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Let E be the (m + n)-dimensional total space of a vector bundle (E,p, M), dim M = n,
a given fixed nonlinear connection N on E and a given (h,v)-metrical structure G € 77 (E). In the
paper, we determine the Einstein equations of an h- and v-semisymmetric metrical distinguished
connection on £ =TM, if n = 4, for a Riemann — local Minkowski model.

1 Vector bundles. Distinguished linear connections ( [11])

Let & = (E,p, M) be a vector bundle with dimE =m +n, p: E — M, where M is a
n-dimensional smooth differentiable manifold. If NV is a nonlinear connection on £ and V is
a complementary vertical distribution of N then,

T,E = H,E®V,E, Vu€E. (1.1)

Definition 1.1 A linear connection D on E is called distinguished linear connection or
d-connection if the linear connection D preserves by parallelism the horizontal and vertical
distributions:

D;X e HE, DY e VE, YX € HE, YeVE, Ze X(E). (1.2)
For a d-connection D we have the unique decomposition
D=D"+D". (1.3)

where D¥ and DV are the h- and v-covariant derivatives on X (E)

We denote by X# (X V) and w’ (wv), the horizontal (vertical) components of X €
X (E) respectively w € X* (F)

In the local coordinates (z*,y*) of point u (u®) € E, a=1,m+n, i =1,n, a =1, m,
we have (4, 3a), (dx®, 6y®) the adapted frames to N (N¢; (z,y)):

0 = 0 — N% (z,y) 00, 0y® = dy® + N% (z,y) da', (1.4)
(51- —§/62%, &, = 0)0x’, b, = 8/8y“> .

Then, (L' (z,y), L% (z,y), Clc(z,y), C%:(x,y)) are the local components of a
d-connection DI'(N).

D5k6j = Lijk (x,y> 61', Ddc(sj = Cijcéi, (15)
D5, 0y = L% (2,y) O, Dacab = C%c0s-

Also, we denote by: T"j, R%j1, P%jc, C"jc, S“e, the local components of five d-tensor fields

of torsion of d-connection DT'(N), (1.4) and with: R;%tn, Rp®jk, Pi'kdy Po"kds Si'cds Spcd, the
local component of six d-tensors fields of curvature of d-connection DI'(N), (1.4).

The Algebra of d-tensor fields on FE is locally generated by {1, 5¢3a} over the
differentiable functions F (E).
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2 Metrical structures and metrical d-connections on £ ([11])

We will consider a given fixed nonlinear connection N on F with the local components
N% (z,y) and a given (h,v) —metrical structure G € 73 (E) :

G = gij (SL’, y) dxl ® dxj + hab (137 y) 5ya ® 6yb7 (21)
where

9ij (r,y) = gji (x,y), rank|g; (z,y)| =n, (2.2)
hllb (xvy) - hba (xay)a TCLTLI{? Hhilb (Ivy)” =m

Obviously, we have
G(xX", YV)=0, VX € HE, Y € VE, (2.3)

in other words, the distributions H and V" are orthogonal with respect to G given by (2.1).

Remark If £ = T'M, there exist metrics of type (2.1) wich satisfy (2.2). Indeed, we
shall consider a Lagrange (Finsler) structure g;; (z,y) on T'M and by Sasaki-Matsumoto lift:

G = gij (z,y) dz* ® d’ + g;; (x,y) 0y’ @ 6y (2.4)

is obtained a metric of type (2.1) wich satisfy the relation (2.2).

Conversly, if G € 79 (F) is a metric on F, then there exists a nonlinear connection

N(N“Z- (x, y)) given by G (XH, YV) = 0.

Definition 2.1 A d-connexion D on E is called a metrical d-connexion with respect
to G € 1Y (E) given by (2.1), if DxG =0, VX € X (E).

Proposition 2.1 A d-connexion D on E it is metrical if and only if

DEGH =0, DYGY =0, DYG" =0, DYGY =0, VX € X (E), (2.5)

where G = g, (x,y) dz’ ® dz? is the horizontal part and GV = hyy, (z,y) dy* @ 6y° is the
vertical part of G given by (2.1).

Proposition 2.2 There exists a metrical d—connection on E which dependes only
N (z,y), i (x,y) and he, (z,y). This is given by

(z,y) = 1/29" (3;9mk + SkGjn — Ongjk) » (2.6)

M.
szk
M . . .
L% (z,y) = O,N%, + 1/2h <5khbd — hpcOa N — hcdachk) ,
M . e

OZjC (xay) = 1/292 acgjfw

M vy . .
C% (z,y) = 1/2h" <3bhdc + Ochpg — 3dhbc) ,

where [lgY|| = llgisl| ™" [[3*]| = IlAaoll”"
The distinguished metrical d-connection (2.4) is said to be Miron connection of G
and it will denoted by M DI" (N).

Proposition 2.3 There exists an unique metrical d—connection DI (N) =
(Lijk, L%, C'je, C%) on E for which:

M . M .
L% (z,y) = L% (x,y), C'jc(x,y) = C"e(x,y) (2.7)



I'nnepromiiiekcrble dncsia B reomerpun u usnke, 2 (6), Vol 3, 2006 101

and the d-tensor fields T"ji, S%. are prescribed. This connection is given by (2.5) and

L'y (x,y) = L'k (z,y) +1/29" (grhThjk — g T + gkhThjr> ;
M

(2.8)
C% (z,y) = C% (z,y) + 1/2h* (hdfsfbc — hppS7 g + hcfsfbd> -

The metrical distinguished connection given by (2.5) and (2.6) will be called
generalized Miron connection of the metric G given by (2.1) and it will denoted by
GMDT (N).

We note

e(z,y) =< 4,y >= hay (2,9) Yy (2.9)

the absolut energy of vertical part GV and

1 0%

h’:b (l‘, y) = §ayaayb ‘

(2.10)

Definition 2.2 The d-tensor field hq (z,y) 6y® @ dy° is said to be weakly regular

if the d-tensor field with components h¥, (z,y) given by (2.8) is nondegenerate, i.e.
det ||hk, (z,y)|| # 0, where E = TM.

Theorem 2.1 (R. Miron, [10]; see also [11] pg. 127 and [12]) If ha, (z,y) 6y @ 0y° is
a weakly reqular v-metric on E = TM then the functions

) 1 )
N (,y) = G (@) o, G = b [(abaka) JFye — (9he) oF] (2.11)
are the coefficients of a nonlinear connection completely determined by hap, (x,y) .

3 h- and v-semisymmetric metrical d-connections and their transformations

Definition 3.1 A metrical d-connection on E is said to be h-semisymmetric if

Tijk = ajé,i - O'ké‘i-, (31)

J

and v-semisymmetric if

Sa be — Tbélcz - TC(SI()Ia (32)

where o;, 7, are d-covector fields on E.
Theorem 3.1 There exists on E an unique metrical d-connection both h-and v-
semisymmetric, DT (N) = (Lijk,L“bk,Cijc,C“bc), with prescribed d-covector fields o;, 7.

That d-connection is given by (2.5) and

L'k = 59" (;9nk + Okgjn — Ongjr) + 00}, — gjxo’,

X . . 3.3
C% = $h*(Ophge + Ochpg — Oahye) + 102 — T, (3:3)

where o' = g"o; and T = hT,.
Now, we have the following interesting transformations of h- and wv-semisymmetric
metrical d-connections.
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Theorem 3.2 The transformations of h-and v-semisymmetric metrical d-connections,
which preserve the nonlinear connection N, DI' (N) — DI' (N), are given by

Ly, = Ly, + piok — b’
Loy, = L%,
Cljc = Cle,
C% = C%: + @02 — hpeq®,

(3.4)

where p' = gYp;, ¢ = h®q, and p;, q. are arbitrary d-covector fields on E.
We shall denote these transformations by ¢ (p, q) .

Theorem 3.3 The set of all transformations t (p,q) given by (3.4) is a transformations
group Gy of the set of all h- and v-semisymmetric metrical d-connections, with respect to
(2.1), together with the mapping product

t(p,q)ot(p,g) =t(p+v,q+q).

This group Gy is an Abelian group and acts on the set of all h-and v-semisymmetric metrical
d-connections, having the same nonlinear connection, transitively.
If we investigate the influences for the torsion and curvature tensor fields, we have

Theorem 3.4 The following d-tensor fields
Rajka Pajca Cijc
T — 75 (T30 — Tedi) . S% — =i (Sh08 — Sedp), (3.5)
(Ty =T* i, Sp=5%),
are invariants with respect to transformations of the group Gy.

Theorem 3.5 Forn > 2, m > 2, the following d-tensor fields H 'y, My®cq of h- and
v-semisymmetric metrical d-connections, are invariants of the group Gy :

1= B+ 2 4 05 R~ Rouf2 (-] (0= 2), (3.6)

My cqa = Spca + Q(g‘}l){/l\gg [Sed — Shea/2 (m — 1)] }/ (m—2), (3.7)

where we denoted the alternation operator by A, the Obata operators Kll and/l\ of gi; and hgy,
respectively, by:

Qi = % (0167 — gug”) . Nea = % (326% — heah™) |
and
Rix = Ri'm, See= Sp%a, R=g"Rij, S=h"S,,.
Theorem 3.6 We have
. M M
Hi'w=Hj'y, My ea = Mp®ea, (3.8)

M M
where H 'y, My®eq are construct by means of the Miron connection of G, MDI' (N), given

by (2.4).
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Proof. We consider (3.3) as a transformation of h- and v-semisymmetric metrical d-
connections M DI (N) — DI' (N) and we obtain (3.8), with respect to (3.6), (3.7)

By straightforward calculus, we get:

Theorem 3.7 If the Miron connection, MDT' (N), (2.4), has the properties of h— and
v-1sotropie:

Ri' = h(z,y) (90 — 9j0%) »  Sb%a = v (2, y) (hued§ — hpadl) (3.9)
then, we have
Hi'u =0, My%q=0 (3.10)

4 The Riemann-local Minkowski model of relativity
with h- and v-semisymmetric torsions

In this Section, we consider £ = TM, dim M = n.
If ha(x,y) = ha (y) , the metric G given by (2.1) is called v-local Minkowski
We have

Theorem 4.1 If the metric structure G given by (2.1) is h-Riemannian, v-locally
Minkowski and hqy, (y) is weakly regular, then:
I) The h- and v-semisymmetric metrical d-connection, compatible with respect to
G, that corresponds to the 1-forms o; (z,y) = 0; (), 7, (x,y) = T, (y) has the coefficients
gien by

[A/ijk = ’)/;k + 0362 — gjkO'i, (41)
Labk - 07
CAmljc = 0,

Na a a a
C be = Vpe + Tb(sc - thT )

here i, and vy, are the Levi-Ciita connections corresponding to the gg; (x) and ha (y),
respectively.

II) d-tensor fields of (4.1) are
Tijk = O'jéliC - Ukéé, (42)
Rajk = 07 CA”]C = 07 ]Sajc = 07
S = Ty68 — 755

I11) d-curvature fields of (4.1) are
Ri'w = 7' +2(k4){(12;12051}, (4.3)
Ry = 0, pjikd =0,
Syled = 5%a + 2(6){/1\%:?7-”},

where we denoted A, (12, Q, as in Theorem 3.6, by 1k, $p°cq the tensor fields of curvatures

of Vi, Ve respectively, and

0ij = Oy, — 20505 + gijor, 20 = gY o005, (4.4)

Tab = Tby = 2TaTy + hao, 28 = h7,7y;
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( herer andT denote the h- and v-covariante derivatives with respect to DT, (3.4)).

Remark 4.1 For d-connection (4.1), h (h)-torsion and h (hh)-curvature are internal,
only and v (v)-torsion and v (vv)-curvature are external, only.

Let G be a metrical h-Riemannian, v-locally Minkowski on £ = T'M, v-weakly regular
(Theorem 2.1) and we denote r;; = 7%k, 7= gYrij, Sap = 5a%e; § = WS, etc.

Taking into account the results of [1] and [2] (see, also [5] and [11], pg.83), we obtain

Theorem 4.2 The FEinstein equations of d-connection Df‘, (4.1) of Riemann-local
Minkowski metric G, (2.1), are given by

1
rik— 5 (r+8) gjx — (n = 2) (o5 — 309;) + 5 (m — 1) Tgj = KT i, (4.5)

) :
Sbe — (54 71) hye — (M = 2) (The — 3Thye) + 3 (0 — 1) ohye = 5T,

12 3 4
where K 1is constant, T,;,T,; = 0,T;, = 0,7 4 are the components in the adapted basis of

the energy-momentum tensor field

1 , 4
T =T;ds' @da + T 0y" ® 5P, (4.6)

o= 2gijaij, T = 2h%7,,. (4.7)

Theorem 4.3 The conservation law in this model is given by

1 1
rt — —rdt — (n — 2) (O’Z- - —aé"-)] =0,
|i J 2 J J 2 J by

. . (4.8)
syp — =s6p — (m —2) (70 — =70} =0
2 2 by
where
i ik i ik a __ pac a __ pac
Tt =g"rkj, 05 =g 0ok, Sy =h"sw, T =h"T4. (4.9)
Theorem 4.4 The divergence of energy-momentum tensor is as follows
1 1 4 1
(Div’T) — U, =0, (Diw) — U, =0, (4.10)
i K bR
where
1 1 4 4
(DivT) — T (Dm) _ 7o
j N b blPa
and
1 i1 i 1
U; = 59 (75— 505]- +(n—2) |0 (0io; — 00;) — 5 (0;a — 3awo;j) |, (4.11)
1 “ 1 “ o [ - . 1 /.
Uy, = 37| sh — 57'51, +(m—=2)|7 (&Jb - 8bTa> ~ 5 <8bﬁ - Sﬁn,) .

Generally, the equations (4.4) are not identically satisfied. Therefore, we need to find
the conditions for 1-forms o; and 7,, such that the conservation law to be satisfied.

In this aim, if we denote by n the covariant derivative with respect to Levi-Civita
connection vk of g;; (x) and with || the covariant derivative with respect to Levi-Civita
connection ;.. of hy, (y), we obtain
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Theorem 4.5 The conservation law in the Riemann-local Minkowski model with h- and
v-semisymmetric torsions is satisfied, if and only if the fields of 1-forms o; and 7, satisfies
the equations

(ri = 37r6%) 0i + (n — 2) [0j,50" + 00 + (n — 4) dja — 3 (n — 3) 5;0] =0, 1)
4.12
(5~ 4530) 7+ (m—2) g7 4 7+ (m— 99,3~ B(m—8)n9] =0

Now, we consider dim M = 4. We have, also m = 4.
Taking into account the above notations, we obtain:

Theorem 4.6 Let G be a Riemannian-locally Minkowski structure on £ = TM,
dim M = 4, v-weakly regular. Then:
(i) The Einstein equations of the d-connection (4.1) are given by:

1 1
Tik — 5 (r+s5—20—37) gjx — 205, = #T j, (4.13)

1 4
Spe — §(T+S—2T—3U) hie — 2T = 2T .

(i1) The conservation law is given by:
i1 i i
Tj—§(7"—20')5j—20'j " = 0, (4.14)
a 1 a a
{sb——(s—27)5b—27'b} = 0.
2 ba

(i1i) The conservation law is satisfied if and only if the fields of 1-forms o; (z) and
T, (y) satisfies the equations

i Lo i
<rj - 57@) 0i+2[0;,:0" + (0 = 3a) ;] =0, (4.15)

1
(sg — 5355‘,’) Ty + 2 [Tb [ aT" + (1 —30) Tb] = 0.
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