd + ∂̇bgdc − ∂̇dgbc

)

(4.9)

where
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σ
(0)

a
bc =

1
2
gad

(
Nf

c∂̇fgbd + Nf
b∂̇fgdc −Nf

d∂̇fgbc

)
,

σ
(1)

a
bc = σ

(2)

a
bc =

1
2
gadNf

c∂̇fgbd.
(4.10)

The following metric structures can be interesting for physics.
Definition 4.4 We shall say that the metric G given by (4.1) is v1−locally

Minkowski (resp., w2−locally Minkowski) if for every point u = (x, y, p) ∈
T ∗2M there exists a local chart around it on T ∗2M such that on its domain, g

(1)
ab

(resp., g
(2)

ab) depends on y only.

Theorem 4.4 If (h, v1, w2)−metric G given by (4.1) is h−Riemannian
and v1−, w2−locally Minkowski metric then the metrical cannonical N−linear
connection has the coefficients:





c

H
(00)

a
bc = {a

bc}
c

H
(10)

a
bc = B

(11)

a
bc − 1

2
g
(1)

ad

(
Nf

c∂̇f g
(1)

bd + B
(11)

f
cb g

(1)
fd + B

(11)

f
cd g

(1)
bf

)
,

c

H
(20)

a
bc = − B

(22)

a
bc − 1

2
g
(2)

ad

(
Nf

c∂̇f g
(2)

bd − B
(22)

f
bc g

(2)
fd − B

(22)

f
dc g

(2)
bf

)
,





c

C
(01)

a
bc = 0,

c

C
(21)

a
bc =

1
2

g
(2)

ad∂̇c g
(2)

bd,

c

C
(11)

a
bc =

1
2

g
(1)

ad

(
∂̇c g

(1)
bd + ∂̇b g

(1)
dc − ∂̇d g

(1)
bc

)
,

(4.11)

c

C
(02)

a
bc = 0, C

(12)
a

bc = 0, C
(22)

a
bc = 0.

Proof. Indeed, because g
(0)

ab depend of x, and g
(1)

ab, g
(2)

ab each depend on y

only, by (1.16) we get (4.11)
q.e.d.

Also, we get
Theorem 4.5 If the manifold T ∗2M is endowed with the (h, v1, w2)−metric

structure G, h−Riemannian, v1−Riemannian and w2−locally Minkowski given
by

G = gab (x)dxa ⊗ dxb + gab (x)δya ⊗ δyb + hab (y)δpa ⊗ δpb, (4.12)
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then we have

i)





c

H
(00)

a
bc = {a

bc}x

c

H
(10)

a
bc = B

(11)

a
cb +

1
2
gad

(
∂cgbd − B

(11)

f
cbgfd − B

(11)

f
cd g

(1)
bf

)
,

c

H
(20)

a
bc = − B

(22)

a
bc +

1
2
gcd

(
∂cgbd + B

(22)

f
bcgfd + B

(22)

f
dcgbf

)
,

c

C
(01)

a
bc = 0,

c

C
(11)

a
bc = 0, C

(21)

a
bc =

1
2
had∂̇chbd

c

C
(02)

a
bc = 0,

c

C
(12)

a
bc = 0,

c

C
(22)

a
bc = 0.

ii)





0

T
(00)

a
bc = 0,

0

P
(01)

a
bc = 0,

0

P
(02)

a
b
c = 0,

S
(11)

a
bc = 0,

1

Q
(12)

a
b
c = 0,

2

Q
(12)

ab
c = 0,

c

S
(22)

a
bc = 0.

iii)





c

R
(000)

b
a

cd = rb
a

cd (x) ,

c

R
(100)

b
a

cd = δd

c

H
(10)

a
bc − δc

c

H
(10)

a
bd +

c

H
(10)

f
bc

c

H
(10)

a
fd −

c

H
(10)

f
bd

c

H
(10)

a
fc

c

R
(200)

b
a

cd = δd

c

H
(20)

a
bc − δc

c

H
(20)

a
bd +

c

H
(20)

f
bc

c

H
(20)

a
fd −

c

H
(20)

f
bd

c

H
(20)

a
fc+

+ C
(21)

a
bf R

(01)

f
cd,





R
(001)

b
a

cd = ∂̇d H
(00)

a
bc, R

(101)
b
a

cd = ∂̇d H
(10)

a
bc,

R
(201)

b
a

cd = ∂̇d H
(20)

a
bc − C

(21)

a
bdp2c + C

(21)

a
bf P

(21)

f
cd





R
(002)

b
a

c
d = ∂̇d H

(00)

a
bc, R

(102)
b
a

c
d = ∂̇d H

(10)

a
bc,

R
(202)

b
a

c
d = ∂̇d H

(20)

a
bc + C

(21)

a
bf B

(21)

f
c
d,





R
(011)

b
a

cd = 0, R
(111)

b
a

cd = 0,

R
(211)

b
a

cd = ∂̇d C
(21)

a
bc − ∂̇c C

(21)

a
bd + C

(21)

f
bc C

(21)

a
fd − C

(21)

f
bd C

(21)

a
fc,

R
(012)

b
a

c
d = 0, R

(112)
b
a

c
d = 0, R

(212)
b
a

c
d = ∂̇d C

(21)

a
bc,

R
(022)

b
acd = 0, R

(122)
b
acd = 0, R

(222)
b
acd = 0.

Definition 4.5 We shall say that the metric G given by (4.1) is w2−locally
dependent of moment if for every point u = (x, y, p) ∈ T ∗2M there exist a
local chart arround it on T ∗2M such that on its domain g

(2)

ab depends on pa, only
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It is not difficult to prove
Theorem 4.5 If the manifold T ∗2M is endowed with the (h, v1, w2)−metric

structure G, h−Riemannian, v1−locally Minkowski and w2−locally depending of
moment, given by

G = gab (x)dxa ⊗ dxb + mab (y)δya ⊗ δyb + hab (p)δpa ⊗ δpb, (4.13)

then the metrical canonical N−linear connection D
c

Γ (N) has the coefficients





c

H
(00)

a
bc = {a

bc} ,

c

H
(10)

a
bc = B

(11)

a
cb − 1

2
mad

(
Nf

c∂̇fmbd + B
(11)

f
cbmfd + B

(11)

f
cdm

(1)
bf

)
,

c

H
(20)

a
bc = − B

(22)

a
bc +

1
2
had

(
Ncf ∂̇fhbd + B

(22)

f
bchfd + B

(22)

f
dchbf

)
,

c

C
(01)

a
bc = 0,

c

C
(11)

a
bc =

1
2
mad

(
∂̇cmbd + ∂̇bmdc − ∂̇dmbc

)
,

c

C
(21)

a
bc = 0,

c

C
(02)

a
bc = 0,

c

C
(12)

a
bc = 0,

c

C
(22)

a
bc = −1

2
had

(
∂̇chbd + ∂̇bhdc − ∂̇dhbc

)
.

One observe that

0

T
(00)

a
bc = 0,

0

P
(01)

a
bc = 0,

0

P
(02)

a
b
c = 0

S
(11)

a
bc = 0,

1

Q
(12)

a
b
c = 0,

2

Q
(12)

ab
c = 0,

2

Q
(22)

ab
c = 0, etc.

To the end of this section we prove
Theorem 4.6 If the manifold T ∗2M is endowed with the (h, v1, w2)−metric

structure G, h−, v1−Riemannian and w2−locally depending of moment, given by

G = gab (x)dxa ⊗ dxb + gab (x)δya ⊗ δyb + hab (p)δpa ⊗ δpb, (4.14)

then
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i) The metrical canonical N − linear connection D
c

Γ (N) has the coefficients



c

H
(00)

a
bc = {a

bc}
c

H
(10)

a
bc =

1
2

[
B

(11)

a
cb + gad

(
∂cgbd − B

(11)

f
cbgbf

)]
,

c

H
(20)

a
bc =

1
2

[
− B

(22)

a
bc + had

(
Ncf ∂̇fhbd + B

(22)

f
dchbf

)]
,





c

C
(01)

a
bc = 0,

c

C
(11)

a
bc = 0,

c

C
(21)

a
bc = 0

c

C
(02)

a
bc = 0, C

(12)
a

bc = 0, C
(22)

a
bc = −1

2
had

(
∂̇chbd + ∂̇bhdc − ∂̇dhbc

)
.

ii)




0

T a
bc = 0,

0

P
(01)

a
bc = 0,

0

P
(02)

a
b
c = 0,

S
(11)

a
bc = 0,

1

Q
(12)

a
b
c = 0,

2

Q
(12)

ab
c = 0, S

(22)
a

bc = 0

iii) The d− tensors of curvature are as follows




R
(000)

b
a

cd = rb
a

cd,

R
(100)

b
a

cd = δd

c

H
(10)

a
bc − δc

c

H
(10)

a
bd +

c

H
(10)

f
bc

c

H
(10)

a
fd −

c

H
(10)

f
bd

c

H
(10)

a
fc,

R
(200)

b
a

cd = δd

c

H
(20)

a
bc − δc

c

H
(20)

a
bd +

c

H
(20)

f
bc

c

H
(20)

a
fd −

c

H
(20)

f
bd

c

H
(20)

a
fc+

+
c

C
(22)

b
af R

(02)
fcd,





R
(001)

b
a

cd = 0, R
(101)

b
a

cd = ∂̇d

c

H
(10)

a
bc,

R
(201)

b
a

cd = ∂̇d

c

H
(20)

a
bc +

c

C
(22)

b
af R

(12)
fcd,





R
(002)

b
a

c
d = 0, R

(102)
b
a

c
d = ∂̇d H

(10)

a
bc,

R
(202)

b
a

c
d = ∂̇d

c

H
(20)

a
bc −

c

C
(22)

b
adpc +

c

C
(22)

b
af P

(22)
fc

d,

R
(011)

b
a

cd = 0, R
(111)

b
a

cd = 0, R
(211)

b
a

cd = 0,

R
(012)

b
a

c
d = 0, R

(112)
b
a

c
d = 0, R

(212)
b
a

c
d = 0,

R
(022)

b
acd = 0, R

(122)
b
acd = 0,

R
(222)

b
acd = ∂̇d

c

C
(22)

b
ac − ∂̇c

c

C
(22)

b
ad +

c

C
(22)

b
fc

c

C
(22)

f
ad −

c

C
(22)

b
fd

c

C
(22)

f
ac
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Proof. Because gab depends on x only (resp. hab depends on p
only) follows δaT ······ (x) = ∂aT ······ (x) , ∂̇aT ······ (x) = 0, (resp. δaT ······ (p) =

Naf ∂̇fT ······ (p) , ∂̇aT ······ (p) = 0) and for (2.4) we have
c

H
(00)

a
bc = {a

bc} ,
c

C
(11)

a
bc =

0 (resp.
c

C
(22)

a
bc given by the indicated expression in i) Theorem 4.6). Then a

look about the formulae (4.4) by Theorem 4.1 and (6.6) by Theorem 6.3, §5.6,
determine the other relations.

q.e.d.
Remark 4.1 If we consider the almost contact structure F introduced by

(5.5), §4.5,
F (δa) = −∂̇a, F

(
∂̇a

)
= δa, F

(
∂̇a

)
= 0, (4.15)

and take into account the Theorem 6.2, §4.6 result that the pairs (G,F) with G
given by (4.12), respectively (4.14), are Riemannian almost contact structure on
T ∗2M :

G (FX,Y ) = −G (X,FY ) (4.16)

which constitute an model of the cotangent bundle of second order
(
T ∗2M,π∗2, M

)
,

easy to used.

Remark 4.2 If we consider the almost contact structure
∗
F introduced by

R. Miron, [86], [97]:

∗
F (δa) = −gab∂̇

b,
∗
F

(
∂̇a

)
= 0,

∗
F

(
∂̇a

)
= gabδb (4.17)

result that the pair
(
G,

∗
F
)

with G given by (4.3), respectively (4.7), are Rie-

mannian almost contact structure on T ∗2M :

G
(∗
FX, Y

)
= −G

(
X,

∗
FY

)
(4.18)

which constitute each an model of 2−cotangent bundle
(
T ∗2M, π∗2,M

)
. The

first
(
G,

∗
F
)

with G given by (4.3) is an model in geometry of Hamilton space

of second order H(2)n, [97] and even more in the generalized Hamilton geometry

GH(2)n. The second model
(
G,

∗
F
)

with G given by (4.7) is possible to offer new

informations about the generalized Lagrange spaces of first order GL(1)n using
T ∗2M .
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Matem. f.2, 1997, 235-248.

[31] BEJANCU, A., Finsler Geometry and Applications, Ellis Harwood, Chich-
ester, England, 1990.

[32] BEJANCU, A., A New Viewpoint on Differential Geometry on Superman-
ifolds, I; II, Univ. Timisoara, Sem. de Mecanică, 1990; 1991.
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[34] CARTAN, E., La géométrie de integral
∫

F (x, y, y′, y′′)dx, Journal de
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[132] VĂCARU, S. I., Interactions, Strings and Isotopies in Higher Order
Anisotropic Superspaces, Hadronic Press, Palm Harbor, USA, 1998.

[133] VOICU , NICOLETA, Deviations of Geodesics in the Geometry of the Or-
der Two (in Roumanian), Ph. D. Thesis, Univ. Babeş-Bolyai, Cluj-Napoca,
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