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The fermionic state is the foundation for the whole of physics. Physics is entirely concerned with
fermions and their interactions, and nothing else. It is possible to derive a mathematical expression
for the fermionic state, which is an operator only, not an equation, or wavefunction. This operator
appears to contain within it all the information needed to construct fermion interactions and particle
states. Extensions to particle representations using Finsler geometry could find this formalism a
particularly accessible link.

1 The nilpotent version of quantum mechanics

The nilpotent version of quantum mechanics is the most streamlined version available.!
It is fully relativistic. It uses only (differential) operators. It doesn’t need mysterious objects
like wavefunctions and spinors. All terms have the same format, based on the operators
E,p, m. These terms are compartmentalised using the quaternions k, ¢, 7, in a similar way
to real and imaginary parts. The operators are full quantum field operators — there is no
need to apply second quantization. They are also intrinsically supersymmetric. Interactions
and particle states are immediately explained, while calculations are relatively easy, easier
than nonrelativistic ones. Renormalization of free particles is not needed, while significant
divergences simply disappear.

Does this representation relate to Finsler geometry? This is a question to be decided,
but, if it does, then the streamlined versions of quantum mechanics and particle physics
which become possible through this representation will find it the most accessible link.
We only need one operator, and this can find connections with many other formalisms. The
fermionic representation is, of course, quadratic, as is conventionally the case, and as derives
from special relativity. If a quartic generalisation of special relativity is possible, and if it is
found useful, then the same transition can be made with the fermionic representation.

The nilpotent formalism can be derived from the concept of zero using a universal rewrite

system, which seems to have much more general applications. This derivation automatically
includes quantization and special relativity as part of the abstract formal structure — it
doesn’t need to assume them. The algebraic structure can be shown to be derived from
the algebras of the four fundamental parameters, space, time, mass and charge, and their
mathematically symmetric relationships.
While the derivation of the nilpotent formalism from a universal rewrite system is the
only truly fundamental one,? there are less profound ones available from more conventional
theories, e.g. by converting the gamma matrices of the conventional Dirac equation
into algebraic operators (based on multivariate 4-vector quaternions or complex double
quaternions).! The most direct is from the classical relativistic equation:

E2:p2+m2

but it should be remembered that, fundamentally, it is the classical equation that is derived,
not the quantum mechanics.
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So, let us take the equation in the form:
B2 —p?—m?=0

and factorize using noncommuting algebraic operators (multivariate 4-vector quaternions or
complex double quaternions):

(£ikE %+ ip + jm)(£ikE + ip + jm) = 0.

To make this a quantum equation, we simply make F and p into canonical quantum
operators, say i0/0t and —iV, with A = 1, rather than numerical variables. So, we can, for
example, make the first bracket an operator, operating on a phase term of some kind, say
e~ HEt=P1) for a free particle plane wave, and the second bracket the amplitude which results
from this operation.

(+ik E4ip+jm)(£ik Exip+jm) = (£k0/0t+£iiV+jm)(xik E+ip+jm)e EPT) —

This now becomes equivalent to the Dirac equation for a free particle.

The algebra we need is a tensor product of quaternions and multivariate vectors
(i.e. complexified quaternions), or a complexified tensor product between two quaternion
algebras. The two algebras are entirely commutative towards each other. Each acts as
though the other did not exist. This is intriguingly close to twistor algebra (a complex
4-D space-time), now used in QCD.

Quaternions Multivariate vector
1 7 k quaternion units ijk vector units
1 scalar 1 pseudoscalar

The multiplication rules of the units are as follows:

==k =ijk=1  (ii)’=(ij)? = (ik)* =i

ij = ji—k (i4)(ig) = (i) (i) = i(ik)
jk=kj=i (23)(ik) = (ik)(ig) = i(it)
ki=ik=j (ik)(i3) = (i4)(ik) = i(ij)

(£1, £9) 4 units
(£1,+4) x (i,j, k) 12 units
(£1,+i) x (4,7, k) 12 units
(+1,+4) x (i,j,k) x (4,7, k) 36 units

Now, if we take
(k0 /0t +iiV + jm)(£ikE £ ip + jm)e " F=Pr) =

as the Dirac equation for a free particle, we can interpret the four possible sign variations
of /0t and V in the first bracket as making up the four components of a row vector; and
the four possible sign variations of £ and p in the second bracket as making up the four
components of a column vector.

In principle, we have made both the operator and the amplitude into essentially identical
4-component spinors, with the operator applied to a single phase term.

And we can easily identify the meaning of the sign variations:
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fermion / antifermion  + FE

spin up / down +p

These options apply to E and p as either operators or amplitude eigenvalues.
Relativistic quantum mechanics is now hugely streamlined, because it now depends only
on a single term:
(£ikE +ip + jm)

taken either as operator or as amplitude. Here, F and p are generic terms, identified by their
quaternion labels, which can be covariant derivatives or include field terms or potentials of
any kind. The expression

(£ikE +ip + jm)

which is really a row or column vector, containing the four components

(KE +iip + igm)
(kE —iip +igm)
(—kE +iip + ijm)
(—kE — iip + 1jm)
now contains all that can be known about any fermion state.

If we take E and p as generic operators, then the only way they can operate is by finding
a phase factor, such that the resulting amplitude is nilpotent, or squares to zero, i.e.:

(£ikE + ip + jm)(+ikE £ ip + jm) = 0.

So, specifying the operator means that we also specify the phase and the amplitude, and
the ‘wavefunction’ becomes redundant.
But the spinor structure is also redundant. We do not need to specify

(£ikE £ ip +jm)

as a row or column vector. Once we specify the first of the four terms, the others follow by
automatic sign variation. So, we only need

(ikE +ip + jm)

for complete specification of the state.
To take a simple example, specifying a state as (& k0/0t £ i1V + jm) (which is a free
particle) means that we have automatically created the four linked equations:

(:l: ké)/@t + 11V +]m)(zkE +1ip +jm)€ i(Bt-pr) _ )
(k9/0t — i3V + jm)(ikE — ip + jm))e "Fr-px) =
(—k0/Ot + iV + jm)(—ikE + ip + jm)e (Ft=pr) —
(—kd/Ot — iiV + jm)(—ikE — ip + jm)e {(Ft=p1) —
By comparison with the conventional Dirac equation, we have reduced the number of
separate terms required by 98%, because we have reduced a 4 x4 matrix operator multiplied
by a 4-component spinor wavefunction to an operator with only a single independent term.

We have effectively shown that the matrix, the wavefunction, the spinor and the equation
itself, are redundant. We need only a single operator.
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2 The nilpotent operator and the fundamental physical state

We may ask: what is the physical meaning of defining the fermion as an operator? What
is it operating on? The indications are that it is vacuum, meaning the rest of the universe.
The nilpotency codified in

(£ikE £ ip+jm)(LikE £ ip+jm)=0

has built-in Pauli exclusion. No two fermions can have the same state vector. But it also
signifies that nilpotency is an expression of the totality zero that is fundamental to the
universal rewrite system. Fermion and the rest of the universe (0 — fermion) together make
a zero totality, with a zero totality state vector:

(£ikE + ip + jm)(—(£ikE £ ip + jm)) = 0.

The fact that Pauli exclusion is not unique to free fermions then brings us to the most
revolutionary step within the nilpotent theory. We assume that all fermionic amplitudes
in all states are nilpotent. We postulate that the most general form for a state vector is
nilpotent, and that we should seek specifically nilpotent solutions for all problems.

Now, for a ‘free’ fermion, the phase factor (exp(—i(Et — p.r)) provides the complete
range of space and time translations and rotations, but if the F and p terms represent
covariant derivatives or incorporate field terms, then the phase term is determined by
whatever expression is needed to make the amplitude nilpotent.

The operator which defines each fermion is thus a creation operator acting on vacuum
(= the rest of the universe). In fact there are four creation operators:

(tkE + ip + jm) fermion spin up

(tkE — ip + jm) fermion spin down
(—ikE +ip +3m) antifermion spin down
(—ikE —ip +jm) antifermion spin up

The nature of the state is determined by which of these is the lead term. The others
can be regarded as vacuum states representing ones into which it could transform. So,
for example, a real antifermion spin down would be symbolized by a row vector with the
following components:

(—tkE +ip +jm) antifermion spin down
(—ikE — ip + jm) antifermion spin up
(ikE +1ip+jm) fermion spin up

(ikE —ip +jm) fermion spin down

Because of the way they are defined, nilpotent operators are specified with respect
to the entire quantum field. Formal second quantization is unnecessary. We can consider
the nilpotency as defining the interaction between the localized fermionic state and the
unlocalized vacuum, with which it is uniquely self-dual. The phase is the mechanism through
which this is accomplished. So, defining a fermion implies simultaneous definition of vacuum
as ‘the rest of the universe’ with which it interacts. The nilpotent structure then provides
energy-momentum conservation without requiring the system to be closed. The nilpotent
structure is thus naturally thermodynamic, and provides a mathematical route to defining
nonequilibrium thermodynamics.
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We can now see that the expression
(tkE+ip+j3m)(ikE+ip+j3m) — 0

has at least five independent meanings.

classical special relativity
operator X operator Klein-Gordon equation
operator x wavefunction Dirac equation

wavefunction x wavefunction Pauli exclusion

fermion x vacuum thermodynamics

We thus have an operator (ikE + ip+ jm) that potentially incorporates all the physical
information available to the fundamental physical state. It is easy to show that we can use
our operator to do conventional quantum mechanics, e.g. by defining a probability density
by multiplying by its complex quaternion conjugate (ikE — ip — jm). We may also note
that nilpotent wavefunctions or amplitudes are automatically antisymmetric:

= 4p1p2 — 4p2p1 = 8ip1 X P2

This is a particularly striking result, as it implies that all fermionic states have a spin
phase or ‘direction’ of p which is unique.

3 Vacuum and CPT symmetry

The three quaternion operators ¢, 7, k are not just passive mathematical objects in the
nilpotent formalism. They have multiple meanings, acting almost as a kind of hypertext.

(1) The primary meaning is as charge generators.

(2) Premultiplying the nilpotent gives vacuum, e.g. k(ikE+ip+jm) acts as a weak vacuum.

(3) Pre- and postmultiplying the nilpotent transforms via P, C or T operations: e.g.
k(ikE + ip + jm)k becomes a T transformation.

If we take (ikE + ip + jm) and postmultiply it by k(ikE + ip + jm), the result is
(tkE + ip + jm), multiplied by a scalar, which can be normalized away. This can be done
an indefinite number of times. k(¢kE + ip + jm) is an idempotent, which behaves as a
vacuum operator. So do (ikE + ip + jm) and j((kE + ip + jm).

Previously, we said that the vacuum state vector had the same structure, apart from a
scalar factor, as that of the fermion: (ikE+ip+7m). How then do these three vacua relate?
We can see the three vacuum coefficients k, 2, j as originating in (or being responsible for)
the concept of discrete (point-like) charge. The operators act as a discrete partitioning of
the continuous vacuum responsible for zero-point energy, i.e. (ikE +ip+jm). In this sense,
they are related to weak, strong and electric localized charges, though they are delocalized.

The 3 vacua also help to explain the meaning of the 4 terms in the Dirac 4-spinor. There
is 1 real state (the lead term) and 3 potential (vacuum) states into which the lead term can
be transformed by one of the 3 interactions. All possible states are always present, either as
real states or vacuum ones, e. g.:
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(ikE+1ip+jm) — (ikE+ip+jm)
strong  i(ikE+ip +jm) — (tkE — ip + jm)
weak  k(ikE +ip 4 jm) — (—ikE + ip + jm)
electric j(ikE 4 ip +jm) — (—ikE — ip + jm)

We can suggest specific identifications of the interactions on the basis of the pseudoscalar,
vector and scalar characteristics of the associated terms.

E(ikE +ip + jm) weak vacuum fermion creation
i(ikE + ip + jm) strong vacuum gluon plasma
JkE 4+ tp+jm) electric vacuum SU(2)

The 3 additional terms in the Dirac spinor then become strong, weak and electric vacuum
‘reflections’ of the state defined by the lead term.
CPT symmetry uses the same operators. This is, of course, not a coincidence.

P i(ikE 4+ ip +jm)i = (ikE — ip + jm)
T k(ikE + ip + jm)k = (—ikE + ip + jm)
C —j(ikE +ip+jm)j = (—ikE — ip + jm)

CPT  —j(i(k(ikE + ip + jm)k)i)j = (ikE + ip + jm)

It is significant that CPT is defined to connect relativity with causality, but this can
only true in a nilpotent theory, which gives the rest mass or proper time term the same
algebraic status as the others.

4 Particle states and interactions: the scalar component

The nilpotent theory has many applications, for example, in QED, QFD (weak
interaction theory), QCD, and the quantum theory of inertia (QID).! It can be shown
in only a few lines of calculation that renormalization is not needed for a free particle
and that there is therefore no hierarchy problem. In fact, the intrinsic supersymmetry
of the theory (each fermion acting in vacuum as its own boson, etc.) suggests that it
should be possible, in principle, to eliminate the renormalization process altogether. Also,
propagators written in this formalism immediately eliminate the infrared divergence, and
allow distinctions to be made between different bosonic propagators. We may additionally
anticipate extensions of the theory to condensed matter physics and chemistry. However, at
an even more fundamental level, we have the opportunity to resolve some of the problems
involved with the symmetry breaking between the different interactions and the particle
states with which they are involved.

Here, the major questions is: if the fermionic nilpotent is the most fundamental structure
in physics — in effect, its fundamental unit, can it reproduce the fundamental particle states
and their interactions? These two questions are not independent of each other. The first
thing is to see if the structure of the nilpotent operator can give us any insight into the
nature of fermionic interactions. In fact, this is precisely what it can do. But, first, assuming
that the constraint of spherical symmetry exists for a point particle, then we can express
the momentum term of the operator in polar coordinates, using the Dirac prescription, with

an explicit spin term:
o 1 |+ 1/2
oV = (—+—) St
or r r
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We need the spin term because the multivariate nature of the p term cannot be expressed
in polar coordinates.
The nilpotent Dirac operator now becomes:

(sz—i—i(g—l—liz"H—l/Q) +ijm>.
or r T

Now, whatever phase factor we apply this to, we will find that we will not get a nilpotent
solution unless the 1/r term with coefficient ¢ is matched by a similar 1/r term with
coefficient k. So, simply requiring spherical symmetry for a point particle, requires a term
of the form A/r to be added to E.

If all point particles are spherically symmetric sources, then the minimum nilpotent
operator is of the form

(k<E—é)+i<£+lii]+1/2)+ijm).
r ar r r

To establish that this is a nilpotent, we must now find the phase to which this must apply
to create a nilpotent amplitude. This will quite quickly produce the characteristic solution
for the pure Coulomb force (the so-called hydrogen-like atom solution). The solution is
straightforward. We try the phase term

F=e %y g a,r”,

v=0

to find the amplitude, and equate the squared amplitude to zero. Here, we obtain:

A\? 1 j4+1/2\? 1 j41/2\?
4<E—> :—2<—a+’y+y+...+i‘7+/> —2(—a+’y+y+...—z’j+/> +4m?.
T T T T T T T T T

Equating constant terms leads to
E? = —a® + m?,

a=vVm?— E2

Equating terms in 1/r%, with v = 0, we obtain:

(B -2 2y

from which, excluding the negative root (as usual),

7=—1+\/(j+1/2)2—142-
Assuming the power series terminates at n’, and equating coefficients of 1/r for v = n/,
2EA = —-2vVm2 — E%2(y+1+n'),

the terms in (j + %) cancelling over the summation of the four multiplications, with two
positive and two negative. From this we may derive

1

+ A B 1+ == p '
(r+1+47) VG122 — A2 4!




148 Rowlands P. A mathematical description of the fermionic state

With A = Ze?, we obtain the hyperfine or fine structure formula for a one-electron
nuclear atom or ion:

1

_ (Ze?)” (Zez)
\/1 + (y+1+n/)? (j+1/2)%—(Ze2)?

We have, of course, without mentioning anything about potentials or interactions, or
anything physical at all, and only using the structure of the nilpotent operator, needed
to maintain the spherical symmetry of a point-particle source, created the solution for the
Coulomb or inverse linear potential. And we have shown that it is absolutely necessary to
any fermionic state described as a point source, regardless of what other potentials may be
present. We can now proceed to show that another fundamental potential can be derived
from the structure of the nilpotent operator alone.

The vector and pseudoscalar components

The vector part of the nilpotent has three components. So a significant question might
be: can we have a 3-component state vector?

(tkE+ip+j3m)(ikE 4+ ip +jm)(ikE +ip+3m) =0

Clearly, nilpotency makes three identical states impossible. But the following would be
possible:
(tkE+ip+j3m)(ikE + jm)(ikE + jm) — (ikE 4 ip + jm)

(ikE + jm)(ikE + ip + jm)(ikE + jm) — (ikE — ip + jm)
(ikE + jm)(ikE + jm)(ikE + ip + jm) — (ikE + ip 4+ jm)
So we could have a nonzero state vector if we use the vector properties of p and the arbitrary
nature of its sign (+ or —). A state vector of the form
(ikE + iip, + jm)(ikE + ¢jp, + gm)(ikE + ikp, + jm),

privileging the p components, has six independent allowed phases, i.e. when

p = *ip,, p==xjp,, p=xkp.,

but these must be gauge invariant, i.e. indistinguishable, or all present at once. Also, we
must interpret the F,p, m symbols as belonging to a totally entangled state, rather than
the subcomponents.

In principle, we would be using the concept of spatial (rather than temporal) separation
to represent the arbitrary nature of the direction of fermionic spin. One method of picturing
the arbitrary nature of the phases (gauge invariance) is to imagine an automatic mechanism
of transfer between them.

(ikE + tip, + jm)(ikE + ijp, + gm)(ikE + ikp, + jm) +RGDB
(tkE — tip, + jm)(ikE — tjp, + jm)(ikE — ikp, +jm) —RBG
(tkE + 4ip, + jm)(ikE + ijp, + jm)(ikE + ikp, + jm) +BRG
(ikE — iip, + jm)(ikE — ijp, + jm)(ikE — tkp, +jm) —GRB
(ikE + iip, + jm)(ikE + ijp, + jm)(ikE + tkp, + jm) +GBR
(ikE — iip, + jm)(ikE — tjp, + jm)(ikE — tkp, +jm) —BGR
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This has exactly the same group structure as the standard ‘coloured’” baryon
wavefunction made of R, G and B ‘quarks’,

¢ ~ (RGB — RBG + BRG — GRB + GBR — BGR)

That is, it has an SU(3) structure, with 8 generators. And, since the E and p terms
in the state vector really represent time and space derivatives, we can replace these with
the covariant derivatives needed for invariance under a local SU(3) gauge transformation.
This SU(3) symmetry or strong interaction is entirely nonlocal. That is, the exchange of
momentum p involved is entirely independent of any spatial position of the 3 components
of the baryon. We can suppose that the rate of change of momentum (or ‘force’) is constant
with respect to spatial positioning or separation. A constant force is equivalent to a potential
which is linear with distance, exactly as is required for the conventional strong interaction.

We can now identify our structures as those that would be required of a baryon in the
nilpotent formalism. If we now construct a nilpotent operator, in which spherical symmetry
still applies, we will find that the requirement for a term of the form A/r, added to E,
remains unchanged; but that we now require another term of the form Br. If we now try
to solve for phase and amplitude, we will find that our solution has the characteristics of
infrared slavery and asymptotic freedom that we apply to quarks and the strong interaction.
We note that the full symmetry between the 3 momentum components can only apply
if the momentum operators can be equally positive or negative. With all phases of the
interaction present at the same time (perfect gauge invariance), this is equivalent to saying
that left-handedness and right-handedness must be present simultaneously in the baryon
state (and can be transformed by the parity operator in the term ép). In other words, the
baryonic state must have non-zero mass via the Higgs mechanism.

The other significant component of the nilpotent is the pseudoscalar term (ikE). The
particular significances of this term are:

(1) its necessity to nilpotency

(2) the necessity of removing it by a ‘squaring’ operation, or multiplication by a complex
conjugate

(3) the dipolarity it creates between fermion and vacuum, etc. Ultimately, this leads to the
necessity for a term of the form C'r", where n may be, say —3, to be added to the E term.

All the fundamental interactions are aspects of the nilpotent structure, in fact, of the p
term. The electric interaction (Coulomb) is spherical symmetry of p (in polar coordinates).
The strong is due to the vector aspect of p. The weak (harmonic oscillator) is due to sign,
more particularly, its sign relative to i E.

(kE +iip + igm)
(kE —iip + ijm)
(—kE +iip +ijm)
(—kE — iip + ijm)

We have to switch between the 4 components, changing relative signs of £ and p, as we
do with the classical harmonic oscillator, with force F' = —kz and energy proportional to
22, In fact, any r" dependence of the potential other than n = 1 or n = —1 (in addition
to the Coulomb term), or any combination of such terms, solves in the nilpotent to a
(quantum) harmonic oscillator. For the weak interaction, with its intrinsically dipolar nature,
the simplest potential would appear to require a dependence of the form r3.
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There are thus only three point-particle (spherically symmetric) fermionic ik E operators
which give us the desired nilpotent solution, and these have the characteristics of the three
interactions:

Alr Coulomb electric interaction
A/r + Br confinement strong interaction
Afr+Cr™ harmonic oscillator ~ weak interaction

We can identify the A/r term with the scalar part of the three operators jm, ip,ikE
(the coupling constant; Br with the vector part of p; and Cr™ with the pseudoscalar part
of iF.

5 Interaction vertices

The pseudoscalar part brings us to the consideration of interaction vertices. Because the
state vector always represents four terms with the complete variation of signs in F and p,
an interaction vertex between any fermion / antifermion and any other

(ikEy + ipy + jma)(ik Ey + ipa + jms)

will remove the quaternionic operators, leaving only scalars and vectors. When the F, p and
m values become numerically equal, the vertex can be defined as a new combined bosonic
state, with a single phase. Where there is an interaction vertex between two fermionic /
antifermionic states, the signs of £ and p of the second term, with respect to the first, will
also determine the nature of the bosonic or combined state which may be created. Because
there are three operators involved — 7,7,k — there are also three possible bosonic states.
Any transformation of a fermionic state can be represented as a bosonic state in which the
old state is annihilated and the new one created.

spin 1 boson: (tkE + ip + jm)(—ikE + ip + jm) T

spin 0 boson: (tkE + ip +jm)(—ikE — ip + jm) C

spin 0 Bose-Einstein condensate / Berry phase, etc.:
(tkE+ip+j3m)(ikE — ip + jm) P

The fermion-fermion state (ikE + ip + jm)(ikE — ip + jm) has many physical
manifestations: Aharonov-Bohm effect; Jahn-Teller effect; quantum Hall effect; Cooper pairs;
even-even nuclei. Even spin 1 He® can be accommodated because it has two physically
separated components moving independently with opposite directions of momentum (in a
harmonic oscillator configuration) and so the two o.p terms can have the same signs, while
the two p terms have opposite.

It now becomes evident that an interaction in which a fermionic state with one set of signs
of E and p is annihilated and replaced by a state with a different sign configuration of £ and
P requires an interaction vertex which is equivalent to an intermediate bosonic state, and
that such an interaction is required to be a fundamental component of a nilpotent operator
which is structured as a 4-component spinor with inherent zitterbewegung. In principle, this
means that a weak interaction of this kind is a consequence of the fundamental structure of
the fermionic state — this time of the 4-spinor aspect — in the same way as the pure Coulomb
(electric) and strong interactions are respective consequences of the nilpotent magnitude
(squaring to zero) and vector aspects. That is, simply by defining an operator which is a
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nilpotent 4-component spinor with vector properties, we necessarily imply that it is subject
to electric, weak and strong interactions.

Significantly, the spin 0 bosonic state cannot be massless, because, if it is nilpotent it
automatically becomes zero.

(ikE + ip)(—ikE — ip) = 0

This becomes a significant factor in the Higgs mechanism. It also implies that massless
fermions cannot have the same handedness as massless antifermions. The conventional
derivation of spin assigns left-handedness to fermions.

The mediators of the strong force will be made up of six bosons of the form:

(ikE — iip,)(—ikE — ijp,)
and two combinations of the three bosons of the form:
(ikE — tip,)(—ikE — tip,)

These structures are, of course, identical to an equivalent set in which both brackets undergo
a complete sign reversal. The important thing here is that applying any of these mediators
will produce a sign change in the p component that leads to mass.

We can also see how the 3 bosonic states are related to vacua produced by the 3 charge
operators:

weak spin 1
(tkE+ip+jm)k(ikE + ip + jm)k(ikE + ip + jm))k(ikE + ip +jm) . ..
(ikE +1ip+jm)(—ikE + ip+ jm)(ikE + ip + jm)(—ikE + ip+jm)...
electric spin 0
(ikE +ip+3m)j(ikE + ip + jm)j(ikE + ip + jm)j(ikE + ip +jm). ..
(tkE+ip+jm)(—ikE — ip + jm)(ikE + ip + jm)(—ikE —ip+jm) ...
strong B-E condensate
(tkE+1ip+73m)i(ikE + ip + jm)i(ikE + ip + jm)i(ikE + ip + jm) . ..
(ikE +ip 4+ jm)(ikE — ip + jm)(ikE + ip + jm)(ikE — ip + jm) ...

As stated earlier, all these discrete vacuum states produce virtual boson states which
have no effect on the fermion (ikE + ip + jm). So, each fermion becomes its own
supersymmetric bosonic partner, and vice versa. This removes the need for renormalization
in the case of free particles, while ‘renormalization’ of interacting particles is reduced to
rescaling — charge values being determined by their interactions with all the others in the

universe, while the divergent terms are eliminated by cancellation of boson and fermion
loops of opposite sign.

6 Discrete calculus and Finsler geometry

It is in the double nilpotent representation of bosonic states that we may see a possible
link with approaches based on Finsler geometry.
It is particularly convenient here to use a version of Kauffman’s discrete differential
calculus.® Here, we define an operator
0 0 0 0
D =—-k— +1i +i1j +itk——o,
o "ax, T Max, T ox,
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where
oY B
0x,

a; W)?H] = W:E] and [¢7R]’

and an amplitude

The actual signs of the differential terms are, of course, arbitrary, but are chosen here to
conform with those required using conventional calclulus in the previous sections. Also, since
we are not using a velocity operator, we can use 0/0X;, for d/dX;. When is 1 nilpotent,
then

ot

or, allowing for the four sign variations (and reverting to the signs used in the versions based
on conventional calculus):

@w:(—b9+mv)¢:q

DY = (—k:2 + iiV) Y =0. (1)
ot

This is then equivalent to the nilpotent Dirac equation in this calculus. Immediately
noticeable is the fact that there is no mass term in the differential operator, only in the
amplitude. This means that an operator is the exact negative of its charge-conjugated state.
Annihilation and creation of a state, defined by an operator, cancel each other in exact
mathematical terms. Also, we are able to define quantum differentials without the explicit
use of an ¢h term, as defining ® in terms of the more conventional quantum operators

[¢, P

with A = 1, will produce equation (4) in the same way. Thus, in this formalism, there is no
arbitrary break between quantum and classical domains. The complexity comes solely from
the nilpotent amplitude.

We can also extend the definition of ®, following Kauffman, to include covariant terms,
such as A;, so that ® becomes ® — A;, and the covariant terms A; can be seen as representing
either a field source or an expression of the distortion of the Euclidean space-time structure,
such as that produced by the presence of mass in general relativity, or, in more general terms,
the quartic generalisation of the Riemannian structures used for an anisotropic metric in
Finsler geometry. So, if we choose to use structures of this kind to replace the direct use of
mass, then a massless covariant ® operator provides us with a convenient route to achieving
this.

Now, if the Berwald-Moor metric of anisotropic Finsler geometry, ds =
(da:ldxgd:cgdm)l/ 4 is substituted for the isotropic Minkowski metric of Riemannian
geometry, ds = (dt? — dr?)'/?, the zero interval manifold (ds = 0) becomes transformed
from the familiar Minkowski light cone to a combination of two pyramids joined at the
apex. By introducing exponents into the expression for the metric function, Bogoslovsky
has found a geometric phase transition, which could be interpreted as a mass-creating
spontaneous-symmetry breaking in a fermion-antifermion consendate. According to this
process, the generalised Lorentz transformations responsible for the process lead directly to
the Berwald-Moor metric. The connection with a double nilpotent representation of bosonic
states using the massless covariant ® operator is immediately apparent. In the discrete
version of the double nilpotent representation of the bosonic state (or ‘fermion-antifernion

DT am grateful to Sergey Siparov for his discussions on Bogoslovsky’s ideas, which helped to clarify them
for me.
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condensate’), no mass term appears in the operator, but the differentials may be replaced
by covariant derivatives, and so the opportunity arises to represent the appearance of mass
directly in terms of an anisotropic space-time structure.
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