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PREFACE

This book presents the theory of linear connections in the differential geom-
etry of second order.

In the part one (Ch.1 — Ch. 3) we shall study this theory in the 2-jet bundle
J2M.

Generally, the geometries of higher order defined as the study of the category
of bundles of k—jet (J¥M , 7%, M) (see Ch. Ehresmann, [45],[46] and Refer-
ences) are based on a direct approach of the properties of objects and morphisms
in this category, without local coordinates.

But, many mathematical models from Lagrangian Mechanics, Theoretical
Physics and Variational Calculus used multivariate Lagrangians of higher order

k
Z—f ), . s %% (t) ), (see E. Cartan, [34], for k = 2).

From here one can see the reason of construction of the geometry of the
bundle of higher order accelerations (here, the tangent bundle of higher order, or
the osculator bundle of higher order) in local coordinates.

Recently, this construction was achived by R. Miron and the author in the
joint papers [89 — 95].

Namely, replacing the bundle of k—jets (J¥M, 7%, M) by the bundle of ac-
celerations of order k, (or the k—osculator bundle (Osc* M, 7%, M)) denoted here
by (T*M, 7% M) one shows that the vertical distribution V; decomposes in k

subdistributions from the sequence of inclusions V; D V5 D ... D Vj, that there
12 k
exist k independent Liouville vector fields C, C, ... , C and a natural k—tangent

structure J: X(T*M) — X (T*M). Then, one defines the notion of k—semispray

accelerations, L(z,

k
S by the equation JS = C. This allows the obtaining of a nonlinear connection
N from S, only. More precisely, S uniquely determines the dual coefficients of
N.

Now, the nonlinear connection N gives a direct decomposition
T (T*M) = Ny (u) @ Ny (1) ® ... ® Ny_1 (u) @ Vi, Vu € TFM, (0.1)

to which all geometric objects on T*M are described.

Thus N leads to define of the simplest linear connection D on T*M, that
which preserves by parallelism the distribution defining N and the 2—tangent
structure J is absolute parallel with respect to D, i.e. DxJ =0,VX € X (T’“M),
(a JN- linear connection in this book, cf. with Def. 6.2, Ch. 2). It comes
out that JN preserves by parallelism the distributions from the decomposition
(0.1), too. The local coefficients characterising N are in the smallest possible
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number: JDI'(N) = (L%, , (%“bc), (6 =1,...,k). The whole Miron-Atanasiu’s

theory ([89] — [95]) is based on the decomposition (0.1) and the linear connection
JDT'(N). These are exposed unitary in R.Miron’s monograph [84] .
In this book, for k = 2, also, we consider the decomposition (0.1):

To(T?M) = Ny (u) ® Ny (u) ® Va (u) ,Yu € TFM, (0.2)

but we use a linear connection D on T2M which preserves by parallelism the
horizontal and verticals distributions Ng, N; and Va on T2M, only. This linear
connection is characterized by the local coefficients

DI'(N)=( L § ce.,C* =0,1,2).
( ) ((ao) ber (a1) bc7(a2) bc)v(a ] )

Moreover, there exist the natural almost contact structures F : X’ (TQM ) —
«@

X (T/27\/4) ,(@=0,1,2) on T2M (cf. with Section 1.8, Ch.1) and we can define
the FN-linear connections as an N—linear connection D for which DxF = 0,

VX € T?M, (o = 0,1,2). We have the inclusion:
JDI (N) € FDT (N) € DI'(N), (a = 0,1,2).

A detailed study of an N—linear connection DI'(N) allows the introduction
of ho— and vge- covariant derivatives, (o« = 0,1,2; 8 = 1,2). With these one
studies the parallelism of vector fields (Sect. 2.9 Ch. 2), the torsion, the curvature,
the structure equations (Sections 2.3, 2.7, 2.10, Ch.2), the Ricci and Bianchi
identities (Sections 2.8 and 2.11, Ch. 2), etc.

Finally of the part one, in the Chapter 3, we study the metric structures
on T?M and some remarkable metrics on T?M, especially an (h1, v1, v2) —metric
G, h—Riemannian, v;—locally Minkowski and vs—locally accelerate, which can
be use to the geometrical model on tangent bundle on T2 M.

In the part two of the book (Ch. 4 — Ch. 6) we shall study the theory of linear
connections in the differential geometry of second order cotangent bundle.

The differential geometry of the second order cotangent bundle (T*QM T2 M )
introduced and studied, recently, by Acad. R.Miron [85], [86] and Acad.
R. Miron with his partners, [97], is based on the differential geometries of the
tangent bundle (T'M,w, M) and the cotangent bundle (T*M,7*, M), [134] (see
also, Gh. Atanasiu [7]-[13], S.Ianus [55]-[57], R. Miron [78]-[83], V. Oproiu [110],
[111], etc.), namely

T**M =TM x; T*M. (0.3)

In this way, the point € M, the velocity y € TM and the momenta
p € T*M there exist, intrinsec in T*2M: (z,y,p) = (u) € T*2M. They are fasten
in the Liouville 1—form w, in the 2—form of presymplectic structure 6, in the
natural tangent structure J : x (T*QM) — X (T*QM) , etc., by

w = pedz?, (0.4)
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0 = dw = dp, N dx?, (0.5)

0 0 0 0
()= 2s(Z)=03(2) =0 wo
(a=1,2,...n; n=dim M).

But, in the tangent bundle of differentiable manifold T*2 M, (TT* M, %2, M) ,
where 7*2 is the canonical projection, there exist the natural subdistributions

Vi(u) = {% |u} and W (u) = {% |u} and we have a direct decomposition
of vector spaces

T, T**M = N (u) ® Vi (u) ® Wa (u), Yu € T*M, (0.7)

where N is a nonlinear connection.

The main geometrical objects on T*2M can be reported to the direct sum
(0.7) and by use the natural tensors w, 8,J, etc., expressed in the formulae (0.4),
(0.5), (0.6), etc.

For example, a linear connection in the R.Miron’s theory on the 2—cotangent
bundle T*2M have the smallest possible number:

MDT (N) = (Habw Cabc; Cabc) ) (a7 b,C =1, ,n) y

(in this book, it is called a Miron N —linear connection).

Generally, in the monograph [97], the whole calculus: the parallelism of
vector fields, the torsion, the curvature, the Ricci identities, etc., are based on
the set of these coefficients.

In this book, a linear connection in the differential geometry of the
2—cotangent bundle 7*2M will be more rich. It will have a set of nine coefficients:

Dr (N) = (H abca H abca H abm C abca C abca C abcv abcv abca abc)
(00) "7 (10) T (20) T (01) (1) (21 O (02)" (2" T (22)
(here, it is called an N —linear connection)

This is an advantage in the physical applications in electrodynamics [103],
[104], elasticity [105], quantum field theories [40], [109], [119], in the deviations
of geodesics [29], [30], [133], etc., because the torsion, the curvature, remarkable
identities, etc., are much more substantials.

The calculus with these N —linear connections is not difficult and we develop
him in the Chapters 4,5 and 6.
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Chapter 1

The 2-tangent bundle
(T°M, 7, M)

1.1 The manifold T2M

Let M be a real differentiable manifold of dimension n. A point of M will be
denoted by x and its local coordinate system by (U,p), ¢(x) = (z*). The indices
a,b,... run over set {1,2,...,n} and Einstein convention of summarizing is adopted
all over this work.

Let us consider two curves p,o : I — M, having images in a domain of local
chart U C M. We say that p and o have a ”contact or order 2” or the ”same
tangent line and the same curvature” in the point zg € U if: p(0) = o(0) =
%o, (0 € I), and for any function f € F(U):

dP 4P
Z5(f 0 p)B)lim0 = Z5(f 0 ) Bli=o, (8 =1,2). (L.1)

The relation ”contact of order 2”7 is an equivalence on the set of smooth
curves in M, which pas through the point zo. Let [p],,be a class of equivalence.
It will be called a ”2-osculator space” in the point zg € M. The set of 2-osculator
spaces in the point z¢ € M will be denoted by Osc?>M, and we put

Osc>M = U Osc2,.
zoEM

One considers the mapping 7% : Osc?M — M define by 72([p].,) = z¢. Clearly,
72 is a surjection.

The set Osc>M is endowed with a natural differentiable structure, induced
by that of the manifold M, so that 72 is a differentiable mapping. It will be

described below.
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The curve p : I — M,(Imp C U) is analytically represented in the local
chart (U, ) by a* = z(t),t € I, zg = 2%(= x*(0)). Taking the function f from
(1.1), successively equal to the coordinate functions z%, then a representative of
the class [p]z, is given by

dz*® 1 ,d?z®
0) + -t
TS LT
The previous polynomials are determined by the coefficients
dx® 1 d?z®
——(0),y@* = = 0). 1.2
o (0), P = 2 0) (12)

Hence, the pair ((7r2)_1 (U) ,<I>>, with @ ([p],,) = (zg, yMa,y@a) € R,

Vipl,, € (7r2)_1 (U) is a local chart on Osc?M. Thus a differentiable atlas
Apr of the differentiable structure on the manifold M determines a differentiable
atlas Apsezps on Osc?M and therefore the triple (OsczM, 72, M) is a differen-
tiable bundle. We will denote the 2-osculator bundle (OSC2M 2, M ) also with
(T2M, 72, M).

By (1.2), a transformation of local coordinates (ma, ye, y(z)“) — (T ¥y
7)) on the manifold T?M is given by

2" (t) = 2(0) + ¢

(0),t € (—¢,¢) C I

78 = 2(0), y ) =

(1)a

x® = 7 (a',...,a"), det(gxb) # 0,
ox?
~(1)a _ 1)b
e = wy( ) (1.3)

_ 8§(1)a 837(1)“
Ve — ZJ  (1)b (2)b
2y 92b Y +20y(1)by .

One can see that T2M is of dimension 3n.

Moreover, if M is a paracompact manifold, then T2M is paracompact, too.

Let us present here some notations. A point v € T?M whose projection by
72 is x, ie. 7%(u) = =z, will be denoted by (z,y™M),y?), its local coordinates
being (xa,y(l)“,y(2)“) .

The null section 0 : M — T?M of the projection 72 is defined by 0 : (z) €
M — (z,0,0) € T>M we denote by T2M = T2M\{0}.

The coordinate transformation (1.3) determines the transformation of the

0 0

Ora |u7 ay(l)a |u’ 8y |u
TT?M at the point v € T?M the following:

natural basis ( , (a=1,..,n), of the tangent space

P o7 9 ot 9 oDt 9

%M = 020 0b hut e W|U+ Ox® W'“’
0 oyt 9 oyt 9

y(Da lu = dyMa ag(l)b‘“—’_ dy(a 3@(2)b|"’ (1.4)
0 oyt 9

3y(2)a fu = 5’y(2 y@p lu-
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By means of (1.3) we obtain

978 8&(1)@ 8?7(2)11 ag(l)a ay(2)a ’
3P = ByF 9y @ o 9yb (14)

Looking at the formula (1.4) we remark the existence of some natural object
fields on T2 M.
First of all, the tangent space V1, to the fibre (72)~!(z) in the point u € T?M
0 0 0 0
Gy Gyn Gy@1 8y(2)"}' Therefore, the
mapping Vi : v € T?M — V;,, C T,T?>M provides a regular distribution which is
0 0
generated by {8y(1)“ Y men ,(a
distribution on T2M of local dimension 2n, called the vertical distribution on
T2?M. Similarly, the tangent space V3, to the fibre (ﬂf)fl (z,y') in the point
u € T?M , where 77 : (z,y1M,y?) € T°M — (z,yV) € Osc'!M = TM,
0 0
Oy’ gy(2)n
T°M — Vi, C T,T?M provides a new regular vertical distribution which is

is locally spanned by {

=1,..,n). Consequently, V7 is an integrable

is locally spanned by Therefore, the mapping V5 : u €

0
generated by {W} ,(a=1,...,n). So, V5 is an integrable distribution on
Y

T2M of local dimension n and it is a subdistribution of V3.
Therefore, in every point u € T?M , we have the vector space Va(u), V1 (u),
T, T?M of dimensions n, 2n, 3n, respectively and satisfying the inclusions

Va(u) € Vi(u) € T,T?>M, Yu € T*M.

‘We denote
V(u) = Vi(u) @ Va(u), YueT?M. (1.5)

and we call V the vertical distribution on 72M.

Taking in account (1.3), (1.4), it follow that

0
_ 1a
C = y® Fy@ (1.6)
2 0 0
= yMDa__~ (2)a )
C Y Gya + 2y oy (1.6”)

are two vertical vector fields, global define on T2M and linear independent on

— 1 2

T2M. C belongs to the distribution V5 and C belongs to the distribution Vj.
They are called the Liouville vector fields. The existence of the Liouville
vector field is very important in the study of geometry of the manifold 72 M.
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Let us consider the F(T2M) - linear mapping J:X (T2M) — X (T*M),

’ (350“) ~ gye / <8y<1)a) = Gy@a J (ay(z)a> =0. (1.7)

Theorem 1.1. The following properties hold:
1°. J is globally defined on T2M.
2°. JoJoJ =0, rankl|J| =2n.
3°. Im J =V, Ker J =Vs, J(V1) = Va.
4°. J is an integrable structure on T2M.
2 1 1
5°. JC=C, JC=0.
The proof can be found in [89], [90].

We say that J is the 2-tangent structure on T?M.
The previous geometrical notions are useful in the next sections of this work.

1.2 Homogeneity

The notion of homogeneity, (see, De Léon M. and Vasquez E., [76]), of function
f € F(T?M) with respect to the variables ()¢, y(2)¢ is necessary in our consid-
erations because some fundamental object fields on T2M have the homogeneous
components.

In the osculator manifold Osc?M = T?M, a point [p],, has a geometrical
meaning, i.e. changing of parametrization of the curve p : I — M does not change
the space [p]s,. Taking into account the affine transformations of parameter

t=at+btel,aec R} ()
we obtain the transformation of coordinate of [p],, in the form
7€ = xc’y(l)c _ ay(l)c’g@)c — CL2y(2)c’ (C =1,2, 7,”) (**)
Therefore, the transformation of coordinates (1.3) on the manifold 72M
preserve the transformations (**).

Let H = {ht :R— R,te Rj_} be the group of homotheties of real numbers
field R. H acts as an uniparameter group of transformations on T?M as follows

H x T2M - T2M7 {(ht7u) - ht(u’)}a

where
he(z,y ™M,y @) = (év,ty(”,to(Q)) :

Consequently, H acts as a group of transformations on T2M, with preserving
of the fibres.
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The transformation group H of the homotethies is invariant under the trans-
formation of local coordinates on T2 M.
The orbit of a point ug = (xo, y(()l), y(()z)) € T?M is given by

¢ =z
y(l)a — ty(()l)a

ye = t2y62)a,t € RY.

The tangent vector field to orbit in the point ug = hy(ug) is given by

2 0 2)a 0
¢ NayWe )T \ay@ea )

2
This is the Liouville vector field C, (1.6’) in the point ug. For this vector field

1 2
(ht) e Y is his uniparameter group. Let us consider the vector field C = JC,

1
where C is the Liouville vector field given by (1.6).
Now, we can formulate:

Definition 2.1. A function f : T?M — R differentiable on T2M and
continuos on the null section 0 : M — T?M is called homogeneous of degree
r,(r € Z), on the fibres on T?>M, (briefly r-homogeneous) if

fohy=t"fvte Ry (2.1)

The following theorem of Euler type holds, [76]:

Theorem 2.1. A function f € F(T?>M) differentiable on T2M and contin-
uous on the null sections is homogeneous of degree r on the fibres of T>M if and
only if we have

Eéf =rf, (2.2)

2
LE being the Lie derivative with respect to the Liouville vector field C.
The equality (2.2) is equivalent to

1ya_ 9f 9y of  _
6y(1)‘1 8y(2)u

y rf (2.2)
The following properties hold:

1. fi1, fo r-homogeneous = A1 f1 + A2 f2, A1, A2 € R is r-homogeneous,

2. f1 r-homogeneous, fo s-homogeneous = fi - f5 is (r + s)-homogeneous,
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3. f1 r-homogeneous, fs # 0 s-homogeneous —- ﬁ is (r — s)-homogeneous
2

By extension we can define the homogeneity of vector fields and 1-forms on
T2M.
Definition 2.2. A vector field X € X(T?M) is r-homogeneous if

Xohy=t""hjoX,Vt € R}.

It follows: o
Theorem 2.2. A vector field X € X(T?M) is r-homogeneous if and only

if we have
E(%X =(r—1X. (2.3)
2 2
Of course, L, X = [C, X] is the Lie derivative of X with respect to C.
C
Consequently, we can prove:
Corollary 2.1.

0 0 0

1. The vector fields Dz’ W7 W

tively.

are 1,0 and -1-homogeneous, respec-

2. If f e F(T/Q\]\/@ is s-homogeneous and X € X(m) is r-homogeneous
then fX is (r+ s)-homogeneous.

1
3. The Liouville vector field C is 0-homogeneous.

2
4. The Liouville vector field C is 1-homogeneous.

Corollary 2.2.
1°. A vector field on T?M :

9 | xa 4 x@a_9

_ (0)a
X=X aze X dya dy@a

is r-homogeneous if and only if X O are functions (r — 1)-homogeneous, X (D®
are functions r-homogeneous and X are functions (r 4+ 1)-homogeneous.

2°. If X € X(T?M) is r-homogeneous and f € F(T?M) is s-homogeneous,
then Xf € F(T?M) is a (r + s — 1)-homogeneous function

g°. If f e F(ﬁ\]\//[) is an arbitrary s-homogeneous function, then

0 f .
By@agy @b "

of
8y(2)a

s (s — 4)-homogeneous function.

1S a

(s — 2)-homogeneous function and
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Proposition 2.1. If X, € X(T?M) and X5 € X(T2M) are vector fields
r1- and ro- homogeneous, respectively then the bracket [ X1, Xa] are (r1 +re — 1)-
homogeneous vector field.

Proof. Indeed, we have

£3 1%, %] = [C, X, Xe]] = [X4,[C, Xa]] - [%2, [C, Xi]]
[Xl, (7‘2 - 1) Xg] — [Xg, (’I“1 - 1) Xl] = (’I"l + To — 2) [Xl,XQ] .

q.e.d.

In the case of g-form we can give:
Definition 2.3. A g¢-form w € A4 (TQM) is s-homogeneous if

wohy =t'w,Vt € R}.

It follows: o
Theorem 2.3. A ¢-form w € A9 <T2M> is s-homogeneous if and only if

Ez == . 24
2w = sw (2.4)

Corollary 2.3.
1°. If w € A? (T M) is s-homogeneous and w' € A7 (TQM) 18

s'-homogeneous = w AW’ is (s + s’)-homogeneous
2°. If w € A4 (TQM) 18 s-homogeneous and )1(, .., X are each r-
q
homogeneous = w ()1(, ...,X) is (r + s — 1)-homogeneous.
q
3°. dx®(a=1,...,n) are 0-homogeneous 1-forms.
The applications of those properties in the problems of homogeneous lifts

of the Riemannian, Finslerian and Lagrangian structures on T?M and in the
geometry of Finsler space of order two are numberless, [17], [18].

1.3 Second order semispray

In applications we shall use the operator

)
dyMa

0
C = y(l)a@ + 2y(2)a

(3.1)
This operator is not a vector field on T2M. By a direct calculation one
checks the following:
Lemma 3.1.
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1. Under a coordinate transformation (1.8) on T?M, C changes as follows

5 oy oy 9
— (1)b (2)b ;
C=C+ (y 97b + 2y By ) G5e (3.1")
2. For any function f € F(T*M) having the property SgDa — 0, with respect
y a
to (1.3), we have
cf=Cf. (3.17)

Now we can introduce the following definition:
Definition 3.1. A second order semispray S on T2M (briefly, a 2-
semispray) is a vector field S € x(T?M) with the property:

2
JS =C. (3.2)

If S is 2-homogeneous, then S will be called a 2-spray.

Not always there exists a vector field S with the property (3.2). Therefore,
the notion of local 2-semispray must be formulated taking S € X (17 ), U being
an open set in the manifold T2M.

Theorem 3.1.
1°. A 2-semispray can be uniquely written in the form

)
dy@a”

)
§ =y | o @a

_ 3G (m y y(z))
Oz e

T (3.3)

2°. The set of functions G* (a:, y®, y(Q)) ,(a=1,...,n), are changed with respect

to (1.3) as follows:

Fa _ 397 (1) 97 295"

3°. If the set of functions G* are a apriori given on every domain of a local
chart in 2727\7[, so that (3.4) holds, then S from (3.3) is a 2-semispray.

Proof.
1°. If a vector field

5= 15 (29,9 524 g (290, 5®)

0
8y(2)a

dy(Ma + (xvy(l),y(2)>
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2
is a 2-semispray S, then JS = C implies f§ = y™M, f¢ = 2y and f§(x, yV,
y?) = 3G (x, yM, y?). So that G are uniquely determined and (3.2) holds.
2°. The formula (3.4) follows from (1.3), (1.4) and the fact that S is a vector

field on 1:_2\]\//[, i.e.
0 ~ ~ 0
=(C - 3G 1) 2 = C —3Ge (7.7 72 -
S=C-3G (:my Y )By(z)“ C - 3G (ﬂc,y Y )a,g(z)a

3°. Using the rule of transformation (3.4) of the set of functions G* it follows

that S is a vector field which satisfies JS = ((23
q.e.d.
From the previous theorem, it results that S is uniquely determined by
G (x, y, y(z)) and conversely. Because of this reason, G* are called the coef-
ficients of the 2-semispray. s
Theorem 3.2. A 2-semispray S on T2M is a 2-spray if and only if its
coefficients G* are 3-homogeneous functions with respect to y>®.

0
Proof. By means of 1° and 2°, Corollary 2.1 it follows that y(l)aﬁ is
x

0
——— is (-1)-homogeneous vector
ay(l)a 8y(2)a

fields. Hence, S is 2-homogeneous if and only if G* are 3-homogeneous functions
with respect to y(?).

2-homogeneous, ()¢ is 2-homogeneous,

q.e.d.
The integral curves of the 2-semispray S from (3.3) are given by
dx® dy(l)a dy(2)a
ar’ _ e W5 @a W a( (1) (2)), .
i A v = 3G (2,9 y (3.5)

It follows that, on M, these curves are expressed as solutions of the following
differential equations
d3x®

e (s

dr 1d%z B
dt3 B

—, == 3.6
dt’ 2 dt? (8.6)
The curves ¢ : t € I — (z°(t)) C U C M, solutions of (3.6), are called
the paths of the 2-semispray S. The differential equation (3.6) has geometrical
meaning. Conversely, if the differential equation (3.6) is given on a domain
of a local chart U of the manifold M, and this equation is preserved by the
transformations of local coordinates on M, then coefficients G*(z, yM), y(2)),
dz® d2 a
%7 y@e = i d; > , obey the transformations (3.4). Hence G“(z,
yM), y(2)) are the coefficients of a 2-semispray. Consequently, we obtain:
Theorem 3.3. A 2-semispray S on T2M, with the coefficients G*(z, y™),
y)) is characterized by a system of differential equations (3.6), which has a
geometrical meaning.

y(l)a _

Using the previous theorem we prove:
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Theorem 3.4. If the base manifold M is paracompact, then on T2M there
ezist 2-semisprays.

Proof. M being paracompact, there exist a Riemannian metric g on M with
local coefficients 4 (z). Consider 75, (z) the Christoffel symbols of g. It is easy
to prove that

1 )
200 =@ 4 Lg () gy 37)
~ oT®
is a distinguished vector field, i.e., with respect to (1.3), we have z(2)¢ = 8—;,2(2)1’.

It follows, that the function
L (2,9™,y) = up () 272 (3:8)

does not depend on the transformations of coordinates (1.3). Then the set of
functions

0 oL
a 1 2 _ 1 b 1
G (x,y( ),y )) = 57" (z) yt )Caxc ay(Q)b)

pe 0 (0L oL (3.9)
T 5y me \ ay@p ) T g0

is transformed, by means of a transformation (1.3), like in formula (3.4). Theorem
3.1 may be applied. It follow that the set of functions G* are the coefficients of
a 2-semispray S.

q.e.d.
Finally, in this section, we consider the function determined by a 2-
semispray S:
a oG*
]}fb = Gy (3.10)
Using the rule of transformation (3.4) of the coefficients G we can prove,
without difficulties:
Theorem 3.5. If G* (x,y(l),y@)) are the coefficients of a 2-semispray S
then the set of functions N¢ (x,y(l),y@)) from (3.10) has the following rule of
transformation with respect to (1.3):

C
~, 0%
1 ¢Oxb

oz oghe

b e Oxb

=N (3.11)

The system of functions ]}mb (:U, y™M), y(g)) is important to define the notion

of nonlinear connection on T2M.

1.4 Nonlinear connection

We extend the classical definition of the nonlinear connection, [134], on the total
space bundle (T2M, w2, M).
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Definition 4.1. A nonlinear connection on the manifold T?M is a reqular
distribution N on T?M supplementary to the vertical distribution V, i.e.

T,T*°M = N(u) & V(u), YuecT*M. (4.1)

Taking into account Proposition 1.1 it follow that the distribution N has the
property
T, T?°M = N(u) @ Vi (u) ® Va(u) (4.17)

Generally, we consider a nonlinear connection on 72M from the point of
view of Definition 4.1. We denote it by N and call it a horizontal distribution.
According to (4.1) we deduce that the local dimension of N is n=dim M.

Proposition 4.1./[\[/7%6 manifold M is paracompact, then there exists non-
linear connections on T?M.

Indeed, the manifold M being paracompact, it result that T2 M is a paracom-
pact manifold. There exists at least a Riemannian metric G on 72M. Considering
N as the orthogonal distribution to the vertical distribution V with respect to G,
the relation (4.1) is true. Thus, N is a nonlinear connection on T2?M.

q.e.d.

Let h and v be the horizontal and vertical projectors determined by the
distributions N and V. We have

h4+v=1I, h®=h, v>*=v, hv=vh=0. (4.2)
For simplicity, we denote
X7 =hX, XV =0vX, VX € X(T*M). (4.3)
Therefore, we have
X=X"74 XV VXecXx(T*M). (4.4)
We call an horizontal lift an F(M)-linear map I, : X(M) — X (T?*M) with

the properties
vol, =0, dn’ol,=1Id,

where dn? is the differential mapping of the projection 72, dr? : TT?M — TM.
Consequently, locally, for any vector field Xe X (M) it follows that [, X is a
uniquely determined vector field in the horizontal distribution N.

1)
Then, we obtain a unique local basis {5}, adapted to the horizontal
wa

distribution N which is projected by d=? on to the natural basis {aaa} It is
x

o 0
63;‘3 — lh (W‘) . (46)

given by
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This can uniquely written in the form:
0 _ 90 o 0 NG 0
dze Oz 1 C9y(Mb T2 TGy 2)b”

(4.7)

The system of differential functions (]yba(a:,y(l),y@)), Zyba(x,y(l),y@))),
a,b € {1,2,...,n}, defined on the domain of local chart on T?M, are called the

0
coefficients of the nonlinear connection N and {5&} is called the adapted
x

basis to N.
We can see that, with respect to (1.3), we have

) ozt §
527 Oz 6zt
It is not difficult to prove the following property, [92]:
Theorem 4.1. With respect to a changing of local coordinates (1.3) on
T?M the coefficients (Zyba,lgba) of the nonlinear connection N on T?M obey

the rule of transformation

~ ozt oze ,  oyhe
Yoar T Gt o N (4.9)
~ ozt oz N oya N oyDe

]Xf@ dxf2 oxf 1t fab

(4.8)

Conversely:
Theorem 4.2. If the systems of functions (]yab,lgf“b) are given on every
domain of local chart of the manifold T*>M such that the equations (4.9) hold,

then (]Y“b, 1;7‘2) are the coefficients of a nonlinear connection on T*M.

Let N be a nonlinear connection on T?M. The 2-tangent structure J, defined
by (1.7), applies the horizontal distribution N in a vertical subdistribution Ny
from V; of local dimension n, supplementary to the subdistribution Vs. Setting
No = N, J(Ny) = N1, we obtain from Theorem 1.1:

Theorem 4.3. The following direct decomposition of linear spaces holds

T.T*M = Ny(u) ® Ni(u) ® Va(u),Yu € T*M. (4.10)

Nj is called the J-vertical distribution.
Theorem 4.4. The adapted basis to the distribution No, N1, Va are given,
respectively, by

_ 9 b 9 b 9
Son ~ oen N agyn N agy@n
0 9 w9 4.11
sy(Ma — dyMa 1 29y’ (4.11)
0 0

5y(2)a ay(Q)a !
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Consequently,
) 0 0 ) u a

is a local basis adapted to the direct decomposition (4.10) and we have

)

5y~ g gy B =12)- (4.13)

Indeed, (4.8) is transformed by J in to (4.13).
As usually, let we denote

0 0 0

O0q = %,am = W,ah = Wv

and from now on we denote the basis (4.12) by

(6a, 61a,6'2a) : (4.12))

1.5 The dual coefficients of a nonlinear connec-
tion. Determination of a nonlinear connec-
tion from a 2-semispray

The dual basis (or adapted cobasis) of the adapted basis (4.12) will be denoted

by

(dx“, syHe, 6y(2)a) y(a=1,..,n). (5.1)

The scalar product of the covector fields (5.1) and vector fields (4.12) are
expressed as follows:

S ldx® = 6%, &JoyMe =0, §Joy@Pe =0,
51},Jd$a = 0, 51”@(1)(1 == 5;)1, (51},J5y(2)a = 0, (52)

62dexa = 07 52bJ5y(1)a 07 52bJ§y(2)a = 61?7
(52b = 521;) .

By a straightforward calculus we obtain:

Theorem 5.1.

1°. The dual basis (5.1) of the adapted basis (4.12) is given by

ox® = dx?,

(Da — Da a j.,.b
dy'tHe = dy'* + Mfdz®, (5.3)
6y(2)a — dy(2)a + ]\14 abdy(l)b+ ]\g%dwb,
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where

a __ a a __ a a f
]\{[b— by b—2b+]¥fz}7b- (5.4)

2°. Conversely, if the adapted cobasis (5.1) is given in the form (5.3), then
the adapted basis (4.12) is expressed in the form (4.11), where

a _ a a:Mai aMf' '47
yb A U o o (5.4)

These new coefficients Z\ll % ]\2/[ % will be called the dual coefficients of the

nonlinear connection N.
With respect to (1.3) the covector fields of the adapted cobasis (5.1) trans-

form as follows

~a)a 850‘ [0}
sgle = wéy( )b (a=0,1,2; 690 = da). (5.5)

By a straightforward calculus the rule of transformations of a dual coefficients
]\14ab, ]\24“b with respect to (1.3), it is not difficult to obtain, [92]:

Theorem 5.2.
1°. A transformation of coordinates (1.3) on the differentiable manifold T? M

implies the following transformation of the dual coefficients

o .~ oa°  ogle

dze 1 b T 1 coxb T 9xb

oz . e orc  —~. 8@(1% 8g(2)a (5.6)
3x0 2 b — 5 Caxb 1 ¢ ayb 81’b .

2°. If on each domain of local chart on T?>M a set of function (Z\ll‘z,]\é[“b> is

given, such that, with respect to (1.8), the equations (5.6) hold, then there exists
on T?>M an unique nonlinear connection N which has as dual coefficients just
the given set of functions.

One of the important problems concerning the notion of nonlinear connection
consists in its determinations from a 2-semispray.

Let us consider S a 2-semispray with the coefficients G (z,y™M), y?):

0 0 0
— yDa (2)a _3Q° 0,2y 2
S=y . + 2y By 3G (z,y Y ) oy’ (5.7)

We have, [91]:
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Theorem 5.3. The set of functions

a aGa a 1 a a C
M = 5 G M = 5 (53 + M) (5.8)
gives the dual coefficients of a nonlinear connection N, determined by the 2-
semispray S only, with the coefficients G* (m,y(l),y(z)) .

By a straightforward calculus we obtain:
Corollary 5.1. ([33]) The following functions

.  0G* . 0Ge ,
M = ay@)b’]‘f D (58)

are geometrical object fields on T>M, having the rules of transformations (5.6)
with respect to the changing of local coordinates (1.3).

These results are very important for the construction of the canonical non-
linear connections in the various geometries of second order.

1.6 Distinguished vector and covector fields

Let N be a nonlinear connection. Then, it given rise to the object decomposition
(4.10). Let h,v1,vy be the projectors defined by the distributions Ny, Ny, Va.
They have the following properties:

h+v1+v2:I,hzzh,vf:vl,vgzw,

hovi =vioh=0,hovyg =v90h=0,v1 009 =wvg900v; =0. (6.1)
If Xe X(m) we denote:
XH =hX, X" =01 X, X"2 = n X. (6.2)
Therefore we have the unique decomposition:
X=X 4 x4 x%2, (6.3)

Each of the components X, XV, XV2 is called a d-vector field on T2 M.
In the adapted basis (4.12) we get

XH = xOag, xV1 = xWag,  xV2 = x@aj, (6.3)

By means of (4.8) we have

Oa _ %Xm)b’)z(l)a _ 9%
X

di®
5 o X@0, (6.4)

9% (b g@a _
b ’
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But, these are the classical rule of the transformations of the local coordinates
of vector fields on the base manifold M. Therefore, X (?)¢, X(Ma X (2)a are called
d-vector fields.

1 2
For instance, the Liouville vector fields C and C have the properties

1 1 1 1 .
CH =0, C" =0, C = C"% =yMag,,,

2 2 2 )
CH =0, C"' = yMag,, C2 = (Qy(2)a+]¥aby(l)a)32a'

A similar theory can be done for distinguished 1-forms.

With respect to the direct decomposition (4.12) a 1-form w € X*(m) can
be written in the form
w=wl +u" " (6.5)

where

Wl = woh, w"' = wovr,w"? = wos. (6.5)

In the adapted cobasis (5.1), we have

W= wadz® + w oy + w oy, 6.6
(0) (1) Y (2) Y (6.6)

The quantities w,w",w"? are called d-1-forms.

The coefficients (w)a, (w)a, (w)aare transformed by (1.3) as follows:
0) (1) (2

ozt _ ozt _ ozt _
O " 0e 0 D" T dan (DB T dae )
Hence w4, w4, wgare called d-covector fields.
0 @ @ .
Particularly, we remark that the differential of a function f € F(T2M)
can be written in the form

Of va, O s wa, 9 sa
A T A T (6.7)

df =

Therefore

df = (df)™ + (df)*" + (df)"
where (6.7)

(df)" = 6o fda®, (df)¥" = 610 f Sy, (df)"> = Doa fOy'D7.

Let us consider a smooth parametrized curve v: I C R — T2M such that
Im~y C (72)~}(U). It can be analytical represented by:

% = :c“(t),y(l)a = y(l)“(t),y@)a = y(2)“(t),t el (6.8)



1.6. DISTINGUISHED VECTOR AND COVECTOR FIELDS 17

d
The tangent vector d—’z , in a point of the curve -, can be written in the

form:

dt — \ dt dt dt dt dt dt
where
6y(1)a dy(l)a d.]?b 5y(2)a dy(2)a dy(l)b dy(Q)b
= M4 — = M¢ M¢ . (6.10
dt a g T a T g T T (6.10)
. . oody o\ .
The curve (6.8) is called horizontal if % = \x in every point of the

curve-y.

Proposition 6.1. An horizontal curve on T2M is characterized by the
following system of differential equations:

5y(1)a 0 5y(2)a
a7 dt
Clearly, the system of differential equations (6.11) has local solutions, if the
initial point 2@ = xa(to),yél)a,y(()Q)a on T?M are given, to € I.
Let c¢:I— M be a parametrized curve on the base manifold M, given by
% = x%(t),t € I. Let us, also, consider to extension ¢(= ) to T?M of the curve
c. The curve c:I— M on the base manifold M is called an autoparallel curve of
the nonlinear connection N if its extension ¢(= 7) to T?M is an horizontal curve.
Theorem 6.1. The autoparallel curve of the nonlinear connection N with

the dual coefficients <]\14ab,]\24‘2> are characterized by the system of differential

equations

% = z%(1),

=0,tel. (6.11)

dz® o 1 d*z®

y(l)a = Tay =3 a2’
oyt A e d (6.12)
§ C(lg)a - d ng)a " ! bﬁl): ’ d b .

y _dy oy o dz”

dt — dt +J\14b dt +A24bdt =0

A theorem of existence and uniqueness of the autoparallel curves of a non-

linear connection can now be easy formulated.
1 2

Finally, we can represent the Liouville vector fields C and C from (1.6), (1.6)
in the adapted basis (4.12). We get

1 . 2 .
C = 2M%9,,,C = 295, + 222y, (6.13)

where .
Z(l)a _ y(l)a7 Z(Q)a _ y(2)a + ij\gaby(l)b' (614)

Therefore, z()* and 22 are d-vector fields. They are called the Liouville
d-vector fields.
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1.7 Lie brackets. Exterior differentials

In applications, the Lie brackets of the vector fields {5a,51a,32a} from the

adapted basis to the direct decomposition (4.10), are important.

Proposition 7.1. The Lie brackets of the vector fields of the adapted basis

are given by

[511;50} = (OR) b051a+ R bcaZaa

0p, 01c = O1a B ) as

[ b 14] (11) bc lat (12) beV2

|:5ba 820:| = B ab051a+ B abca.Za,

(21) (22) ™

6 5 c - R % a as

(010, 01c] (i3 be P

[51b7 324 = B abcéza,

(21)
where

R% = §.N¢ —5N“,
(01) be 1 b b c
R%. = 0.N% —(5bNa +Na R e
(02) 2 T o1
B, = 61cN%, B4 =10 —JN“ N¢ B
(1) be lc b7( 12) be 10 b + f( 11) be?
B4, = 9:N%, B4 =dN%+N% B, .
(1) be 05 1B y be 05 A 7 1y be
(12) be — 6lc]¥b - 51b‘7¥ c*

The proof of this relations can be done by a direct calculus.
Now we can establish, [14]:

Proposition 7.2. The exterior differentials of the 1-forms (dz®, 5y

SyP), which determine the adapted cobasis (5.1), are given by
d(dx*) =0,

d(y M) = { B fhedat + B o 8yMe+ B G5y }Adxb,

d(5y@e) — {1R“dC+B ye +Ba5<2 }/\dxl”r

1 pa gsyMe Ba5(2)c A §y(Db
+{2<12>”C VT oy e Y

Indeed, from (5.3) we deduce

d(syM) = M, 1 dz®, d(5y?*) = dM*, N dyWb + dM*, N da®,

(7.1)

1a

(7.3)

where we substitute dy(")® and dy(®® from (5.3) and take into account the rela-

tions (5.4) and the formulae (7.2).
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Let us consider the following coefficients from (7.1):
a __ a a __ A a a 9 f

(E) be — 610]}[ b» (22) be — 820];[ b + ]y f826]¥ b (74)
By means of (4.9) it follows:

Proposition 7.3. The coefficients (B)abC7 B 4. have the same rule of trans-
11 2

(22)
formation with respect to the local changing of coordinates (1.3) on T?M. This is

~ . Tt 9zt 9T d 0%z
B yrrae=7na8% 535,28
B8) Y oxb 0x¢ Oz (Bp) Ozxboxe
We will be see that these coefficients are the horizontal coefficients of an
N-linear connection on T2M.

‘We obtain also:

P ition 7.4. Th ents: B Ser B %er RS
roposition e coefficients 1) 7€ (03 b7 (13 be

~1,2). (7.5)

and

a a _ a a f
B be — 610];[1; 6b]¥c+]¥f610]¥ bs
B4, = 0N,

are d-tensor fields on T?M.

We get:
Theorem 7.1. The horizontal distribution N is integrable if and only if for
any vector fields X, Y € X (TQM) we have

[XH,YH]VI _ [XH,YH}Vz =0.

Indeed, the Lie bracket of any two horizontal vector fields X, Y belongs
to the horizontal distribution N if and only if the last two equations hold.

Also, we get:

Theorem 7.2. The J-vertical distribution Ny is integrable if and only if for
any vector field X, Y € X (TQM) we have:

XV YV =[xy Y] <o,

Taking into account (7.1) we can formulate:
Theorem 7.3.

1° The horizontal distribution N is integrable if and only if the following
d-tensor fields vanish:

(01) be — 05 (02) be — 0. (77)

2° The J-vertical distribution Ny is integrable if and only if we have:

R4.=0. 7.8
12) be ( )
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1.8 The almost product structure P. The almost
(a) —contact structure F, (a =0, 1,2)

Assuming that a nonlinear connection N is given, we define a F (T (M ))-linear
mapping
P:X(T?M) — X(T*M),

by defined
P(X7) = X7 P(XV1) = - X" P(X"2) = —X"2 VX € X(T*M) (8.1)

We have, also

PoP = I,
P = IT—-2(vy +v2)=2h—1, (8.2)
ranklP = 3n.

We can prove, without difficulties, [90], [92]:

Theorem 8.1. A nonlinear connection N on T?>M is characterized by the
existence of an almost product structure P on T?M whose eigenspaces corre-
sponding to the eigenvalue -1 coincide with the linear spaces of the vertical dis-
tribution V on T?M.

The nonlinear connection N being fixed we have the direct decomposition
(4.1), (4.10) and the corresponding adapted basis (4.11).

Let us consider the F(T2M)-linear mapping;:
Hg(&;) = O;Ig((sla) = _6.20,715(6.211) = 61a~ (83>

Then, we deduce:
Theorem 8.2. The mapping Ig has the following properties:

1°. It is globally defined on T?M.
2°. Ig is a tensor field of type (1,1).
3°. KerIg:NO, ImIg‘:Nl e Vs.

4°. rank I(E;:,?n.

5°. F° +F =0.
0 0
Proof.
1°. Taking int t (4.13) we h %F(é)*o. I Mi)i
. Z ing in g accoun o ge a;e R TIN PR S sz T
0. Also, 2% _ Ox L :c lead to

350 (yma) = T35 gy a3 b gyea) ~ b gya
o) = 0 and B0 )= 0
o\ sgn) ~ “agn MG\ g5 T soe
2°. Ig is F(T?M)-linear mapping from X (T?M) to X (T?M).
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0
4°. Evidently, by means of 3°.

5°. ]gQ(le)zlg(—X%):—XVl;Igg(xvl):x‘/z and Ig(XVl):—XV2;

)
3°. F(é—a):o implies I(E)‘|NO is trivial and Ig(No N @Vy) =N Vs
x

%‘2(XV2):I(E;‘(XV1):7XV2;Ig‘?’(X‘é):fXVl and Ig(xvz):XVl. So,
3 HY _ 3 iy — 3 Vay
(7 ) () =0, (7 + £) (X =0, (g + £) (X7 =0
VXH € Ng,VXV' € N ,VXV2 € V5.
Therefore 5° holds.

q.e.d.
Thus, ]Jg is a %‘(3,1)-structure. We can say that I(E)‘ is a natural almost

(0)-contact structure determined by the nonlinear connection N.
Indeed, the dimension of T?M is 3n=n+2n. Let us consider a local basis

& ¢ of the distribution Ny and ) its dual. Then the set F, &, i , deter-
n 0 Ui
la la

mine an almost n-contact structure. Namely, we have

F(¢) = 0.%(8) =3,
la 1o n —_—
F(X) = =X+ Y 1(X)€,YX € X(T?M).
a=1 la

Let us consider the F (ﬁ)—hnear mapping
F(8a) = ~02a,F(01a) = 0,F(92a) = o (8.4)

We have
Theorem 8.3. The mapping ]117 has the following properties

1°. It is globally defined on T?M.
2°.IlF is a tensor field of type (1,1).
3°. Ker[?‘:Nl, ImIlF:No P Va.
4°. rank I?‘:Qn.
5°. F*+F =0.
1 1
The proof fallow the same manner.
We can say that ]If is a natural almost (1)-contact structure determined

by the nonlinear connection N.
Analogous, let us consider the F(T2M) - linear mapping

]g((sa) = _51aalg(51a) = 5aag(a2a) =0. (85)

‘We have
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Theorem 8.4. The mapping ]g’ has the following properties

1°. It is globally defined on T?M.
2°. Ig‘ is a tensor field of type (1,1).
3°. Kerlg‘:Vg, ImIg‘:NO & Ny.
4°. rank Ig‘:,?n,
5°. F° +F = 0.

2 2

We can say that 112? is a natural almost (2)-contact structure determined

by the nonlinear connection N.
The Nijenhuis tensor of the structures F, (o = 0, 1, 2), is given by:
«

Ne(X,Y) =F2[X,Y] + [FX,FY] — F[FX,Y] — F[X,FY], (F = F),

[

and the normality condition of reads as follow:

Ne(X,Y)+ 3 d(0y??) (X,Y) = 0, VX,Y € X(T?M),
a=1

(8.6)
(F =F, a=0,1,2).

Of course, in the adapted basis, using the formula (7.3) we can obtain the
explicit form of the equations (8.6), (« = 0,1,2).

@ q . . .
The structures <IF, &, ﬁl> will be used in the case when we have a Riemann
Q& la «

structure G on T?M, so that the set (IF, ¢, lﬁl, G) will be the almost («)-contact

@ la «

Riemannian structures on 7/“5]\//[, (a =0,1,2). The manifold 72M endowed with
this structures gives us the geometrical models, (H) dn— {TQM,G,]F},(a =
0,1,2), for these spaces.

Taking into account (1.7) and (4.11), we obtain:

Proposition 8.1. The following equalities hold:
J((sa) = 61aa J(61a> = 52,17 J(8'2a) =0. (87)

——

1.9 The Riemann structure on 7%2M

Let us consider a Riemannian structure G on the manifold T2M.

The following problem is ii}"is/es: Can the Riemannian structure G determine
a nonlinear connection N on T2M? o

In order to determine a nonlinear connection on T2M by means of G, it is
sufficient to determine the distribution vertical Vo orthogonal to the distributions
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N; and Ny. The solution is immediate. Namely, it is important to determine the
coefficients ]}f“b, ];fab on N.

In the natural basis, G is given locally by

G = gapdz® @dab + gupdr® @ dyM’ + g pdr® @ dy®® + ...+ g updyP @ dyP?,
01 02 22

00
(9.1)
where the matrix || g 4, (o, 8 = 0,1,2), is positively defined.
aB

Let (5a,51a, 32a> be the adapted basis of N given by (4.11).

The following conditions of orthogonality between N; and Vs, respectively,
Ny and Vo:
G(014,025) = 0,G(64,02) =0 (9.2)
give us the following system of equations for determining the coefficients N9 and
1
gab_Ncagbc = 07
12 1 722 (9.3)
9 ab _Ncagbc _Ncagbc = 0.
02 1 712 2 722
The restriction of a Riemannian structure G on T?M to the vertical distri-

bution Vo on T2?M is completely determined by

é%ab = G(a.ga, 8%), (a,b = 1, ,n) (94)

Performing a change of coordinates on T?M it comes out that the functions
gap may be viewed as the components of a tensor field on M. Assuming that
22
rank( g q,)=n, let (g°?) be the inverse of matrix (g 4p).

22 22 22

Consequently, we have:

Theorem 9.1. A Riemannian structure G on T?>M determines uniquely a
nonlinear connection N, if the distribution Vo is orthogonal to distributions Nq
and Ng. The coefficients Z}]%, Jgfab of N are given by

Nab = gbcgca7

1 12 22 9.5
NG = goeg® — NN (9:5)
2 02 22 171

Corollary 9.1. If the distribution Vo is orthogonal to distributions N1
and Ny, then a Riemannian structure G on T?M determines uniquely the dual
coefficients ]\1/[‘1b, 1\24“17 of a nonlinear connection N by
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J\{ab:gbcgcaa]\g-%:gbcgca' (96)

Let F be the natural almost (a)-contact structures, (o = 0,1, 2), determined

o
by the previous nonlinear connection N.

The following problem arises: When will the pair (G,F) is a Riemannian

almost (a)-contact structure?
Of course, it is necessary to have:

G(FX,Y) = ~G(X,FY),VX,Y € X(T2M), (a = 0,1,2).

Consequently, we get:

Theorem 9.2. The pair (G,Ig} is a Riemannian almost (0)-contact struc-

ture on T2M if and only if in the adapted basis determined by No, N1 and Vo
the tensor G has the form
G(X,Y) = gapdz® @ da’ + hapdy ™M @ yM? + heydy@* @ 6y2°. (9.7)

Theorem 9.3. The pair (G,]?‘) is a Riemannian almost (1)-contact struc-

ture on T?M if and only if in the adapted basis determined by No, N1 and Vo
the tensor G has the form
G(X,Y) = gapdz® @ da® + hapdy™M?® @ sy + gop6y 2 @ sy, (9.8)

Theorem 9.4. The pair (G,]g‘) is a Riemannian almost (2)-contact struc-

ture on T?M if and only if in the adapted basis determined by No, N1 and Vo
the tensor G has the form
G(X,Y) = gapdz® @ da® + gapdyM?® @ dyM® + hyydy P @ oy, (9.9)

Corollary 9.2. With respect to each the Riemannian structures (9.7), (9.8),
(9.9) the distributions No, N1, Vo are orthogonal respectively.

Remark The forms (9.7), (9.8), (9.9) will be used to define a lift to T?M of
a metric structure given only by a nonsingular and symmetric d-tensor field gqp.
Namely, we have

G(X,Y) = gapdz® @ dzb + gapdy™M? @ sy + g0y P @ 6y PP, (9.10)

We can prove:

Theorem 9.5. If the Riemannian structure G given by (9.1) satisfy:

G (aa, a;,,) =0,G (a’la, 8%) —0and G (32(“ a'%) £ 0, (9.11)



1.9. THE RIEMANN STRUCTURE ON T2M 25

then we have
]}fab = 0’];[’1() =0 (equiv.]\ga = 0,]\24ab = 0) s (9-12)

80 = 0y 010 = D1a, 0y = dy?, 5yPe = gy, (9.13)

Proof. By (9.11) and (9.3) we obtain (9.12). The (4.11) and (5.3) given us
(9.13).
q.e.d.
Corollary 9.3. If the Riemannian structure (9.1) satisfy the equations
(9.11) then G has the following expression:

2
G= g (a:,y(”, y@)) dz® @dz" +) g (x,y(l),y(”) dy D" @ dy P’

(00) 52168)
(9.14)
if and only if we have
G (aa, 61,,) -0, (9.15)
where
det( g ap).-det( g q4p)-det( g ap) # 0. (9.16)

(00) (11) (22)
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Chapter 2

Linear connections on the
manifold T?M

The main topics of this chapter showing that there are linear connection com-
patible to the direct decomposition (4.10) determined by a nonlinear connection
N, on the total space of the bundle (T2M, 72, M).

We are going to study the distinguished Tensor Algebra (or d-Tensor Alge-
bra), N-linear connections, torsions and curvatures, parallelism, structures equa-
tions, etc.

2.1 The d—tensor algebra

Let N be a nonlinear connection on 72M. Then N determines the direct decom-
position (4.10), Ch.1. With respect to (4.10), Ch.1, a vector field X and one
form w can be uniquely written in the form (6.3) and (6.5), Ch. 1, respectively,
i.e.

X =X" 4 XV 4 X"

w=wH + ¥+, (1.1)

Definition 1.1. A distinguished tensor field (briefly: d-tensor field) on
T2M of type (r,s) is a tensor field T of type (r,s) on T>M with the property:

T(w, 0, X X) = T(WH, WV XL XY, (1.2)
Bl S

for any (al), oy W)E X*(T2M) and for any ()1(, . X)e X(T?M).

For instance, every component XX, XVi and X"2 of a vector field Xe&
X(T?M) is a d-vector field.

Also, every component w!,| w"' and w' of the form w € X(T?M) is a
d-1-form.

27
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If Te 77 (T?M) is not a d-tensor, then using (1.1) in T(cb, @, )1(, ey X) we
get

T + " + 0", XH + XV 4 XV2) = T(wH, ..., X))+
FTEH, XV 4+ T(@0", ., X Y2).

Then, every term in the second member is a d-tensor field.

Let us consider the coordinates of a d-tensor field with respect to the adapted
basis (04,014, 024) and cobasis (dx?, syMea, (5y(2)“)

T (2, y W,y @) = T(da™ ..., 0y D 6y, . Sap,)-

It follows that T of type (r,s) can be locally written in the form
=10 (, Yy Yy P)oa, @ ... ® Do, @ daPt @ ... @ 5y D=, (1.3)

Hence, the set {1,d4, 014, 32a} generates the algebra of the d-tensor fields over
the ring of functions F(T?M).
Examples
of of of

1°. If fe ]:(TQM), then — = 6af7 57 = 61af7 87

5 y(De ya — Oeaf are

d-1-covectors.
2°. Let us consider a Riemannian structure G on T2M and assume that the
distributions Ny, N7, V5 are orthogonal in pairs, with respect to G:

GXH Yy =q(X",Y"2) = q(x",Y"2) = 0,VX,Y € X(T*M). (14)
In this case G can be uniquely written as a sum of d-tensors:
G=G" +G" +GY, (1.4)
where, for any X,Y€ X (T?M), we have
GH(X,)Y) = G(XH,YH),

GVi(X,Y) = G(X", YY), GV (X,Y) = G(X*2,Y'"2), (147)
Consequently, in the adapted cobasis, G can be uniquely written as
G = gapds” @da®+ gady* @6y + g ady®* @6y, (1.5)
(0) 1) 2)
where
(g)ab(x,y(l),y(z)) = (g)ba(ﬂc, y,y®), (@ =0,1,2), (1.5")
rank|| g wl| =n, (e =0,1,2) (1.57)

(@)

The quantities g a4, (o = 0,1,2) are d-tensors of type (0,2) on T?M.
(a)
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2.2 N -—linear connection

On the total space T?M of the 2-osculator bundle (T2M 7% M) there are linear
connections compatible with the direct decomposition (4.10), Ch.1. The advan-
tage of considering these linear connections is that in the adapted basis they have
as coeflicients some geometrical objects, possibly to find in usual cases.

Definition 2.1. A lnear connection D on T*M is called a N-linear con-
nection if it preserves by parallelism the horizontal and vertical distributions Ny,
Ny and Vo on T?M.

By a general theory of connections on manifolds, the horizontal and vertical
distributions are preserves by parallelism if for any X€ X (T?M), Dx carries the
horizontal vector fields to the horizontal vector fields and the vertical vector fields
to the vertical vector fields. Thus DxY# is always an horizontal vector field and
DxY"# are verticals, (3 = 1,2).

Theorem 2.1. For any N-linear connection D we have
thZO,Dle :O,DXvQ ZO7 (21)
DxP=0, VXeX(IT°M). (2.2)
Indeed, from (Dxh)(Y)=Dx(hY) — h(DxY) if Y=Y, and Y=Y"5 (8 =
1,2) we obtain Dxh = 0. Similarly, we get Dxv; = 0,Dxve = 0.
Now, taking into account the expression (8.2), Ch. 1, of P it follows D xIP = 0.

Theorem 2.2. A linear connection D on T?M is a N-linear connection if
and only if the following properties are verified
(DxYH)" = 0, (DxYVe)" =0,(8=1,2), (2.3)
(DxY¥)"™ = 0,(DxY"2)" = 0,¥X,Y € X(T2M). '

)H

Let us consider a vector field Xe X (T2M), written in the form (1.1). It
follows from the property of an N-linear connection that

DxY = DxuY + Dxv,Y + Dxv,Y,VX,Y € X(T*M). (2.4)

Also, let us consider Y on T2M, written in the form (1.1).Since DxY is
F(T2M)-linear with respect to X, we have

2
DxY = Z (l)XH}/VCX <|>DXV1}/VCX +DXV2YV°‘),

- (2.5)
VX,Y € X(T?M), (Vy = H)

We find here new operators in the algebra of d-tensor fields: Dxw, Dxvy,
Dxv,, (a =0,1,2), denoted by

Dyn =D%, Dyv, =D%,Dyv, = D%, (a=0,1,2). (2.6)
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We have
10)5%1/ = DyuYH, 1(;)3;1/ = Dyw Y, 1(;)3?1/ = Dyvw,YH,
DRY = DxuY', gKéY = DxwY'"?, gK?Y = DxwY",  (27)
(B=1,2).

These operators are not covariant derivations in the algebra of d-tensor fields,
since D¥ f = X f # X f, etc. But they have similar properties with the covari-
«@

ant derivations.
Theorem 2.3. The operators D, DV1 D2 (a = 0,1,2), have the proper-
« o «

ties:

1°. All equalities (2.3) are verified for X=X X = X", X = XV and

D%f=X"fDRf=X"fDRf=X"/,

(e} (e} «

2°. DE(fY) = XT(fY)+ fDEY, DX (fY) = X"3(fY"?) + fDXY,

3°. (D;I?Y) = DXuYju, (D‘;?Y) = D‘;?IU Y|y for any open set UC

a U @ a U o
T2M,
o H H H Vs Vs Ve

4% Dxyy =Dx + Dy, Dx+y = Dx + Dy,

5°. Dy = fD%,D fx = D',

for any fe F(T?*M) and any vector fields X,Y on T*M, (a = 0,1,2;3 =
1,2).

DH DV, DV2 are called hy-, Vie-, and va,-covariant derivatives respec-
« «

tively, (a =0, 1, 2).

We can extend the action of the hy-, vi4-, and vo,-derivatives to any tensor
field on T2 M, particularly to any d-tensor fields. So, for any w € X*(T?M) and
for any X,Y€ X (T%2M) we have

(Dﬁéw) (Y) = XHw(Y)—w(Q;%Y),
X

“ ' (28)

(D w) ¥) = XVw(Y) —w (DXY) (a=0,1,25=12).
If Te 7/ (T?M), taking in DxT,X = X or X=X"5, we have
(D;gT) (&;, o, X, X) — XHT (b,...ﬁ,x, ,X) -
« 1 s 1 s

_T (D§$7...7&,)1(,...7X) A (&,...75,)1(,...,17;)() ,

(DZ?T) (b, o, X, X) — XVeT (cb, o, X, X) - (2.9)
-7 (DZ?SU, o X, X) - (Ju, o X, ...,DZ?X) ,

o 1 s 1 o s
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Now, let us consider a parametrized smooth curve v : ¢t C I — v(t) € 1/“_2\]\/4,
having the image in a domain of a local chart.

d
Its tangent vector field ﬁ:d—’z can be uniquely written in the form
=47 +4M +4%. (2.10)

In the case when + is analytically given by the equation (6.8), Ch.1, then

AH 4V2 4V2 are given by (6.9), Ch.1. And we can define the horizontal curve.

A vector field Y defined along the curve v has the covariant derivative

DsY = DY + DY + D*Y.

The vector field Y(u(y)) is called parallel along the curve « if
DyY =0.
In particular, the curve v is autoparallel with respect to an N-linear con-

nection D if Ds4=0.
In a next section we will study these notions by means of adapted basis.

2.3 Torsion and curvature

The torsion T of an N-linear connection D is expressed, as usually, by

T(X,Y) = DxY — Dy X — [X,Y]. (3.1)

It can be evaluated for the pairs of d-vector fields (X, YH) (XH yVs),
B Y V), (B, =1,2). We obtain the vector fields
XVs, Y'V4), (B 1,2). We obtain th field

T(XHvYH)vT(XHvYvﬁ)aT(XVﬁﬂYV’Y)a (@V = 172)'

Since D preserves by parallelism the distributions Ng, N1, V5 and the distri-
butions Ny, V5 are integrable it follows
Proposition 3.1. The following property of the torsion T holds:

hT(XVHaXV’Y):Q(ﬂv’Y:LQ)' (32)

Now, we deduce
Proposition 3.2. The tensor of torsion T of an N-linear connection D is

well determined by the following components, where in the right hand we have
d-tensor fields of type (1,2):
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T(XH, YH) = hT(XH,YH) 4o, T(XH YH) 4o, T(XH, YH),
T(XH,YVs) = hT(XH,YV3) 40, T(XH,YV5) 0, T(XH,YV5),

T(XV:, YY) = uT(XV,YVE) 4o, (XY, YY), '
(ﬂ =1, 2)’
T(X"2,Y"2) = nT(XY2,YV2)  4u,T(X V2, Y"2),

The d-tensor fields from the right hand of (3.3) are called the d-tensors of
torsion of the N-linear connection D.
For instance, we have

T(X?,vVe) = Q;%Y"a — %)?XH — X" yY], («=0,1,2),V° = H.

We shall say that hT(X | Y#) is h(hh)-tensor of torsion of D, v; T(X Y H)
is v (hh)-tensor of torsion of D and so on.
The curvature tensor R of D is given by

R(X,Y)Z = (DxDy — DyDx)Z — Dixy1Z,YX,Y, Z € X(T>M).  (3.4)

We will express R by means of the components (2.4), taking into account
the decomposition (1.1) for the vector fields on T2 M.

We prove

Theorem 3.1. The curvature tensor R of the N-linear connection D has
the properties

veR(X,Y)ZH = 0, hR(X,Y)ZVe =0,(8 = 1,2),
R(X,Y)Z = hR(X,Y)ZH + vyR(X,Y)Z" + 0,R(X,Y) 2"z,

(3.5)

Proof. Since D preserves by parallelism the verticals and horizontal distribu-
tions, by (3.4) the operator R(X,Y) carries horizontal vector fields to horizontals
and verticals vector fields to verticals. Thus the first four equations from (3.5)
hold. The next one is an easy consequence of the first four.

q.e.d.

By Theorem 3.1 and the equation R(X,Y) = —R(Y, X),VX,Y € X(T?M)
we get

Theorem 3.2. The curvature tensor of a d-linear connection D on the total
space T*M of a 2-osculator bundle (T?>M, 7%, M) is completely determined by
the following d-tensor fields:

2
R(XM YH)ZH = DYDYz — D¥DRZY — 3. D'fnym 21,

=0
2
R(XM,YM)ZY = DEDYZ"" — DYDRZ" — 3
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Vs

2
R(X"e,YH)ZH = lo)‘;?lo){}ZH DYDRZM — Y. D'ficn vy 27,
a=0
(B=1,2), (3.6)
R(XVs, YH)ZVy = D \ D2 —DYDXZVv - Z D[Xvﬁ v Z
WV—L%,
Vs vV 7 H Ve Wy o H Ve Vs S H N~ Ve
R(X B,Y 'Y)Z = ngyz —%Ygxz — ZQ[XVB,YVW]Z s

e=1

R(X"?, YY) ZYs = QZ?QV;ZW - D‘{??VEZVS Z D%vs YVW]ZVS,

where VO = H.

The d-tensors (3.6) are called d-tensors of curvature of the N-linear con-
nection D.

In applications it is suitable to consider the equalities (3.6) as Ricci identities.
We shall establish such identities for vector fields only, although these may be
written for every tensor fields. A simple aranjament of (3.6) gives us

Theorem 3.3. For any N-linear connection D the following Ricci identities
hold:

2
DYDY 2" — DYDY ZT = R(XT, Y T) 2 + DF[’XHvyH] 2"+ 3 D ym 27,

e=1
2
Vv, \Y
lo))?lo)?ZH - lo)?lo))?ZH =R(XYe, Y ZH + D[XVB ymZ z"+ 2110)\[/;("6,3/?1] zZH,
=
(B=1,2),

Vi

DEDYzH — DY
0 0 0

\%

2
X2 =RV YY)ZI 4 3 D, e 27,
(B,y=1,2,8<7),

o3

(3.71)
DYEDEZY — DEDRZY = R(XH, Y H)ZV +D[XH v 2V + z Difcn ym 2%,
vy vy vy Y
(v=1,2),

V8 NH V. HNYE 7V, _ Vv, H\ V. H Ve V.
DxDyZ"" —DyDxZ" —R(X Y )Z “’+D[Xv[, YH]Z v+ ZD[XV[, YH]Z v,
vy v vy ol v ’ e=1"7 ’

(ﬂ77:1a2)7

2
DY 2% - P D25~ RO, Y2 Dl e 2
e=1 ’
(B,7,0=1,2,8<7),
(3.72)
where VO = H
As a consequence, we obtain

Theorem 3.4. For any N-linear connection D the following identities hold
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B B 8
[DX’DY] C= R(X7Y)C_D[X,Y]C> (ﬁ: 172)7 (38)

where ((1:’(2: are the Liouville vector fields on T2 M.

The d-tensors of torsion and curvature of a d-linear connection D are not
independent. As it is well knows the torsion T and curvature R of every linear
connection D on T2M satisfies the following classical Bianchi identities:

S UDxT)(Y,Z2) -R(X,Y) Z+T(T(X,Y),2)] =0, (3.9)

> [(DxR) (U,Y, Z) + R(T (X,Y), Z)U] =0, (3.10)

where >~ means cyclic sum over X, Y, Z.
If D is a N-linear connection on T2M then by the Theorem 3.1 and

vs (DxR) (U#,Y,Z) =0 , h(DxR) (UY2,Y,Z) =0,
05 (DxR) (U, Y,2) =0 (B, = 1,2,8 %),
the identities (3.9) and (3.10) become:
SNIh(DxT)(Y,Z) — hR(X,Y)Z+
+ AT (hT (X, Y) 7Z) + 22: hT (UWT (X,Y) ,Z)] =0,
Slos (DxT) (Y, Z) — wsR (X,Y) Z+ _
+ vgT (hT (X, Y) ,Z) + Z vgT (Ufﬂf (X, Y) 7Z)] =0,

- (3.11)
(B=1,2)
S [h(DxR) (U,Y,Z) + hR(RT(X,Y),Z)U+
+ fj hR (v, T (X,Y), Z) U] =0,
> lvs (DxR) (U,Y, Z) + Z;IlR(hT (X,Y),Z)U+ (3.12)
+ 22: vsR (v,T(X,Y),Z2) U] =0,(3=1,2).

r=1

2.4 The coefficients of an N —linear connection

An N-linear connection is characterized by its coefficients in the adapted basis

] [ 0

= ﬁ7éla:7 a2a: W

60, 5y(1)a )

These coefficients obey particular rules of transformation with respect to the
changes of local coordinates on manifold T2M.
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We can prove
Theorem 4.1.
1°. An N-linear connection D can be uniquely represented, in the adapted

basis <5a,51a,5‘2a) in the form

Ds oy = L% 4, Ds 6 = L%J Ds. O = L9

6.9b (00) bcYas 6.91b (10) beVlas O ?b (20) be '2‘1’
Ds. 8y, = C® 84, Ds, 615 = C2 814, Ds, 0o = C % Do,

6190 (01) be 61.91b (11) be¥1 O1c .217 (21) be '2 (41)
D; 0, = C% 04, Dy 01p = C & 614, Dy Oop = C % Ooq.

82,90 (02) be 87,010 (12) bc91 82 Y20 (22) b2

2°. With respect to the coordinate transformations (1.3), Ch.1, the coeffi-

cients (Ia)“bc (x,y(l),y(2)) obey the rule of transformation:

~, oztoxt ox* 9%z
(@0) ¥ 0xb dzc — Ozl (a0) ¢ Oxbdzc

(a=0,1,2). (42

3°. The coefficients (Cﬁ')%c, (a=0,1,2;8=1,2) are d-tensor fields of type
(e}
(1,2):

~ o _ 07%0x° oz’ d

S = pai o3 B Gy o (a=0,1,2,8=12). (42)

Indeed, we can uniquely write
1 2 .
L 5uéb (OLO) bcéa (OLO) bcéla (OLO) bcéQUd

and taking into account that Dxd, belongs to the horizontal distribution Ny,

1 2
we get (L)“bp =0, (L)“bp = 0. Hence, we have the first equality (4.2) for oo = 0.
00) ¢ 00) ¢

Similarly, we prove the following equalities of (4.2). The statements 2° and 3° can
be proved by a direct calculus, taking into account the rule of transformations
(4.13), Ch. 1, for 84,814, Daq.
q.e.d.
The system of functions:

Dr(Ny=( L%, L% L4 C4 C4 C%. C4 C% C% ) (43
(N) ((oo) ber 10y %7 (20) %7 (01) ¢ (11) ¥ (21) ¥ (02) ¥ (12) ° (22)b> (4.3)

are called the coefficients of the N-linear connection D.

The inverse statement of Theorem 4.1 holds also.

Theorem 4.2. If the systems of functions (4.8) are a priori given over every
domain of local chart on the manifold T?>M, having the rule of transformation
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mentioned in Theorem 4.1, then there exists an unique N-linear connection D
whose coefficients are just the system of given functions.
Corollary 4.1. The following formula hold

D, dx* = — L abcdxb,Dgcéy(l)a =—L¢ 6y(1)b D5 6y =— L4 5y(2)b
o b 1) v (1)d (2) (20) (2)b
Dy, da® = — C 4 dab, Dy, oyMe = — 4 5yb Dy, syPe = — Ca 52
51.04T (01) be xb7 d1c y( ) (11)bc y( )b7 O1c y( ) (21) be y( )b’
D.: dz® = — a g D,éla:_ a(;l D'(SQ“:— a§2
8. T (()C;) b5 g, 0Y (g) b0y Uy, 0Y (26;) beOY
(4.4)

Indeed, the formula (4.1), the condition of duality between (Ja, O1a, 62a> and
(dz?, 6yMa,63) lead to formula (4.4).

2.5 The h,-,v1,~- and vy,~covariant derivatives in
local adapted basis

Let us consider a d-tensor field T, of type (r,s) in the adapted basis (6a, Oa, 32a)
and its dual (dz®,syV, 5y#?), (1.3), Ch. 1:

T =T 400y ® ... ® Ooq, ® da® @ ... @ oy, (5.1)

(0)
For X = X% = X4§,, applying (4.1), (4.4) and using the properties of the

operators DX we deduce:
[e3%

0) .
QﬁgT = Xdbe.'.ii,jad‘Sm ® . @ o, @dzP @ ... @ 5y (a=0,1,2), (5.2)

where
Ta1 ba |ad 5dT}?11 (LT_’_ L a1 T(‘az ar_~_ +
ar ai - ar 1C c a c ai...ar, ?
+(£) I —(aLO) blch;Q G ...—(LO) P i (5.2")

(a=0,1,2).

The operators ”|,4” are called h,-covariant derivatives with respect to
DI'(N),(a=0,1,2).
)
Let us consider the operators Dyg, for the vector fields X"t = X%§,,,
(a=0,1,2), we obtain for the d-tensor field T from (5.1) the formula:

e
wdOar @ e @ Daq, @ da? @ ... @ 5yPP (@ =0,1,2), (5.3)
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where

M
Tty | aa = 0wy 5 + q “ TR

(5.3

a1...ar_-1C

ar c a1 c a a
+((J/CI) cd™by...bs - (QC;) bldTCbQ...bs e (CI bs d bs_1¢?

(=0,1,2).

(1)
The operators ” | 7 are called vi,-covariant derivatives with respect to

DI'(N),(a=0,1,2).
2 .
Finally, taking , X = X2 = X %0,,, then for DE/(ZT we get

() 2 .
DRT = XT3 | ogbay ® . ® Ooa, @2 @ ... ® Sy@bs (@ =10,1,2), (5.4)

where
(2) .
Ty | g = 02Ty 37 + C;“l T g
el - ar 5.4°
+(g“ T 1 e _ chld ;}12 %5 _ C)cb dTIi bi . ( )
(a =0,1,2).
(2)
The operators 7 | wd are called vy,-covariant derivatives with respect to

DT'(N),(a=0,1,2).
It is not difficult to prove:
Proposition 5.1. The quantities:

1) (2

Tyt | o Tt | g (@ =10,1,2),

aj .
11 b \(xd’ bs

are d-tensor fields of type (r,s+1).
(1) (2)
Proposition 5.2. The operators ”|aa”, 7| 4" and 7| ;7 (¢ =0,1,2),
have the properties:

1) (2 .
1° flaa = 0af, [ | wa=01af f | g =0afVf € F (T?M).
2°. They are distributive with respect to the adition of the d-tensor of the
same type.
3°. They commute with the operation of contraction.
4°. They verify the Leibnitz rule with respect to the temnsor product.

As an application, let us consider ”the (z(l))- and (2(2))-deﬁection ten-

(2)a

sor fields”, where z(1)? and z are the Liouville d-vector fields of the N linear
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connection D (see (6.14), Ch.1):

(1) (11) (1) (12) (2)
D% = Z(l)a\abv d o =200 4 d =200,
(5.5)
(2) (21) (1) (22) (2)
Dab = Z(Q)G\Oélﬂ d ab = Z<2)a ‘ ab’ d UE) = Z(2)a | ab’
(a=0,1,2).

Proposition 5.3. The (2(1))—deﬂection tensor fields have the expression

—

N 1) ay (1) W, o
DY = —N% 4 (e pa tge_ge  Wega ga_ (ega (55
p b 1 b (aO) b o b b (al) b o b (a2) b ( )

(a=0,1,2).
These equalities are easy to prove, if one notice

)
2(1)a|ab — §yzMe 4 z(l)c(lé)acb’z(l)a - a2V + Z(l)c(%)acb,

(a:0,1,2,ﬁ:1,2,52b:32b).

Also, we have:
Proposition 5.4. The (2(? )-deflection tensor fields are given by

(2)

DYy = 3 (N4 + M) +5200NG 42 Ly,
@ 1 1,(1) (2
a9 = 3NG4 +520e B e ¢ C %, 5.5”
(a)b 3V T3%2 @ +z Sy e (5.57)
22

a _ a 1 c a c a
a9 = 5y +520 (g) o +2? (QC;) cb

(a=0,1,2).

We conclude this section with the following theorem of existence of N-linear
connection on T2M.

Theorem 5.1. If the manifold M is paracompact and N is a nonlinear
connection on T2M , with the coefficients JY“IJJX%, then there exists a N-linear

connection on T?M.
Proof. Since M is paracompact, there exists a linear connection on M of
local coefficients, say I'%_ (x). Let ]Y“b (z,yM,y?) and ]éf“b (z,yM,y?) be the

local coefficients of the nonlinear connection N. Weset L 4 =T9% (z), L4 =
(00) be be ) (10) be
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5161}7(167 (L)ab( = 8'21,];7‘10 + ]Y“da.gcl}fdb. Thus, taking into account the Proposition
20) ¢

7.3, Ch. 1, we obtain three set of functions which transform, with respect to
(1.3),Ch.1, by (4.2), Ch.1. It result that DI' (V) given by

B, 2)‘1&,070,0,0,0,0)

or () = (F4e (o). B,

defines an N-linear connection on T?M.
Definition 5.1. An N-linear connection D on T2M with coefficients

DI'(N) = e.,B, B%.,0, C4% 0,00, C¢%
( ) ( bcv(ll)cbv(m)cb) 7(11)170’ » Yy 7(22)170)

is called an N-linear connection of Berwald type on T?M.

2.6 FN-and JN—linear connections, (a« =0, 1,2)

[e%

Generally, an N-linear connection D on 72M is not compatible with the natural
(cr)-contact structures F (o = 0,1,2), determined by the nonlinear connection,

given by (8.3), (8.4), (8.5), Ch. 1.
Definition 6.1. An N-linear connection D on T2M is called FN- linear

connection (a=0,1,2) if T is absolutely parallel with respect to D:
DxF =0, VX € X (T°M),(a=0,1,2). (6.1)

By direct calculus we prove:
Theorem 6.1.
1°. An IgN—lmear connection on T?M is characterized by the coefficients

I(E)T'DF (N) given by (4.3) where
L abc = L abc? abc =C abc’ ¢ abc =C abc' (62)

2°. An IE‘N—linear connection on T?M is characterized by the coefficients
IE‘DI‘ (N) given by (4.3) where

“e=L4%. C4 =C4%. C4 = C5. 6.3
(20) be (00) be (21) be (01) be (22) be (02) be ( )

3°. An IgN—linear connection on T?>M is characterized by the coefficients
IQFDF (N) given by (4.3) where

L abc =L abc? abc =C abc’ ¢ abc =C abc’ (64)
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i.e.,

FDT' (N) = e L. ce.ce.Ce.C% |. 6.4’
B ( ) ((00) bc7(20) bc’(ll) bc’(21) bc’(OQ) bc7(22) bc) ( )
Remarks

AAFDI)WN)=FDI)(N)=| L%, L¢% e e e e .
D () (V) = FDE) () = ( £ s £ e € e G € G

B. The essential lifts to T72M a one pairs of metric structures given by non-
singular and symmetric d-tensor fields (gap, hap) are (9.7) and (9.9), Ch. 1.

Also, an N-linear connection D on T?M is not compatible with the natural
2-tangent structure J, given by (1.7), Ch. 1.

Definition 6.2. An N-linear connection D on T?M is called JN-linear
connection if J is absolutely parallel with respect to D:

DxJ =0, VX € X (T°M). (6.5)

Theorem 6.2. A JN-linear connection on T?M is characterized by the
coefficients JDT (N) given by (4.3), where

Le¢e = L& = L% (= L%

(00) be (10) be (20) be ( bc)’

ce = (C¢% = C% (= C¢

(o1 ¢ (11 be (21 be ( e be)s (6.6)
(©2) be — (12) be — (22) be (= g) bc)'

Proof. Indeed, by (1.7), Ch.1, we can write

(D3, 85) = D7 6)=7 (D) = Ds 507 £ 58 ) = (L% = L)

L
(00) (10)

Ds,J) (61) = Ds,J (610)—J (Ds.01) = D5, 0p—J | L %4010 ) = L % — L
(D3, (31) = Di.J ()~ (Ds.6) = Db ( I utia) = ( L%~ L5
Hence, (6.5) gives us the first equalities (6.6). Similarly, we prove the others.
q.e.d.
Remarks
1°. We have

{JDT (N)} < {FDI (N)} < {DI'(N)}, (@ =0,1,2).

2°. For any JN-linear connection, the h,- and vgs-covariant derivatives,
(¢ =0,1,2, =1,2), one reduce to h-, vi- and va-covariant derivatives. Also,

)]
" ae”, (@ =0,1,2), one reduce to ” |7, only and ” | .7, (« =0,1,2,8=1,2),
(1) (2)
one reduce to” | 7 and ” | 7, respectively.

) B,
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3°. For any JN-linear connection with the coefficients
JDT' (N) = L%, C%¢ C%. 6.7
() = (Lo G G ) (6.7
the deflection d-tensor fields have the expression

() .
Dy =52

(81) 1) (B2) (2)
do =00, a =00, (3=1,2). (6.8)

All these correspond to Miron-Atanasiu’s theory on Osc?M = T?M [89-94].

2.7 The local expression of torsion and curvature

In order to determine the local expressions of d-tensors of torsion and curvature
of an N-linear connection we use the covariant derivatives in the adapted basis.
Theorem 7.1. The d-tensors of torsion of an N-linear connection D with
coefficients DT (N) = ( Le.,ce.C “bc), (e =0,1,2), in the adapted basis
(a0) (al) (a2)
(4.12), Ch.1., have the following expressions:

hT (6¢,6p) = T % o, V4T (0c,0p) = T & e,
( b) (OO)bC Uy ( b) ( )bc’Y

0y
(7:1’2)7
hT (0gc,0p) = Pac(saa v, T 5075 = Pac(s a
(05, 0b) Lo T (98c, 6) Lo (7.1)

(577 = 17276211 = 8'211),

0T (2e:010) = Q %
(27) .
(7 = 1a 27520, = 820,)7

0T (6, 03p) = S % bra,
¥ (5 Bb) (ﬁﬁ/)b vy

(57,}/ = 1727520, = 820,)7

where
o= Lh — L% D% = Bi . Th = R
Ph= Ch . P4 = B - L%. Ph = Bi.
ot = Gt dnte T dhe 0 date T dnt T dy (72)
dhte = @y T e @y T dhe |
(21)%0 = (g)abc J (g)abc = (2B1)abc - (g)aclﬂ
(251)abc =0 ) (22)abc = (zcz)abc - (22)%:1;'
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Indeed, (7.1),Ch. 1 and(4.1), Ch.2, imply (7.1) and (7.2).
Especially, we have

%= L% — L%, S%.=C%.—C%, S%.=0C%.—C%%. (7.3
(00) be (00) be (00) cbr 11) be (11) be (11 cb» (22) be (22) be (22) cb ( )

Therefore,
Proposition 7.1. The following statements are equivalent

1. T = §2 =
©0) % (11) (22)

|
=
o
|
»
-0
o
I

c2,.
(22) cb

2. L4 = L% C

a — C a
(00) ) ay e an

C a
(22) be
We pay attention to the N-linear connection given in following definition:
Definition 7.1. An N-linear connection on T2M is called semisymmetric
if
1 1

TaC:*(SaO'C—(S.gJ R aC:* (5(17'6_637— ) :]-72a 7.4
I =30 SHFK Q(bw) (ﬁ)b) B=12), (14)

where o, 7, 7 € X* (T?M).
(1) (2

In the next calculus we have need of the following d-tensor fields:

[e3 e}

T(l i L a _ L a , P H.C — B (lc _ L (lc ,
© T @) " () (36) e @) (a0)

a — paea _ (a , Sae — e _ (e , (75)
& e ent @) @ @ @

(0=0,1,2,8=1,2).

We remark that we have

0 B

Tabc =T abc’ P (zc =P {Zc’

(0) (00) (88) (88)

622 3 < 5 (7.6)
e = b 4 C = 4 c? = 17 2

(22) be (22) be (8) b (88) b ( )

Proposition 7.2. For any JN-linear connection with coefficients JDT' (N) =

L%, C%., C%. | we get =1,2
( be (1)5 (2)b> get (B )

0

1 2
Ta = Ta = Ta = I% o =T ,
(0) be (0) be (0) be be cb ( (0) bc)
103 a P2 123 a B4 Le P e
Gt @mb T @et T @ T (_ (38) ’”)’
0 ) ) (7.7)
Qac = Qac = Qac = Bac_cac :Qac ’
(22)b (22)b (22)b (21)° 1 (zz)b
0 1
Sa = S = S = e —(Ca = Sa ,
(8) > (3) " (3) " @ B®»® ( ® bc)



2.7. THE LOCAL EXPRESSION OF TORSION AND CURVATURE 43

Now, it is easy to write the d-tensors of torsion for the FN-linear connection

(IF‘)DF (N),(a=0,1,2), given in Theorem 6.1, and for the JN-linear connection
«
JDT (N), given by (6.7). For instance, we have

Corollary 7.1. ([91]) The d-tensors of torsion of a JN-linear connection

with the coefficients JDT (N) = (L“bc7 g)“bc, g)abc> are the following:

a RA R
ber ber ber
(0) (01) (02)

a a a a
ber ber B ber be?

C B
(€3] (11) (12) (2) (21)

Sa ., R4 Q9. S
M 12" 99" @°

a a

ber (2P2) ber (78)

Indeed, (6.6), (7.2) and (7.7), imply (7.8).
The local expressions of the d-tensors of curvature of an N-linear connection

D with the coefficients DI' (N) = ( LS., C4%., C “bc> (¢ =0,1,2), in the
(a0) (al) (2)

adapted basis (4.12), Ch.1, can be found from the formulae (3.4).
If X,Ye {Ja,éla, 6211} we denote R (X,Y) by

R (0,0:) = Rpe,  R(036,0.) = P, =1,2,05, = D24 ) ,
(0p,0¢) R (08b,90c) B (ﬁ 2 2)

. . (7.9)
R (82177610) = cha R((Sﬂbvéﬂc) =S bes (ﬁ = 172a62a = 82(1) P
(2) (8)
and the action of R (X,Y’) on Z€ {6a, O1a, 32a} we denote by
R 4edop = R & 0aa; Pacdas = P & s0aa;
(O)dc ab (Oa)b cdlaa (B)d(' ab (ﬁa)b d%aa (7 10)
Q c5a = Q a(‘ aaa; S c(Sa =9 u(- 6aaa '
(2)d ’ (Qa)b 4 (ﬂ)d ’ (Ba)® ¢4

(a=0,1,2,y9 = 2,000 = 04,020 = D2a; f = 1,2).

By a direct computation, taking into account the Lie brackets (7.1), Ch.1,
we get
Theorem 7.2. An N-linear connection D with the coefficients DI (N) =

<(Ia)“bc,(C1')“bc,(Cz’)‘2c> (o =0,1,2) has the d-tensors of curvature (7.10) ex-
pressed by the following formulae:

RA, =6, L% —6.L¢ LYt rpe, — L% Lo
Gyt = %4atybe Tty b TG ey Te T ety baty Fo T

C

c°. R f a R f
@1 b @b T (ad) o 63) o
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(é—:)bacd :5ﬁd(0%)abc _(O%)%)d\ac +(C€)abf(§i){:d +(g)abf(ﬂ%){:d’ (7.11)
(g)ba“l :82d(<g>ab°' 0 G +<S)J;’C<§2)afd _<ac2>f”d(acl>af°'+
t it (%fﬁd’
(ped =045 oo =080 G Oﬂ’c((’;)f - %) v Sy 1ot
Tt <£>f°'d’

P b(/7R
(12) 7 (21) (21) " 22)

Taking into account (6.6), (7.8) and (7.11), we obtain
Corollary 7.2. The essential d-tensors of curvature of a JN-linear connec-

tion with the coefficients DI' (N) = (L“bc7 (1)“176, g)“bc> are as follows

<a:0,1,2,ﬂ:1,2,(£)“,w: pe. pPa = . =0,y —x,52a:32a).

Rb cd ( (g)b cd — (g)b cd — ((]):L;)b cd) )

P bacd> ’ (ﬂ = 172)a

Pploag \= Pya= Pbacd:(ﬁQ)

() Bo)* 4 (1)

(7.12)
Qbacd =qQ bed = Q bed = Q bacd> )
(20) (21) (22)

a _ a
bed - Sbcd_

S Se ), (B=1,2).
(3) (50) de) (8 )

S o =
Bt (B

From (7.11), the expression of these d-tensors of curvature are easy to write,

[14], [91].

2.8 The Ricci identites in the adapted basis

Theorem 8.1. For any N-linear connection D with the coefficients DI' (N) =
( Lz ber C % C abc> , (. =0,1,2), the following Ricci identities hold:
(@0) 7 (a1) 7 (a2)

xa ,oo—xe = X/ R, —ThXxa —
|ablae |ae|ab (Oa)'f be (0) be laf

2t e pi
7(01) be ‘ af (02) be

‘ afv

(€] €]

a a J— a f
X|ab |ac7X |ac\o¢b - Xf(llz)f bci(q)bc |ozf7
(2)

Pl xe Pl xe
7(11) be | af (12) be ‘ af’
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(2) (2)

Xxe — X S O N o R A G
|ab | ac | aclab (2a )f be (ac;) be |euf (8 1)
ptxa| _pt oy |
e be | (22) b¢ | af?
X“(T) (T) X"(T) (T) XfQe o X“(T)
ab | ac ac | ab T (2a)f be (a2) be af
f (2)
- Q cha ‘ af?’
(22)
Xa(f) (/|3) X“(T) (T) xf . o X“(:|L)
ab | ac ac | ab T (Boc)f be (8) be af
r’ a(2)
gy X" Lar

(a:07172’6:1’2)7

(,Y
where (R)abc =0 and T4 ber P %o Q bes )bc,(a =0,1,2,8=1,2) are given

(0) (BB)
by (7.6).
Remark
Using the previous considerations we can express the Ricci identities for any
JN-linear connections with coefficients DI" (N) =(L%_, C’abC7 Cabc) [91], [92].

Y
As usually, we extend the Ricci identities for any d- tenbor field, given by

(5.1).
As a first application let us consider a Riemannian metric G on T2M in the
form

G = gupdz®®dz’ + gab5y(1 ®5y(1 + g b5y(2 ®5y(2 (8.2)
(0) (1) (2)

having the properties

(1) (2)
g ablac = 07 g ab | ac — 07 9 ab | ac — Oa (Oé = 07 17 2)a (83)
(@) (o) (a)

with respect to an N-linear connection D.

Then we have:

Theorem 8.2. If the Riemannian metric G, (8.2), verifies the conditions
(8.3), then the following d-tensors

R aped = R / s P abed = P ! s
00" T @ 00 L Gy T )P ey (8.3
Q abed = 9 fb Q afcdv S abed = g fb S afcda (a = Oa 1’2)7
(2a) (@) (20) (Ba) (a) (Bo)



46 CHAPTER 2. LINEAR CONNECTIONS ON THE MANIFOLD T?M

are skew-symmetric in the first two indices (ab).
Indeed, writting the Ricci identities for d-tensor fields ¢ ., and taking into

(@)
account by the equations (8.3) we deduce

f o
gar R d T 9 R aea=0,...
@ )t el 0 oy

And using (8.3), we get ([{%)bacd + (({%)abcd =0,(a=0,1,2),etc.

The Ricci identities (8.1) applied to the Liouville d-vector fields z(Ve, z(2)e
lead to the some fundamental identities.

Theorem 8.3.  For any N-linear connection D with the coefficients
DI'(N) = <([6)%’C’ (Cl')“bc, (62’)‘26> , (e =0,1,2) the deflection tensor fields satisfy
the following identities:

(8) (B) B) «
D« pe, =R a _ peTs _
o blac o clab )(Ooz)f (a )f(O) be
B1 B2
~d*% Ry —d*% R
a f(01) be a f(02) be
B 1) (81) )
D¢ —de _ Z(ﬁ)f P @ _ a f
o b | ac a clab (1a)f be p f(al) be
(Kzll)a (j.fv)f (ﬁd2)a pi
T A f(ll) be 4 f(12) be?
(2) 2
(g)ab | ac (ﬁd) clab = Z(ﬁ)f P ngc - )af J;c
@ @ (2a) a 7 (a2) (8 4)
(81) f (82) (a)f '
—d af be af P ber
@ 7(21) @ 7(22)
B1) (2) (82) ,
dab‘ac_ a‘abzz(ﬁ)ijab_
) ) ( )(ZQ) (B2) (@)
Bl B2 «
—d af j;)c - d af J;c’
a 7 (a2) @ 7 (22)
Bv) By (v
a — d e — Z(B)‘f a
b | ac a © | ab ("/a)f be
(Bj)a gvf (%)a R f
a Tyt o Tapt

=0,1,2 =1,2, R9,.=0).
(Oé -y aﬂa’y ) 7(22)1)6 )
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Also, if the (2(1))—deﬂection tensors and (2(2))—deﬂecti0n tensors have the
following particular form

Da —o, @a —sa da 0

Jb— " Y =% Yp=Y

(2) (21) (22) (8.5)
D4 =0, d%=0, d¢=0

then, the fundamental identities from (8.4) are very important, especially for
applications.

Proposition 8.1. If the deflection tensors are given by (8.5), then the
following identities hold:

Bf Ra — Ra Wf pa _ pa @f pa _ pa
Tem T et Tl T et T daf T b
@Wf pa — pa . Wfga — ga AfQa —_ Oa
z ] 29 z c c? z c c?
Ba) P (3 b (ﬁ)f e (a2)® (2%f b (é%b (8.6)
B
®Bf g a — ga mfrgae —o @fgae — Ra
z ) z c ? z c c?
Byl be T (o b 2a)f b oy b7 (2)?

(a=0,1,2,8=1,2).

Let us consider the covariant h,- and vg,-deflection tensors of DI' (V)

(8) B) (B (Bv)
Dab: gacDCIH d ab = 9 ac d Cb(a:O7172;6a’7:152)'
(03 (a) [e3 (e} (a) [0}

Theorem 8.4. If the Riemann metric G, (8.2), verifies the conditions (8.3),
then the covariant deflection tensors satisfy the following identities:

)] (B) B «

Dca_D ac — (ﬂ)fR c_D T -
Ebelad = L b z ((m)fb d— L bf(o) cd
(ﬂill) R/ (%2) R
A bf(Ol) ed ) bf(02) cd?
B) @) (81) 8)
_ — Bf _ ro_
ch | ad g bdlac = Z (i)fbcd Qbf(g) d
(Kzll) ,{%f (Bd?) p/
- o bf(ll) cd b bf(12) cd?
B (2 (B2) B
ch | wd — g bdjac = Z(ﬁ)f(élz)fbcd_ anf(g/;)fcd_
R (8.7)
- a bf(21) cd a bf(22) cd?

(B1) (2) B2) (@)
gbc | wd — gbd oo = 297 Q fpea—
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By) () By) ()
d e | ga= dvalae = Z(B)‘f(f)fbcd—

(ﬁdv) g (ﬁd2) RS
a bf(a) cd a bf('y2) be?

=0,1,2; =12, R%.=0]).
<O[ )y 1ﬁ7ry ) 5(22)1)(, )

2.9 Parallelism of the vector fields on the mani-
fold T2M

Let D be an N-linear connection with the coefficients DI' (N) = ((L)abca (C)”bc,
a0 al

C4), (@=0,1,2), in the adapted basis (5a,51a, 82,1).

(02)

Let us consider a smooth parametrized curve v : I — T?M having the
image in a domain of a chart of T2M.

Thus, v has an analytical expression of the form

z® =z (t),y M = yMa (1), gD =@y teT (9.1)
The tangent vector field ¥ = ‘Z—Z, by means of (6.9), Ch.1, can be written as
follows: " .
) dr? JyHa Sy2a .
i = G+ b1+ e, (9:2)
where
6y(1)a dy(l)a dxb 5y(2)a dy(2)a dy(l)b dxb
= M — = M¢ MG —. 9.3
dt dt Lhdt dt dt TR T (9:3)
Let us denote
DX DX
DyX = —=, DX = —=dt,YX € X (T°M) . (9.4)

DX
The quantity DX is the covariant differential of the vector X, and e is

the covariant differential along the curve ~.
If X is written in the form

X=XH 3 xV1 4 xVoe = xOag 1 x(Mas, 1 x@aj,
and we put

dx® 6y(1)a 5y(2)a
D D D
g et g et

dt aQa’

Dy = Dsyu+Dsvi +Dsv, = DEF 4D +DY? =
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then, after a straightforward calculus, we have
DX = <dX(O)“ + X(O)f(w) ) Sat

(9.5)
+ (dX(l)“ +X0f gﬁ) 81 + (dX<2> + X @ ) Oa.

where

(w) b = (Lo) Gedx® + C a syhe 4+ C a 5y (a=0,1,2). (9.6)
«

The 1-forms (ag)ab, (w)ab, (czu)“b from (9.6) are called 1-forms of connections of D.
1

Putting
Wy c 1 (2
(a) dx oyl oy
4 C 9% C 5 9.6’
t (a0 )b°dt+a be g +(a2)b° dt (9.6
the covariant differential along the curve ~ is given by
(0) '
DX dx\e (0)
=z XOFf—_|s,
at T a |
u u (9.7)
dxWa 5! dX @a &I -
XM 1§ xX@r2_ 1y, .
a7 a | i de |

The theory of the parallelism of the vector fields along a curve - presented in
Section 2 of this chapter can be applied here. We obtain:

Theorem 9.1. The vector field X = X(O)“(Sa+X(1)“51G+X(2)“32a is parallel
along the parametrized curve 7y, with respect to D if and only if its coordinates
XOa xMa x2a gre solutions of the differential equations

dX(a)a X(a)f (a)
dt dt

=0,(0=0,1,2). (9.8)

DX
The proof is immediate, by means of the expression (9.7) for o

A theorem of existence and uniqueness for the parallel vector fields along a
given parametrized curve in 72M can be formulated in the classical manner.

The vector field Xe X (T?M) is called absolutely parallel with respect to
the N-linear connection DI" (N), if DX=0 for any curve 7. It is equivalent to the
integrability of the following system of Pfaff equations

ax(@a X(a)f(w)af =0,(a=0,1,2). (9.9)
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The system (9.9) is equivalent to the system

(€]

(2)
x(@a  _ x(a) | =X =0,(a=0,1,2) (9.9

|ab
which must be integrable.

Using the Ricci identities, the system (9.97) is integrable if and only if the
coordinates X(®? (a = 0,1,2), of the vector X satisfy the following equations

x@f p aC:O,X(a)f P “C:O7X((’)f Q HCZO,X(a)f S 8,.=0
(o)’ ? By ? o) * By ®
(9.10)
(«=0,1,2;6=1,2).

The manifold T2 M is called with absolutely parallelism of vectors with respect
to D, if any vector field on T2M is absolutely parallel.
In this case the system (9.10) are verified for any vector field X. It follows:
Theorem 9.2. The manifold T?>M is with absolutely parallelism of vec-
tors, with respect to the N-linear connection D if, and only if, all d-tensors of
curvatures of D vanish.

The curve vy is autoparallel with respect to D if Ds¥ = 0.
By means of (9.2) and (9.7) we deduce

Dy d?z®  daxb (og)ab P
dt dt? dt dt |
d " (9.11)
d syMa  gyWb (‘*1’) b d oy@a gy (‘*21) b\
dt dt a at | @@ i ar | %

Theorem 9.3. A smooth parametrized curve (9.1) is an autoparallel curve
with respect to the N-linear connection D if and only if the functions x®(t),
yWa (1), y@a(t), t € I, verify the following system of differential equations

d?z° dx® (C(‘)J)ab

T aa

d sy gyWe e 0 (9.12)
dt dt dt dt ’

d 6y(2)a 6y(2)a (og)ab

dt dt i dat

Evidently, the theorem of existence and uniqueness for the autoparallel curve

can be easily formulated.
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We recall that + is an horizontal curve if ¥ = 4. The horizontal curve are
characterized by
syMa sy(2a

a _ na — = U. 1
=z (1), p 0, o 0 (9.13)

Definition 9.1. The horizontal path of an N-linear connection D is an
horizontal autoparallel curve with respect to D.

Theorem 9.4. The horizontal paths of an N-linear connection D are char-
acterized by the system of differential equations:

sy2e
[ == = .].4
dt dt Todt 0, dt 0, (9-14)

(=0,1,2).

Indeed, the equations (9.13), (9.6°) and (9.12) imply (9.14).

A parametrized curve v is vg-vertical curve in the point xo € M if its tangent
vector field 4 belongs to the distributions Njand Va, respectively, (8 =1, 2).

Of course, a vy-vertical curve v in the point xy € M is analytically repre-
sented by the equations of the form

2@ =z, yMe = yMa(g) @ =0 ¢t e, (9.15)

and a vo-vertical curve  in the point xg € M is analytically represented by the
equations of the form

z® =z, yMe =0,y =y (1) t eI (9.15")

We define a vg-path (8 = 1,2) in the point xo € M with respect to D to
be a vg-vertical curve in the point xo € M, which is an autoparellel curve with
respect to D.

By means of (9.15), (9.15°) and (9.11) we can prove:

Theorem 9.5.

1°. The vy -vertical paths in the point xo € M are characterized by the system
of differential equations

d? (Da d (1)bd (L)e
i B (o ) B o001,

2°. The vq-vertical paths in the point xg € M are characterized by the system

of differential equations

dy@b dy(2e B

d2 (2)a
a a ,(a _ Y _O’(a:()7172).

€T ZIan — Y

@y a <2>>
az T &) (IO’ 0.y dtdt

Remarks
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1. We assume that there exists the coefficients (C’)“bc(aco, y™M, 0) and (C’)“bc(aro,
al a2
0, y@).

2. By Theorem 6.2, we can write the results of this section with respect to the
JN-linear connection JD on T2M, [91], [92].

2.10 Structure equations of N—linear connection

For an N-linear connection D, with the coefficients DI' (N) = ((Ia)abC7 (q)abc,
(C;)“bc), (e =0,1,2), in the adapted basis (6(1,61&, 32a) we can prove:
Lemma 10.1.

1°. Each of following geometrical object fields
d(dz®) — dxb A (w)ab,d (§y(’8)a) — oyPb A (w)“b, («=0,1,2,6=1,2),

are d-vector fields.
2°. The geometrical object fields

dw%— wGHN w, a=0,1,2),
@’ @ @ ( )

and d-tensor fields, with respect to indices a and b.

Using the previous Lemma we can prove, by a straightforward calculus, a
fundamental result in the geometry of T2M.
Theorem 10.1. For any N-linear connection D, with the coefficients

DI'(N) = ( Ls., C4. C “bc>, (a=0,1,2), the following structure equa-
(@0) " (a1) ¥ (a2)
tions hold good:

d(dz®) —dzb A w @ = —-Q9
v
1
d (§yMa) — 5y A (w)“b - ,(Q)tg (10.1)
2)
d (6y@) — 5y A (w)ab = —(Q)“, (=0,1,2),

and

d(w @ _ w)fl', Aw=—0Q5%, (a=0,1,2),  (10.2)
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o O (2
where (Q)“, (Q)“, (Q)“, (e =0,1,2) are the 2-forms of torsion

© 17 b
00 = 3 Toda Ao+
+(g)abcdxb A (Sy(l)c + (g)abcdmb A 5y(2)c7

(1)
Q¢ = 1 R da® Adx+
(@) (0102
+(ﬁ)“bcdxb A dye + (5)“bcda:b A dy@et (10.3)

+1 84 syWb AgyDe+ O g syMb A sy2e,
(1) (a2)

2
Q® = 1 R% da® Adxc+
(a) (02)

+ P “bcdxb A SyDe 4 j.-% abcdxb A SyPeq
(12) (22)

1 o3 1 «
4+ R ac(s ()b AS e + ac(s (1)b AS (2)e 4= Sacé (2)b AS (2)(:7
5 J8 b0y Yy (g)b Yy Yy 53 0 Y

and where (Q)“b, (e =0,1,2),are the 2-forms of curvature
(e}

09 = % R 2 adx A dx® +
(@) (0c) (104)
+ P gdat ANsyMe 4 P dac A Sy +

(1) (2ax)

1 1
+5 5 bacd5y(1)c Aoy 4+ Q bacd5y(1)c Aoy = 8 bacd5y(2)c A Sy,
2 (1) (20) 2 (2a)

Remarks

1°. The theorem 10.1 is extremely important in a theory of submanifold
embedding in the total space T2M of the bundle (T2M, 72, M).

2°. For any JN-linear connection JD with coefficients JDI'(N) = (L%,

%er C%.) we have
(1)bc (2)17)

© © © O n o O o

RN ST S N M M

0 1 1

@ @ @ © (10.5)
Q0= Q%= 0°=0% 0% =Q%=0%=0°

© O @ ©' " m° @

Then, by Theorem 6.2 the structure equations for the JN-linear connection
are easy to write, [14].
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2.11 The Bianchi identities in the adapted basis

For applications, the form of the Bianchi identities (3.11) and (3.12) in the
adapted basis (6a, a, 32a) is needed. In order to get it we shall insert in (3.11)
and (3.12) the vector fields X, Y, Z as in the following table:

X | 04| 61a | O2d | 014 | 61a | O2d | 61a | O2d | O2q | O2a
Y 5(; 60 60 61(: 820 820 610 61c 820 820
Z |0 |0 |0 |06 |0 |0 | O1p | O1p | 01 | O

and U will be taken successively equal to g4, 014, D2q. Then taking into account
(7.1), (7.2), (7.5) and (7.10) we prove

Theorem 11.1. For any N-linear connection D with the coefficients

DI'(N) = ((Lo)abc, (Ci)“bw (C;)abc> , (. =0,1,2), the following Bianchi identities

hold:
0 af
T 4 T T .
> [(Oa) belad T 0) 7 (0a) art
11.1,)
7! pa 7! pa _ Roa | 0, ( 1
+ (01 e ¥ + 02) 2oy ¥ (00)? 4
(a =0,1, 2) ,
where
]% @ R ° ]ﬁ:i @ 0 1,2
(OO)b cd — (OO)b cd? (OO)b cd — a(/B — 4 )7
T4 v P P
(0a) be | ad (ia) bd|ae + (ia) cdlab ™
- %jz;c Poy— Chy Tt CL,T %+
(0) " (1la) (13) (0c) (13) (0c) (11.2,)
Tf Sa_Pf pa +Pf Pa+ 41
o1 ¥ antan T an “aa
+Tf’ aipf PachPf PG*AQC:(],
©02) " om ¥ an e a2 “ea G0’
(a = 07 17 2) )
where
A “ P P ¢ ;1 @ R 7 124 @ 0
(10)1) cd — (10)b cd (IO)C bd>» (10)b cd — (Ol)d ber (10)b cd — Y
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(2)
T 4 - P pe. . —
(0a) be | ad (20) bd|ace + (2a) cd|ab

!

T%. P e
(0) 7 (2a)

T
(0a) <

a _ p f + P f Ta _
fd (20) bd (20) Cd(Oa) bf

(11.3)

- Tt Qe,~ Pl Py Pl o pPa.
01) " 1 @y an T @) “aa
— 7t gae, Pt pe 4 plopa _ Aa
02) °2a) 14 22) %200 T T (22) A2y T (20)0
(a = 07 17 2)7
where
Ag —pa _pa ja _g A _pao
(20)}) cd — (20)b cd (20)(: bd>» (20)17 cd — ?(20)1) cd — (02)(1 ber
(1) (1)
aC (0% - P % «ac + S aC « -
(la)b | d (la) bd| (la) d\ b
_ Cf pa C a
(1) "(1e) 71 (a1) P 1) ¢ L4
+Pf a}_Pf Sac SCPa—l- -x]
an e ¥ antda e (1) ) b .
—l—Pf a _ pf a pa AS =0,
(12 e @ 12"y a2 “ea T dn e
(a=0,1,2),
where
a a a _ pa _ pa a
(11)b cd (10)17 cd7(11)b cd (11)d be (11)0 bd7(11)b cd )
b (1) b 2) .
(2a) be | ad (ia) bd ‘ ac (20) dc\ozb_
~ ¢t payrct pae —cf pa
(&2 "o 74T (@) Paa) T T (G2) % (i) O
o o 11.5,)
+pf)sa erf Qac*Qf Pa 4+ ( 1
1) e ¥ T an (22) 4 (2a) O
Pl Qo+ Pl S — Ag =0
+ (22) bc(zci) df + (12) bd(2a) fe (12)b cd 9
(O[ = Oa 172)7
where

1 2

Al =0, A, =P AL, =—P2°
(12)17 cd 7(12)b cd (21)d ber (12)1) cd (12)c bd»
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. (2) (2)

ca_Pa OtCJ’_SaCOL_
b|d()bd| (30 Cllocd

P
(20)
- Ch Pyt C St pa -
(&2) P za) 11 T (62 P 2a >fc+<2> “d(2a) o7
- Pl Qe + p Q. —
@1) 20y T T @1) P a0
_ pl ga Pl Sa _ Aa =0
@2) "oy 10 T (a2) ey Te T B3) ’

(11.6,)

where
Al =8 A2 =0 AL, =P — P27
(22)17 cd (20)b cd» (22)17 cd ’ (22)17 cd (22)d be (22)0 bd>»
0 (1)

g g
Sf Sa 4+ S f a _ g a =0,
2 (m) e | gt Wrap ¥ 12 e Y dpt e (11.79)

(B=1,2),
where

2
S = S A S =0,
(11 )b cd — (11)19 cd a 1)b d
2) (1) (1)

c| % | (‘+Qac | -
e 102 Gy laet 3 a Lo

s B B

C Q C, + C
el M @2 s @ a1 o (11.8,)

B B
— S e S % QI Q" 0L, Q% B =0,
(12) P2 )fd (22) ~ (28) of (22) ¢ (2ﬂ) of = @’

(6 = 1’ 2) 3
where

2
B — a B a — S a
(21)1) cd — Q b ed (g)c bd> (21)1; cd (12)(1 ber
Qe (T) 0 (T) (T)
(28) be | Bd 28) bd Bc (25) cd Bb

- C f a f a _
(82) bc( 29) fd (52) d Q fc )Cd(éQﬂ) bf (1191)

5
_ f S a 4 BA =0
Q bc fd Q bd(2ﬁ) (22)b cd ’
(ﬂ: 172)a

where

Ba(' :SapﬂBa(' :QaciQpa7
@' @A)’ P’ 5* e™
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0 (2)
S St ga _ ga =0 11.10
Z [(22) be | 2d + (22) bc(22) df (22)17 cd ) ( 1)
and
0 a
R ¢ + RS cdt
Z |:(O )a belad (o) bf(O) d (1112)
PRI+ PeyRYI=0(a=0,1,2),
+(1a)a bf((ﬁ) cd™T (200 bf((g) cd:| (a )
€ (1) € (&
((ﬁ)a be | ad — (i)a bd|ac+({:)a cdlab ™
~ Th Py CLRE L+ CLIR ST
(0) bc(la)a df (al) bd(Oa)a cf (al) Cd(Oa)a bf

RI ge _ plf pe pl pe
+ on can* ¥ 11) i) Cf—’—(n) ed(]q)® br

11.2
+Rf Qe _Pf P e —I—Pf Peb :O7 ( 2)
02) o) ¥ a2 Mea)* T (12) “h2a) ¥
(a - 07 1’ 2) )
R e (2) P [ P e
(Oa)a be | ad (2a)a bd|ae + (20)% cdlab ™
71t pe . _ct Re 4l Re
(0) bc(za)a fd (a2) bd(O )a cf (a2) Cd(Oa)a bf
_ R f e ) _ P f P e P f P e
o bc(g)a fd 7 51yt {opa cf + 1) < (1a)" bt (115,
(e} @ -92
RI §e _ pl pe Pl pe . =0,
+ 02) °@2a)* ¥ (22) P4 (2a) ¢ + (22) “4(20)% Of
(a=0,1,2),
P (1) P (1) g (1)
(o )a be | ad (la )a bd ‘ ac+(1 )a cd | ab
— C P e, + C et
(1) P¢(1a)® 14 bd(l o !
+ %J;csaedf+ %}J;)dsaefc+§fcdpaebf+
an **(ia) <11> AT 1) “aa (11.4,)
Pl Qe + S5t pPe . =0,
+ (12) bc(g)a df — (12) bd Q a cf (12) cd(za)a bf
(¢ =0,1,2),

R )
(2a)a be | ad (1a)a bd ‘ ac (g)a delab ™
- C f Pe..+C f P ae o+

(@2) ") 1?7 (a1) M(20)"



58 CHAPTER 2. LINEAR CONNECTIONS ON THE MANIFOLD T?M

+ Ph. S adf T bd Q afc cl.p abft
21 la 1 « la
(a) (1a) (1 ) (a) (1a) (11.52)

a fc P aebf = 07

et Pl g e Q.
A (12) Y20 (22) “(20)

P J
(22) bc(g)
(a=0,1,2),

e @ L@
(2a)® be | ad — (2a)® bd ‘ act (Za)? cdlab ™

f
—C Pejd-l-de

a2) ¥¢(2a) a >“fc

- Pf Qae + P Qa c
@) " oe I @y g (11.65)

Cut PhoSE S5 pe
@I Meat T @) e

P f
(22) *’C(gn

(1) a
S g SISyt 84, Q Lyl =0 11.7
Z (1o )a be | ad + (1) bc(la)a df + (12) be %)a df ’ ( 2)

- Sfb(' aefd - C J;d 1So( aecf + C fcd 15(; aebf_ (1182)

(2) (2) (1)

- Sid(g);bf— (11.92)

S aedf :O, (11102)
(a=0,1,2).

Here, everywhere, > means cyclic sum over (d,c,b).
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Remarks.
1°. These identities become simpler if

% =0, 9%.=0,8589%.=0.
(00) be (11) be (22) be
2°. By Theorem 6.2, Proposition 7.2 and Corolarlly 7.2, the Bianchi iden-

tities for the JN-linear connection, with the coefficients JDT' (N) = (L%, (C’)“bc,
1

(QC)“bc) are not difficult to write (see [27]).
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Chapter 3

Metric structures on the
manifold T2M

3.1 Metric N—linear connections on T?M

Definition 1.1. A metric structure on the manifold T>M is a symmetric co-
variant tensor field G of the type (0,2) which is non degenerate at each point
u € T?2M and of constant signature on T>M. If G is positive definite we say it
defines a Riemannian structure on T2M.

As in the Section 9, Ch. 1, we can prove that there is uniquely a nonlinear
connection such that the distribution V5 is orthogonal to distribution N; and Ny
, with respect to G, i.e.:

G(X",Y"™)=0,G (X" Y")=0. (1.1)

Proposition 1.1. A metric structure G on T?M determines uniquely a
nonlinear connection N, if the distribution Vs is orthogonal to distributions Nq
and Ny. The coefficients Z}]”b, Jgf“b of N are given by

Nab:gbcgcavNab:gbcgca_Nachb, (12)
1 12 22 2 02 22 171

where

gab = G (6041178.{317) v(avﬁ = Oa 1a2) 760a - 6&; HgabH = ||gab||71~ (13)
afB 22 22

In this Section we shall use only this nonlinear connection.
Also, we suppose that the distribution Ny is orthogonal to distribution N7,
with respect to G, namely:

G (X", vy") =o. (1.4)

61
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Proposition 1.2 If the distribution ](\)7 is orthogonal to distribution ]}7 with

respect to G, is necessary that between the components g q, (o, 3 =0,1,2) of G
af

there exists the following relation

gabeCagcb - NcagcbfgacNCb‘i’

01 1711 2 12 02 1 (1.5)

+ ]Yca]ydbgcd+]¥0a1¥dbgcd:0~
12 22

Proof. By (4.11), Ch. 1, (1.3) and (1.4) we get (1.5).
q.e.d.
Corollary 1.1. If the distributions ]X,]Y,VQ are orthogonals in pairs with

respect to a metric structure G and rank( g .» )=n, then between the components
22

g ab of G, (1.8), necessary exists the following relation
af

Gab — (gacgdb + gacgdb> 9t Gacgangrgg g =0. (1.5
01 12 11 02 12 22 12 12 12 22 22

Let us consider a metric structure G on T2M and the distributions ]37 , Z}f , Vo

are orthogonals in pairs with respect to a metric structure G. By (1.1) and (1.4)
we have the following decomposition of G:

GX,Y)=GXE v + G(XV" Y + G(X2,Y"2), X, Y € X(T?M). (1.6)

With the other words, G decomposes into sum of three d-tensor fields:
G of type (0,2) defined by G#(X,Y) = G(XH,YH), G"* of type (0,2) de-
fined by GV1(X,Y) = G(X"1,Y"1), GV2 of type (0,2) defined by G"2(X,Y) =
G(XVQ’YV2).

Locally, these d-tensor fields can be written as

o= (g)abdw“ ©dz’, G" = (9)ab5y(1)“ ® oy, GV = (g)ab5y(2)” ®6y@°, (1.7)
0 1 2

where

gab = G((Sa»(sb)a 9ab = G(élav(slb)v 9 ab = G (82a782b) 5 (18)
1 2

(0) ) ©))
rankl|| g w|l =n, (@ =0,1,2). (1.9)
(a)

Thus the decomposition (1.6) looks locally as follows:

G= gadr®@dz® + g 0y @ 6yM° + g 40y @ dyP°, (1.10)
(0) (1) (2)

Definition 1.2. An N-linear connection D on T?>M endowed with a metric
structure G is said to be a metric N-linear connection if DxG = 0 for every
XeX (TQM) )
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Proposition 1.3. If a linear connection D on T?M has the properties:

a) D preserves by parallelism the vertical distributions Ny and Va,

b) DxG =0,X € X(T*M)

then it is a metric N-linear connection.

Proof. It suffices to prove that D preserves by parallelism the horizontal
distribution u — ](\)/'(u). Using a), (1.1) and (1.4) in

(DxG) (YH,Z2Vo) = XG (Y?,2"%) — G (DxY",2"%) — G (Y",Dx2"?) =0,

(ﬁ:1a2>7

one gets G (DXYH,ZVf’) =0,(8=1,2),for every Z € X (TQM). Thus, by (1.1)
and (1.4), DxY* is an horizontal vector field,
q.e.d.
Proposition 1.4. An N-linear connection D on T?>M endowed with a metric
structure G is a metric N-linear connection if and only if

DYGH =0, Q‘QGH:O, %;/("‘GH:O,

v v (1.11)
1B)§GVB =0, 1ﬂ)X1GVﬁ =0, Q;GVB =0, (B=1,2).

Proof. The equation DxG = 0 implies D¥G =0, DG =0 and DG =
0. By (1.6) we have

(DEG™) (v, 2) + (DYGY) (v, 2) + (DRG"™) (v, 2) = (DYG)(Y, 2) =0, (¥)

(DY G™) (Y. 2)+(DYGY) (Y, 2) +(DY.GY) (V. 2) = (DY G) (Y. 2) = 0, ()
(DRGT) (Y, 2) + (DRG") (Y, 2) + (DR G™) (Y, Z) = (DR G)(Y, Z) = 0.

(***)

Taking in (*) Y=Y, Z=Z" one gets Q%GH = 0, taking Y=Y"1, Z=Z"* one
gets ?gGVl =0, taking Y=Y"2, Z=Z"2 one obtains Q%G‘@ = 0. Now, putting
in (**) Y=YH Z=7 one obtains lo);l GH =0, putting Y=Y"*, Z=Z"" one gets
11)§1 GY* =0 and then Y=Y"2, Z=Z7"2 one gets 12);1 G2 = 0. Similarly, taking in
(***) Y=YH 7Z=7H one obtains IB?GH = 0, putting Y=Y"1, Z=Z"* one gets
??le = 0, and then Y=Y"2, Z=Z"2 one obtains 12?;/(26"/2 = 0. Conversely,

using (1.11) in (*) one results DY G = 0, using (1.11) in (**) one results DY} G =
0, and then by (***) one deduces D?G = 0. From these three equations it
follows DxG = 0.



64 CHAPTER 3. METRIC STRUCTURES ON THE MANIFOLD T?M

q.e.d.
We shall now discuss the existence of metric N-linear connection on T2M.
First we prove

*
Theorem 1.1. If D is a fizxed N-linear connection on T?M, then the
N-linear connection given by the following formulae is metric with respect to G:

QGH(ZO?EKZ) = XGE"M(Y, Z2) + Y (G (2, X) - ZM(GT)(X,Y) -
- GH(Xv [YH’ZH])+GH(Y7 [ZH’XH])"_GH(Zv [XHvYH])v
DHY — DHY 4+ A (YVe,XH) . such that
7x 7x +(50)( ) Suc a

2(6") (A (V. X), 2) = (DRG¥)(Y, 2%), (8 = 1.2).

lé)}/(lY = ??Y + ((;A) (YV5,XV1) , such that
1

2(G") (A (V. X7),2) = (DR G (Y, 2%), (3= 0,2) Vo = I,

2GM(DYY,Z) = XV(EM)(Y.2) + Y (GY)(Z.X) - 2% (GV)(X.Y) -
SGM(X, YV, 2')) + GV (Y, 2%, X)) 4 GV (2, [X %, YY),
(1.12)

Va _ *Vz V. \%
DRY = QXY+(£) (YV=, XV2)  such that

2(6") (A (VXY 2) = (DRG)Y, 2%9), (= 0.1) Vo = I,

2GV2(DRY,Z) = XV(GV)(Y,2) + Y2 (GY)(2,X) - Z%(G"*)(X.Y) —
_sz(Xv [YV27ZV2]) + GVZ(K [szvXVZD + GVZ(Zv [szvYVQ])'

Proof. It is obvious that the formulae (1.12) uniquely determine D, D;?
and D}?, hence they uniquely determine an N-linear connection on T?M. By a
direct computation one checks that D, Dyg and D;/("’ verify (1.11). Thus D is
a metric N-linear connection. We note that the h(hh)-, vi(vivy)- and va(vavs)-
tensors of torsion of D vanish.

q.e.d.
Next, we have:
Theorem 1.2. Let G be a metric structure on T2M. There exist metric
N-linear connections on T2M which depend on G, only. One of them is given by
(1.12), in which
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DY = [X",YVi)¥s (5= 1,2),
DYY = (XY, YY", (5=0,2), Vo = H, (1.13)

DY = [XV2, Y]V (¢=0,1),V, = H.
€

Proof. It is evident that Lo)ggy = DynYH, 11))V5Y = Dyw YV and
Q?Y = Dyw, Y2 given by the first, the fourth and the six equations from

(1.12) depend on G only. If we chose the N-linear connection D xsuch that
v (XH,YV2) = 0, vgT (YV,XV1) = [XV2,YVe|Ye, BT (XH, YY) = 0,
(6=1,2), then the equations (1.13) hold and by the second, the third and
the five equations from (1.12), ?§Y7 12)§Y, zo))VgY, Q?Y and 10)?1/, 117ng,
respectively, depend on G, only.

q.e.d.

Now, we shall express a metric N-linear connection and related results in
terms of local coordinate systems.

As we have seen, a metric structure G uniquely determines a nonlinear con-
nection N and if this metric satisfies (1.4), then G takes the local form (1.10),
where the basis (dz?, sy(Me, 5y(2?), was used.

Traslating the Proposition 1.4 in local coordinates one obtains:

Proposition 1.5. An N-linear connection on T?>M is a metric N-linear
connection if and only if

(1) (2)
9 ablac = 07 g ab | ac 07 (g)ab | ac 07 (Oé = 07 172) . (]-]-4)

(@) (@)

If we proceed similarly with the Theorem 1.2 we deduce:

Theorem 1.3. If the manifold T?>M is endowed with the metric structure G
given by (1.10) then there exists on T?>M a metric N-linear connection, depending
only on G, whose h(hh)-, vi(viv1)- and ve (vavs)- tensors of torsion vanish. Its

local coefficients Df‘(N) = ((io)abc. (é{)"bc, (62')“176), (e =0,1,2), are as follows:
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Labc = %gad(écgbd+6bgdc*5dgbc)a
0

(000) (0) (0) (0) (0)

Lac: Bac—i—l “d(sc - f _Bf 7ﬁ:172’
(30) ° 38 ¢ 2(g) ( (g)bd (ﬂﬁ) (g)fd (88) Cd(g)bf) ( )
Oabc :79 51cgbda(5*02) e c:2gad62cgbd7(€:071)v
(61) ©) (%) (€2) (e) ()

Co = %3908 gva+ 089 dec—08agbe) (B=1,2),02q = Oaa.
(88) (8) @) (8) ©)
(1.15)
Definition 1.3. The metric N-linear connection given by (1.15) will be
called the canomcal ]¥ lmeaf connectzon associated with G.
Let DF(N) ((IE))abC (C)“bc, (Cz’)“ 1), (a=10,1,2), be an N-linear connection

on T?M which is endowed x(m)th a metric structure G.
1 2
* *

*
If we denote by | the h,- and vg,- covariant derivations

ac? | ac’? | ac

(a=0,1,2;8=1,2), with respect to DI' (N), then by a direct calculation one
checks that the N-linear connection whose local coefficients are given by

a — Ja 4 1 ad .
(0) be (0) be (g) (g)db\ac
(1)
Ge = Ch%+39%ga | g 1.16
(al) b (al) b 2(@) (a) e ( )
(2)
ce. = Ce +1gg ,(a=0,1,2
(a2)® (a2) ® 2(a) (a )db | e { )

is a metrical N-linear connection.

This method of metrisation of an N-linear connection is called the Kawaguchi
metrisation process, [44].

Let us associate to G the following operators of Obata type:

Oab = (5°5b gav g )05 = (50% + gawg ) (@=01,2). (1.17)
(@) (o) 2 (@) (a)

Theorem 1.4. The set of all metric N-linear connections with respect to G
on the manifold T?>M is given by

Le = I “C+Of“Xdc,

@) T (a o>b f

e = C a Ofayd

(al) be (a 1) bc fer (118)
ca = C "bc+0f“2d (a=0,1,2),

(a2) (a2) fer
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where ((%)%C,(él)“bc,(é)%c> is the canonical N-linear connection (1.15) and

«@ «@ (0%
X% Y., Z9,., (a =0,1,2), are arbitrary d-tensor fields.

Proof. See V. Cruceanu, R. Miron [44], V. Oproiu [111].

3.2 Metric N-—linear connections with the tor-
sion prescribed

We have proved above the existence of metric N-linear connections whose h(hh)-,
vi(vivi)- and va(veva)- tensors of torsion vanish. But there are certain prob-
lems, especially related to the theory of relativity, in which metrical N-linear
connections with h(hh)-, vi(v1vy)- and va(vavs)- tensors of torsion prescribed
are needed. In the following we show that such metric N-linear connections do
exist,.

Definition 2.1. An N-linear connection D on T?M is hgvi1vas-metric with
respect to a metric structure G if

107§GH =0, Q)Vgavl =0, Q)VgG% =0,X € X (T°M). (2.1)

An easy computation in local coordinates leads to

Proposition 2.1. An N-linear connection DI'(N) =( L .. C 4., C %)
(a0) 77 (al) 77 (a2)
is hov11vas-metric with respect to G = ¢ apdz® @ dazb 4+ g o0y @ sy +
(0) 1)
G a0y @ 5y if and only if
2
1 (2

gab\Oc:07 g ab | 1c:O7 9 ab | QCZO- (21’)
(0) (1) (2)

Let us consider an N-linear connection of the Berwald type

BI(N)=(L%.B%, B%.0 C% 00,0, C®4 2.2

( ) (00) be 1) cby (22) cbs 7(11) ber Vo Y 7(22) bc)? ( )
where
L% = 390 gva+0b9de—0dgue)
<0f> (0) (0) (0) (0)
Co = 2901 gpat 016 gde — 014 9 be), (2.3)
<161> (1) (1) (1) )
Co = 3902 gba+ 02 g ac— 2a g be)-
(22) @) ) ) )
We have:

Proposition 2.2.
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1°. The N-linear connection of the Berwald type (2.2) is hovi1vaa-metric.
It depends on the metric structure G, only.

2°. The d-tensors of torsions of BT (N) are given by

T =0, R RY% |
(00) ¢ (o1) ¢ (02) be

Pe —0, P% = =1,2), P, P
(80) ¥ B3s) ¢ 0, (8 ) (12) *¢ (21 b*

o =0, @ ,5e =Re S =0,(3=1,2).
&b g (21)” (2% a2 5 b ( )

3°. The d-tensors of curvature of BT (N) have the following expressions:

RO, =6 s, Le + L% Lo _ [l [a
(00)" < d(OO) @) 4 @) ety T4 @6) bty I°
Re,=6,B% 5. B%+ B!, B« B
05~ Man T CEn® T Gaten Y 6 L)
+Ccae. RY (B=1,2),
38) 7 (0p) 8 )

P = Gau L% (B=1,2 000 = b)),
(ﬂo)bcd Bd( )bc (ﬁ ] 2 2 )
P @ :5 Cfa 5 :17275a:3a7
et = 94 Bl = C g (8 20 = O2a)
Pe. —=g,B+ Ca, B!
(1)} o4 1d 35 cb + ) bf(lz) cd>
= Oy B+ Ca, B
(21)b d 2d(11) b T & bf(21) cd
Q bacd =0, Q bacd = 8.2d C abc?
(20) (21) (11)
a 5.C 4+ Ca B
(gf’c‘i = TOegy b Gy b 31y o
Sa =082, =¢C° R’
(10)1) cd ( )b cd — (22) bf(12) cd’
S 2 50—5C y 0t Gao _Cf Ca
Bt — P Be Sy vt Sy be Sy 1T (v 5 7

(8 =1,2,024 = Oaa).

The N-linear connection (2.2) will be called the canonical Berwald type
connection on T2 M.

Now, we shall prove:

Theorem 2.1. There exists an unique hovi1vos-metric N-linear connection
of the Berwald type with prescribed h(hh)-, vy (viv1)- and vo(vavs)- tensors of
torsion .
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C
Proof. Let us fix the Berwald connection BT (N) introduced in the above.
Then, by the general theory of connections, every other N-linear connection of
the Berwald type is of the form

L e a B
( be + (g ber 1) be

B%,.0, C% + 7%.,0,0,0, C 4.+ 7%,
(00) ) T RN GO (22) <2>”)

" (22)

a

d
&y be an

where 7¢ . T
ber
(0)

(1)
S 4. be three d-tensor fields which are skew-symmetric with respect to the
22

% and (g %. are arbitrary d-tensor fields. Let (g;)“bw

covariance indices. We shall determine the d-tensor fields (T)abc, (T)‘lb (T)abc
0 1 2
such that the Berwald type connection of general form given above to be hgvy1vas-

metric and to have T %, S 4% and S % as h(hh)-, vi(vivy)- and va(veva)-
(00) (11) (22)

. and

tensors of torsion, respectively. These conditions show us that 7% | 79 and
(0) be (1) be

(T)“bc must satisfy the following systems of equations:
2

T a - T a — T a T a — T a — S a

" P (o)’ ond @ be gy (g b )
T g+ 7L gai=0, 24) T gt T gaa=0,(3=12). (25)
0) ""(0) 0) ""(0) B " (B) B (B

If in the second equation (2.4) we cyclicly permute the indices a, b, ¢ then
we add the equations such obtained and take into account the first equation (2.4)
we obtain

T“c:fgad gd ch—gb ch—l—gch . 2.6
© " 2 ((o>f 00) % @y @0y % 5,700y ba) (2:6)

If we similarly proceed with the equations (2.5) we deduce

T4 == g s — ST 4+ g SN (B=1,2). 2.7
(ﬁ)b Q(g) ((g)df(ﬂﬁ)bc (g)bf(ﬁﬁ)dc (g)f (ﬁﬂ)bd)( ) (2.7)

Consequently (T)abc and (E)Gbc, (6 =1,2), are uniquely determined,
0

q.e.d.

From (1.16) we see directly that the Kawaguchi metrisation process leaves
unchanged the h(hh)-, v1(v1vy1)- and va(vava)- tensors of torsion. Thus we have:
Theorem 2.2. Let T2M be endowed with a metric structure G given by
(1.10). There exists on T?>M a metric N-linear connection completely determined
by G whose h(hh)-, v1(viv1)- and va (vavs )- tensors of torsion are prescribed. It
is obtained from the hgvy1ves- metric Berwald type connection given by Theorem
2.1 via the Kawaguchi metrization process and has the following local coefficients

L. = Lg%%0.9ba+69gdc—0agbe)+ T4,
©00)* 2 ( 0) ) 0) e
C C

L = L9 (3=1,2),C%=C4,
B0y ¢ (30) b C )<01>” on°
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Cq. = 2961 gva+01b9de—01d gve) + T %
Gybe =28 ( g g g ) e (2.8)

c c
co. = C9.(e=0,1),C% = C5
be (£2) bes (5 ’ ) 7(21) be (21) be?
a :%

L . 5
Gy be g (O2¢ g ba + O2b g de — O2d g be) + (72')%07

(2) (2) (2) (2)

where (g)“bc and (g)“bc, (8 =1,2), are given by (2.6) and (2.7), respectively.

3.3 The Levi-Civita connection on T%M

It is well known that there exists an unique linear connection on T2M which
is metric with respect to G and symmetric, that is, it has no tensor of torsion.
This is called the Levi-Civita connection of G. Note that it is not an N-linear
connection of G on T2M.

We shall give the local coefficients of the Levi-Civita connection G in the
adapted basis (04, 014, O24 ). These coefficients will be expressed by using the local

C
coefficients of the canonical metrical N-linear connection DI'(NNV) from (1.15).
If we denote by V the Levi-Civita connection of G, then by a well known
fact about the difference of two linear connections, we can write:

VX:B)(—FTx,XGX(TQM), (31)

where 7x is a tensor field of the type (1,1) on T?M. Taking into account that
c

the linear connections V and D are metric with respect to G and V is without
torsion the following system of equations for the determination of 7x is obtained:

G(r(Y, X). 2) + GY.7(Z.X)) = 0 .,
H(X,Y) —7(Y,X) = T(X,Y),X,Y € X(T>M), (3:2)

c C
where we have set 7x(Y) = 7(Y, X) and T is the torsion of D.
In the adapted basis (04, d14, 24 ) the Levi-Civita connection looks as follows:

Vs.0p = L%.0a+ L%, 0610+ L%, Doa,
©° (D et (g e

Sgp = K6+ K@ 81a+ K 0og, (8=1,2), 005 = Oag,
V(SC Bb be +([31)bcl —i_([n)bc2 (ﬁ ) 2 2

(80)
Vs, M G0+ M 510 + M O
61900 = (O) bcla + (1) bella + (2) bcY2a,
) : . (3.3)

@ 00t F % 51, + F)“bcéga, (8=1,2),09q = Daq,

Vs 0m = F
21500 = By (31) (32
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2 2 2 .
Vi 0p = M% 6o+ M% 614 + M% 0oy,
8500 (02) be +(1) bc¥1 +(2) be2

2 2 . .
abc(;a + F abc(sla + BFQ)abCaQaa (ﬁ = 17 2) 3 62(1 = a2a7

Vi 0p = F
2270 7 5oy (31) (

Writing the system of equations (3.2) in the adapted basis (6a,51a,32a ) one
gets a system of equations which allows us to determine the local components of
V x. Inserting these local components in the local form of the equation (3.1) one
obtains:

Theorem 3.1 The local coefficients of the Levi-Civita connection V of the
metric structure G on the manifold T?M are as follows:

La‘ — Ea"La’:_léa’_éf . da’ :1727
(0) be (00) be (8) be 2(Oﬂ) be (08) bd(-g)f (g) (ﬁ )
c c B c
K4 = 1pf g+ Cfg'c gda7Kac:Lac+Ofa a.
dore = de ™ w0 ) )(0) B3 3o T @ )
(6 = 172)

K¢ _l]cja‘_]cjf g gda7Ka7:ljJal_chf g gda’
(12) be 2((12) cb 1) cd(l)fb(2) ) (21) be (2(21) cb (12) cd@)fb(l) )

B8 6] B c

Ms, = K9, (3=1,2),M%, =-0% P4 (3=1,2),

(0) (80) (8) (2)7 (88)
]\14%)(' = _%(ﬁabc—’_ ﬁ)];dgfcgda)’ﬂ?abc:_%(ﬁabc—i_ ‘Cp'idgfcgda)v
2 (12) 1) (1 (2 1) (1) (A2) T2 (1)

B c c 8 c

Fo =1cp e+ P da pa — Cao (B~y=1,2),
(70) b 2((7/3) db(g)f (B7) dc(g)fb)g 38 ¢ (8p) ¥ (B, )

X (3.4)
Fo o= 389 -3(Cliguy+ Chige) g™
(12) be 2 (12) be 2((12) d(l) f ( )bd(l) f)

2 c 1

Fac:lsfgcg fa dc aci flle7
an’e T 2an Pl T eManfoant T T @) 0 Y

1 c c

Fa = 1 S f g da fa d ,

enbe T 2andod) T @dan

ﬁabc = 5abc 65; dcf’ ]%abc %(éfdb ct Q b)gda

(22) (21) (1) (22) (21 (22)  (2) (22) (2 (1)

3.4 Some remarkable metrics on T2M

Recall that a given metrical structure G on the manifold 72M determines a
nonlinear connection and with respect to it G decomposes into a sum of three
d-tensor fields which may be viewed as defining metrical structures in horizontal
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and verticals distributions, respectively. Conversely, if a nonlinear connection,
as well as some metrical structures in horizontal and verticals distributions are
given, a metrical structure on T2M may be obtained.

From now on we fix a nonlinear connection N(]}f % J;f %) in the tangent bundle

of second order (T%M, % M).
Definition 4.1.
1°.  An h-metric on T?M is a d-tensor field G? = g dz® ® da®,
(0)
where g b (2,41, y®) = g pa (2,91, y®)), det(gas(z,y™M,y?)) # 0 and the
(0) (0)
quadratic form g E%EP has constant signature.
0
2°. A vy-metric on T?>M is a d-tensor field GV* = g o0y @6yM? where
1)
g ab has the same properties as g qp-
1) (0)
3°. A vo-metric on T?M is a d-tensor field G¥? = g o0y P*@6y°, where
(2)
g ab has the same properties as ¢ qp-
(2) (0)
4°. An (h,v1,v3)- metric on T>M is the d-tensor field G = GH + GV +G"2,
i.€.

2
G=gaw (x y, y(Q)) dz* @dax’ + Y g ab (af y, y(g)) 5y sy PP, (4.1)
()
Obviously, the metric structure (9.9), Ch.1
G = gapda® @ da’ + gapdy'* @ 0y’ + hapdy? @ 6y@°, (4.2)

the metric structure (9.8), Ch. 1

G = gapdz® @ da® + hapdyM?® @ 5y + gapdyP* @ 6y°, (4.3)
the metric structure (9.7), Ch. 1

G = gapdz® @ dz® + hapdy® @ 6y P + by P @ 5y2°, (4.4)
and the metric structure (9.10), Ch. 1

G = gupdz® @ dz’ + gapdy ™V @ Sy + g0y P @ sy@°, (4.5)

where gqp (x, y y(z)) and hgp (ac, y), y(2)) has the same properties as g 4, are
(0)

the (h,vy,ve)-metric structures on T2 M.
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By using Theorem 1.3 we can write the metric N-linear connections depend-
ing only on G given by (4.2)-(4.5)

For instance, we have

Theorem 4.1. If the manifold T*>M is endowed with the metric structure G
given by (4.4) then the metrical canonical N-linear connection has the coefficients:

L4 = 19°6.9va + 6bgac — Sague),

(00)
Le = B +1h0(6 g — Bl hpa— B hy) (B=1,2),
doyre = B+ ah O = Blghsa= B lahes), (8 )
([%)abc = %gaddﬁcgbdv (ﬁ =1,2,000 = 82&) ) (4.6)
S a _ lhada h Y a :lhad'ch
(QCI) be 2 lcltbds (12) be 2 82 bd»
S = 314 (Epchva + dgvhac — Opahne), (B = 1,2, 820 = D2a).

Theorem 4.2. If the manifold T?M is endowed with the metric structure G
given by (4.5) then the metrical canonical N-linear connection has the coefficients:

c
L abc = %gad(écgbd + 5bgdc - 5dgbc)7

(00)
Lo = B 4L, — B gra— B gnr),(B=1,2),
dore = B0+ 29" Cctra = B lugra= Blagss): (B )

ce = C% =19°%.ga, (4.7)

oyt T @

(& .
— _ 1 _ad
(g)abc - (g)abc - iga 82691)(17

e = 29°U8pcgbd + 0pb9de — Opagne)s

(ﬂ =1,2,00, = 32:1)

Definition 4.2.
1°. The (hv1,v2)-metric G given by (4.1) is said to be h-Riemannian if
( g ap) do not depend on yM* and ye.
(0)

2°. The (hv1,v3)-metric G given by (4.1) is said to be vi-Riemannian if
( g ap) do not depend on yWa gnd y@ea,
1)

3°. The (h,v1,v2)-metric G given by (4.1) is said to be vy-Riemannian if
( g av) do not depend on yM* and y?e.
(2)
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It is now clearly what G is (h,vy,ve)-Riemannian means.
‘We have

Proposition 4.1.

a. G is an h-Riemannian metric if and only if C be

and (g)“bc from (1.15)
vanish.

b. G is a v1-Riemannian metric if and only if (é‘)“bc and (é)abc from (1.15)

vanish.

c. G is a vy-Riemannian metric if and only if C and g)“bc from (1.15)

be

vanish.
d. G is an (h,v1,v2)-Riemannian metric on T?M if and only if

Coming back to the Theorem 1.3, we obtain
Proposition 4.2. If the (hv1,v2)-metric G given by (4.1) is (h,v1,v2)-
Riemannian metric then about (4.8) we have also

1 ad
= _79 8Cgb 9 52172 9
)(00) {bc} 50) 2(5) ) d( )
i) T2 =0, P4 =0, P4 =0,
)< 0) b (10)° 20)°

C C C
54.=0,Q%=0 Q%= B%. 59.=0,
an°® (21) b (22) b (21) " (22)

C
113 CL a p—
iii) Rbcd Ty'edr P p'ea =0

(0 ) (Be)
chd:O vSbacd:0>(04=0717255=1,2»521123211)7
(2a) (Ba)

where {f.} are the Christofell symbols and the r,.; the curvature tensor
constructed with (g5 ()). The superscript ¢ refer to the metrical canonical

N-linear connection DT (N).

As in the case of the tangent bundle Osc! M = TM, cf. with S. Ikeda,
[Some Physical Aspects Underlying the Lagrangian Theory of Relativity, in the R.
Miron and M. Anastasiei’s book: Fibrate Vectoriale. Spatii Lagrange. Aplicatii
in teoria relativitatii, Ed. Acad. Romania, 1987], (see [87]), the cases when G is
h-, v1- and vo- Riemannian ”seams to have no essential physical meaning”, but
these are of theoretic interest.

Definition 4.3.

1°. The (h,v1,v2)-metric G given by (4.1) is said to be h- not accelerate

metric if ( g ap) do not depend on y>.
(0)
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2°. The (h,v1,v2)-metric G given by (4.1) is said to be vi- not accelerate
metric if ( g ap) do not depend on y>.
)

3°. The (h,v1,v2)-metric G given by (4.1) is said to be vy- not accelerate
metric if ( g ap) do not depend on y>.
(2)

It is evidently what means G is (h,vy,va) - not accelerate metric.
We have

Proposition 4.3.

a. G is an h-not accelerate metric if and only if (C)“bc from (1.15) vanishes.
02
C

b. G is a vi-not accelerate metric if and only if (C’)“bc from (1.15) vanishes.
12

(&
c. G is a va-not accelerate metric if and only if (C’)abC from (1.15) vanishes.
22

d. Gis an (h,v1,v2)-not accelerate metric if and only if

Ct =0, C% =0, C% =0 49
(02) be 7(12) be 7(22) be ( )

If is not difficult to write the metrical canonical N-linear connections in the
above cases for G in the forms (4.1) - (4.5). For example, we have

Theorem 4.3. If the manifold T>*M s endowed with the (h,v1,vs)- not
accelerate metric structure G:

G = gab (:c y(”) dz*@da’+gap (sc y“)) syMr@8yMb 4 gq (:c y(”) sy P26y,

then the metrical canonical N-linear connection has the coefficients given by (4.9)
and by following expressions:

L e = 29" (Ocgsa + 0hgac = Dagnc) =

C

L% = B +1¢"0.g.a— Bigra— B iger) — 0%,
@t " a2 (Octia = 91 = Gy eatht) = )% (4.10)

Ca‘ = (O _ 1 ada.C
(Ol)bc (21)1,0 59 " 0O1c9bd

C

ce. = tgu (5'1cgbd + D1pgde — 5'1dgbc) ,(B=1,2),

(1)

where
(g)abc = %gab(]yfcafgbd + J}V;afgdc - Zyj;afgbc),
Gbe = §be= 39 N1 1g0a.
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The following metric structures can be interesting for physics., [44], [118],
[136], [137].

Definition 4.4. We shall say that the metric G given by (4.1) is vg-locally
Minkowski if for every point u€ T2M there exists a local chart around it on T>M
such that on its domain ( g a) depends on y™) only, (8 =1 or/and 2).

(8)

Since on the manifold Osc!M = TM, there exists h-Riemannian and v-
locally Minkowski metric, [cf with R. Miron, M. Anastasiei: The Geometry of
Lagrange Space. Theory and Applications, Kluwer Acad. Publ., FTPH, no. 59,
1994], [88] , by the prolongations to Osc?M = T?M of this metric structure (see,
[93]), one obtains an h-Riemannian and vi-, va- locally Minkowski metric on
T?M. This prove the existence of vg-locally Minkowski metric (3 = 1 or/and 2)
on T2 M.

Theorem 4.4. If the (h,v1,v2)-metric G given by (4.1) is h-Riemannian and
v1-, Va- locally Minkowski metric then the metrical canonical N-linear connection
has the coefficients:

L% =290 gva+0bgdc—0ague)
0

(00) (0) (0) (0) (0)
L = Be —1lge Nfa g +Bcg + B gu),(3=1,2),
doyte = b T2 P gt B gk ) ea g ) )
Co —0,C% —=0,C% =0, C% =0
(01) >¢ To2) T bl T (aa be (4.11)
C % = %gad(alcgbd+81bgdc_aldgbc)
1 M 1 1

ca = Lgadd . g
@n)° 2(2) 2)
Proof. Indeed, by (1.15) we get (4.11).
Also, we get
Theorem 4.5. If the manifold T?M is endowed with the (h,v1,v2)-metric
structure G, h-Riemannian and vi-, va-locally Minkowski given by

G = gap(z)dz® @ da® + hap (y™M)oy™M* @ 6y + hey (™M) oy D @ sy 2P,

then we have
) {bc}»L7 (11 {bc}y(l)’ 1 ac = %hadalchbda

(00)
%QMJW:LA

Lo — Ba, _Lpad(NLJ h +th +
(50)170 (ﬂﬁ)cb 2 (1 1f/td ()cb fd

8
Cabr: 7Cab(':07cabc: _0
(01) ™ (02) (12) (22)

i) T2 =0, P& =0, P% =0
11) (OO)bC_ ’(1O)bc_ 7(20)bc_ ’
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C C C (& C (& (&

Ben = 0a e = e Bat e o Y e
+(g)abf(£)fcdv (B=1,2),
(é%)bacd =0,(8=1,2),
(ﬁ)bacd = 51d(1[6)%7c - (lq)abduc + (g)abf(ﬁ) cd>
(g)bacd = 32d(21())abc + (g)abf(g) ed>
(g)bacd =0,(¢=0,1,2), (é;)bacd =0, (é)bacd =0,(8=1,2),

g’ —— (1) ,
(ybed T (b ed (¥™)
where {j }. (resp. {j.},m) are the Christofell symbols and (g)bacd (2)

(resp. (r)b‘lcd (yM) ) the curvature tensor constructed with gup (z) and 9, (resp.
1

hay (V) and d1a). The superscript ¢ refers to the metrical canonical N-linear

connection DI'(N).
Proof. Since g. (resp. hap) depend only x (resp y(!)) it follows 6, = 0,

(resp. 810 = D1.) and by (23) ome gets L, = (i}, (resp. €, = (1))

and (25’2)“170 = 0. Then a glance to (4.6), (7.2) Ch. 2 and (7.11) Ch.2, say us the

other equations.
q.e.d.
Definition 4.5. We shall say that the metric G given by (4.1) is vg- locally
accelerate if for every point u € T?>M there exist a local chart around it on T>M

such that on its domain g 4 depends on y® only, (8 =1 or/and 2).
(8)

Let (T?M,n% M) be the tangent bundle of second order endowed with a
nonlinear connection N. Suppose that its vectorial distribution Vg is endowed
with a norm | ||| : Vo — Ry. If vg = vie,, where (e,) is a basis of V,, we set
[lv2]] = f(v3,...,05) = f(v*) and suppose that f is differentiable at least of class
C3 for vy # 0. The set

{T/T € GL(n,R),||Tva|| = ||v2]|,v2 € V}

is a Lie group. Let Hs be a subgroup of it.
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Definition 4.6. We say that the tangent bundle of second order (T*M, 72, M )
admits a Hay-structure (or it is a {Va, Ho}-bundle) if there exists a bundle at-
las {(Ua, pa,Va2)} such that the mappings pg.q © cp;}z belongs to Hs for every
x €U, NUg # O.

The local fibres of a {ve, Ha}- bundle are isomorphic and isometric each of
others.

Using the bundle atlas (Uy, ¢a, V2) it comes out that the norm f defines a
function on T2M, say F, such that in any atlas on T2M the matrix

hap (a:, y, y(2)) = o

1
5W (4.12)
is nonsingular and the quadratic form h.,n®n® (n € R™) is positive definite.

If we consider on T2 M the atlas indeed by the bundle atlas (U, ©n, V2) then
F and (hgp) depend on y? only.

Now let gqp(z) be the local coefficients of a Riemannian metric on the man-
ifold M. Tt is clear that G given by (4.4) with this gu () and hgp (y(Q)) from
(4.12) is an h-Riemannian, vi- and vs- locally accelerate metric on T2 M.

If is not difficult to prove

Theorem 4.6. If the (h,v1,v2)-metric G given by (4.1) is h-Riemannian,
v1-locally Minkowski and vo-locally accelerate metric then the metrical canonical
N-linear connection has the coefficients:

L% = 2(0c9va+ 0y 9ac—049oe)
(00) (0) (0) (0)

L% = Ba —1ge(NS) + B/ + B/ ,
B0 e T (3 b 2(%) ((ﬁ) Bféf’d (88) Cb(g)fd (B88) Cd(g)bf)
Ce —0,Ca =0, Ca =0,
(Ocl) be (02) b° (12) b¢ (4.13)
Ca =299 gpa+ 0 gac— 01a gue) )
an (1 ©) (1) (1)
C G = —29%NLdos g1a,
(2c1) ’ ? @ ! 2f(2)
Co = 2990 gva+ 02 g ac— 24 g be)-
(22) ) ) ) 2)

Finally, we recall if G given by (4.1) satisfies the equations (1.1) and (1.4)
we get

2

G = gawx,yV,y@)de® @ da® + Z 9 ab (w,y(l),y@)) dy P @ dy®b. (4.14)
(0) g=1)

We can prove:
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Theorem 4.7. If the manifold T>M is endowed with the (h,v1,v2)-metric
structure G, h-Riemannian, vy-locally Minkowski and va-locally accelerate met-
rics given by

G = gap (2) dz® @ da® + hay (y™M)dy ™M @ dy™M® +mgy (y2)dy D @ dy@?, (4.15)

then

C
i) The metrical canonical N-linear connection DT (N) has the coefficients:

- —0, L —0,
(OO) {bc} (10) (20) be
Co =0, C% = LR hya + phae — Orahe), C % =0
(o1) e " te T 2 (Orchpa + O1pha 1dhwe), (&1 be )
C C C . . .
a _ a _ a _ 1, ,ad _ h
(g) be = 0, (g) be = 0, Sy 'be 5m*(Oacmpg + Oopmae — Gaghye)-

c
i1) The metrical N-linear connection DT (N) coincides with the Levi-Civita
connection on G, that is, all its tensors of torsion vanish.

iii) The tensors of curvature of DT (N) are as follows:

Rya=7mda0 RLEa=0,(8=1,2),
@y cd ~ Thed qghibed (B )
Pg,=0Pa =—Coa  (8=12),
(Bo)b cd (ﬁﬁ)b cd (88) bd|Bc (6 )

—0, P2 —0, —0,(a=0,1,2
(21) (lz)bcd Q bcd (a 1,2),
S —0(8=12 5 @ 0. §a —0
(50)1) cd ’ (6 ’ ) 7(21)17 cd ’ (12)17 cd ’
S0 —duC —dpCo 4 Ct Ca 0l Ca
BB et TP e T PG T (5 beam T4 (3 e I
(8=1,2)

Proof. By the Theorem 9.5, Ch.1, we have ]}/'ab = O,];f“b =0,0q = 04,014 =
d, and then by (4. 13) we obtain i). Then an easy computation shows that the

tensors of torsion of DT (N) vanish, that is Dr (N) coincides with the Levi-Civita
connection of the Riemannian metric G on T2M. By i) and ii) we obtain iii) on
account of (7.11), Ch.2.

q.e.d.

(&
Remark. The previous theorem has, as a consequence, the fact that DT" (V)

is just the Riemannian-Christoffel connection of G on T2M. Therefore, ch“ (N)
is very convenient for an anisotropic theory of relativity. It seams that this case
corresponds to the stand-point of ”unified” field obtained by direct-product of
the external (x)-field domined by g, () and the internal (y("))- and (y?)- fields
dominated by hgp (y(l)) and mgp (y(z)), respectively.
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Chapter 4

The dual bundle of a
2—tangent bundle

4.1 The manifold T**M

Let M be a real differentiable manifold of dimension n. A point of M will be
denoted by z and its local coordinate system by (U, ), ¢ (z) = (%) . The indices
a,b, ... tun over set {1,...,n} and Einstein convention of summarizing is adapted
all over this work. Let (T'M,m, M) be the tangent bundle of the manifold M and
(T*M,7*, M) its cotangent bundle, [80], [82], [134].

Definition 1.1 We call the dual bundle of the 2—tangent bundle (T*M,
72, M), the differentiable bundle (T*?>M,7*?, M) whose total space is

T**M =TM xp T*M. (1.1)

Sometime we denote (T*?M,7*2, M) by T**M.A point u € T*2M will be
denoted by u = (z,y, p) having the local coordinates (z%,y%, p,) . The projection
72 (u) = 72 (z,y,p) = z. Evidently, we take the projections on the factors
of the fibered products (1.1):7*%% : T*>M — TM, 7 :TM — M as being
72 (z,y,p) = (z,y) and 7* (z,y) = x; also, 7 : T*2M — T*M is given by
7T (u) =7 (z,y,p) = (2,p).

The change of local coordinates on the manifold T*2M is:

70 = %‘:(xl, .x™) , det (gzb) £ 0,

o= 9. (1.2)
Oxb

- ox®

Pa = agapb-

The dimension of the manifold T*2M is 3n.

81
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The null section 0 : M — T*2M of the projection 7*? is defined by 0 : () €
M — (z,0,0) € T*>M we denote by T*2M = T**M \ {0} .

Let us consider the tangent bundle of the differentiable manifold T*2M,
(TT**M,7*2, T**M) , where 7*? is the canonical projection and the vertical
distribution V : v € T**M — V (u) C T,T**M,, generated by the vector

fields 0 l.,s i| , Yu € T*2M. As usually, the natural basis, let us denote
dy* ™ Opa "

0 0

'n. a
= 50> Ja

O = , 0% = .
oy Opa

(1.3)

By means of (1.2), we can consider the following subdistributions of V' :
Vi:ueT?M — V; (u) C T,T"%M, (1.4)

and
Wy :u € T?M — Wy (u) C T,T**M, (1.4%)
locally generated by the vector fields {8,1 lu,u € T*QM} and {6“ |, € T*QM} ,

respectively. Clearly,we have
V(u) = Vi (u) ® Wa (u),Yu € T**M. (1.5)

Some important geometrical objects fields can be introduced:
(i) the Liouville vector field on T*2M :

C(u) = y“éa luy, Yu € T2 M, (1.6)

(i) the Hamilton vector field on T*2M :

C* (1) = pad® |u,Vu € T*2M, (1.7)

(i4i) the scalar field
© = pay®. (1.8)
We remark that C € V; and C* € W,
Also, let us consider the following forms

w = padz® (Liouville 1-form), (1.9)

0 = dw = dp, N dz“. (1.10)

Theorem 1.1 1°.The differential forms w and 6 are globally defined on the
manifold T*>M.
2°. The 2-form 0 is closed and rank 0 is 2n.
3°.0 is a presymplectic structures on T*2M.
The two Poisson bracket {},,{}, , can be defined on the manifold 7*?M by
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of 0g  Of 0Jg

{fvg}ozaaa a aav
gf éjga 87351 5”9 (1.11)

= 5y op, a0y

Theorem 1.2 Every bracket {}, and {}, defines a canonical Poisson struc-
ture on the manifold T*>M.
Now, the following F (T*?>M) -linear mapping

J: X (T™M) — X (T*M),
defined by

J(92) = a, J (@) —0,J (5a> —0,Yu € T*2M, (1.12)

has geometrical meaning. It is not difficult to prove:
Theorem 1.3 1°..J is a tensor field of type (1,1) on manifold T*>M.
2°. J is a tangent structure on T*>M , i.e. JoJ = 0.
3°.J is a integrable structure.
4°. JoJ = J? = 0.
5°. KerJ =V ®@ Wy, ImJ = V.
With these object fields we can construct the geometry of the manifold
T*2M.

4.2 Nonlinear connections on T*2M

We extend the classical definition [123], of the nonlinear connection on the total
space of the dual bundle (T*2M,7*2, M) .

Definition 2.1 A nonlinear connection of the manifold T*?>M is a reqular
distribution N on T*2M, supplementary to the vertical distribution V, i.e.

T, T**M = N (v) @V (u),Yu € T*>M. (2.1)
Taking into account (1.5) it follows that the distribution N has the property
T, T*M = N (u) @ Vi (u) © Wy (u) ,Yu € T**M. (2.2)

Therefore, the main geometrical objects on T*?M will be reported to the
direct sum (2.2) of vector spaces.
We denote by

6 0 0
—_— =1,.. 2.
{ 6$a ) aya ) 6pa } 9 (a ) ) n) 3 ( 3)
a local adapted basis to N, Vi, Ws. Clearly, we have
b 90 w2 N, O (2.4)

Sze oz @ oyb Opy
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The system of functions (lel (z,y,p), Nap (, y,p)) are the coefficients of the
nonlinear connection N.

With respect to the coordinate transformations (1.2), we have the rule:
S _ s o 020 b 09 (2.4)
Sxo Oz 070’ Qy* Oz Oy® Op,  OF° Ipy '

Theorem 2.1 With respect to (1.2) the coefficients (N, Nqab) of a nonlinear
connection N on T*2M obey the rule

~ 0x° or®  oy*
N® = NY — 2.
€ Oxb bz Az’ (2:5)
~ c d 2,.c
N,y = 0x° Ox N, 0“x

o ozt e TP gragzh

Conversely, if the system of functions (N%, Nqap) are given on the every do-
main of local chart of the manifold T*?>M, such that the equations (2.5) hold,
then (NS, Nap) are the coefficients of a monlinear connection on T*2M.

Assuming that the manifold M is paracompact it follows that the manifold 72 M
is paracompact, too. Let 4 (z), © € M be a Riemannian metric on M and
~g. («) its Christoffel symbols. Setting

fo = Ve (T) oy (2.6)

Then, the system of functions

Naé = aafba Nab - abfa7 (27)

are geometrical object fields on T*2M, having the rules of transformations (2.5),
with respect to the changing of local coordinates (1.2). Hence:

Theorem 2.2 If the base manifold M is paracompact, then there exist non-
linear connection on the manifold T*2M.

From now we denote the basis (2.3) by:

{5a,6a, é)a} . (2.3))
The dual basis of the adapted basis (2.3) is given by

{dx®,6y",dpa}, (2.8)

where
Sy® = dy® + N9da®, 6p, = dpa — Npada®. (2.8%)

With respect to (1.2), the covector fields (2.8) are transformed by the rules:

a oze b

oF , . Oz .
(9$b 63/ ) 6pa - @6]9177 (28 )

oxb

di® = da®, 67 =
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Also, we remark that the differential of a function f € F (T*QM ) can be
written in the form
of

of o a4 o, Of
Mada: * 8ya6y + Opa

df = SPa. (2.9)

4.3 The distinguished vector and covector fields.
The algebra of d—tensor fields

Let N be a nonlinear connection on T*2M. Let h, v, ws be the projectors defined
by the distributions N, Vy, W5 of the direct decomposition (2.2). We have

h+v +wy =1, h* =h, v} =v1, w3 = wo, (3.1)
hovi=vi0h=0, howy =wgoh =0, vi ows = wy0ovy =0.

If X ex (1/“:5]\/{[) we denote

X7 =pX, X' =01 X, X2 = X. (3.2)
Therefore we have the unique decomposition:
X=xH4 XV 4 xW2, (3.3)

Each of components X, X1, XW2 are called d—vector fields on f;EJ\/J
In the adapted basis (2.3) we get

XH = xOag, xV1 = x(Weg, xW2 = ()Zf)aéa. (3.3")

By means of (2.4’) we have

Sa a b
07 o gwa = 97 yan 5, 2 0%

= —X s
Oxb Oxb 2) 9z (2)°

X e — (3.4)

i.e., the classical rules of the transformations of the local coordinates of vector
and covector fields on M. Therefore, X(@o X(a are called d—vector fields
and é()a is called a d—covector field on the manifold T*2M.

For instant, the Liouville vector field C and the Hamilton vector field C*
have the properties

cH = 0, C" =y%9, =C, C"2 =y,
c =0, C" =0, CM2 = p,0° = C".

The following result is important
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Proposition 3.1 The distribution N is integrable if and only if for any
vector fields X,Y € x (T*?M) we have:

X" yH)" =0, [xH yH]" =o.

Indeed, the Lie bracket of any two horizontal vector fields X, Y belongs
to the horizontal distribution NNV if and only if the last two equations hold.

We remark that the distributions V; and W5 are both integrable.

A similar theory can be done for distinguished 1—forms.

With respect to the direct decomposition (2.2) a 1—form w € x* (T*QM)
can be uniquely written in the form:

w=wl +u" W2 (3.5)

where

Wl =woh, W =wouv, w"? =wows. (3.57)

In the adapted cobasis (2.8), we have
W= wadz® + w a0y + w@p,. 3.6
@ @009 p (3.6)

H oV w2 are called d — 1—forms.

2)a are transformed by (1.2) as follows:

The quantities w
The coefficients w4, w 4, w
0y (1)

oz° O ya _ 03" oy

(3.7)

(LS))“ - %(%)“’ (Uf)a = 9z (bf)b’ “ Oxb

(2)a

Hence w, and w, are called d—covector fields and w is called a d—vector
1

(0)
field.
If the nonlinear connection N is a priori given, then some remarkable d —
1—forms can be associated in a natural way. Namely, let us consider:

w=wl = p.dz®
a=a"t = p,dy° (3.8)
B = ﬁWz = y*0pq
One use these d—forms for studying the Hamilton geometry of order 2 on
T*2M. (see [114], [116], [129]).

Now, let us consider a function f on T*2M. Its differential can be written in
the form (2.9). Therefore

df = (df)™ + )" + @)™,  where

(df)™" = (6af) dae, (df)" = <3af> sy, (df)'"* = (5“f> OPa- (39)
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As an application, let us consider a smooth parametrized curvey: I C R —
T*2M, such that Im v C (71'*2)_1 (U). It can be analytical represented by:

xa:xa(t)aya:ya(t)apa:pa(t)ate]' (310)

dy . . . .
The tangent vector d;ty’ in a point of the curve 7, can be written in the form:

dy  (dy " dry Vi dry W2_dxa oy ; 0Da 1a
dt _<dt> +<dt T\ =%t %+ dta’ (3:11)

where
oyt _ dy* od2’ Opy _dps . da®
dt — dt Vat dt  dt ba” gt

(3.12)

d dy\"
The curve (3.10) is called horizontal if d;ty = <d’ty) in every point of the

—~—

curve 1.

Proposition 3.2 An horizontal curve on T*2M is characterized by the fol-
lowing system of differentiable equations:

" _ ) P

x® =z (t), 5 =0, 5t

—0,tel (3.13)

Clearly, the system of differential equations (3.13) has local solutions, if the
initial points x¢ = % (to) , y&, p® on T*2M are given, to € I.
The horizontal curves with the property
_dz”

yt= (3.14)

are called autoparallel curves of the nonlinear connection N. These curves are
characterized by (3.13) with supplementary condition (3.14).

Definition 3.1 A distinguished tensor (briefly, d—tensor field) on the
manifold T*2*M is a d—tensor field T of type (r,s) on T*?M, with the property:

T

T (J;, 0, X, X) T (J}H, W, X ...,XW2) : (3.15)

VW, .., @ € x* (T M), VX, X € X (T72M)).
S

For instance, every components X XV1 XW2 of a vector field X is a
d—tensor field of type (1,0), and every components w’ , w"*,w"? of a 1—form w is
a d—tensor field of type (0,1).

In the adapted basis (5a,3a,5“) and its dual basis (dz®,0y%, dp,) a

d—tensor field T of type (r, s) can written in the form:
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T=T,"3 (2,9,p) 00y ® ... ® O @di" @ ... ® 6pa,, (3.16)
where
Tyl (vy,p) =T <da:b1, ey 0Dy Oy s ey 8b5> .

It follows that the set{l, O, 3(1, 8“} generates the algebra of the d—tensor

fields over the ring of functions F (T*2M) , (see R. Miron [86], [97]).

With respect to the transformation of the coordinates on T*2M, the local

coefficients 7' ;' ' of T are transformed by classical rule:

e 0T 9T 9z Qab
TG = pparger 5t gt T b (3.17)

4.4 Lie brackets. Exterior differentials

In applications, the Lie brackets of the vector fields 5a,3a,3“) , from the

adapted basis to the direct decomposition (2.2), are important.

By a direct calculus, we have:

Proposition 4.1 The Lie brackets of the vector fields of the adapted basis
are given by

[61)550} = (ﬁ) bcaa + ((]):L;) abca )

6b760:| =B abcéa + B abcgav
L (11) (12)
r (4.1)
5b,86:| = B abcaa + B abcaa7
L (21) (22)
8b760:| = 07 |:8ba 30} = 07 |:6b7 aC:| - 07
where
R “bc = 5CN% — (5bN(é, R 4pe = 0pNew — 0eNpa,
(01) (02)
BaczécNa’ Bac:_acNay
an b (12)“* ’ (4.2)
B¢ = Ny B = ~0°Ny,.
(21) ’ b (22) b b

Proposition 4.2 The exterior differentials of the 1—forms {dz®, §y®, dpa }
which determine the adapted cobasis (2.8°), are given by
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d(dz*) =0

B *,%p, » A dab,
21

) (4.3)

1
d(dy*) =< = R “pedz + B %p.0y°
(dy®) {2(01)1: 93+(11)b y—I—(

1
d(6ps) = 4 = R apedx® + B ape0y'© + B 4p0pe » A dab.
(0pa) {2(1(;3)1) $+(1)by +(2)bp} x

Let us consider the followings coefficients from (4.1):

B % = 0.N%, — B 4° = 0°Nyq (: - B Cab> . (4.4)
(11) (22) (22)

By means of (2.5) it follows

P iti 4.3 Th ents B % = U %e, — B % .= U %h
roposition e coefficients B, b Y be & be & be have

the same rule of transformation with respect to the local changing of coordinates
(1.2) on T*>M. This is

~a Ox?ozf ox 0?7
U af 9 g = d be — b ’
BB)  0xb oxc  Odx?(Bp) OxbOxe

(B=1,2). (4.5)

We will be see that these coefficients are the horizontal coefficients of an
N—linear connections on T*2M.

By a direct computation, we obtain

Proposition 4.4 The coefficients ((])“;i)abc; (oRz)abc and

B % = 8N®, B upe = —9eNpa, 4.6
(21) b AT b b (4.6)

are d—tensor fields on T*2M, of type (1,2),(0,3),(2,1) and, respectively, (0, 3)
i.e.
~ 0z 9z Ox°
d a
of =——— R c, etc.
o) T 9re 9z 9t (01) ° e

We will see that (4.6) can be the vertical coefficients of N —linear connection
on T*2M.

By (4.1) and the Proposition 3.1, we get

Theorem 4.1 The nonlinear connection N is integrable if and only if the
following d—tensor fields vanish:

R%. =0, Rape =0. 4.7
B B (4.7)
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4.5 The almost product P. The almost contact
structure F.

Assuming that a nonlinear connection NN is given, we define a F (T 2M ) — linear
mapping

P:x (T*M) — x (T**M),
by defined

P(X") =X" P(X")=-Xx", P(X"2) = —x"2 VX € x (T**M). (5.1)

We have
PolP =1,
P:H—2(U1—|—’U}2):2h—l, (52)
rang P = 3n.

Theorem 5.1 A nonlinear connection N on T*>M is characterized by the
existence of an almost product structure P on T*2M whose eigenspaces corre-
sponding to the eigenvalue—1 coincide with the linear spaces of the vertical dis-
tribution V on T*2M.

Much more, taking into account that the Nijenhuis tensor of the structure P
is given by

Ne(X,Y) =P?*[X,Y] + [PX,PY] — P[PX,Y] — P[X,PY], (5.3)

we obtain

Np (X7, v7) = 4o [ X7 Y], (5.4)
Ne (X", YY) =0,
Np (XY, YY) =0,
and we can formulate
Proposition 5.1 The almost product structure P is integrable if and only if
the horizontal distribution N is integrable.
The nonlinear connection N being fixed we have the direct decomposition

(2.1), (2.2) and the corresponding adapted basis (2.3).
Let us consider the F (T*2M) —linear mapping;:

F:x(T*M) — x (T*M),
determined by
]F((Sa) = _6a7 F <6a> = 50,7 F (6(1) =0. (55)

Then, we deduce
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Theorem 5.2 The mapping F has the following properties:

1°. It is globally defined on T*2M.
2°. F is a tensor field of type (1,1).
3°. Ker F =Wy, ImF=N@ V7.
4°. rank F = 2n.

5°.F3+F=0.
Proof. 1°. Taking into account (2.4’) we have %Iﬁ' <(£a) = —%aiya,
implies F ((;;) = —aigb. Also, %]F <8§“> = %% and gleﬁ‘ (8(;) =
0, lead to F (aagb) = 5;;1; and F (%) = 0.

For 2°—5° see [97] pg.259.
We can say that F is a natural almost contact structure determined by
the nonlinear connection N.

—_—

4.6 The Riemann structures on T*2M.

Let us consider a Riemannian structure G on the manifold 7*2M.
In the natural basis, G is given locally by

G =g wdr®®di’+ g wdz®@dy’+ g Slda*@dpy+...+ g Pdp,@dpy, (6.1)
(00) (01) (02) (22)
where the matrix || ¢ | is positively defined.
(aB)
Let {6,},(a=1,...,n), be the adapted basis on N :
Oq = Oq — Nbaéb + Nabéb. (6.2)

The following problem is arises: Can the Riemannian structure G determine
a nonlinear connection N on T*2M ?
The conditions of orthogonality between N and V :

G <5a,6b) -0, G <5a76b> =0, (ab=1,..,n), (6.3)

give us the following system of equations for determining the coefficients
N?Y, and N, :
(g)chCa - (g)chac = (g)(lb7
11 12 01
(6.4)
g chca* g CbNac =g (Lb7
(21) (22) (02)
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where, the matrix

g e 9 bC
(11) (12)
(6.4)
g cb g cb
21)  (22)

is nonsingular.

Therefore, the system (6.4) has an unique solution. Whether, take into

account the rule of transformation of the coefficients ¢ from G we can prove
(aB)

that the solution (N%p, Ngp) of (6.4) has the rule of transformation (2.5), by

means of the transformations of local coordinates on T*2M. Consequently, we

have:

Theorem 6.1 A Riemannian structure G on T*2M determines uniquely a
nonlinear connection N if the distribution N is orthogonal to the distribution V.
The coefficients N%and Ny, of N are given by the system of equations (6.4).

Let IF be the natural contact structure determined by the previous nonlinear
connection N.

The following problem arises: When the pair (G, F) is a Riemannian almost
structure?

Evidently, is necessary to have:

G(FX,Y) = -G (X,FY), VX,Y € x (m) .

Consequently, we get:
Theorem 6.2 The pair (G,F) is a Riemannian almost structure if and only
if in the adapted basis determined by N and V the tensor G has the form

G = gapdz® @ dzb + gapdy® @ 6y° + h®p, @ dpy. (6.5)

Corollary 6.1 With respect to the Riemannian structure (6.5) the distribu-
tions N, Vi, Ws are orthogonal respectively.



Chapter 5

Linear connections on the
manifold T*2M

5.1 N-linear connections
A linear connection on T*?M is an application
D:x(T*M) x x (T**M) — x (IT**M), (X,Y)+— DxY,

with the properties:
1. Dx,1x,Y = Dx,Y + Dx,Y,
DyxY = fDxY, Vf € F (T**M), VX, X1, X2,Y € x (T**M) .
2. Dx (Y1 +Y2) = DxY; + DxYs, VX, Y1,Ys € x (T*2M) .
3. Dx (fY)=(X[f)Y + fDxY, VX,Y € x (T**M) , Vf € F (T**M) .

We consider X,Y € x (T*QM). With respect to decompositions of type
(2.2), §4.2, we have

2
DxY = Z (DXHYV“ + Dxwv YV + wazyva) J (1.1)

a=0

where Vo = H and Vo = Ws.
The components Dxu YV, Dyv,YVe Dyw,YVe (Vo= H, Vo =W,), are
vector fields, not necessary distinguished.

The linear connection D on T*2M is uniquely determined by its 27 coeffi-
cients, written in the adapted basis in the form

93
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0 1 . 2 .
Déc(sb = H abcéa + H abcaa + H abcaaa
(00) (00) (00)

. 0 1 . 2 .
Ds, 0p = H “pedg + H 400 + H 4p:0%, ((1.2)0)
(10) (10) (10)
. 0 1 . 2 .
D;, 0 b= g5, + H®.9,— H,.0%
(20) (20) (20)
D. 6= C byt C U+ C aped®
éc b — 1) bcOa + (o1) bc0a + (Ol)abc ’
. 0 1 . 2 .
D. 0y = C %%dg+ C %00 + C 4pc0%, 1.2
de b (11) b +(11) b +(11) b ((1-2)1)

. 0 1 . 2 .
D. 9= C%®.,+ C .09, C,b.0%
b (21) (21) (21)

c

0 1 : 2 .
D. by = C %q+ C %0a+ C 0%,
( (02) (02)

Oc 02)
. 0 1 . 2 .
D. 0y = C %%, + C %0y + C 4°0%, 1.2
Oe b (12) b +(12) b +(12) b ((1.2)2)

D. 8 b _ (O;V abcé’a + év abcaa _ éf abcaa.
de (22) (22) (22)

To work with these 27 coefficients is not impossible, but is laborious.

We will use in continuation the N —linear connections whose coefficients are
much easy to shunt.

Let N be a nonlinear connection on T*2M.

Definition 1.1 A linear connection D on T*2M is called an N-linear
connection if it preserves by parallelism the horizontal and vertical distributions
N, Vi and Wy on T*2M.

By other words, a linear connection D is N —linear connection if and only if,
for any X € x (T*QM ) , Dx carries the horizontal vector fields to the horizontal
vector fields and the vertical vector fields to the vertical vectors. Thus DY €
N, DxY"' € Vi and DxY"™? € W, written in the form

Dx (hY) = hDxY,
DX (’01Y) = UlDXy'7 (13)
DX ('LUQY) = ’LUQDX}/.

Consequently we have
Theorem 1.1 A linear connection D is an N—linear connection if and only
if, for any X € x (T*QM) , we have

th:(), Dx’l}l :O7 DXw2 =0. (14)
Corollary 1.1 For any N—linear connection D we obtain

DxP =0, VX € x (T**M). (1.5)
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Also, we have
Theorem 1.2 A linear connection D on T*2M is an N—linear connection
if and only if

(DxYH)"" =0, (DxYVe)" =0, (B=1,2,V5 = W)),

1.6
(DxY")™ =0, (DxYW2)" =0, VX,Y € x (T"2M). (1)

From (1.6) result, for an N—linear connection D, in decomposition (1.1), the
components

DxnY = DyuY Ve, Dyv,Y o= Dyv, YV, (1.7)
(a=0,1,2, B =1,2; Vo = H, Vo =Ws), are d—vector fields and thus
DY :=Dyu, DX :=Dxvi, D' := Dyw,, (a=0,1,2), (1.8)
are derivation operators in the algebra of d—tensor fields. We have
Q;I?Y = DynYH, 133;11/ =DynYH, QV)V(ZY =Dyw,YH,
gﬁy = DxuY"s, Q‘QY =Dyn Y5, Lﬁ‘)V)VfY = Dyw, Y7, (1.9)
(B=1,2;Vo =W>).

These operators are not covariant derivations, because for f € F (T*QM ) ,
we have DI f = XHf £ X, etc., but they have similar properties with the
covariant derivations, respectively:

1. The operators ]E;)§(I7 Q‘;/(l, QV;I?, verified the equalities (1.6).
2.DXf=X"[, DY f=X"f, DXf = X" F.

3. DX (fY) = X" (fY)+fDXY, DX (fY) = X" (fY)+fDXY, DX’ (fY) =
= X" (fY) + fD'RY.

Lo (PAY), = DAY (DRY)

QV;TU Y|y, for any open set U C T*2M.

= D)‘?|UY|U7 (DV)I?Y> =
U @ o U
5. Dxhy = DX + DY, Dxiy = DX + D2, DX3y = D'¥ + D'}2.
6. Dfx = fDX, Djx = DX, Df% = fD'%,
for any f € F (T*QM) and any vector fields X, Y € x (T*QM) ,(@=0,1,2).
Definition 1.2 The operators D, DV, D2 are called the h,—, vy

Wa—covariant derivatives, (o =0,1,2).
For the 1—form filed w € x* (T*?M) we have

o—> and,
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(wa) (V) = XHw (V) - w (DHY),
( ) ¥V) = XVw(Y) —w (D}?Y) , (1.10)
(9 v w) (V) = X200 (Y) - w (DK(VQY) .

The action of operators D%, D;l , D)Vg"' can be extended to any tensor field,

particularly to any d—tensor field on T*2M.
Let T € 7 (T*>M) be a d—tensor field .
1. For X = XH we have

(DQT) (J;&})l( X) — xHT (Jj, 0, X, X) _
-7 (Dﬁéb, o, X, X) T (J;, s, X D§§X) , (a=0,1,2).
(e} S (6% S

2. For X = XV* we have

(D T) ( &})1()() = XV (ww)l(X) -
S S
T (Dxlw, X, X) - (&;, X, ...,D‘)/SX)  (@=0,1,2).

3. For X = X"2 we have

(DV)VfT) (&;&})1( X) — xWar (&;, X, X) -

T (Dv)vﬁb, X, X) I (&;, S S DV;[?X)  (a=0,1,2).
(1.117)

5.2 The coefficients of an N —linear connection

Let D be an N —linear connection on T*2M. In the adapted basis

5§ -8 . 9
{5a_5ma78(l_aya7a_apa}7

have places the relations (1.2),, (a=0,1,2), and taking into account that,
1

for example, Ds dp belongs to the horizontal distribution. Hence, (H)“bc =
i 00

2
0, H)abc = 0, this means that for an N—linear connection D on T*?M we

have

0
D(;céb = Habc5a = Habcéa.
(00) (00)

We proceed analogous with other relations (1.2),, (a =0,1,2), and we ob-
tain
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Theorem 2.1 1°. An N—linear connection can be uniquely written in the

adapted basis <§a,5a7éa> in the form

D50y = H “ye0q, D50y = H %eda, Ds. 0" = — H ob,0°,
(00) (10) (00)

D. 6 = ac(sa D. : = ac.a D. .b:_ abcva

b (()C;) befar Bcab (g) veDa; 0Ca (g) 0%, (2.1)
D. 6= C % D. Oy = C %00, D. 9" =—C ,*0".

o (02) oe (12) e (22)

2°. With respect to the coordinate transformation (1.2),8 4.1, the coeffi-

cients H %, | a=0,1,2; H %.:= H ,*. | obey the rule of transformation:
(a0) (20) (20)
~ . orloze  ox ., 0%z
derr o =TT e, - O (2.2)
(@0) — 0xb 0x¢  Ox€ (a0) Oxbox¢

3°.The system of functions C *pe, C *p¢, (. =0,1,2; C % := C %;
(1) (2) (21) (21)

(202)%6 = (262’)1,‘“ ) are d—tensor fields of type (1,2) and (2,1), respectively.

The assertions 2° and 3° can be prove by a direct calculus, taking into
account the rule of transformations (2.4’), § 4.1, for (6a,5a,5“> .

The system of functions

Ha C e e Cce C be C be C be
CH (20) bes (01) bes (11) be (21) be (02)(1 5(12)(1 ;(22)a I
(2.3)

DEN) = <(££) b 1) °
are called the coefficients of the N—linear connection D on T*?M.

The inverse statement of Theorem 2.1 holds also: if on each domain of local
chart on T*2M having the system of functions of type (2.3), which of local chart
(1.2),§ 4.1, on T*2M have been transformed by the rule of transformations 2° and
3° of Theorem 2.1, then, on T*2M, there exists an unique N—linear connection
D whose admit these functions as coefficients

Taking into account (1.10), (2.1) and the condition of duality between vec-
tors of adapted basis and 1—forms of cobasis we assuming the rule of covariant
derivatives for cobasis fields (dz®, dy®, dp,) as following:

Ds,dx® = — H “yedx®, Ds 0y* = — H “,.0y°, Ds,6py = H *yc0pa,
o (00) (10) ‘ (20)
D. dz® = — C %.da?, D. 6y* = — C %y, D. 6py = C “pedpa,
5. o1 " v 5. an ° R @) "’ g (24)

D. dx® = — C %°dzb, D. 6y® =— C %5y, D. dpp = C “°p,.
e T (0% b ar”, e Y (12) b 0Y e Db (35) b 0D,

We have the following theorem of existence of an N —linear connection on
T*2M.
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Theorem 2.2 If the manifold M is paracompact and N is a nonlinear
connection on T*>M with coefficients N, Nap, then there exists an N—linear
connection on T*?M.

Proof. Because M is paracompact, there exists an a linear connection on
M of local coefficients, say 'Y, (x) . Let N¢ (x,y,p) and N (x,y, p) be the local

coefficients of the nonlinear connection N. We set (H)abc =T (z), (H)“bc =
00 10

51,N‘é, (H)abc = S“Nbc. Thus, taking into account Proposition 4.3, § 4.4, we
20

obtain three set of function which transform, with respect to (1.2),§ 4.1, by
(2.1) (¢ =0,1,2). It result that DT (N) given by

DI'(N) = | I'Y B B“c,OOOOOO 2.5
() = (T4 @) B o= B ) e

defines an N —linear connection on T*2M
q.e.d.

In applications, we will use the N —linear connections of the form

BU(N) = { L e B "= B s, € %0e,0,0,0, € 0% (2.6)
00) " (11) (22)

called N—linear connection of Berwald type on T*?M.

5.3 The local expressions of h,—,vi,— and wy,—
covariant derivatives, (o« =0, 1,2)

Let us consider a d—tensor fields T of type (7, s) . In the adapted basis (2.3), and
(2.8), § 4.2, T can be written in the form

T=T3 3 (z,y,p) 601 ® ... ® 0" @ da” ® ... ® 6p, - (3.0)

Let X = X7 = X©a§, be a d—vector field. Taking into account the
properties of the operators D;I?T = X(O)dDV};/; T, (« =0,1,2) and the formulae
(2.1), (2.4) we obtain

DET = X©Odp ¢1tr 5 © .. @ 0% @ da™ @ ... ® Opa,., (3.1)
where
T3 = T G150+ H o 5050 ot (H el (1 -
1...05 0 1

- (H) bldT cbs.. b R (1{)) bs dT ..‘ar. (32)
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The operators ”,,” are called the h,—covariant derivatives with respect
to DT (N),(a«=0,1,2).

Let us consider the operators D‘)/(l, for the d—vector field XV1 = X(l)déd,
(03
applied of T' given by (3.0). We obtain

DXT = XWIT {1407 |0a 60y © - ®0" @de™ ® ... 0 5p,,, (3.1)

where
T3 |aa= 04T 31" + (01 “ e 50250 + o+ C arch i
- CFc A = C Gy T . (3.2
(al) bid Cb2 .bs (al) bsd b1...c ( )

b2

The operators ”|, ” are called vi,—covariant derivatives with respect to

DT'(N), («=0,1,2).
Analogous, for X = X2 = EX'Q)(LGQ, we have

QV)VFT:()Z()dT aioar |od g * @ de™ ® ... ® Opa,, (3.17)
where
T(blll:::l?s ‘ adT le ar_i_ C aldT ca2 ar_~_ 4+ C ardT b
f(g) C% 7, - (c;) Tb (32')

The operators ”|* ” are called wy,—covariant derivatives with respect
to DT'(N),(a«=0,1,2).

By a direct calculus, we obtain

Proposition 3.1 The quantities

T aj...Qy T aj...Qy

ad _
br.baad > L b1 b, , (@=0,1,2),

ay...Qy
T by...bs

are d—tensor fields. The first six are of type (r,s + 1), the last three are of type
(r+1,s).
Proposition 3.2 The operators o, |a, |, (@ = 0,1,2) have the properties
1°. flad = 6df7 f ‘ocd: adfv f |ad: adfa vf cF (T*QM) .
2°.These operators are distributive with respect to the adition of the
d—tensor field of the same type.
3°.They commute with the operation of contaction.
4°.They verify the Leibnitz rule with respect to the tensor product.

Now, we shall give two applications of this paragraph.
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Application 3.1 Let us study the ”(y)— deflection tensor fields” of

the N—linear connection DI' (N), where y° is the Liouville d—vector field (the
speed). They are defined by

-Qab = yalabv gab = ya |ab7 gab = ya |o¢b’ (O[ = 07 172) . (33)

Proposition 3.3 The (y)—deflection tensor fields, (o« = 0,1,2), have the

(o7
following expressions

D% — —_N¢ cHac’da — 5@ ccac’dab: cccab' 3.3
D%, by B, &% =004y O e, AT =97 O (3.3)

These equalities are easy to prove, if we notice that

Y ab = 0sy* +y° H “op, y* |ap=0ay” +y° C “a, y* |*'= 0" +y° C “w,
(a0) (al) (a2)
(a=0,1,2).
Analogous, we introduced ”(p)— deflection tensor fields”, where p, is

Hamilton d—covector field (the momentum), by

Aab = Paiab; 19ab = Pa |o¢ba gab = Pa |ab’ (Oé = 07 17 2) . (34)

«a [0

Proposition 3.4 (p)—deflection tensor fields, (a = 0,1,2), have the follow-

«
ing erpressions

Aab - Nba — Pec H Caba ﬁab = —DPe C cab; ﬂab = 52 — Pe C caba
(a0) (al) (a2)

a a0 al «@

(a=0,1,2). (3.4

Proof. Using (3.2), (3.2’) and (3.2”) applied of p, we obtain the expressions

(3.4).
q.e.d.

The deflection tensors will used in determination of some important iden-
tities as particular case of Ricci identities, applied of d—tensor fields y* and
Da,(@=1,...,n).

Application 3.2 The distinguished tensor field g, (z,y,p) used in § 4.6,
formula (6.5), has ho—, v14— and wy,— covariant derivatives with respect to the
N —linear connection DI' (N), (2.3), given by:

Gabiac = 5cgab - H dacgdb - H dchadv
(a0) (a0)

_ _ d _ d
Gab |ac— acgab (g) ac9db (g) beGad (35)

Gab 1= 0°9ab — C 4% gay — C % Gaa.
(a2) (a2)
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5.4 N -—linear connections of Miron type on T*2M

An important particular case of N—linear connection is given by
Definition 4.1 An N—linear connection D on T*2M is called an MIN —linear
connection (N—linear connection of Miron type ) if:
1°.The 1—tangent structure J is absolute parallel with respect to D.
2°.The presymplectic structure 6 is absolute parallel with respect to D.
Because

(DxJ) (YH) = Dx (JYH) — J (DxYH),
(DxJ) (YY) = Dx (JYV1) — J (DxY"),
(DxJ) (Y"?) = Dx (JY"2) = J (DxY"?),

we can formulate
Theorem 4.1 An N—linear connection D is an M N —linear connection on
the manifold T**M if and only if:

1°. Dx (JY™) = J (DxY"), (4.1)
Dx (JY'1) = J (DxY"),
Dx (JY"?) = J (DxY"™?), VX,Y € x(T*M).

2°. D = 0. (4.2)

We remark that the latest two equalities from (4.1) are coorsely, because a
N —linear connection D preserves by parallelism the distributions V; and W5 and
J(¥YVY) =0, J(Y"2) =o.

Theorem 4.2 An M N —linear connection on T*>M is characterized by the
coefficients M DT (N) given by (2.3) where

H abc = H abc = H abc = Habca

(00) (10) (20)

C %= C %= C % =:C%,

(01) (11) @ ° b (4.3)
C e = 4= C ¢ =: C%C,

(02) (12) (22)

Proof. By the first equalities (4.1) we can write

Ds. (J8,) = J (Ds,8) . that is Dys,dp = H %.J (6,), where H e = H
‘ ‘ 7 (00) 10) (00)

D. (Jéb ( , that is D. é)b = C %cJ (04), and therefore C %= C Y.
D (01) (11)

(01)

12) (02)
H %, C %= C *peand C %= C %°
(00) "2 " (o) (59) )
are obtaining from Ds .0 =0.

D. (J5b ( ) that is Décab = (OCQ) p¢J (6a), where (C ¢ = C *°.
The equalities H “bc =

q.e.d.
Also, we obtain
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Proposition 4.1 For any M N-linear connection M DT (N) = <H“bc, C%e, Cabc)

we have
DxF =0, VX € x (T**M). (4.4)

Indeed, by (DxF) (Y) = DxF(Y) —F(DxY), we obtain
(D3.F) (30) = DsF (60) ~ F (Do, o) = D, (~00) — H*wF (3) =

=— (Habc —H%, 3(1 =0, etc.

Remark 4.1 1°.We have {MDI' (N)} C {DT'(N)}.
2°.For any M N —linear connection, the hy,—, v14— and ws, —covariant
derivatives, (a = 0, 1,2), one reduce to h—,v;— and ws— covariant derivatives.
Also “i14e 7, (@ =0,1,2) one reduce to “ 1.7 only, “ |4 7, (e =0,1,2) one reduce
to “|.” and “|*¢” one reduce to “|¢”, (¢ =1,...,n), respectively.
3°. For any M N —linear connection with the coefficients

MDT (N) = (Habcacabcacabc) s (45)

the deflection d—tensor fields have the expressions

Dab = ya\b7 dab = ya |b7 dab = ya |ba
(4.6)
DNgb = Paibs Oab = Pa |b7 5ab = Pa |b7

etc.

Whole these correspond of R. Miron theory on the Hamilton spaces of higher
order recently achieved and published in prestigious Kluwer Acad. Press, in two
volume of speciality [86], [97].

From this paragraph we clearly see how results of this paper generalize the
works remarked before. To work with nine coefficients for a linear connection
on T*?>M (replaced three) is an advantage in the physical applications in elec-
trodynamics [103], [104], elasticity [105],quantum field theories [109], [119], in
the deviations of geodesics [29], [30], [133], etc., because, after who shall see, the
torsion, the curvature, remarkable identities, etc., are much more substantial.

5.5 The torsion of an N—linear connection
Let D be an N —linear connection. The torsion of D is given by
T(X,Y)=DxY —-DyX —[X,Y], VX,YEX(T*QM). (5.1)
It can be evaluated for the pairs of d—vector fields (XH, YH) , (XH, YVl) ,

(XH, YWZ) , (XV17YV1) , (XV17YW2) and (XW2, YWZ) . We obtain the vector
fields,
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T (XH7YH) ’ T (XH7YV,6) ’ T (XvﬁaYV’y) ) (ﬂa’y =1,2, ﬁ < 77‘/2 = WQ) .

Since, D preserves by parallelism the distributions N, Vi, W5 and the distri-
butions Vi, W5 are integrable it follows

Proposition 5.1 The following properties of the torsion T holds:

AT (XY, Y"1) =0, hT (X", Y"2) =0, hT (X"2,Y""?) =0,
weT (XY, Y1) =0, vy T (X"2,Y"2) =0. (5.2)
From this assertion, we deduce

Proposition 5.2 The tensor field of torsion T of an N —linear connection
D is uniquely determined by the following components

T (X7, YH) = hT (X7, YH) + o, T (X7, YH) + wpT (XH,VH),
TEXH,YVl) = hT (X7, YY) 4o, T (X7, YY) + T (X7, YY),

T (XM, Y1) = BT (X, Y72) 4 01T (X7, YH2) 4w, T (X, Y1)
((5.3)1)
T(XV, YY) = T (X%, v%) ((5.3)2)
T(XY,Y"2) = T (XY, Y%) 4 w,T (X%, ¥W), o
T ()(Wz7 YW2) — wa T (XW2,YW2) 5 ((53)3)

where in the right part of each equalities we have d—tensor fields of type (1,2).
These terms, will call d—tensors of torsion of the IV—linear connection D.
More exactly, hT (X ,Y*) is called h(hh)—tensor of torsion of D,

1T (X, Y#) is called vy (hh) —tensor of torsion of D and so on.

By direct calculus we prove
Theorem 5.1 The d—tensors of torsion of an N—linear connection D on
T*2M, with the coefficients

DT (N) = H @ H @ H ¢ C e Cac’cac’cac7cac7crac ;
(M) <(oo) ber 10y P 20y " o1) ") M1 o P e )

in the adapted basis (2.3), § 4.2, have the expressions:
hT (4,4 70”1 0
( cy b) - (00) bcYay
1 . 2 .
vlT (5C75b) =T abcaavaT (5C75b) =T abcaaa
(00) (00)
. 0
hT (aC75b> = (é:l))abcaay
: 1 : 2 ((5.4)1)
vlT (8(:’617) =P abcaaa'LUQT (8076b> =P abcaaa
(01) (01)
. 0
hT (8255) = P %%,
(02)
. 1 . . 2 .
UlT (86,51)) = P abcaa,ng <8C,6b> =P abcaa,
(02) (02)
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o 1
UIT acaab =S abcaa;
(11)

. 1 . L 9 ) ((5.4)2)
'UlT 867 817 = Q abcaavaT <8cvab) - Q abcaav
(12) (12)
T(o000) = § e 5.4
wl (,0) = S0 (5a)
where
0 1 2
T abc = H abc - H acb7 T abc =R abca T abc = R abes
(00) (00) (00) (00) (01) (00) (02)
0 1 2
Pac:CacaPac:Bac_HacaPac:Baw .
(01) b (01) b (01) b (11) b (10) b (01) b (12) b ((5:5)1)
0 1 2
P %e= C 9 P %= B% Pg°= B g+ Hu,
(02) (02) (02) (21) (02) (22) (20)
1
=& G
é a_ c C a_ cC C ac é C C C C C ((5.5)2)
i@t Ty e et ey
g be Cr be C cb 5.5
ot ((22)“ 22 ) ' ((5:5)s)

Proof. We take into account the Lie brackets, Proposition 4.1, the formulae
(4.1), (4.2), § 4.4,and of the write of an N—linear connection in the adapted
basis, the formulae (2.1), § 5.2. We obtain, successively

hT (8¢,8p) = hDs_ 0p — hDs,0c — h[0c, 0] = H “pe — H *p,
(00) (00)

and the first equality (5.5); is true. Now

v T (307&) =v1D. § — UlDébéc - [50-,51)} =—H"",+ B",
O¢ (10) 11)

(
and the 5" equality (5.5); is correct. Then, for exemple

wo T (66, 5b> = w2D6C5b - wgD(;béC — W2 [367 5b:| = (g)acb + By,

and the 9" equality (5.5); is true. In same manner, we obtain the other equalities
q.e.d.
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Remark 5.1 The tensor field of torsion T of an N —linear connection D on
T*2M is formed by 13 d—tensor fields of torsion, components of T. Especially,
we have

0 1 2
T abc = H abc_ H acbv S abc =C abc_ C acbv S abc = - ( C abc - adj) .
(00) (00) (00) (11) (11) (11) (22) (22) (22)
(5.6)
Therefore,

Proposition 5.3 The following statements are equivalent
0 1 2
1°. T %, =0, S %.=0, S, =0.
(00) (11) (22)
2°. H% = H%, C% = C%%, Cg"= C,*
o o0 U an T a @t @
We pay attention to the N —linear connection given in following definition.
Definition 5.1 An N—linear connection on T*2M is called semisymmet-

ric if

%“ L 0y og
00) be = 5( b0 — 020b),
L a 1 a a 2 C 1 c (&
S e =5 07— 0em), 8" = =5 (v - 00") (5.T)

where 0,7 € x* (T**M) and v € x (T**M).
In the next calculus we have need of the following d—tensor fields:

0
T abc: Habc_ Ha('ba P abc: Babc_ Hacba P abC: Babc+([_{))caba
(e

(a0) (a0) (a0) " (al) (11) (a0) " (a2) (22)

g'al)c:c'abc_cvacb g1u,bc:_(cvabc_C'ad)>
(al) (al) (1) 77 (a2) (a2) (a2) ’
(a=0,1,2).
(5.8)

We remark that we have
1 . 2
P abc =P abcy P abC =P abc- (59)
(11) (01) (22) (02)

Particularly, we have
Proposition 5.4 For any N—linear connection of Miron type, M DT (N) =

(Habm C%e, C’abc> we obtain

0 0 0
T = T %= T % = H' — Ho0 = T

©00) 7 o) T @)
Po,= P% = P%,= B%, —H%,—=: P° 1
(1) be 1) be @1) be ) be cb 1) be (5 0)

= P = B+ How = Pu’

P = po
0" T an ey T @y @)
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Now, it is easy to write the d—tensors of torsion of an /N—linear connection
of Miron type. By the formulae (4.3), the Theorem 4.2, we have
Proposition 5.5 The d—tensors of torsion, components of torsion tensor

field T of an M N —linear connection with coefficients M DT (N) = <Hc”bC7 C%e,

C,be ) are

Habc - Hacb = Tabca R abm R abey
(01) (01)
Cabca B abc - Hacb = Pabc; B abey
(11) (1) (12)
C% =:Cy*, B "=t B, B+ Hp =t Py,
(21) (21) (22) (2)

(5.11)
Cabc - Cacb = Sabca - (Cabc - Ca0b> = Sabc-

Remark 5.2 The tensor field T of an N—linear connection of Miron type
on T*2M is given by 11 d—torsion tensor fields, components of T.

5.6 The curvature of an N—linear connection
Let D be an N—linear connection on 7*?M. The curvature of D is given by
R(X,Y)Z = (DxDy — DyDx)Z — DixyZ, VX,Y,Z € x (T*QM) . (6.1)

We will express R by his components, taking into account the decomposition
(3.3), §4.3, for the vector fields on T*2M.

We prove

Theorem 6.1 The curvature tensor field R of the N—linear connection on
T*2M have the properties

R (X,Y)ZH =0, woR (X,Y) ZH =0,
hR(X,Y)ZV* =0, hR(X,Y) Z"2 =0, (6.2)
R(X,Y)Z =hR(X,Y)ZH + vy;R(X,Y) Z"* + woR (X,Y) ZW2.

Proof. Because D preserves by parallelism the horizontal and verticals
distributions, by (6.1), the operator R (X,Y") carries horizontal vector fields to
horizontal and verticals vector fields to verticals. Thus the first four equations
form (6.2) hold. The next one is an easy consequence of the first four.

q.e.d.

By Theorem 6.1 and the equation R(X,Y) = —R(Y, X),VX,Y € T*?M,
we get

Theorem 6.2 The curvature tensor R of an N—linear connection D on
the total space T*>M of a 2—cotangent bundle (T*2M7 7r*27M) is completely
determined by the following d—tensor fields:
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2
R (X", Y1) 2" = DYDYz — DYDY 2" — EOQ[X%,YH]ZH,

2
VOt
R(XH.YH) 2% = DXDYZ" = DYDXZY = 32 Dixinym 2%, (v = 1,2),
a=0"
\% \% 2 Va
R(Xvﬁ,YH) ZH:Q)?%{?ZH*Q}I;%)?ZH7Q§O%[XH7}/H]ZH,(/6:1,2),
2
R (XV2,YH) 2% = DY¥D$ 2V — DYDY ZV> — D[)‘(/‘% v 2%,
vy vy a0 '
(67’7: 1a2)a
R (XVe, YY) 28 = DEDY 74— D DezH — S Y zH
( ; ) =DxDy Dy Dx Ezlo[xvﬁyyvﬂ ,

B.y=12,8<7),
2
R(Xvﬁ,va)zva:D‘;??‘;;ngi?‘;;?xézvéiZ? Ve ]ZV,;7

1
(5?’755:1727ﬁ§v)7
(6.3)
where Vo = H and Vo = Whs.

The d—tensors fields from the right part of the following equalities are called
d—tensors of curvature of the N—linear connection D.

Local expressions of d—tensors of curvature of N—linear connection D with
the coefficients

DF(N):(H

“pey, H “pe
(00) * (10)

) H abc» C abca C abca C abca abcv abcv abc)
(20) (01) (11) (21) (02) (12) (22)
can be obtained by (6.3). With notations
R(04,6c) 0y = R 3%cada, R(5d,5c)3b = R %40,
(000) (100)

R((deac) 0*=—- R bacdéba
(200)

0= R %qba, R <8d760> Op = R %cq0a,
001) (101)

i (ada 60) 6(1 =- R bacdéb,
(201)
R <8d7 60) 5b = R bacdaaa R <ad7 5c> ab = R bacdaa» (64)

(002) (102)
R (ad, 50) 0= — R 2.9,
(202)
(
R (&1,86) aa =— R bacdaba
(211)

0.0.) 6= R 4o.%,. R(ad,ac> by= R .10,
(112)

5d, 5c> 0= R %cqda, R (5(1750) 6b = R bacdaaa
011) (111)
> (012)
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R (aa) =~ R i,

(212)
R <8d, 60> &= R %%, R (8d,8c> Oy = R ,%°10,,

(022) (122)
R (6{1760) 6@ =— R bacdéb7

(222)

we get

Theorem 6.3 An N—linear connection D with the coefficients

Dr (N> = (H abc; H abc; Habc» c abc, c abm C aba C abc7 C abC7 C abc)
(00) (10) (20) (01) (11) (21) (02) (12) (22)

has the d—tensors of curvature (6.4) expressed by the following formulae

R 4%q=0q4 H %.— 06, H?® HYYyWHy— HNWyH®
(aOO)b cd d(ao) be © (50) bd"‘(ao) bc(ao) f; (50) bd(]?o) fet
+C%¢ RI g+ C 4™ R feq,
@n Ton T @ o'

R %a= 5d H % — C %aae+ C % PIpet C 4 B tea, (6.5)
(a01) (a0) (al) (a1) 7 (a1) (a2)”  (12)

R bacd = ad H abc - C bad\ac + C ab B fcd + C baf P cd7
(00) (a0) (2) (al) f(21) (a2) (a2)f

(a=0,1,2),

R %= ad(g)abc - ac(g)abd + (g)fbc(g)afd — C Ty C %,

(al1) . . (al) (al)
R 42.4=09C %.—0, C ¥+ C . C y44— C I C 2y,
(a12) (e (@) (1) (a2) (@2)  (al) (6.6)
R bacd:adcbac_accbad+ beccfad_ vafdcvfu,c7
(22) (2) (a2) (a2) (a2) (a2) (2)
(a=0,1,2).

Proof. Taking into account the formulae (4.1),(4.2), §4.4, (2.1), §5.2, and
the notations (5.8) and (6.4). We obtain, for example

R(04,6.)0"=— R y940*=(D. Ds. —Ds.D. )0*—D . 9=
(d’ ) 201" ( b4 0 e ad) da,bc

=—D. He 3f)+D5 (Ca 6f>+D . 9=
da ((20) fe “\(21) - (E)fcdaf“'(g)fcdaf
=— (501 Habc> 3 + H%.C fbd5b+ <5c C abd) - C “ra H fbcab_
(20) 20) '%21) (21) @1 @0

— By C 90— B og C 4200
an “en T T apl e’

We have, therefore
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Rbcd—adH be — H ch'faz*(S C pat+ HTpe C%pat
(201) 20) (20) © (21) (20)  (21)

+ C % Bfoa+ C ¥ B 4,
oy Yan “ T @ @l

But, by formula (3.2) we get

C “paoe = 0. C @ H.CHy— Hfy\.C%y— HI o C®
@1) "*? &t Bl re G va = Hlve O ra = B ae G %or

Interchanging the underline terms, in the last equations, results

Rbcd—adH be — C “pae + C % P Iyt C 4% B fea,
(201) 20) (21) e e 22)  (12)

namely the 6" relation of the lot (6.5) (a = 2). The other equalities are given in
same manner.

q.e.d.

Remark 6.1 The tensor field of curvature R of an IN—linear connection D
on T*2M is given by 18 d—tensor fields of curvature, components of R.

Particularly, we have

Proposition 6.1 For any N —linear connection of Miron type , MDT (N) =

(Habc, C%e, Cabc) we obtain

R %q= ved = R 3%q=: Rycas

(000) (100) (200)

R ac = ac = R c =P ac 5

0oy’ ¢ (i00)? < (zoo)b d bed (6.7)
R bacd = R bacd _ R Pb

(002) (102) (202)

R ac: R ac: R ac ::Sac;
(011)b d (111)b d (211)b d b ed

R %% = R %% = R *4 =8,

(012)11 c (112)b c (212)13 c b c ) (68)
R bacd = R bacd = R bac —- Sbacd.

(022) (122) (222)

The writing of d—tensors of curvature from an N —linear connection of Miron
type, is immediately by Theorem 6.3 and formulae (4.3), § 5.4.

Proposition 6.2 There exist only 6 the essentially d—tensors of curvature,
components of the tensor field of curvature R of an M N —linear connection with

coefficients MDT (N) = (Habc,C“bc,Cabc) namely
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Rped = 6aH%e — 8cH%a + H peH g — HY pqgH o+

C%¢ R¥.g+Co R 4.4,
+ bf(m) d+ Ch (OQ)fd

Pyleqg = 3dHabc — C%qic + C’“bf(ff)fbc + Cbaf(g)fcdy (6.9)
Pyt = 94 H e — Cy*% + C%y B A+ Cy™ P g,
(21) (2)
S = 0qC% — 9C%q + CTyeC%q — CT1qC%e,
Sy2.d = 910, — 9.C, 0 + CF 4, Cyad — CyFdCa (6.10)

Sbacd — 3dcbac _ 3ccbad 4 C«bfccrfad _ bedCfaC.

5.7 The Ricci identities

In the application it is suitable to consider the equalities (6.3) as Ricci identi-
ties. A simple aranjament of (6.3), gives us

Theorem 7.1 For any N—linear connection D on T*2>M the following Ricci
identities hold:

DXDYZM — DYDRZH =R (X7 Y™) Z7 + DX ym Z7+
2
Va
+521€[XH’YH]ZH’
Ve nHH _ nHRPYB7H _ Vs vHY 7H H H
ngyz Zojygxz —R(X BY )Z +€[Xvﬂ,yH]Z +

2

Ve
+ Zlg[XVfJ,YH]ZH» (B=1,2),
e=

2
Ve V- Vy VB Ve
PXRYZY - RYRRZY —R(X V) 274 B Bty 27,

B,y=1,2,8<7),
((7.1)1)
DYDY Z% — DYDY ZY =R (X", Y1) ZV + D 3u yu) 2V +
Y Y vy Y vy :
2
+ X Dy ym 2", (1 =1,2),

e=1"7
DXDYZY - D¥DX 2% =R (XY, YH) 2% 4 D v, i 2%+
Y Yy v v ’
2
+ZD[)‘(/€/5 YH]ZVWu (ﬁ?A/ = 172)7
e=17 ’

Vy V]

2
DYDY 2% - DY DRZ% —R(X, YY) 2% + 3 D, e 2%,
e=1

(B,7,6=1,2,<7),
((7.1)2)



5.7. THE RICCI IDENTITIES 111

where Vo = H and Vo = Wha.

We can establish these identities for a vector field, although they could be
write for any tensor field.

Theorem 7.2 For any vector field X € x (T*QM) we have following Ricci
identities

0
Xa\a |ac_Xa|acwa :Xf R ac_ chXa\a -
b b (aOO)f b (a0) bf f ,
— RIp X |ap — R X |07,
(01) b |f (Oz)fb |

Xa\ab |ac —-X¢ |ozcwo¢b: Xf R fabc - (g)fchalocf_

(a01)
_<£>beXa lor =
Xy |7 — X [0y = Xf(af()iz)fabc _ (g)bfcxa‘af_

_(g)beXa los Tl 4

K lalae =X lackos= X7 1% = 8 ToeX* loy,
Xo |ab|ac _Xxoe |ac|ab: Xf R fabc - C bcha ‘ch - C cbea |ozf,
(a12) (a2) (al)

Xe ab|ac _Xea |ac ab__ Xf R abe __ cha af
] || B o 17,

B ch oef,
(12)fb |

(7.2)

(a=0,1,2).

Remark 7.1 Using the previous considerations we can express the Ricci
identities for any M N —linear connections with coefficients M DT (N)

= (Habm Cabc; Cabc> P [86]7 [97]

Application 7.1 As a first application let us consider a Riemannian metric
G on T*2M in the form

G= gadz®@dz® + g oy @ 6y° + g ®op, @ Spy, (7.3)
(0) (1) (2)

having the properties

g abiac = Ou g ab |o¢c: 07 g ab |ac: 07 (a = Ou 17 2) ) (74)
(o) (o) (o)

where || g [|=] g [I7".
@) @)

Then we have
Theorem 7.3 If the Riemannian metric G, (7.3), verifies the conditions
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(7.4), then the following d—tensor fields

R apea= g R olear R avea= g o B ofcas
(a3

(200) ()" (@00)" " (a01) () (@01)
(alo%z)abcd = (g)fb(a1§2)afcd,

(a](?O)“de - (g)fb(a}fl)afcm (affz)abcd = (g)fb(a%)afcd, (7.5)
(rfzzz)ade B (g)fb(a%)“ﬁd’

(a=0,1,2).

are skew-symmetrics in the first two indices (ab).
Indeed, writing the Ricci identities for d—tensor fields g 4 and taking into
(@)
account the equations (7.4). We deduce
f
a

=0,
) d

of R 47e R
(g) f(aOO)b d+(g)bf(a00

Using (7.5) and we get R paca + R apeda = 0,(a=0,1,2), etc.
(00) «00)

(
q.e.d.

Application 7.2 The Ricci identities applied to the Liouville d—vector field
Yo and the Hamilton d—covector field p, lead to the some fundamental identities
for electromagnetic theory on T*2M.

Theorem 7.4 For any N—linear connection D with the coefficients

Dr (N) - <H abCa H abC; H abm C abCa C abca C abca C abc7 C abcv C abc)
(00) (10) (20) (01) (11) (21) (02) (12) (22)

the d—deflection tensor fields (3.8), and (3.4), § 5.3, satisfies the following iden-
tities o
Dab\ac - Dacxozb = yf %0 fabc - Daf T fbc*

(00) a " (a0)
_gaf(ﬁ)fbc - gaf(ﬁ)fba
Q“b e _gacwab = yf(ajgl)fabc - Q“f(g)fbc—
*gaf(fl)fbc - gaf(g)fbc,
Qab |ac _gac‘ab — yf(a}§2)fabc _ Qaf((%)fbc_ (7.6)
Rl R A

a __Ja — f a _ Aa f
gb|ac gc|ab Yy (ozlfl)f be gf(o‘i) bes

gab |ac _gac|ab:yf R fabc_daf bec_daf CCfb,

(a12) a " (a2) a  (al)
dab ac _ gac ab_ . f R abc __ daf S be
o | o | Y (a22)f o (a2)f ’

(a:O71’2))
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respectively

0
Aab\occ - Aacu)cb = —Dpy R afbc — Aaf T fbc_
@ o (200) o @)
R fbc - ﬂaf
01 «

_'gaf (1)“;» Fbes

(01) (02)

Aab |occ *19a0|o¢b = —Py afbc — Aaf C fbcf
o a (al)

@ (

R
a01)
_ﬁaf P fbc - ﬁaf B fbes

a ” (al) a’ (12)
Bt 1% ~0atiab = =p7 B af" = Loy GyoT"= (7.7)
_gaf(g)f °— gaf(ofz)fbcv
Dat loe ~Vac lav= =ps B a’ve = as 8 Toe:
Qao 1% ~0a lav= —p5 B ae” = fay G™ = a G
Ja® |7 —0a° [*0= —py B o7 —0a7 S 4,
(a=0,1,2).

We pay attention to an important particular case.
If the (y®)- deflection tensor and the (p,) —deflection tensor have the follow-
ing particular forms

D%, =0, d%, = 6¢, d** =0,
Nap =0, Jap =0, 9,0 = 52
« (03

[e%

(7.8)

then, the fundamental identities from Theorem 7.4 are very important, especially

for applications.
Proposition 7.1 If the d—deflection tensors are given by (7.8) then, the
following identities hold:

fR ac:}zaC fR aC:PaC fR ac_ RBac
Y @ooy’ " on %@ Y @n’ 7 @an %@ Y @2’ * T @y b
FR %= S %, yI R ;%°= C,*, yf R ;% =0 7.9
4 @’ T @&y Y @2’ P T @t 4 (a22) ’ (7.9)
(=0,1,2),
and respectively
Rafc:_Rac; Rafc:_Bac, RafC:_Pac’
pf(aoo) fb 02)" p’;(am) b a2 pff(gxoz) b (@) b
p Rabc:Oap RabC:_CCabap RaC:_Saca
f(all) f(a12) (al) f(a22) (a2)
(a=0,1,2).

(7.10)



114 CHAPTER 5. LINEAR CONNECTIONS ON THE MANIFOLD T*?M

5.8 Parallelism of vector fields on the manifold
T2M

Let D be an N—linear connection on cotangent bundle of second order, with the
coefficients DI' (N) given by (2.3), § 5.2.

Let us consider a smooth parametrized curve v : I — T*2M having the
image in a domain of a chart of T*2M. Thus, v has an analytical expression of
the form

2 =x(t), y* =y (), pa =pa (1), t €1 (8.1)

: d
The tangent vector field v = d—z, by means of form (3.11), § 3.4, can be

written as follows

. da® oy® ; 0pg ;
= —_— a .2
Y= 0+ - 0a+ 20", (8.2)
where Sy®  dy® dx® & d dx®
Y Y X Pa Pa X
= Ne,— =% — - =, .
dt — dt YAt dt  dt " (8.3)
Let us denote
DX DX
D.X="" Dx="dt VX T*2M) . 8.4
4 dt ) X dt ) G,X( ) ( )

DX
The quantity DX is the covariant differential of the vector X and o

is the covariant differential along the curve along the curve ~.
If X is written in the form

X =XH § XV 4 xWe = xOag, 4 x(ag, 4 ()2()@“
and we put

_ _ H A%} Wy _

D, =D, +D,, +D., =DI+D! + D" =
dx® 5ya 5pa

— D —D. D.

at T T P, T g P

)

then, after a straightforward calculus, we have
DX = (dxO* 4 xOF wa ) 5,+
(0)
+ (dxWe 4 xDF o) g+
1)

+ (an - Xfwfa> 9%, (8.5)
@" @@
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where
w ab = H
(@) (a0)

The 1-forms (w)ab, (w)“b, (w)“b from (8.6) are called 1—forms of connections
0 1 2

“pedx® + (Cl')abcdyc + (Cz’)b“cépc, (¢ =0,1,2). (8.6)

of D.
Putting
w ab
(@) dzx dy* Ope
= H % e—+ C %e——+ C p*°—, 8.6
dt (a0) bedt +(a1) bt +(a2)b dt (8.67)
then, the covariant differential along the curve ~ is given by
0)a w af
DX _ (DX Lxor@ T
dt dt dt
dx(Da &' B &'
— 4 xS - X . (8.7
a a | T\ e o @ (8.7)

From (8.7) results that the parallelism of the vector fields along the curve v, can
be used. We obtain, directly
Theorem 8.1 The vector field

X = X(O)uéa +X(1)<zéa + E)Q()aga

is parallel along the parametrized curve vy, with respect to D, if and only if its
coordinates X (0, X (Ma, EX)Q are solutions of the differential equations
2

a e wf
dX (Pa & ! * 2 *

xOr2 g B x =0 =0,1). 8.8

dt dt 5 dt (Q)f dt ) (ﬁ 9 ) ( )

A theorem of existence and uniqueness for the parallel vector fields along a
given parametrized curve on T*2M can be formulated in the classical manner.

The vector field X € x (T*2M) is called absolute parallel with respect to
the N —linear connection D' (N), if DX = 0 for any curve . It is equivalent to
the fact that the following system of Pfaff equations is integrable:

dXBa L xB)f e, =0 dX,— X fazo =0.1). 8.9
X =0 e gy e =% =00 (89)

The system (8.9) is equivalent to the system

X@a = X@a |, = xa 20— g,

Xaab = Xq |av= X4 ab:O’ ’

Koor =X | 5 | (8.9°)
(B=0,,a=0,1,2).
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Using Ricci identities, the system (8.97) is integrable if and only if the coor-
dinates X (¥ ()2() a, (8=0,1) of the vector field X satisfy the following equations

XOF R 9.=0, XO R 4, =0, XBF R ,oc=0,
301) 302)

(800) ( (

XBF R s, =0, XBOF R ,ac=0, XBf R pabe =, 8.10
g1’ b1 ° (622 (8.10)

(B=0,1),
and ; ; ;

Xr R =0, X R =0, Xr R =0
(2)f(200)a be ) (2)f(201)a be ) (2)f(202)a be )
X+t R ooe=0 X+ R =0, X+ R J=0. 8.11
ol e T Bl T e (8.11)

The manifold T*?M is called with absolute parallelism of vectors with
respect to D, if any vector field on T*2M is absolute parallel. In this case the
system of equations (8.10) and (8.11) are verified for any vector field X. It follows:

Theorem 8.2 The manifold T*2M is with absolute parallelism of vectors,
with respect to the N—linear connection D, if and only if , all d—tensors of
curvature of D, vanish.

The curvature 7y is autoparallel with respect to D if D«ﬂ =0.

By means of (8.2) and (8.7) we deduce

Dy _ (dxn dal 7 o
Dt | dt? dt dt @

a f
doye syl D7) . d 0pa  Opa (3 °

adr T dr dt T\ @ a a4 |

(8.12)

which we permit to formulate

Theorem 8.3 A smooth parametrized curve (8.1) is an autoparallel
curve with respect to the N—linear connection D if and only if the functions
(1), 4o (1),
Do (), t € I, verify the following system of differential equations

a
A2z dxt (L(‘))) f _

dt? dt dt

sy s
dt dt dt dt 7

wf,
ddpa Opy (2

dt dt dt dt

=0. (8.13)
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Evidently, the theorem of existence and uniqueness for the autoparallel curve
can be easily formulated.

We recall that v is an horizontal curve if ¥ = 4. The horizontal curve
are characterized by

o _

0pa
=0, ==
dt ’

x* =z (t), o

=0. (8.14)

We pay attention to the special horizontal curves:

Definition 8.1 The horizontal path of an N—linear connection D, is an
horizontal autoparallel curve with respect to D.

We have

Theorem 8.4 The horizontal paths of an N —linear connection D on T*?>M
are characterized by the system of differential equations:

d?z® dx® dx* Sy° OPa
Hac » Y TR 20’720’720’
gz T e @) ey dt dt (8.15)
(¢=0,1,2).
Proof. The equations (8.14), (8.6”) and (8.13) imply (8.15)
q.e.d

Now, the following notions are easily explained.

A parametrized curve 7 is vi—vertical curve in the point zg € M if its
tangent vector field ¥ is belongs to the distributions V;.

A parametrized curve « is wo—vertical curve in the point o € M if its
tangent vector field 4 is belongs to the distributions Wj.

Of course, a v;—vertical curve « in the point zo € M is analytically repre-
sented by the equations of the form

at =g, y* =y" (1), pa =0, t € I, (8.16)

and a wg—vertical curve 7y in the point zg € M is analytically represented by the
equations of the form

2t =xf, y* =0, po =p (t), t €I (8.17)

e define a vi—path in the point xg € M with respect to D, to be a
vi—vertical curve in the point zog € M, which is an autoparallel curve with
respect to D. It is clear, what is mean wo—path in the point g € M with
respect to D.

By means of (8.16), (8.17) and (8.11) we can immediately prove

Theorem 8.5 1°.The vy —wertical paths in the point xy € M are character-
ized by the system of differentiable equations

a a

d2a dbdc
T =Ty, 4 + Cabc(manao) .

dt2 = (a1) dt dt

:Oa pa:Oa
(a=0,1,2)

(8.18)
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2°.The wo—wertical paths in the point xog € M are char-
acterized by the system of differentiable equations

d?p, dpy, dp.
¢ =zg =0 *Cabc 5070.7 :07
2t =26, ¥ =0, = G (@0, 0,pa) T (8.19)
(a=0,1,2)

Remark 8.1 In Theorem 8.5, we assume that there exists the coefficients
(0) (l‘o,],/,O) and (CQ’) (mOaOap)z (O(:O,I,Q).
al «

Remark 8.2 By Theorem 4.2, and formulae (4.3), § 5.4, we can obtain the
results of this section, with respect to the M N —linear connection M DI' (N) =

<H“bc, C%e, Cabc> on T*2M. These coincide with the results of R. Miron and

his collaborators [86], [97].
Remark 8.3 In the case of Berwald connection (2.5), § 5.2, the characteri-

zations for v; —paths and ws_paths appear in a very simple form, because (C be
al

=0and C .t =0.
(a2)

5.9 Structure equations of an N—linear connec-
tion

For an N—linear connection D, with the coefficients DT' (N) given by the formu-
laes (2.3), in the adapted basis (6a, 8,18“) on T*2M we can prove
Lemma 9.1 1°. Each of the geometrical object fields

d (dz®) — dzb A (w)“b, d (6y®) — dy® A (w)ab,
(a=0,1,2), is a d—wvector field, and each of geometrical object fields
d (dpg) + dpp A (w)ba,

(a=0,1,2), is a d—covector field.
2°. The geometrical object fields
dw% — wH N w, (a=0,1,2),
G E G )
are d—tensor fields,with respect to indices a and b.

Using the previous Lemma we can prove, by a straightforward calculus, a
fundamental result in the geometry of 2—cotangent bundle.
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Theorem 9.1 For any N—linear connection DI' (N) the following structure
equations hold good:

d(dz?) —dz® N w = — Q9
(@) (fit)
d (0y®) — oy A (w)“b = —(Q)“, (9.1)
d(0pa) +0pp A wby = —Qg,
(@) (@)
and
dw% — W% N w=—Q%, 9.2
@' @@ @’ ©:2)
0 1
where (Q)“, (Q)“, and (Q), (e« =0,1,2) are the 2—forms of torsion
0 1
Qo = = T % deb A dac+
(o) 2(0)
+ C %pedzb A Sy® + C p*dab A dpe,
(al) (a2)
1 1
0 = = R %.dxb Adxt+
(@) 2(01)
+ P %daxb A Sy® + B “dxb A dp+
(al) (21) (9.3)

1
= 8 40y A Sy + C 20y A dpe
1_2(‘11) bc0Y Yy +(o¢2)b Yy De,
Qo = = R gpeda® Adat
(a)a 2(OQ)abc x T+
+ B apedx? Ay + P gp¢dxb A Spo+
(12) (21)

1
C w0y’ A& = S Sy NS
+(a1) ab0y De + 2(042)(1 Py De;

and where (Q)“b, (e =0,1,2) are 2—forms of curvature
«

1
Q% == R ,%qdz¢ Ndz® + R %qdz® NSy + R %.4daC A Spa+
() 2 (200) (a01) (a02)

1 1
= R %ady® Aoyt + R .0y A6 — R ,*p. A6
+2(a11)b cd0Y Y +(a12)bc Y pb+2(a22)b Pe A OPa,

(a=0,1,2) (9.4)

Remark 9.1 The theorem 9.1 is extremely important in a theory of
submanifold embedding in the total space T*2M of the 2—cotangent bundle
(T*2M,7r*2,M).

Remark 9.2 For any M N —linear connection with coefficients
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MF (N) = (Habca Cabc7 Cabc,) we haVe

0 0 0

Qo= Qo= Qo

o @

1 1 1

Qo= Qo= Qd

o @ (9.5)
O, =0, = Q.

Mm@

Qa, — Q9 = Q.

o @’ ’

and then, by Theorem 4.2, formulae (4.3), § 5.4, we obtain the structure equations
of an N—linear connection of Miron type ([97], pg. 282, formulae (8.6) and (8.7)).



Chapter 6

Metric structures on the
manifold T*2M

6.1 Metric N—linear connections on T*2M

Definition 1.1 A metric structure on the manifold T*?>M is a symmetric
covariant tensor field G of the type (0.2), which is non degenerate at each point
u = (x,y,p) € T**M and of constant signature on T*?>M. If G is positive definite
we say it G defines a Riemannian structure on T*?M.

As in the Section 4.6, where was used a Riemannian structure on T*2M, we
can prove that there is an uniquely nonlinear connection such that the distribu-
tion NV will be orthogonal to distribution V' = V3 & W5, namely orthogonal on
both Vl and W2 :

G (X", y") =0, G(x",Y") =0. (1.1)
By using adapted basis (6a, 3.(“ 5“) , we have

G (5a,3a) =0, G (5a,3a) =0 (1.1%)

The system of equations (1.17) is equivalently with the following system of equa-
tions for the determination of coefficients N%, and N

(11) (12) (01)

1.2
g('bNCaf gCNaci gab7 ( )
(21) (22) (02)

where, matrix
g e 9 bc
(11)  (12)
1.3
g cb g cb ( )
(21) (22)
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is nonsingular.

We denoted

9 ab=G(04,), g
(00) (01)

1% L =G <3a, ab) , ete.

w= <a“’ 8“> ’ (6(]2>ab ¢ (aa, éb) )

(12)

Also, we suppose that in V' the distributions Vi and Wy are orthogonal with

respect to G, namely
G, Yy") =0 (1.5)

We have
G (a’a,a'b) —0<= g.2=0 (1.6)
(12)
relation which together with (1.2) we permit to formulate
Theorem 1.1 A metric structure G on T*>M determine an unique nonlinear
connection N, if the distributions horizontal N and verticals Vi and Wy are
orthogonal in pairs. The coefficients N, and Ng, of N are given by

Nab: gacgbc; Nab: gbcgac (17)
(11) (01) (22) (02)
where
rank || g o |l=rank | g “l=n, 1l g “lI=l g™ | gal=ll g *I".
(11) (22) (11) (11) (22) (22)

In this chapter we shall use only this nonlinear connection.

Let us consider a metric structure G on T*2M and the distributions N, Vi, Wo
are orthogonal in pairs with respect to the metric structure G. By (1.1) and (1.5)
we have the following decomposition of G :

G(X,Y)=G X" Y")+G (X", Y") +G (X", vy"?), (1.8)
VXY € x (T**M)

With the other words, G decomposes in a sum of three d—tensor fields:

(0) G of type (0,2) defined by G¥ (X,Y) =G (X#,YH),
(1) G"of type (0,2) defined by GV* (X,Y) =G (XV*,Y"1),
(2) G"20f type (0,2) defined by G2 (X,Y) = G (XW2,y"2).

Locally, these d—tensor fields can be written as

GH = g spdz® @ dab,
V; © b
1 — a
G (.({)ab(;y ® 6y ) (19)

G"2 = g %ép, @ opy,
(2)
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where o o
90 =C000), gu=C(dd), 9=6(00), (19
(0) @) ()
rank || g ab |=n,(@=0,1,2), | g [I=ll " 7" (1.10)
(o) 2 ©)
Thus, the decomposition (1.8) looks locally as following;:
(1.11)

G = gadz®@dz’+ g w0y" @0y’ + g p, @ opy.
©) (1) @)

Definition 1.2 An N —linear connection D on T*2M endowed with a metric
structure G is said to be a metric N—linear connection if DxG = 0 for every

X € T*?M.

Proposition 1.1 If a linear connection D on T*2M has the proprieties:
(a) D preserves by parallelism the vertical distributions Vi and Wa,
(b) DxG =0, VX € T*?*M , then it is a metric N—linear connection.

Proof. It is enough to prove that D preserves by parallelism the horizontal

distribution v — N (u) . Using (a), (1.1) and (1.5) in the equalities

0= (DxG) (Y¥,2%) = XG (Y#,2") -G (DxY",2") -G (Y¥,Dx2%),
0= (DxG) (Y¥,2W2) = XG (Y¥,2"2) — G (DxY",2W2) — G (YH,Dx 2",

one gets

G (DxYH",2%) =0, G (DxY™",Z"2) =0, VZ € x (T**M) .

Thus, by (1.1) and (1.5) we have that Dx Y is an horizontal vector field
q.e.d.

Proposition 1.2 An N—linear connection D on T*2M endowed with a

metric structure G is a metric N—Ulinear connection if and only if

DXGH =0, JgZéGH =0, JODS?GH =0,
DXGY =0, DXG" =0, D¥G" =0,
DXG"> =0, DYG"2 =0, DYG"> = 0.

Proof. The equation DxG = 0 implies
DEG =0, DXG =0, D'EG =0.
By (3.3), Ch.4 and (1.8) we have

0= (D;é@) Y, 2) = (107)%@1{) Y, Z) + (11‘)5%@%) (Y, 2)
+ (pxe) (v.2),

(1.12)
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0= (DXG) (v,2) = (DRGY) (v.2) + (DRGY: ) (v, 2) +

AT

- ()= (pror) s (prom o
+ (12)3?@%) (Y. Z).

Taking in (*), Y = Y, Z = ZH one gets ZO))’%GH =0, taking Y = Y"1,
Z = ZV1, one gets ?;’?le = 0 and taking Y = Y"2, Z = ZW2 we obtain
12))115((}‘/‘/2 = 0.Now, putting in (**), Y = Y Z = ZH one obtains lo)‘;/éGH =0,
putting Y = YY1, Z = ZV1 one gets 11)§le =0andif Y =YW2, 7 = ZW2,
we obtain Q§GW2 = 0. Analogous, putting in (***), Y = YH# 7 = ZH and
results J.;V)Vé G"2 =0, putting Y = Y"1, Z = ZV1 one gets L;)V;‘/(Z(le = 0 and then
Y =YW Z =7"2 we obtain Q‘?GWz = 0. Conversely using (1.12) in (*) one
results DG =0, using (1.12) in (**) one results DY G =0 and then by (***) one

deduce D'"¥G =0.From these lasts three equations it follows DxG = 0.

q.e.d.
We shall now discuss the existence of metric N —linear connections on 72 M.
First, we prove

*
Theorem 1.2 If D is a fired N—linear connection on T*?>M, then the
N —linear connection given by the following formulae is metric with respect to G:

26" (DRY,Z) = XM (GM) (v, 2) + Y™ (G7) (2,X) - 2" (6") (X, V) -
~GH (X, [YH,ZH]) + G (v, [z, XH]) + G (z, [ X", YH]),
?;”}Y = é;’éY + ({(1)) (YY1, XH) | such that

2 (GY) <

Q%Y = l;;’%Y + (5%) (YW2, XH) | such that

26" (

Vi _*Vl H V1
lO)XY_lO)XY+(£)(Y , X1, such that
H vV, _(HanH H oH
A (Y ,Xl),Z>—<QXG )(Y A )7

2 (GH) ((01)
26" (117351/, Z) = X1 (GY) (Y, Z) + YV (GY1)(Z,X) — Z% (GY) (X,Y) —
G (X, [V, 29]) + G% (1, [29, X4]) + G (7, [X4,Y4]),
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l;g%Y = 12)‘)/}}/ + (A) (YW2,XV1) , such that
21

2(6") (

07.2)- (0m) o2)

2(67) (4 () 2) = (D ) (o, 27),

V1 WQ — *WQ Vl Vl Vl
A (VY X ),z)(QX@ )(Y Z%Y,

26" (g
2GW: (l;v}?Y, Z) = XW2 (GW2) (Y, Z) + YWz (GW2) (2, X) — Z%2 (GW2) (X,Y) —
—GW2 (X, [YW2,ZW2]) + GW2 (Y, [ZW2, XW2]) + GW2 (Z,[X W2, Y W2]).

(1.13)
Proof. It is obvious that the formulae (1.13) uniquely determine on

D¥, D% and DV;V(Q, hence they uniquely determine an N—linear connection on

T*2M. By a direct computation one checks D¥, D% and D' verify (1.12).
Thus D is a metric N —linear connection

q.e.d.

We note that h (hh) —, v1 (v1v1) — and wq (wews) — tensors of torsion of D
vanish.

Next we have:

Theorem 1.3 Let G be a metric structure on T*2M. There exist metric

N —linear connections on T*?>M depending only on G. One of them is given by
(1.13) in which

Dy =[x,y DRy =[x, ywe)™,
/?K;Y =[xV, yH)" l:)‘)/éY = [xVi,ywe) " (1.14)
T

Proof. Ii is evident that DY = DyuYH, JI)Z; = Dyv, YV and 12)322
D w, Y2 given by the first, the fifth and the ninth equations from (1.13) depend
on G only. If we chose the N—linear connection ]jf) x such that

0T (XH, YY) =0, woT (XH,YW2) =0, 0, T (Y¥1, XV1) = [XV3,y¥1]",
woT (YW2, XVi) = [XVe yWa]™2 T (xXH yVa) =0, hT (XH,YW2) =0,
then the equations (1.14) hold by the second, the sixth, the seventh and the eight

equations from (1.13), ?%K QﬁéY, %}% Y, Q?Y and QV;V(QY, ]{)%K respectively,

depend by G only. q.e.d.
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Now, we shall express a metric N—linear connection and related results in
terms of local coordinate system.

As we have seen, a metric structure G uniquely determines a nonlinear con-
nection N and if this metric satisfy (1.7), then G takes the local form (1.11),
where the dual basis (dz®, dy®, 0p,) was used.

Translating the Proposition 1.2 in local coordinate, we obtain

Proposition 1.3 An N —linear connection on T*2M is a metric N—linear
connection if and only if

g abiac = 0, g ab |aC: 0, g ab |ac: 0, (115)
(8) (8) (2)

(B=0,15a=0,1,2).

Remark 1.1 The conditions (1.15) are, respectively, equivalent with the
conditions
g ablac =0, g ab lae=0, gap |*=0, (1.15")
(B) (8) (2)

where || (9)‘”’ 1= g 171, (a=0,1,2).

If we proceed similarly with Theorem 1.2 we deduce

Theorem 1.4 If the manifold T*>M is endowed with the metric structure
G given by (1.11), then there exists on T*2M a metric N—linear connection
depending only on G, whose h(hh)—, v1 (v1v1) — and ws (waws) — tensors of
torsion vanish. Its local coefficients

DI (N) = ( H “%e, H e, H %, C “bey C ey C e, O C G C G
( ) <(00) bca(lo) bes (20) bc,( bc,( bc;( bc;( )CL 7(12)0, 7(22)CL bl

are as follows:

c 1
H“bc:§ga <5cgbd+5bgdc5d9bc>7
(0) (0) (0)

Iflac:Bc—i—g Segva— Bfwwgra— Bleagy
a0 an ¢ 20 (1)bd (11) (1)f (11) d(1)f

1
H%.=—-B¢ ) Bt Bt
(20) be @) be T+ 2(9) c(g)bd +( %) bc(g)fd + o) dc(g)bf
c 1
C % = = g e g ba, (1.16)
(01) 20) o

c 1
Cce — ad 8Cgbd+8bgdc—8dgbc )
(11) 2(1) 1) (1) (1)

o
]
I

1
C %e = = g "e g ba,

(21) 20 @
S 1 Y bd
Oa C:77.gadacg

(02) 2000 (0
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(&)

1 .
C bC:_fgadacgbdv

(12" 20" )

c 1 . . .
CabC=—§gad 8Cgbd—‘rabgdc—8dgbc .
(22) (2) (2) (2) (2)

Definition 1.3 The metric N—linear connection given by (1.16) will be
called the ecanonical N —linear connection associated with G.
Let

Dr (N) = (H abca H abca H abm C abca C abca C abcv C abcv C abca C abc)
(00) (10) (20) (01) (11) (21) (02) (12) (22)
be an N-linear connectior*l on*T*zM which is endowed with a metric structure G.

*
If we denote by 1ac, | ., | € the ho—,v14— and we,— covariant derivations

ac?
with respect to DI" (N) , then by a direct calculation one checks that the N —linear
connection whose local coefficients are given by

* 1
Hac:Hac"f'*gad *
(@0) ° 7 (@0) T 20y (mdbiac
* 1 *
C %= C%+-9g%g , 1.17
@) " @) 2 () (a)db e (L17)
* 1 *

C be _ C bc—*g a9
(a2) (a2)” 2" (@)
is a metrical IN—linear connection .
This method of metrisation of an N-—linear connection is called the
Kawaguchi metrisation process, [7], [86].
Let us associate to G the following operators of Obata type:

o 1{ o 1{_ ,
O == (008 = gang ), Ot == 668+ gap g, (1.18)
1 2 (@) (o) 2 2 (@) (a)

(a=0,1,2).

Theorem 1.5 The set of all metric N—linear connections with respect to G
on the manifold T*2M is given by  (a=0,1,2):

a T a Afa$a
af{)) be = (af(f)) bc+?bdX fos
C Yo = C “be + O{:gydfm (119)
(al) (al) 1

C abc = (Cj abc + 6;25(1}067

(2) (2) i

(

C C C

where <H Yy C e, C abc) is the canonical N—linear connection (1.16),
(a0) (al) (a2)

«@ (6% «@

X%, Y%, are arbitrary d—tensor fields of type (1,2) and Z,°¢ are arbitrary

d—tensor fields of type (2,1).
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For demonstration we can see V. Cruceanu, R. Miron [44], V. Oproiu
[110], [111].

6.2 Metric N—linear connections with the tor-
sion prescribed

In the previous paragraph we have proved the existence of metric N—linear con-
nection whose h (hh) —, vy (v1v1) — and wa (wews) — tensors of torsion vanish.
But there are certain problems, especially related to the theory of relativity, in
which metrical N—linear connections with h (hh) —, vy (v1v1) — and we (wWaws) —
tensors of torsion prescribed are needed.

In the following we show that such metric N—linear connections do exists.

Definition 2.1 An N—linear connection D on T*2M is called an hgviiWa2—
metric with respect to a metric structure G if

DXG" =0, DNG" =0, D¥C"> =0, VX e x (I"°M).  (2.1)
An easy computation in local coordinates leads to
Proposition 2.1 An N —linear connection DI' (N) = <(I{))“bc, (q)“bc, (C;)abc) ,

(a=0,1,2) is hovi1, was— metric with respect to G = g gpdz® @ daz’ + g 6y* @
(0) (1)

Sy’ + g “0pa @ Opa if and only if
@)
9 aboe =0, gab [1c=0, g [*=0. (2.2)
(0) (1) @)

Let us consider an N —linear connection of the Berwald type (formula (2.6),
§5.2)

BT (N) = ( H abm B acba - B acb707 c abm 07 07 07 C abC) ) (23)
(a0) (11) (22) (11) (22)
where
c 1
H%.==9g%(0ygdc+0cgbd—0a7be |,
(00) 2 (0) (0) 0) (0)
c 1 . . .
C% ==9g" 0 ga+0cgva—0agune|, (2.4)
an 2(1) 1 1 1
c 1 . . .
CabC:_fgad abgdc+acgbd_8dgbc .
(22) 2(2) (2) € )

Taking into account (1.15), (1.16), §6.1, the formulae (5.5), (6.5) and (6.6),
§5.5 and §5.6, we have
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Proposition 2.2 1°.The N—linear connection of the Berwald type (2.3) is
hoviiwaee—metric. It depends on the metric G, only.

C
2°.The d—tensors of torsions of BT (N) are given by

0

Tac:O7RacaRaca
00 * o0 " 02"

0 1

P abc = 07 P abc = 07 B abes

01 01 12
(0) (01) ) (12) (2.5)

b =0, B % Pyt =0,

(02) 1 " (©02)

1 1

Sabc:O7 Qa =0, Qab =0, S bC—O
(11) (12) (12)

3°. The d—tensors of curvature of BT (N) has the following expressions:

R 4%cq —5dH “pe — Oc H“bd+ HfbcH fd — Hfde Fes
(000) 00) 00) (00 (00) (00) ~ (00)
Rbc—5d cb—5cB db + chbB“df—B by B %er
(100) 1) an P any Cany Y any P
C @ R4
(11) oF o1y @ ((26)1)
R 4 cd——5dB “be + dc Babd+ BTy B%%4— BTy B+
(200) 2) " @2) e () ()
YO R Feds
(22) (02)
R b @ = D H e, R b cd—adH be + Cbafocda
(001 (0 0) (20 (22)"  (12)
c ((2.6)2)
Rbod—adH bc*C vaite + C Y <deCfdp>
(101) 10) (11) (11) (10)
Rbacd:adﬁlabc; Rbacdzadﬁabc+é fo ’
(002) (00) (102) (10) (1) (21) ((26)5)
R bacd =9l H e — C bad,zc + C baf B df H dfc> ,
(202) (20) (22) (22) (22) (20)
(O%)b“cd =0, R b ed =0,
2.6
R y%cq = @10 bc_acbd+c‘fbccafd_c ba C “ge ((26)4)
(i’ an " ay an an "
R, =0, R, =0"C%, R, =-0.C4", 2.6
(012)° (112 )b (11) (212)° (29" ((2:6)s)
(0]2%2)17&0(1 Y (122) =0,
. ¢ 2.6
R 4004 = 30 O 20— §e O o 4 cbfccf oRtLYo ((2:6)c)

(222) 22) (22) (22)°  (22) (22) (22)
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The N —linear connection (2.3) will be called the canonical Berwald type
connection on T*?M

Now we shall prove:

Theorem 2.1 There exists an unique hgviiwas—metric N—linear connec-
tion of the Berwald type with h(hh) —, vy (viv1) — and wy (wawsy) —tensors of
torsion prescribed.

c
Proof. Let us fix the Berwald connection BI' (N) introduced in the above.
Then, by the general theory of connections, every other N —linear connection of
the Berwald type is of the form

(H bet T b('a B acbaf B abcaoa o abc+ Tabcaoaoa(), C abc+ Tabc> )
(00) (0) (11) (22) (11) (1) (22) (2)

where (70' )abc7(71')abc and (72')abc are arbitrary d—tensor fields. Let (T , S %

0) T (11)
and 25; 2" be three d—tensor fields which are skew-symmetric first and second

with respect to the covariant indices the third with respect to the contravari-
ant indices. We shall determine the d—tensor fields (z)’)abc, (71' )abc and (72' .2 such

that the Berwald type connection of general form given in the above to be

hoviiwes—metric and to have T %, S %. and S ,* as h(hh) —, v1 (viv1) —
(00) 7 (11) (22)

and wq (wowsg) —tensors of torsion.

These conditions show us that 7 %e, T % and 7 ¢
(0) (1) (2)

must satisfies the fol-

lowing systems of equations:

Yo — =T =0 2.7
(g) be (Z)-) cb = (00) bes (Z)') bc(g)ad + (7') ac(g)db ) (2.7)
T abc - T acb =S abcy T dbc ad + T dac db = 07 2.8
(1) 1) (11) 1) (?) (1) (% 28)
T abc - T acb — _ Sabc’ T dbc g ad + T dac g db _ 0. (29)

(2) (2) (2) 2 (2 ) (2

If in the second equation (2.7) (resp., the second equation (2.8)) we cyclicly
permute the indices a, b, ¢, then we add by the Christoffel sum method (we sum
the first equation with the third equation and we subtract the second equation)
we obtain

L ad
70 —_ g0 T/l T/, 4 T 97
©) be 2(.3) ((,g)df(oo) be (g)bf( 20) de (g)fc(OO) bd ( )
7 %be 19 foc_gbijdc+gchf (2.8")
(1) 20 (1) (11) (1) (A1) (1" (1)

If we similarly proceed with the equation (2.9) we deduce
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1
be df be bf dc fe bd )
T =— S — S + S . 2.9
@" 2 (g)ad ((g) (22)f (g) (22)f (g) (22)f ) (29)

Consequently (T)abc, (T)“bc and (T)abc are uniquely determined.
0 1 2

q.e.d.
Now, from (1.17) we see directly that the Kawaguchi metrisation process
leaves unchanged the h (hh) —, vy (v1v1) — and wsy (waws) —tensors of torsion.

Thus we have:

Theorem 2.2 Let T*>M be endowed with a metric structure G. There
exists on T*>M a metric N—linear connection completely determined by G whose
h(hh)—, v1(viv1) — and ws (waws) —tensors of torsion are prescribed. It is
obtained from the hgviiwss —metric Berwald type connection given by Theorem
2.1 via the Kawaguchi metrisation process and has the following local coefficients:

1
H %, == g <5cgbd+§bgdc_5dgbc>+(7O—)abca
)

(00) 20 0 0 0
g © o (0) ((2.10),)

H abc = H abca H abc = H abca
(10) (10) (20) (20)
C abc =C abm C abc = 6 abca
(01) (o1) (21) (21)

oo ((2.10),)
C% =29 0:9bda+ 0 Gdac—0agvec |+ T %es
(11) 20 5 5 1) (1)

Cbc:évbc Cbc:ébc
©@* " T ayt e’

1 . .
bc:_fgad acgbd+abgdc_adgbc

a + 74",
(22) 2(2) @) @) @)

((2.10),)
) &)

where (70')abc, (71')abc and (72')(11’C are given by (2.7°), (2.8’) and (2.9’), respectively.

6.3 The Levi-Civita connection on T*2M

It is well known there exists an unique linear connection on 7*2M metric with
respect to G and symmetric, it has no tensor of torsion, (torsion is vanish). This
is called the Levi-Civita connection of G. Note it is not an N —linear connection
of G on T*2M.

We shall give the local coefficients of the Levi-Civita connection G in the
adapted basis <5a, (%, 3“) .

These coefficients will be expressed by using the local coefficients of the

canonical metrical N—linear connection DI' (N) given by form (1.16).
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If we denote by 7 the Levi-Civita connection of G, then by a well known
fact about the difference of two linear connections, we can write

Vx =Dx +71x, VX € x (T**M), (3.1)

where 7y is a tensor fields of type (1,1) on T*2M. Taking into account that the
C

linear connection 17 and D are metric with respect to G and v/ is without torsion
the following system of equations for the determining of 7x is obtained:

G (Y, X),2)+G(Y,7(2,X)) =0

H(X,Y) -7 (V,X) = T(X,Y), (32)
VXY € x(T**M)

where we have set 7x (V) =7 (Y, X) and T is the torsion of D.

In the adapted basis <5a, a, 8“) the Levi-Civita connection looks as follows

v&céb: H abc6a+ H abcaa+ H abca.a7
(000 001

. ) (0or) 7 (002)
Op= H c(sa H @ cﬁa H a c@‘L’
Voo (100) beda (101) bela + (102) b ((3.3)1)

v&ébZ ;| abc5a+ H abcéa+
(200 201)

H ,b.0%
) ( 202

(202)

Va 0p = M “pedq + M abca.a"' M abcaaa
e ) (011 (012)

(010 )
A VR v W Y
V. 0b (110) beOa + (111) beOa + (112)abc ’ ((33)2)
V500 = M P05, + M ™0, + M ,.b0%,
‘ (210) (211) (212)
Va'c(sb = K 9%, + K abcéa + K abcéa,
. (020) (021) ) (022) .
‘Ca = K @ 05a K e Caa K a 68a7
Vot = 50y 0 %0 (i) 0 % T iyt ((3.3)3)
Vel = K 5, 4 K 9, + K e,
? (220) (221) (222)

Writing the system of equations (3.2) in the adapted basis <5a, Dq,0%) we

obtain a system of equations which allows us to determine the local components
of 7x. Inserting these local components in the local form of the equation (3.1)
one obtains:

Theorem 3.1 The local coefficients of the Levi-Civita connection <7 of the
metric structure G on the manifold T*>M one given as follows formulae:

c 1 ¢ c
Habc: Habca Habc:**Rabc* Cfbdgfcgdaa
(000) (00) (001) 2(01) 01 () (1
1 ¢
HabszRabc*bedgfcgda

(002)"" 2(02) 02) ()" (2



THE LEVI-CIVITA CONNECTION ON T*2M

133

1 ¢ S
H % =(sRlacgpm+ Clagy| g™
(100) <2<01> Ty e ) @

c 1 c 1
H %= H%+ 015 Py, H gpe==

B qep — chdgfbgda

(101) (10) @ ay Y a®™ T 2\@@" ey © 3 e
(2%[0)(1176 - 5((lg)fwl(g)fb * (g)fdb(g)ﬁ) (g)da

e %(%acb ~ & Cd&fb(%da S <§g>a"c * Q{;(é
(g\l/-{))abc = (ﬂ))“cb, (é\l/fl)abc = —é));{il({%)dbf,

(L abe = (g)abc + (B)fb (? fe g)da )

1
M ab _ * B fdb o+ B c f da7
(210) 2\ @y (%f a2’ (g) (%

1 (&
Mab_idegfbgda Ofdc bd7
(211) 202 o) (1 (2) (12

c 2 c

fa
M 4= C %+ O3y C
(212)b (21) ’ +(1)bdl(21) !

1 X
Kab:Hab Kacb:_<(Bab+chdgjbgda>’

020) ¢ (2000 " (021) 2\ey © @@ )
K 4= 0% pd
(022) 2 22) >
1
Kabzi Bdc fb_|_deb . da7
(120) 2 <(12>f & Ten i) d
1 ¢ 1 a ¢ 2 c
K o= C g peg®+ 0liCyt K% =-0liC
(i21) 202" 5 T @“a2’ 7 dw @ e
1 c c
Kabczi Pddgfc+Pcdgfb gda
@20 2\e G e G )@
1 c c c
K abc _ C b fe 1+ Cc fb da7 K abc = C abc.
(221) 2 \an 8 Tan 8 ) E et T e

dy

)

dcf
)
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6.4 Some remarkable metrics on T*2M

Recall that a given metrical structure G on the manifold T*2M determines a
nonlinear connection and with respect to it G decomposes into a sum of three
d—tensor fields which may be viewed as defining metrical structures in horizontal
and verticals distributions, respectively. Conversely if a nonlinear connection, as
well as some metrical structures in horizontal and verticals distributions are given,
a metrical structure on T*2M may be obtained.

From now on we fix a nonlinear connection N (N, Ng) in the cotangent
bundle of second order T*2M.

Definition 4.1 1°. An h—metric on T*>M is a d—tensor field G =

g abdzT® & dxb> where g ab (x7y7p) = Gba (xayap) 7det H g ab (%y,p) ||7é 0 and
(0) (0) (0) (0)
the quadratic form g .,€°€" has constant signature.

(0)

2°. A vi—metric on T*?>M is a d—tensor field GV = (g)abéy“ ®y°,
1

where g 4 has the same properties as ¢ qp-
1) (0)
3°. A wy—metric on T*?M is a d—tensor field GV = g ®*5p, @py,
(2)

where g qp ,with|| g [|[=]| g% |7, has the same properties as g qp-
(2 (2) (2 (0)
4°. An (h, vy, wsz) —metric on T*2M is the d— tensor field G=
GH +G"* +G"2, j.e.

G = g (z,9,p) dfv“®dxb+(g)ab (z,9,p) 5y“®5yb+(g)“b (2,Y,p) 6pa@dpp, (4.1)
0 1 2

Obvious, the metric structure (6.5),84.6
G = gapdz® @ dz® + gapdy® @ 6y + h**p, @ dpy, (4.2)
and the metric structure
G = gapda® © dz” + gapdy® @ 0y” + 9**6pa ® Ops, (4.3)

where gap (z,9,p) and hap (2,9, p) ,with|| hap ||=| 2 || 7!, has the same proper-

ties as g qp, are the (h, vy, wy) —metric structures on T*2M.
(0)

By using Theorem 1.4, we can written the metric N—linear connections
depending only on G given by (4.2), respectively (4.3).

For instance, we have

Theorem 4.1 If the manifold T*2M is endowed with the metric structure
G given by (4.2) then the metrical canonical N—linear connection has the coef-
ficients:
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c 1

H=e c = 5 ad 66 0, c ™ 0, c)

RN 59 (0cgbd + b9 a9be)

c 1

H%.= B+ =9 6cgoa — Bl apgra— Ble ,
(10) b ) b+29 ( Gbd ah b9 fd ah dgbf

c 1

H%,=—B® —hed 5.k B fy.h B 7.k
30) be @) be + 3 < c bd+(22) be fd+(22) delvf |

C

1 . c 1 .
C % = 7gadacgbd7 C abc = 7hudachbd7
(21) 2

be

01 2

C %= -g° (acgbd + OcGac — 5d9bc> ;
(11) 2

5 abc = é abc = _lgadacgbda
(02) (12) 2

c 1 . . .

C e =——hy (achbd 1 Obpde adhbc) .
(22) 2

Theorem 4.2 If the manifold T*>M is endowed with the metric structure
G given by (4.3) then the metrical canonical N—linear connection has the coef-

ficients:

1
H %, = 59“‘1 (0cgba + Obgde — 0agpe) »

c 1
Hac:Bac —g* 5c _ch _ch )
(10) b ah b+ 29 ( Gbd ) b9 fd ) dgvf
c 1 . .
H%,=—B%.+-=¢%(6 B/ B
&) be @) be T 59 cGbd + @) bedfd + @) degbf |
g a g a 1 ad
C be = C be = 59 acgbda
(o1) (121) 2 (4.5)
C %o = —g™ (acgbd + OcGdc — 3d9bc) ,
(11) 2
G be_ (O bc:_lg e gt
02)" (12)* 27 ’
c 1 . . .
C Wb = —=gua (acgbd 4 dhgie 6cgbc) _
(22) 2

In next, we study others (h, vy, ws) —metric structures.
Definition 4.2 1°.The (h,v1,w2) —metric G given by (4.1) is said to be
h—Riemannian if ¢, do not depend on y* and p,.
(0)
2°.The (h,v1,wy) —metric G given by (4.1) is said to be
vi—Riemannian if g ., do not depend on y* and p,.
¢
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3°.The (h,vi,w2) —metric G given by (4.1) is said to be
wz—Riemannian if ¢ do not depend on y* and p,.
(0)
It is now clearly what means G is (h, vy, wa) —Riemannian. We have

Proposition 4.1 a). G is an h—Riemannian metric if and only if (OCl')“bC
and C . from (1.16) vanish.
(02)
b). G is an h—Riemannian metric if and only if (161')“1,6 and
C
(g)abc from (1.16) vanish.
¢). G is an h— Riemannian metric if and only if (g)“bc and

(zéz)abc from (1.16) vanish.
d). G is an (h,v1,ws2) —Riemannian metric if and only if

C % =0, C =0, (a=0,1,2). 46
&, Gy (a ) (4.6)
Coming back to the Theorem 1.4, we obtain
Proposition 4.2 If (h,vy,ws) —metric G given by (4.1) is (h, v, ws) —Riemannian
metric then about (4.6) we have also

1
_ == g0, gy (B=1,2
)<00> = {6h & (b * 2(6) @™ (8 )
0
i T“C—O,P“C—O P =0
)&y (on ’ ©) ’
Sabczoa QabC:(]v Qabczoa SabC:O7
1) (12) (12) (22)
141) R bacd =1%d, R v%ed =0, R %4 =0,
(00 01) (a02)

Rbcd 0, Rbc:()v R % =0,
(al1) (a12) (22)
(a =0,1, 2) ,

where {{.} are the Christoffel symbols constructed with g o (x) and the 1,%cq is
(0)
the curvature tensors constructed with {¢.}.

As in the case of the tangent bundle of the first order (T'M, 7, M) (cf.
with Satoshi Ikeda from University of Tokyo), the case when G is h—,v; and
wo—Riemannian ”seams to have no essential physical meaning”, but these are
theoretically interesting.

Definition 4.3 1°.The (h,vy,ws) —metric G given by (4.1) is said to be an

h—elliptical metric of moment, if ¢ ., do not depend by p,.
(0)
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2°. (h,v1,w2) —metrics G given by (4.1) is said to be an
vi—elliptical metric of moment, if g ., do not depend by p,.
1

3°. (h,v1,ws) —metrics G given by (4.1) is said to be an
wy —elliptical metric of moment, if ¢ * do not depend by pq.
2
It is evidently what means G is (h, vy, wo) —elliptical metric of moment. Such
metrics exist on 7*2M. They, can be obtained, for example, by the prolongation
1 0%L
2 Oy*dyb
first order (T'M, 7, M) at the cotangent bundle of second order (T*QM, w2, M) :

at T*2M of an Lagrange metric gqp (7,y) = on the tangent bundle of the

G = gap (z,y)dz* ® dz® + gap (,y)0y* ® Syt + g (,9)0pa & Opp, (4.7)

We have
Proposition 4.3 a). G given by (4.1) is a h—elliptical metric of moment if

and only if (g)abc from (1.16) vanish

b). G given by (4.1) is a vi—elliptical metric of moment if and
only if (é)abc from (1.16) vanish

¢). G given by (4.1) is a we— elliptical metric of moment if and
only if (2602')abC from (1.16) vanish

d). G given by (4.1) is o (h,v1,ws) —elliptical metric of mo-
ment if and only if in a form (1.16)
m)abc =0, («=0,1,2). (4.8)

Theorem 4.3 If the manifold T**> M is endowed with the (h, vy, ws) —elliptical
metric structure of moment G given by (4.7) then the metrical canonical
N—linear connection has the coefficients given by (4.8) and the following ex-
pressions

H %y = {gc} — 0%

1
G te=dy et 2" <8cgbd & Tagra— B fcbgbf) = 7 “bes

) 2 ) (11) (1)

c 1

H%.=— B %.+ =9 (0, B/, B, — 0%, 4.9
@) b & be + 29 ( gbd+(22) b gfd+(22) dedbf (g) b (4.9)
év a .= év a L= = uda'c
o1 b ) b 29 9bd

c 1 . . .

C %= —g™ (5cgbd + ObGde — 5d9bc)
(11) 2

where
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1

0 Mpe =

g 29“d (Négfgbd + N{ﬁfgdc - Nj;éfgbc) ;

Lo (4.10)
0% = 0% = -g""N.0rgpq.
M @ 27 19

The following metric structures can be interesting for physics.

Definition 4.4 We shall say that the metric G given by (4.1) is vi—locally
Minkowski (resp., we—locally Minkowski) if for every point uw = (z,y,p) €
T*2M there exists a local chart around it on T*2M such that on its domain, ¢ qp

1)
(resp., g ) depends on y only.
2

Theorem 4.4 If (h,vy,ws) —metric G given by (4.1) is h—Riemannian
and vi—,ws—locally Minkowski metric then the metrical cannonical N—linear
connection has the coefficients:

ﬁ[ a .= a
(00) b {bc}
c 1 .
H% = B % — =g | N9 + B, + B, ,
aon " an’ 2(% ( f(%bd (11) b(?)fd (11) d(?)bf
c 1 .
Hac:*Bacffgad NJ;ag 7chg 7chg )
@) T @) 20 < T @ e’ e T
c c 1 ds
C % =0, C% =299 uvd,
(01) (21) 2 (2

(4.11)

c 1 . . .
C“bczigad OcGbd+0bgde—0d9ve |,
& (1) (1) ()

CJle=0, C°=0, C.bc=0.
(02) (12) (22)

Proof. Indeed, because ¢ 4, depend of z, and ¢ 45, g *® each depend on y
(0) ®n ©@
only, by (1.16) we get (4.11)

q.e.d.
Also, we get

Theorem 4.5 If the manifold T*?>M is endowed with the (h,vy,ws) —metric
structure G, h— Riemannian, vi—Riemannian and we—locally Minkowski given
by

G = gap (2)dz® @ dzb + gap ()Y @ 0y° + h® (y)dpa @ Sps, (4.12)
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then we have

If[a .={¢
(00) b {bc}w

c 1
i H %= B %4+ ~g% acgbd_chbg — Blagy
) (10) (11) 2 fd an f

c 1
H %, =— B %+ -g° (acgbd+ B)fbcgfd+ B fdcgbf)

(20) (22) 2 (22)
Gty =0, C =0, C % = h*d.n
(01) b (11) b (21) b 2 bd
- abc — 07 Cv abc — O, C abc _
(02) (12) (22)
0 0
T ab(' = 07 abc = Oa abc = Oa
(00) (01) (02)
i) 1 2 c
Sabczov Qabczoa Qabczov SabC:0~
(11) (12) (12) (22)

(012%0)17 ed = Tp%d (T)

iii) 01?0)17 ot =0 H) e 0 %a +<1o> be <11%>af N (ﬁ)f g) fe
(2]§o)b ed = 04 Bg) be — Oc (g)“bd + (gflo)fbc(g)af - (g)f d(%) fet
& By

R 0y =0y H %, R y%q = O H %,
@on’” 7 ooy 7 don” 4T ao °

R C—(')H C—C oe+ C %P7
1 )b d d )b bdi2 +(21) f(21)

R bacd:adHabca R b c *adHabcv

(002) ~ (00) (102) 10)
RbacdzadHabc+C fo ’
(202) (20) (21) 7 (21)

R 4%a=0, R =0,

(Oll)b cd ) (11 )b cd

Rbcd—adc e — Do Cabd+ Cl'fb C

s g — CJpq C e,

21) (1) (21)

Rbacd:07 Rbacdzo Rbc —3dcabcv

(012) (112) (212) (21)
R bacd — 0, R bacd — O7 R bacd =0.
(022) (122) (222)

Definition 4.5 We shall say that the metric G given by (4.1) is wa—locally
dependent of moment if for every point u = (x,y,p) € T*>M there exist a
local chart arround it on T*2M such that on its domain ¢ ®® depends on pg, only

(2
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It is not difficult to prove

Theorem 4.5 If the manifold T*?>M is endowed with the (h,vy,ws) —metric
structure G, h— Riemannian, vi—locally Minkowski and wo—locally depending of
moment, given by

G = gap (2)dz® @ dzb + map ()Y @ 8y° + h®® (p)dpa @ ps, (4.13)

(&
then the metrical canonical N—linear connection DI (N) has the coefficients

19{& c: a ,
(OO) b {bc}
c 1 .
H%.= B%%, —-m% (N9 B/, B,

(10 b an b 2m ( ¢ fmbd+(11) bmfd+(11) d(ﬂl”gbf )

c 1 .
H %= — B %+ ~h" (chafhbd + B'yhpa+ B fdchbf) )
(20) (22) 2 (22) (22)

c c 1 . . . c
C % =0, C % =-m <5cmbd + Oymge — admbc> , (261' e = 0,

(01) (11) 2

c c c 1 . . .

C =0, Coae=0, C = —=hay (achbd 1 dbpde adhbc) .
(02) (12) (22) 2

One observe that

0 0 0
T %, =0, P% =0, P%=0
(00) (01) (02)
1 2 2
S abc = 07 Q abc = 0, Q abc = 0, Q abc = 0, etc.
(11) (12) (12) (22)

To the end of this section we prove

Theorem 4.6 If the manifold T*2M is endowed with the (h, vy, ws) —metric
structure G, h—, vy — Riemannian and we—Ilocally depending of moment, given by

G = gap (2)dz® @ dzb + gap (2)0y? @ 8y° + h®® (p)dpa @ Spy, (4.14)

then
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C
1) The metrical canonical N — linear connection DT (N) has the coefficients

(&

H %, =1{2

(00) be {bc}

c 1

H%.=-| B¢, ad (19, —ch
(10)1) QL 3 b+ 9 ( 9bd an bgbf>:|

1
H%,. == |—B%. +h*(N.0h B f4.h ,
(30) b 5 { @3) + ( f bd+(22) d bf>:|

C C C
Co =0, C% =0, C % =0
(01) (11) (21)
s c c e 1. bd b1dc di.be
C =0, C,be=0, ab:”had(ah 4 &bh ah)
(02) (12) (22)

i)

0
T =0, P =0, Poe=0,
o) (02)

S bC_O Q 07 QabC:O,Sab(‘:
(11) (12) (12) (22)

1i1) The d — tensors of curvature are as follows

R C - cd»
(ooo)b d="%d
R c—5dH bc—5H“bd+Hfb Haf—Hf ch,
(100) 10) (10) (10) (10) (10)
R —6H —5H“ oI Ha —HI,He
5 )b cd d 20) be 20) bd+(20) bc(zo) fd (20) bd( 20) fet
C af R
& Eyrer
R 4%aq=0, R %q= 3d H “bc,
(001) (101) (10
R %% =04 H C 4 R
son)” d( By ve T &y (dhypea
R bachO R b cdzadHabcv
(002) (102) (10)
R b c adHa - Cbad\c+ Cbafpfcd»
(202) (20) (22) (22)  (22)
R 4%aq=0, R ,%q=0, R %q4=0,
(011) (111) (211)
R b chO; R bacd:Oa R bacd:O7
(012) (112) (212)
R bacd =0, bacd — 07
(022) (122)

Rbacd:a'débac_a'cévbad beCCf Cf C
(222) (22) (22) (22)°  (22) (22) (22)
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Proof. Because g,; depends on z only (resp.  h®® depends on p
only) follows 6,1 () = 0,T. (x), 0°T (x) = 0, (resp. 0,1 (p) =
C

Nafc')fT,',',' (p), O,T (p) = 0) and for (2.4) we have (g%)abc = {&}, (lcl‘)abc —

0 (resp. (202)“1,6 given by the indicated expression in i) Theorem 4.6). Then a
look about the formulae (4.4) by Theorem 4.1 and (6.6) by Theorem 6.3, §5.6,
determine the other relations.

q.e.d.

Remark 4.1 If we consider the almost contact structure F introduced by
(5.5), §4.5,

F(5,) = —0a, F (aa) =5, F (a'a) —0, (4.15)

and take into account the Theorem 6.2, §4.6 result that the pairs (G,F) with G
given by (4.12), respectively (4.14), are Riemannian almost contact structure on
T*2M:

G([FX,Y)=-G((X,FY) (4.16)

which constitute an model of the cotangent bundle of second order (T*zM 2 M ) ,
easy to used.

Remark 4.2 If we consider the almost contact structure F introduced by
R. Miron, [86], [97]:

F(6,) = —gapd”, F (a‘a) —0, F (3&) = g3, (4.17)
result that the pair (G,ﬁ‘) with G given by (4.3), respectively (4.7), are Rie-

mannian almost contact structure on 7*2M:
G (]FX, Y) -G (X, f@‘Y) (4.18)

which constitute each an model of 2—cotangent bundle (T*2M,7*2, M) . The
first (G,]ﬁ“) with G given by (4.3) is an model in geometry of Hamilton space
of second order H®", [97] and even more in the generalized Hamilton geometry
GH®" The second model (G, IE“) with G given by (4.7) is possible to offer new

informations about the generalized Lagrange spaces of first order GL(M"

T*2M.

using
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