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GEODETICS, CONNECTIONS AND JACOBI FIELDS
FOR BERWALD-MOOR QUARTIC METRICS

V. Balan1, N. Br̂ınzei2 and S. Lebedev3

For Finsler spaces (M, F ) with quartic metrics F = 4
√

Gijkl(x, y)yiyjykyl, we determine the
equations of geodesics and the corresponding arising geometrical objects-canonical spray, nonlinear
Cartan connection, Berwald linear connection – in terms of the non-homogenized flag Lagrange
metric hij = Gij00. Further, are studied the geodesics and Jacobi fields of the tangent space TM
for hv-metric models.

MSC2000: 53B40, 53C60, 53C22.

1 The equations of geodesics in quartic Berwald-Moor spaces

Let (M, F ) be an n-dimensional Finsler space. We shall denote by (x, y) the local
coordinates on TM and by the signs ”, ” and ”; ” preceding an index, the partial derivative
relative to the corresponding component of x and of the direction y, respectively. Let Gijkl

be the local components of the 0-homogeneous 4-metric

Gijkl(x, y) =
1

4!
(F 4);ijkl. (1.1)

We denote by hij the flag non-homogenized metric

hij =
1

12
(F 4);ij (1.2)

which coincides with the tensor field y
(4)
ij from ( [9]). We shall further prove that hij is

nondegenerate. The link between the two tensors (1.1) and (1.2) is

hij = Gij00, Gijkl =
1

2
hij;kl

where the index 0 means transvection by y. We consider the Euler-Lagrange equation

d

dt

(
∂F

∂yi

)
− ∂F

∂xi
= 0 (1.3)

and we look for the solutions c : t ∈ [0, 1] → x(t) ∈ M , parametrized by arclength, this is,
v(t) = 1,∀t ∈ [0, 1], where

v(t) = F (x(t), y(t)), y(t) =
dx

dt
(t), ∀t ∈ [0, 1].

Then we have the following
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Proposition 1. The system (1.3) is equivalent with

d

dt

(
∂F α

∂yi

)
− ∂F α

∂xi
= 0, α 6= 0. (1.4)

Proof. We have ∂F α

∂xi = αFα−1 ∂F
∂xi , ∂F α

∂yi = αFα−1 ∂F
∂yi , and since c is a unit-speed curve, it

follows that dv
dt

= 0 ⇒ d
dt

(
∂F α

∂yi

)
= αFα−1 d

dt
( ∂F

∂yi ), which lead to the claim. ut
Remark. In particular, for α = 4, (1.4) leads to

d

dt

(
∂F 4

∂yi

)
− ∂F 4

∂xi
= 0. (1.5)

Using F 4 = Gmjkly
myjykyl, it follows ( [5]) (F 4);i = 4Gi000, and further,

d
dt

(
∂F 4

∂yi

)
= 4

dGijkl

dt
yjykyl + 12Gijkl

dyj

dt
ykyl =

= 12Gijkl
dyj

dt
ykyl + 4

(
∂Gijkl

∂xm ymyjykyl + Gijkl;m
dym

dt
yjykyl

)
.

Since Gijkl is 0-homogeneous, using Euler’s relation we infer

Gijkl;m
dym

dt
yjykyl = (Gimkl;jy

j)
dym

dt
ykyl = 0 (1.6)

and hence
d

dt

(
∂F 4

∂yi

)
= 12Gijkl

dyj

dt
ykyl + 4

∂Gijkl

∂xm
ymyjykyl.

Replacing (1.6) and the xi-derivative (F 4),i = Gmjkl,iy
myjykyl in the Euler-Lagrange

equation (1.5), this rewrites

12Gijkly
kyl dyj

dt
+ (4Gijkl,m −Gmjkl,i)y

myjykyl = 0, (1.7)

where yi = dxi

dt
. Using the notation hij = y

(4)
ij = Gijkly

kyl ( [9]), (1.7) becomes

hij
dyj

dt
+

1

12
(4Gijkl,m −Gjklm,i)y

myjykyl = 0. (1.8)

Denoting

γi
jklm =

1

12
hipγp jklm, γp jklm = (4Gpjkl,m −Gjklm,p), (1.9)

we note that γi
jklm is symmetric w.r.t. the first three lower indices and the equations of

geodesics can be written as
dyi

dt
+ γi

jklmyjykylym = 0. (1.10)

As well, denoting γ̃i
jklm = hipγ̃p jklm/12, where

γ̃p jklm = Gpjkl,m + Gpmjk,l + Gplmj,k + Gpklm,j −Gmjkl,p,

we can easily see that (1.10) can be rewritten as

dyi

dt
+ γ̃i

jklmyjykylym = 0. (1.11)
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Remarks. 1. The tensor with which we have raised the indices is hij = y
(4)
ij , not ỹ

(4)
ij =

F;iF;j−hij (cf. [9]), which is degenerate, as we shall further prove. The equations of geodesics
(1.10) can be expressed only in terms of the non-homogenized flag 2-metric hij = Gij00.
Having in view that Gijkl,mykyl = hij,m, we rewrite (1.8) as

his
dys

dt
+

1

12
(4hij,k − hjk,i)y

jyk = 0, (1.12)

or, still
dyi

dt
+

his

12
(4hij,k − hjk,i)y

jyk = 0. (1.13)

Applying the variational principle to F 4 = hijy
iyj one gets the same equations of geodesics

(1.12), which are the equations of geodesics of the Lagrange space (M, L) with the
Lagrangian L = F 4 = hijy

iyj = Gijkly
iyjykyl.

Unfortunately, the coefficients γi
jm00 = hij(4hij,m − hmj,i)/12 can not stand for the

coefficients of a linear connection on TM .
Last but not least, we point out several considerations regarding the used (0,2) tensor

fields. We shall further skip for brevity the symbol ";" in the partials of F w.r.t. y (e.g.,
Fi = F;i, Fij = F;ij, etc). Let li = F−1yi = Fi, where yi = gijy

j and gij = (F 2);ij/2 is the
fundamental Finsler metric tensor field. Then we have:

Proposition 2. Consider the following family of (0, 2)-tensor fields

Θij = λgij + µlilj, λ, µ ∈ F(M), (1.14)

Denote by gij the dual and by δ the determinant of gij. Then

a) Θij is non-degenerate for λ(λ + µ) 6= 0 on TM .
b) The dual of Θij is

Θij =
1

λ
gij +

−µ

λ(λ + µ)F 2
yiyj.

c) The determinant of Θij is
∆ = λn−1(λ + µ) · δ.

Proof. From the 1-homogeneity of F follow Fiy
i = F , Fijy

j = 0, yi = FFi. The claim follows
using these relations and from straightforward calculation using properties of determinants.

Lemma. Consider the matrix Γ̃ = (γ̃ij)i,j∈1,n, γ̃ij = γij + uiuj, with Γ = (γij)i,j∈1,n

non-degenerate. Then:
a) The inverse of Γ̃ has the coefficients γ̃ij = γij − (1 + usu

s)−1uiuj, where ui = γisus.
b) We have det(Γ̃) = det(Γ) · (1 + usu

s).

Particular cases.
1. Obviously, gij is part of the pencil (1.14), obtained for λ = 1, µ = 0.
2. We note that gij = FFij + FiFj which infers that

Θij = λFFij + (λ + µ)FiFj, λ, µ ∈ F(M), (1.15)

where both tensor fields Fij and Fi · Fj are degenerate.
3. For λ = 1, µ = −1 (1.14) provides the angular metric

ĝij = gij − lilj. (1.16)

Its halved version-denoted by ỹij, is employed in [9, (10)].
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4. From (1.15) we respectively obtain the tensor fields used in [9, (13), (20’)], as particular
cases:

hij = y
(4)
ij = 1

12
(F 4);ij, for λ = F 2/3, µ = 2F 2/3

ỹ
(4)
ij = yiyj − y

(4)
ij , for λ = −µ = −F 2/3.

(1.17)

We emphasize that the (0, 2)-tensor field ỹ
(4)
ij satisfies the following equalities

ỹ
(4)
ij = −F 3Fij/3 = −F 2ĝij/3,

and hence has the property of ĝij of being degenerate.

We note that the proposition above provides for λ = 1 + α, µ = −α ∈ R the following

Corollary ( [1]). The following (0, 2) Finsler tensor fields are 0-homogeneous and non-
degenerate:

gij + αĝij, α ∈ R . (1.18)

Regarding hij, this can be homogenized by dividing to F 2. According to the Corollary, the
resulting (Generalized Lagrange) homogeneous metric is included in the family of metrics
(1.18). More exactly, we have

hij

F 2
=

1

12F 2

[
2F 2(F 2);i

]
;j

=
1

6

[
(F 2);ij + 4F−2yiyj

]
= gij + αĝij, α = −2/3.

Definition 1. We call generalized 4-index angular metric tensor, the tensor field

ωijkl ≡ Gijkl − liljlkll. (1.19)

This definition may be easily extended to any number of indices. In analogy with [1] we
have the following

Proposition 3. The tensors of form G̃ijkl = Gijkl+αωijkl, α ∈ R are generalized metric
tensors which share the same energy F 4.

Proof. Using that liy
i = F−1yiy

i = F , we get G̃0000 = G0000 + α(G0000 − (lsy
s)4) = F 4,

whence the claim follows.
We should note as well the relation

ωij00 = Gij00 − F 2lilj = hij − F 2FiFj = F 2(FiFj + FFij/3)− F 2FiFj = −ỹ
(4)
ij .

2 The nonlinear connection

Consider the semispray given by the second term in the equations of geodesics (1.13)

2Gi =
hip

12
(4Gpjkl,m −Gmjkl,p)y

myjykyl.

By taking into account (1.1) and the 1-homogeneity of F , we get Gmjkly
myjykyl = F 4,

Gpjkly
jykyl = Gp000 = 1

4
(F 4);p, and hence Gi can be written as

2Gi =
hip

12

(
∂2F 4

∂xm∂yp
ym − ∂F 4

∂xj

)
. (2.1)
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Within the Lagrange structure (M,L = F 4/6), where the classical Lagrange metric induced
by L is hij = 1

2
∂2L

∂yi∂yj , (2.1) is exactly the Kern canonical semi-spray of L ( [8], [11, Theorem
7.4.1, p. 113]),

Gi =
hip

4

(
∂2L

∂xm∂yp
ym − ∂L

∂xj

)
. (2.2)

and N i
j = ∂Gi

∂yj are the Kern coefficients of the canonical nonlinear connection attached to
L on TM . Its autoparallel curves described by (1.13) are exactly the geodesics determined
by L. Then the equations (1.10) can be written as

d2xi

dt2
+ 2Gi = 0 ⇔ d2xi

dt2
+ N i

jy
j = 0,

or, denoting δyi = dyi + N i
sdxs,

δyi

dt
= 0.

Aiming to obtain a normal linear connection (Li
jk, C

i
jk) on TM , one possible choice is, for

example, Li
jk =

∂N i
j

∂yk and Ci
jk = 0. Then the equations of geodesics rewrite

d2xi

dt2
+ Li

jky
jyk = 0.

Remark. The candidates for a nonlinear connection

Ñ i
l =

hip

12

(
4
∂Gpjkl

∂xm
− ∂Gmjkl

∂xp

)
ymyjyk = γi

j000,

i.e., the coefficients of yl from the equations of geodesics from (1.10), do not obey the specific
component changes; hence they do not define a nonlinear connection.

3 Geodesics in the (h, v)-metric context

Let TM be endowed with: a nonlinear connection N , a metric structure

G = g
(0)

ijdxi ⊗ dxj + g
(1)

ijδy
(1)i ⊗ δy(1)j,

where the metrics g
(0)

and g
(1)

can be specified as in the previous sections. Consider as well

a metrical normal linear d-connection D, DΓ(N) = (Li
jk, C

i
jk) ( [11]). Then N induces

a local adapted basis
{

δ
δxi ,

∂
∂yi

}
, and the dual adapted basis, {dxi, δyi}. We denote by

〈 , 〉 the scalar product defined on TM by G, by
(γ)

T
(βα)

i
jk the components of the torsion

tensor T (δαk, δβj) =
(γ)

T
(βα)

i
jkδγi, and by

(α)

R
(αβγ)

i
jkl the components of the curvature tensor

R(δγl, δβk)δαj =
(α)

R
(αβγ)

i
jklδαi, where δ0i = δ

δxi , δ1i = ∂
∂yi .

For a curve c : [0, 1] → TM, t 7→ c(t) = (xi(t), y(1)i(t)), we consider its velocity V :=
V (t) = ċ = V (α)iδαi, where

V (0)i =
dxi

dt
, V (1)i =

δy(1)i

dt
.
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The energy of c is

E(c) =

∫ 1

0

〈ċ, ċ〉dt =

∫ 1

0

〈V, V 〉dt =

∫ 1

0

g
(0)

ijV
(0)iV (0)j + g

(1)
ijV

(1)iV (1)jdt.

Theorem 1 (The first variation of energy). If c : [0, 1] → TM , α : (−ε, ε)× [0, 1] →
TM is a variation of c by piecewise smooth curves with fixed ends, and W = ∂α

∂u
(0, t) is the

associated deviation vector field, then the first variation of energy is given by

1

2

dE(ᾱ(u))

du

∣∣∣∣
u=0

= −
k−1∑
i=0

〈W, ∆tiV 〉+

∫ 1

0

〈T (W,V ), V 〉 − 〈W,A〉dt,

where A is the acceleration vector field

A = DċV =
DV

dt
= A(0)iδ0i + A(1)iδ1i

and ∆tX is the jump

∆tX = X (t+)−X (t−) , t ∈ [0, 1], X ∈ X (TM).

We note that 〈T ( · , V ), V 〉 defines a 1-form. Hence there exists a vector field F on TM
such that 〈T (W,V ), V 〉 = 〈F,W 〉. Then, denoting

V = V (α)iδαi, W = W (β)jδβj, F =
1∑

α=0

F (α)iδαi

we have 〈T (W,V ), V 〉 =
1∑

β=0

g
(β)

jhF
(β)hW (β)j, and the components of the field F are given by

F (α)i =

1∑
β,γ=0

g
(α)

il g
(γ)

kh

(γ)

T
(βα)

k
jlV

(β)jV (γ)h, α = 0, 1.

Remark. The vector field F does not depend on the chosen variation with fixed
endpoints of c.

By replacing F into the expression of the first variation of energy, we get

1

2

dE (ᾱ(u))

du

∣∣∣∣
u=0

= −
k−1∑
i=0

〈W, ∆tiV 〉+

∫ 1

0

〈W,F − A〉dt.

For a smooth curve c on the whole [0, 1] the jumps in the sum cancel and we have

1

2

dE (ᾱ(u))

du

∣∣∣∣
u=0

=

∫ 1

0

〈W,F − A〉dt,

which means that u = 0 is a critical point of E if and only if, along c = ā(0), we have
F = A. Consequently we state the following
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Theorem 2. Any geodesic c : [0, 1] → TM , t → (xi(t), y(1)i(t)) of (TM, G) satisfies

D

dt

dc

dt
= F.

Then, the smooth curve c : [0, 1] → TM , t → (xi(t), y(1)i(t)) is a geodesic of TM iff

DV (0)i

dt
= F (0)i,

DV (1)i

dt
= F (1)i, (3.1)

which rewrites explicitely as

dV (0)i

dt + Li
jkV

(0)kV (0)j + Ci
jkV

(1)kV (0)j =
1∑

β,γ=0

g
(0)

il g
(γ)

kh

(γ)

T

(β0)

k
jlV

(β)jV (γ)h

dV (1)i

dt + Li
jkV

(0)kV (1)j + Ci
jkV

(1)kV (1)j =
1∑

β,γ=0

g
(1)

il g
(γ)

kh

(γ)

T

(β1)

k
jlV

(β)jV (γ)h.

(3.2)

Example. In particular, in a Finsler space (M,F ), for gij = g
(0)

ij = g
(1)

ij = 1
2
F 2

,yiyj

considering the Cartan connection ( [11]), we infer that (3.2) rewrite




d2xi

dt
+ Li

jkV
(0)kV (0)j + Ci

jkV
(1)kV (0)j = gilgkh

(
Rk

jlV
(0)jV (1)h − P k

ljV
(1)hV (1)j − Ck

ljV
(0)hV (1)j

)

dV (1)i

dt
+ Li

jkV
(0)kV (1)j + Ci

jkV
(1)kV (1)j = gilgkh

(
P k

jlV
(0)jV (1)h + Ck

jlV
(0)jV (0)h

)

Remark. If we consider, instead of a normal linear d-connection (Li
jk, C

i
jk), a (simple)

d-connection (Li
jk, La

bk, Ci
jc ,Ca

bc), then the above equations become




dV (0)i

dt
+ Li

jkV
(0)kV (0)j + Ci

jcV
(1)cV (0)j = F (0)i

dV (1)a

dt
+ La

bkV
(0)kV (1)b + Ca

bcV
(1)cV (1)b = F (1)a.

4 The second variation of energy. Deviations of geodesics on TM

Consider as well TM endowed with a nonlinear connection N , a metric structure

G = g
(0)

ijdxi ⊗ dxj + g
(1)

ijδy
(1)i ⊗ δy(1)j

and a normal metrical linear d-connection D, DΓ(N) = (Li
jk, C

i
jk).

Let c : [0, 1] → TM , t 7→ (xi(t), yi(t)) be a geodesic, i.e., c is C∞ on the whole [0, 1] and
c is a critical point of the energy

E =

∫ 1

0

〈ċ, ċ〉dt. (4.1)

Let α : U × [0, 1] → TM be a 2-parameter variation with fixed endpoints of c by smooth
curves on [0, 1], U being a neighbourhood of (0, 0) ∈ R2. We have α(0, 0, t) = c(t), ∀t ∈ [0, 1].
Let W1,W2 be the induced deviation vector fields

W1(t) =
∂α

∂u1

(0, 0, t), W2(t) =
∂α

∂u2

(0, 0, t),
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and let ᾱ be the mapping defined on Ū by

ᾱ(u1,, u1)(t) = α(u1, u2, t), (u1, u2, t) ∈ U × [0, 1].

The Hessian E∗∗ of the energy (4.1) is

E∗∗(W1,W2) =
∂2E(ᾱ(u1,, u2))

∂u1∂u2

∣∣∣∣
(0,0)

.

Let F = F (α)iδαi be the vector field defined by
〈

T

(
∂α

∂u2

,
∂α

∂t

)
,
∂α

∂t

〉
=

〈
F ,

∂α

∂u2

〉
,

having the local coefficients

F (α)i =

1∑
β,γ=0

g
(α)

il g
(γ)

kh

(γ)

T

(βα)

k
jl

∂α(β)j

∂t

∂α(γ)h

∂t
c(u1,u2,t), α = 0, 1. (4.2)

Extending the results obtained in the Finslerian framework ( [4], [7]) to the case of (h, v)-
metrics (e.g., as in [13], [6]), we further state the following

Theorem 3 (The second variation of energy). If c : [0, 1] → TM is a geodesic and
α : U × [0, 1] → TM (where ε > 0) is a variation with fixed endpoints of c by piecewise
smooth curves, then the Hessian E∗∗ is given by:

E∗∗(W1,W2) = −
k−1∑
i=1

〈
W2, ∆ti

(
T (W1, V ) + DW1

dt

)〉
+

+

∫ 1

0

〈
W2,

DF
∂u1

∣∣∣∣
u1=u2=0

+ R (V, W1) V − D

dt
T (W1, V )− D2W1

dt2

〉
dt,

where 0 = t0 < t1 < ... < tk = 1 is a division of [0, 1] such that α be smooth on each
U × (ti−1, ti), i = 1, k.

As consequence, if c : [0, 1] → TM is a smooth geodesic and α : (−ε, ε) × [0, 1] → TM
(ε > 0) is a variation of c through smooth geodesics, then the deviation vector fields - called
also generalized Jacobi fields, W = W (α)iδαi are given by

D2W (α)i

dt2
+

D
(α)

T i

dt
=

DF (α)i

du

∣∣∣∣
u=0

+
(α)

R
i, α = 0, 1, i = 1, n,

where F (α)i are given by (4.2) and we denoted




(α)

T i =
1∑

β,γ=0

V (β)jW (γ)k
(α)

T
(βγ)

i
jk

(α)

R i := −
1∑

β,γ=0

V (α)hV (β)jW (γ)k
(α)

R
(αβγ)

i
hjk .
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5 Projectability of horizontal geodesics of TM

Let N be an arbitrary nonlinear connection and let (Li
jk, C

i
jk) be the coefficients of an

arbitrary metrical normal linear d-connection. A curve c : [0, 1] → TM, t → (xi(t), yi(t)) is
a horizontal geodesic of TM iff





V (1)i ≡ dyi

dt
+ N i

jy
j = 0

dV (0)i

dt
+ Li

jkV
(0)jV (0)k = g

(0)

il g
(0)

mh

(
Lm

jl − Lm
lj

)
V (0)jV (0)h

g
(1)

il g
(0)

mhC
m
jlV

(0)jV (0)h = 0.

(5.1)

The last two equations in (5.1) are obtained from (3.2), in which we have used the relations

(0)

T
(00)

m
jl =

(
Lm

jl − Lm
lj

)
,

(0)

T
(01)

m
jl = Cm

jl.

We note that we take into account only curves c : [0, 1] → TM with yi = dxi

dt
= V (0)i, i.e.,

extensions to TM of curves t 7→ xi(t) on M , and we look for conditions for such horizontal

geodesics to project to geodesics of M. For any curve on TM , we have V (0)i =
dxi

dt
, and

hence from (5.1), we infer that the h-geodesics of TM which are extensions of curves of M
are locally characterized by





dyi

dt
+ N i

jy
j = 0

dyi

dt
+ Li

jky
jyk = g

(0)

il g
(0)

mh

(
Lm

jl − Lm
lj

)
yjyh

g
(1)

il g
(0)

mhC
m
jly

jyh = 0.

(5.2)

We further obtain:

Proposition 4. Let Gi be the coefficients of the Kern canonical semispray (2.2) of
the Lagrangian L = g

(0)
ijy

iyj. If one of the two following relations holds along any curve

t → (xi(t)) of M :

1. 2Gi

(
x,

dx

dt

)
=

(
Li

jh − g
(0)

il g
(0)

mh

(
Lm

jl − Lm
lj

)) dxj

dt

dxh

dt
;

2. 2Gi

(
x,

dx

dt

)
= N i

jy
j;

then any horizontal geodesic of TM projects onto a geodesic of M.

Example. If F is a Finsler metric on M and N is the canonical (Cartan) nonlinear

connection of F 2, given by N i
j =

∂Gi

∂yj
, then any horizontal curve (including the case of a

horizontal geodesic) of TM is projected onto a geodesic of M.

In particular, for g
(0)

= g
(1)

and (N i
j, L

i
jk, C

i
jk) the Cartan connection, both the

conditions 1) and 2) in the above Proposition are satisfied. Moreover, the third set of
equations (5.2) is satisfied by any curve, and the first and the second one are both equivalent
with the equations of geodesics of M. Then in this case, there holds:

Corollary 1 ([1]). For the canonical Cartan connection and a given extension Γ on
TM , we have:
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a) If Γ is a horizontal curve then Γ is a horizontal geodesic;
b) Γ is a horizontal curve iff Γ is projectable onto a geodesic of M .
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