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GEODETICS, CONNECTIONS AND JACOBI FIELDS
FOR BERWALD-MOOR QUARTIC METRICS

V. Balan!, N. Brinzei’ and S. Lebedev?

For Finsler spaces (M, F) with quartic metrics F = ¢/Gyju(z, y)y'yiyFyl, we determine the
equations of geodesics and the corresponding arising geometrical objects-canonical spray, nonlinear
Cartan connection, Berwald linear connection — in terms of the non-homogenized flag Lagrange
metric h;; = Gjjoo. Further, are studied the geodesics and Jacobi fields of the tangent space T'M
for hv-metric models.

MSC2000: 53B40, 53C60, 53C22.

1 The equations of geodesics in quartic Berwald-Moor spaces

Let (M, F) be an n-dimensional Finsler space. We shall denote by (z,y) the local
coordinates on T'M and by the signs ”,” and ”;” preceding an index, the partial derivative
relative to the corresponding component of x and of the direction y, respectively. Let G
be the local components of the 0-homogeneous 4-metric

1
Gz‘jkl(xay> = E(F4);ijkl- (1-1)

We denote by h;; the flag non-homogenized metric

1
hij = E(F4);ij (1.2)

which coincides with the tensor field yi(;-l) from ([9]). We shall further prove that h;; is
nondegenerate. The link between the two tensors (1.1) and (1.2) is

1
hi; = Gijoo, Giji = §hij;kl

where the index 0 means transvection by y. We consider the Euler-Lagrange equation

d (OF OF

- -] —— = 1.

dt (8yl) Oz’ 0 (1.3)
and we look for the solutions ¢ : t € [0,1] — x(t) € M, parametrized by arclength, this is,
v(t) = 1,Vt € [0, 1], where

o(t) = F()u(t), o) = "), vie[0.1]

Then we have the following
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Proposition 1. The system (1.3) is equivalent with

d (OF® oF“
E(@y")_ ot =0, a0
Proof. We have 22

_ a—10F QF
T = al’

owis g — oF a_l—g;;, and since c is a unit-speed curve, it
dv d (oF~ a-1d (OF
follows that 22 =0 = 4 (&yi ) =aF (

4 (5,7), which lead to the claim. 0
Remark. In particular, for a = 4, (1.4) leads to

d (OF* oF* 0
dt \ 0yt ox?

(1.4)

Using F* = Gjuy™y/y*y', it follows ([5]) (F*).; = 4Gige0, and further,
i (%) = 4 Yy + 12G R gyt =
j Ciint . i m o
= 12G;u % yky' +4 (am—ifly yykyl + Gijkl;m%yfy’“yl) :

Since Gy is 0-homogeneous, using Euler’s relation we infer

dy™ 4 NS
Giitton——1’ = (Gipmpt:i Y ) —— =0 1.6
shtsm =YY"y (Gimry”) A (1.6)

and hence

d (OF* dy’ Gk
. : :]-Qi'_kl 4#771]1@%
dt(@yl) Gign— "y + 47y Y'Yy
Replacing (1.6) and the z’-derivative (F™*);

= ijkl,iymyjykyl in the Euler-Lagrange
equation (1.5), this rewrites

dyj m, J
12Gz‘jkzykylﬂ + (4G ijktm — G )y v y"y' = 0, (1.7)

where y’ = %' Using the notation h;; = y,-(;l) = Giuy™y' (19]), (1.7) becomes

s 4 L (4Gim — Gy =0 (1.8)
Tat o120 JE
Denoting
1

’ygi'klm 12 hipf)/p 7klm Yp jkim = (4Gpjkl,m

= Gjkimp), (1.9)
we note that ”Yijkzm is symmetric w.r.t. the first three lower indices and the equations of
geodesics can be written as ‘

dy* ,

o T 'y Yy = 0.

(1.10)
As well, denoting 7%, = h™3) jkim /12, Where

&p jklm — Gpjkl,m + Gpmjk,l + Gplmj,k: + kalm,j - ijkl,p7

we can easily see that (1.10) can be rewritten as

i

o TV sy YY" = 0.

(1.11)
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Remarks. 1. The tensor with which we have raised the indices is h;; = yg), not @f;l) =

F;F.;—h;; (cf. |9]), which is degenerate, as we shall further prove. The equations of geodesics
(1.10) can be expressed only in terms of the non-homogenized flag 2-metric h;; = Gjjoo.
Having in view that Gyjr.my*y' = hijm, we rewrite (1.8) as

dy® 1 ,
hisd_yt + E(4hij,k - hjk,i)yjyk =0, (1.12)
or, still
dyi his )
dt + E(Zlh%k — hjk’i)yjyk = O (113)

Applying the variational principle to F* = h;;4'y’ one gets the same equations of geodesics
(1.12), which are the equations of geodesics of the Lagrange space (M,L) with the
Lagrangian L = F* = hyy'y’ = Giuy'y'y*y'.

Unfortunately, the coefficients 7! oo = h(4hijm — hmji)/12 can not stand for the
coefficients of a linear connection on T'M.

Last but not least, we point out several considerations regarding the used (0,2) tensor
fields. We shall further skip for brevity the symbol ";" in the partials of F w.r.t. y (e.g.,
F, = F;, F;; = F,j, etc). Let [; = F~'y; = F;, where y; = g;;3° and g¢;; = (F?),;/2 is the
fundamental Finsler metric tensor field. Then we have:

Proposition 2. Consider the following family of (0,2)-tensor fields
O = Agij + plily, A, p € F(M), (1.14)

Denote by g* the dual and by § the determinant of g;;. Then

a) ©;; is non-degenerate for (A + p) #0 on T'M.
b) The dual of ©;; is
ij 2 i iy
O =3 ST Y
¢) The determinant of ©;; is
A=X"YN4p) -6

Proof. From the 1-homogeneity of F follow Fjy* = F, F;;4° = 0, y; = F'F;. The claim follows
using these relations and from straightforward calculation using properties of determinants.

Lemma. Consider the matriz I' = (Yij)ijetmr Vij = Vig + wing, with T' = ()
non-degenerate. Then:
a) The inverse of T has the coefficients 79 = v — (1 + ugu®) u'u?, where u’ = ~*us.

b) We have det(I") = det(I") - (1 + usu®).

i,jeln

Particular cases.
1. Obviously, g;; is part of the pencil (1.14), obtained for A =1, u = 0.
2. We note that g;; = F'F;; + F;F; which infers that

Oy = A\FE; + (A + p)EF;, A\ pe F(M), (1.15)

where both tensor fields Fj; and F; - F; are degenerate.
3. For A =1,u = —1 (1.14) provides the angular metric

9ij = gij — Lil;. (1.16)

Its halved version-denoted by 7;;, is employed in [9, (10)].
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4. From (1.15) we respectively obtain the tensor fields used in [9, (13), (20)|, as particular
cases:

4
hij = yy) = 15 (F)j, for A= F?/3, 1= 2F/3 (1.17)

We emphasize that the (0, 2)-tensor field gjg-l) satisfies the following equalities

By = —FFy/3 = —F?§,/3,

ij
and hence has the property of g;; of being degenerate.
We note that the proposition above provides for A =1+ a,u = —a € R the following

Corollary ([1]). The following (0,2) Finsler tensor fields are 0-homogeneous and non-
degenerate:
gij—f—ozf]ij,oz € R. (118)

Regarding h;;, this can be homogenized by dividing to F2. According to the Corollary, the
resulting (Generalized Lagrange) homogeneous metric is included in the family of metrics
(1.18). More exactly, we have

F?2 12F7?

[2F*(F?)a], = é [(F)sij +AF " yiy;] = gij + agyj, o = =2/3.
Definition 1. We call generalized 4-index angular metric tensor, the tensor field
wijrl = Gijin — Lillil. (1.19)
This definition may be easily extended to any number of indices. In analogy with [1] we

have the following

Proposition 3. The tensors of form éijkl = Giju+oawijp, o € R are generalized metric
tensors which share the same energy F*.

P?”OOf. USiIlg that llyl = F_lyz'yi = F, we get égooo = GOOOO + a(GOOOO — (lsy8)4) = F4,
whence the claim follows.

We should note as well the relation

wigoo = Gjoo — F2Lily = hiy — FPFFy = FA(FFy + FFy/3) — FRF; = -,

2 The nonlinear connection

Consider the semispray given by the second term in the equations of geodesics (1.13)

i hip m, j
2G" = 5 (4Gimim — Gmijuap)y"y'y'"y'
By taking into account (1.1) and the 1-homogeneity of F, we get G juy™y'yry' = F4,
Gpiy’y"y' = Gpooo = 3(F*),p, and hence G' can be written as

2G’l - m
12

N OF!
_ (%maypy _%), (2.1)
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Within the Lagrange structure (M, L = F*/6), where the classical Lagrange metric induced
by L is hy; = 1 2L (2.1) is exactly the Kern canonical semi-spray of L ([8], [11, Theorem

38y
7.4.1, p. 113]),
X 0*L oL
G'= — — - ). 2.2
4 (8xm8y1’y O’ ) (22)
and N ij = g—g are the Kern coefficients of the canonical nonlinear connection attached to

L on T'M. Its autoparallel curves described by (1.13) are exactly the geodesics determined
by L. Then the equations (1.10) can be written as

d’x’ , d?x’ .
2G' =0 Nyl =0
az az T =Y
or, denoting §y’ = dy’ + Nidz®,
5yt
= 0.
dt

Aiming to obtain a normal linear connection (L ko C’ijk) on T'M, one possible choice is, for
example, L' = % and Cj; = 0. Then the equations of geodesics rewrite
A2zt . -
z vy =0

Remark. The candidates for a nonlinear connection

< WP OGuk OGuikl\ ik i
Nl_ﬁ<48xm T o YUY =7 jo00

i.e., the coefficients of 3 from the equations of geodesics from (1.10), do not obey the specific
component changes; hence they do not define a nonlinear connection.

3 Geodesics in the (h,v)-metric context

Let T'"M be endowed with: a nonlinear connection N, a metric structure

G = gijda:i ® d.%j + gijéy(l)i ® (5y(1)j,
(0) (1)

where the metrics ¢ and g can be specified as in the previous sections. Consider as well
©0) (1)

a metrical normal linear d-connection D, DI'(N) = (L';;,,C";) ([11]). Then N induces
a local adapted basis { o 0 }, and the dual adapted basis, {dz?,dy'}. We denote by

ozt 8yi

() .
( , ) the scalar product defined on TM by G, by 71 ' ;& the components of the torsion
(Ba)

@, (@)

tensor T'(0ak,0p;) = (i’)ljkéw, and by (a][i)ljkl the components of the curvature tensor
@

R(5’yl755k)5aj = R zjkléaia Where 601’ = o 5“ = 4

79 9.
(@B) ow %

For a curve ¢ : [0,1] — TM, t +— c(t) = (2°(t),yV*(t)), we consider its velocity V :=
V(t) = ¢ = V®ig,,; where
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The energy of ¢ is

1 1 1
E(c):/ <c',c'>dt=/ (v, V}dt:/ 9, VOO 4 gy Wiy Migy,
0 0 0 (© 1)

Theorem 1 (The first variation of energy). Ifc:[0,1] — TM, a: (—¢,e) x[0,1] —
T'M 1is a variation of ¢ by piecewise smooth curves with fized ends, and W = %(o,t) 15 the
associated deviation vector field, then the first variation of energy is given by

_ kl(WAtV> /1<T(W,V),V>—<W:A>dt,

u=0 i

Il
o

where A is the acceleration vector field

D , ,
A=D;V = djf/ = A5y, + A5,

and Ay X is the jump
AX=X(ty)—X(to), tel0,1], X e X(TM).

We note that (T'( - ,V),V) defines a 1-form. Hence there exists a vector field F' on T'M
such that (T (W, V), V) = (F,W). Then, denoting

1
V= V(a)z’(gai7 W = W(/B)jéﬁja = Z Fl@)ig

we have (T'(W, V), Z g hF(ﬁ)hW(ﬁ 7. and the components of the field F' are given by

= 0([3)

1

0‘)@ g il 9 T V(/B)JV 'Y)h a = 0_1
Z (@) () P oy 7

Remark. The vector field F' does not depend on the chosen variation with fixed
endpoints of c.
By replacing F' into the expression of the first variation of energy, we get

k—1

_Z<W, AL VY + /1<W, F — A)dt.

u=0 i=0

dE (a(u))

du

N —

For a smooth curve ¢ on the whole [0, 1] the jumps in the sum cancel and we have

1 dE (a(u))
2 du

1
u=0 0

which means that u = 0 is a critical point of E if and only if, along ¢ = a(0), we have
F = A. Consequently we state the following
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Theorem 2. Any geodesic c: [0,1] — TM, t — (2'(t),yM(t)) of (TM,G) satisfies
Ddc
dtdt

Then, the smooth curve ¢ : [0,1] — TM, t — (2%(t), yVi(t)) is a geodesic of TM iff

DV (0)i Dy ,
= Jall = FO (3.1)
which rewrites explicitely as
d{ﬁto)i 4 Lijkv(o)kv(o)j + Cz’jkv( Yk (0) — Z g)zl(g h T kv By )k
pamo® ) (BO)
(3.2)

M+ L, VORI 4 gi ) vy i — Z <g>Zl 9 T AL
By=01) (M)
1)

Example. In particular, in a Finsler space (M, F), for ¢;; = 9,5 = 94 = 1F§ iy
(0) (1)

considering the Cartan connection ([11]), we infer that (3.2) rewrite

d2zt , A . . ) A . )
Tf + Lijv(O)kv(O)J + Cijv(l)kv(O)J = ¢" gpn (Rkjlv(O)Jv(l)h — pkl?jv(l)hv(l)ﬂ — Ckljv(o)hv(l)J)
dV(l)z ) 0)ky/(1)7 ) Dkyr(1)7 il k 0)jy/(1)h k 0)j17(0)h

yr + Lljkv( ey ()i 4 C’ijV( Ty Wi = g gkh(pﬂv( iy Wk L o jlv( )7y/(0) )

Remark. If we consider, instead of a normal linear d-connection (L', C";.), a (simple)

d-connection (L, L%, C*;. ,C,), then the above equations become

%ﬁoﬁ + Lijkv(O)kv(O)y‘ + Cz‘jcv(l)cv(on — p0yi

dvcétm + Labkv(o)kv(l)b + Cabcv(l)cv(l)b — f(Da

4 The second variation of energy. Deviations of geodesics on T'M

Consider as well T'M endowed with a nonlinear connection N, a metric structure

G = g;de’ @ da? + gwdy(l)’ ® oy
(0)

and a normal metrical linear d-connection D, DT'(N) = (L', C" ;).
Let ¢: [0,1] — TM, t — (2%(t),y"(t)) be a geodesic, i.e., ¢ is C* on the whole [0, 1] and
c is a critical point of the energy

B /l(c', &)t (41)

Let o : U x [0,1] — T'M be a 2-parameter variation with fixed endpoints of ¢ by smooth
curves on [0, 1], U being a neighbourhood of (0,0) € R?. We have a(0,0,t) = c(t), Vt € [0, 1].
Let Wi, W5 be the induced deviation vector fields

Oa Ja
9, —(0,0,t), Ws(t)=—=—(0,0,1),

Wi(t) = o0
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and let & be the mapping defined on U by
aluy,ur)(t) = a(ug, ug,t), (ur,us,t) € U x[0,1].
The Hessian F,, of the energy (4.1) is

PE(a(ui,, u))

E**(Wb WQ) 3u18uQ

(0,0) .

Let F = F(@)1i§,, be the vector field defined by

Oa Oa\ Ja oo
<T (a—a) ’E> - <fa—>

having the local coefficients

i (w)k 804 )i 9oy _
E —— (g ut), @ =0, 1. 4.2
Biy=0 (Ba)

Extending the results obtained in the Finslerian framework ( [4], [7]) to the case of (h,v)-
metrics (e.g., as in [13], [6]), we further state the following

Theorem 3 (The second variation of energy). If c: [0,1] — T'M is a geodesic and
a:Ux[0,1] - TM (where ¢ > 0) is a variation with fived endpoints of ¢ by piecewise
smooth curves, then the Hessian F., is given by:

k—1

B (Wi, Wa) = =3 (Wa, Ay, (T(W1, V) + BIa)) 4
=1

D D*W,
+R(V,W)V — ET(Wl,V) e >dt,

where 0 =ty < t1 < ... < t = 1 is a division of [0,1] such that o be smooth on each
U x (tifl,t,L'), 1= 1,k

As consequence, if ¢ : [0,1] — T'M is a smooth geodesic and « : (—¢,¢) x [0,1] — T'M
(e > 0) is a variation of ¢ through smooth geodesics, then the deviation vector fields - called
also generalized Jacobi fields, W = W(®)i§,,; are given by

(o).
D2w(a)i N DT B l)‘f'(@)Z N (aR) R
dt2 dt B du u=0

where F(@) are given by (4.2) and we denoted

.
(a)
Z V JW szk
B8,4=0 (Bv)
().
R = — Z VvV (@hy B)iyy (Mk R Zh -
8,7=0 (aBv)
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5 Projectability of horizontal geodesics of T'M

Let N be an arbitrary nonlinear connection and let (L', C*;;) be the coefficients of an
arbitrary metrical normal linear d-connection. A curve ¢ : |0,1] — TM, t — (z'(t),y'(t)) is
a horizontal geodesic of T M iff

( d i
1) — Y ioq
yi = + Njy] =0
dy 0y L YOIy Ok — gilg h( m Lm) V(i (0h (5.1)
dt ik © ©" gt L
g g, Cm VI Ok —
LD © gt

The last two equations in (5.1) are obtained from (3.2), in which we have used the relations

(0) (0)
T™ = (L™ — L™ ™ =C™,.
©0) gl ( gl l]) ) 1) gl gl

We note that we take into account only curves ¢ : [0,1] — TM with y* = dd—f =V e,

extensions to TM of curves t — x%(t) on M, and we look for conditions for such horizontal
. dat
geodesics to project to geodesics of M. For any curve on T'M, we have V(0 = el and

hence from (5.1), we infer that the h-geodesics of TM which are extensions of curves of M
are locally characterized by

( dy’

dt. + Ny =0
dy’ i gk il m m\ i, h 59
%‘Fijyy:g) (g)mh( gl lj)yy (5.2)
9% G C™yiyh = 0.

LD © J

We further obtain:

Proposition 4. Let G' be the coefficients of the Kern canonical semispray (2.2) of
the Lagrangian L = §;y'y’. If one of the two following relations holds along any curve
(0)

t — (2%(t)) of M:

. dx . , - m da? da"
1. 2G (:c,$> = (L in—= 9" G (L — L lj)) =

(0) (0)
: dx o
2.2G (2, — | = N'.o/;
<m7 dt) ]y )

then any horizontal geodesic of T'M projects onto a geodesic of M.

Example. If I is a Finsler metric on M and N is the canonical (Cartan) nonlinear

connection of F2, given by N ij = 8_yj’ then any horizontal curve (including the case of a
horizontal geodesic) of T M is projected onto a geodesic of M.

In particular, for § = g and (Nij,Lijk,Cijk) the Cartan connection, both the
conditions 1) and 2) 1(1(;1) the ab%ve Proposition are satisfied. Moreover, the third set of

equations (5.2) is satisfied by any curve, and the first and the second one are both equivalent
with the equations of geodesics of M. Then in this case, there holds:

Corollary 1 ([1]). For the canonical Cartan connection and a given extension I' on
TM, we have:
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a) If T is a horizontal curve then I' is a horizontal geodesic;
b) I is a horizontal curve iff ' is projectable onto a geodesic of M.
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