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1. Introduction

Let M be a paracompact n-dimensional manifold and a an r-form, that is a covariant
tensor a € 7,° of type (0,7) on M with components a;, ;. (z), 1 <'iy,...,i < nis a local
coordinate system (). Then a;, ; (z)y™ ...,y", y € T,M (summation over 1 <iy,... i, <
n) is a homogeneous polynomial in 7, M (y). We suppose that

aiimir(m)y“ Lyt =1

is a star-shaped convex hypersurface in 7, M (y). Then F™ = (M, F) with the Finsler metric

FT('rJ y) = a’ilnir(‘T)yil? s 7yir (1)

is a Finsler space with polynomial metric. Such F™ are generalizations of the Berwald-Moér
metric (see [12] p. 53 or [20], [21], [16], [17], [18]). F™ with polynomial metric were recently
investigated by several authors, such as V. Balan, N. Brinzei, S. Lebedev, D. G. Pavlov
etc. in [2], [3], [13], [15], [19]. They considered these spaces endowed with linear metrical
connections acting in the vector bundle

TM x3 TM =VTM = (VT M, 7, V")
mH(x,y) = V" = {&(,9)},

where V" is an n-dimensional real vector space, and (x,y) is a line-element. VT'M is no
tangent bundle, for dim7TM = 2n # n = dimV". In VT M there exist linear metrical
connections (e.g. Cartan connection), which allow to develop a curvature theory, etc. in a
way similar to that of Riemannian geometry. But using this bundle and line-elements (z, y)
has some disadvantages too. The theory becomes more complicated, and the difference
between the dimensions of the base space T'M and the fiber V" is sometimes incovenient,
especially in physics. A linear connection acting in the bundle 7y, = (T'M, w, M, V") is
more simple, but in a Finsler space it cannot be metrical in general. Nevertheless there are
many Finsler spaces which allow linear metrical connections in the tangent bundle. Such are
the Riemannian space V", Minkowski spaces M", locally Minkowski spaces {M", and also
the affine deformations A¢M™ of locally Minkowski spaces ([23], [24]), the Finsler spaces
with 1-form metric ([15], [16]), the space modelled on Minkowski spaces ([11], [12]). Some of
these spaces may not exist on every paracompact manifold ([4], [24]). There are also Finsler
spaces admitting metrical connections in 75, which are only near to linear connections [25]
or which are homogeneous only [13].

In this paper we want to show that Finsler spaces with polynomial metric allow metrical
tensorial connections (linear for a given type of tensors). Many of them induce, in a natural
way, metrical non-linear connections in 7.
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2. Tensorial connection

Let us consider the tensors t of type (r,0), t € 7; over the n-dimensional manifold M.
7 is a real vector space VY of dimension N = n". Thus t*, A =1,2,..., N can mean the
components of ¢.

E=(ExMVY), 7:E—-M «'(p=V", peM (2)

is a tensor bundle, that is a vector bundle of rank N over M. A linear connection v acting in
£ is called tensorial connection. In a local coordinate system (x) it is given by the connection
coeflicients

YaB (), AB=1,2,....N, k=1,2,...,n

and the parallel translated Pty of o € 71 (z(19)) along a curve z(7) according to 7 is
defined by the solution ¢(7) of the ODE system

DtB  dtP da*

= T ’YABk(x(T))tA? (3)
with initial value ¢(0) = ;. With an appropriate v one can realize any linear mapping
between 771 (z(79)) &~ VN and 7 '(z(7)) ~ VN. — An affine connection I' with coeffients
I';%(z) also induces certain (linear) mappings between the above fibers. These mappings
are realized by special tensorial connections. In case of r = 2 the corresponding v has the
coeflicients

Va5 (@) = 757k (2) = Tk (2)6] + 6.0 1 (). (4)

Clearly ~-s of this form are special ones, and they do not generate all linear mappings
between 71 (x (7)) and 7= (z(7)). Also conversely, if a y47. can be represented in the form
(4), then the tensorial connection 7 reduces to the affine connection I'.

The tensorial connection given by (3) is linear in ¢ € 7y, and the operator 2 of (3)
can be extended to the tensor algebra of tensors of type (Ar,ur), where A and u can be
arbitrary no-negative integers. Tensorial connection was introduced by E. Bompiani 9], and
investigated by A. Cossu [10], L.Tamdssy [22], M. Kucharzewski [14], and others.

Let M be an N = n” dimensional manifold with local coordinates Z, such that M C M,
and let ¥(Z) be a C° extension of 7, such that its restriction to M yields v : ¥(Z) [x= v(x).

Then (M, 7) is an (ordinary) affine connection in the tangent bundle 757 = (T'M, 7, M, V).
So we obtain the

Proposition 1 Any tensorial connection (M"(x),~(x)) is the restriction of an affinely

connected space (M (T),75(T)) in the form
(M (@) = (A" A@) | M, N=n'"

Here the restriction happens in the base manifold M. This is in analogy to the fact that
any Finsler space F™ can be considered as the restriction of a Riemannian space V2" =
(T'M,G), where G is the Sasakian type metric of F™. Here the restriction happens in the
fiber. The tangent space TT'M of V2" is restricted to the vertical bundle VT'M of the Finsler
space.

A tensorial connection v has two curvatures Ag%;; R]’ik(, and a torsion tensor Sjik.
Vanishing of A characterizes the reduction of v to I'. In this case also R and S reduce to
curvature R and torsion S* of T' ([22]).
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3. Tensorial connections in case of polynomial metric
The a(x) € 7y appearing in (1) is parallel along x(7) according to 7, if

day B da*

o A k(ﬂf(T))aBE,

and a(x) is an absolute parallel tensor field on M (or on a domain of it), if
Viaa =0, (5)

that is 5
a
a—x;‘ = 4" k(x)ap. (57)

The Finsler norm |ly||z of a vector y € T,M in our F" with polynomial metric is
yl% = F(x,y) = asb?, and we define the Finsler norm ||t||r of tensor ¢ € 77 in our F™ by

tll7 : an(@)t?(z). (6)

Thus
Iylle = F(z,y) = [0 . (7)

The tensorial connection is called metrical if
1P tollr = [[t(7)]| » = const., Va(r) C N, toeTc, (8)
and thus

dmk] A DtA

%Ht(ﬂHF = %(GA(w(T))tA(T)) = {(VWA)? = i const =0 (8

= dr dr
for any t(7) parallel along any z(7). Since for parallel ¢(7) %—T = 0 and for an appropriate
x(T) we can obtain every xy and iy, (8) is equivalent to (5).

For given a(z) (5°) is a linear equation system at any point x for the unknowns 42 ().
The equations of (5°) are independent in the sense that each v42; (o) appears in a single
equation only. Hence (5°) is solvable for y4%(z). Thus we obtain

Theorem 1 Any Finsler space with polynomial metric (1) has metrical tensorial
connections.

(57) consist of Nn equations, and in each of them (for fix A and k) appear N unknowns
4P, of which N — 1 can arbitrarily be choosen. Thus in the solution of (5’) Nn(N — 1) =
(N2 — N)n of the y45; remain arbitrary.

The upper script indices of a totally symmetric tensor ¢"*r € 77 are the multiple

combinations of order r from the elements 1,2,...,n. These tensors form a linear subspace
*Iy of 77. The dimension of *7j is C) = ((’ZL __1;;!:)!! = (C, the number of the multiple
combinations of order r from n elements 1,2,...,n. The components of such a tensor will
be denoted by t*, @ = 1,2,...,C. Also y ...y = brr = p* € 7). If in (1) we draw
together those a;,. ; in which the same 1,19, .. .4, appear (independently from the order),

and denote their sum by ¢,, then with respect to (6), (1) gets the form

F(#,y) = gob® = [blla; o =1,2,....C. (1)
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b is decomposable. It is an r-times tensor product of y € 7, M:

1 r
b=1y®- - Qy.
Thus
¢ := {b}
is a cone in *7. Its parameter representation is
0=y, =Yty a=d (9)

The correspondence between (y',... y") € V*(y) and b € ¢ C *7 is 1 : 1. Thus dim ¢ = n.
(9) is independent of x € M. Thus ¢ has the same form in each fiber V¢ ~ 77 C 77 ~
7~ (x) of the bundle £ = (F, m, M, V).
One can see that
Plmbo = b(z(7)) = b(7) € d(x(7)), (10)
or in another form

Poin@(x0) = ¢(z(7)) (10)

does not hold in every tensorial connection v. We want to obtain necessary and sufficient
conditions for (10) to hold. We suppose that b(x) = b(7) € ¢(z(7)) = ¢(x), where ¢(x)
is independent of x. Hence every b(z(7)) = b(z) can be considered as a point of a single
representative ¢ of the ¢(x)-s. Thus in case of (10) every % is a tangent of this ¢:

ob”
— € Tyo. 11
ok €Tio (11)
But also conversely, if (11) is satisfied, then so is (10).
On the other hand b(7) of (10) is a solution of

b o> da* dz*
B — [ B8 _ .
dr ok dr 8 k(2(7))b qr a,8=1,2,...,C, Vu,i.
Thus 3%, must satisfy the relation
ob” N
57 W) = 7%(2)0 (). (12)

Any tangent of ¢ is a linear combination of %j = %‘; at y. Thus the required necessary
and sufficient condition (11) gets the form

C;’;(y)gi;(y) = 75"k (2)0° (y). (13)

This must be satisfied identically in y.

(13) can be considered as a linear equation system for v3% and ¢,. We show that (13)
has a solution, while many of the unknowns 3%, and ¢} remain undetermined (free).

b5 (y) is a homogeneous polynomial of order 7 in y. g%; is also a homogeneous polynomial

of order r — 1. Thus C,jc must be a homogeneous polynomial of order 1 : c,i(y) = ,;ys. So

(13) gets the form
j saba o ’
kY 5 () = k()6 (y). (137)
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This is a special, very simple equation system. For any fixed ky we obtain a subsystem

ol

Scjysa_yj(y) = 75a(x)bﬂ(y)a st = sclioa ’Yﬁa = ’Vﬁak(y (14)

The unknowns Sc,io and 3%y, appear in one single subsystem only. Since every subsystem
has the same structure, we have only to solve (14). Let us fix & = a. Then on both sides of
(14) there is a homogeneous polynomial of order 7 in y, and (14) must hold identically. Thus
the coefficients of y™ ...y consisting of the different s/ and v3* must be equal on the two
sides. These yield homogeneous linear equations, C' in number, for ¢¢/ and v3*. The number
of the unknowns 4/ and y3* is n? + C?. For the different a-s (14) consists of C' equations.
So the number of the equations for (¢/ and 4 stemming from (14) is C?, and the number
of the unknowns remains n? + C?2. (13’) consists of n subsystems for the different ko with
new unknows in each. Thus (13’) yields, as identities in y*, C?n equations with n® + C?n
unknowns. So we obtain

Proposition 2 There are many tensorial connections v taking by parallel translation any

decomposable tensor b = é & - ®g§ into a similar one: P;(T)bo = b(7).

4. Induced non-linear connection in 7,

A tensorial connection 7 for which PZ(T)bO = b(x(T)), or in another form P;/(T)¢($0) )
¢(z(7)) = ¢ holds, induces a non-linear connection in 7,,. Namely, as also the diagram
by € &(x0) h b(1) € ¢(x(1))
K -
N
Yo € TIOM -2 y(T) € Tx(T)M
shows (f* from (9))
N = (f) 073;(7) o f* (15)
takes any yo € T, M into a y(7) € Ty M. Thus

N is non-linear in y, for P7 is so in b. Thus we obtain

1
Theorem 2 Any tensorial connection, which takes tensorsb=y® - - ~®g£/ into similar ones
determines in Ty among the vectors y € T,M a non-linear connection N in a natural way.

We want to investigate metrical tensorial connections v of a Finsler space with
polynomial metric, which induce non-linear connections N in 73, Then v satisfies (13’),
and it is metrical. A tensorial connection is metrical, if (5’) or, in view of the symmetry
of ay,

0Ga 5

Dk = o k(T)gs (17)

holds. At a given (x) (17) means Cn linear equations for the unknowns 7,%;. So (13)
(respectively the equations stemming from the fact that the equations of (13’) must be
identities in y*) combined with (17) consists of Cn 4+ C?n (simple) linear equations, and the
number of the unknowns Sc,i and 3% remains C?n 4+ n3. The rank of the combined system
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is maximal. If the number of the unknowns is not less than the number of the equations,
that is if C?n +n® > C?n + Cn, or
n*>Cm

n,r?

(18)

then the combined system is solvable. Since 7 is metrical, in this case we have

(6) r r
1P bOHF L |1b(r) |+ = const 2 Fz, y(7)) = ly(r)|[7 = 1P w0l -

Thus ||73 yYol| = const. This yields

1 r
Theorem 3 If ~ is metrical (satisfies (17)), and takes every b = y®, ...,y into a similar
tensor (which satisfies (137)), then also the induced non-linear connection N is metrical
with respect to the F™ with polynomuial metric.

The condition of the solvability of the combined system is (18). For which n and r will
it be satisfied? It is clear from the notion of multiple combination that C7". is monotone
increasing in r for every fix n, and also in n for every fix r. Therefore there exists a minimal

r for every n for which n? > C’Z}r. We denote this r by r,. Then we obtain

Proposition 3 (18) holds iff r < r,. In this case the combined system (13’) and (17) is
solvable, and the induced non-linear connection N is metrical.

In case of r = 2 we have (], = @ < n?. Thus (18) holds for Vn, and so we
have tensorial connections 7 inducing metrical non-linear connections N in ;. In this case
F2(x,y) = aa(2)b* = a;;(x)y'y’. This means that for » = 2 the Finsler space with polynomial
metric is a Riemann space: F* = V™. Then 74", (x) = ~;"k(2) = L™, ()05 +0;T ;% (). This
7y is constructed from the symmetric (torsion free) or non-symmetric Christoffel symbols of
V™. This v yields a metrical tensorial connection, and the metrical connection N in 7y,
becomes linear with coefficients T}’ (a:)

In case of 7 =3 (18) reads as C)'s = w < n? or equivalently n? + 1 < 3n. This
holds for n = 2, but for r = 3 and n = 3 (18) is not yet true. For ny > 3, r > 3 we have
o< Cm, < C’no ., since C7° - is increasing in 7. Thus for n > 3, r > 3 (18) does not hold.
For n=2 Cy =r+1 Thus (18) holds for n = 2, r = 3: 2> = C4% (as we have already
seen), but C3y < CF., v > 3, since CF, is inceasing in 7. So we have n?=4= 93 < O35,
that is (18) holds neither for n =2, r > 3.

But there may exist special g, (x) for which the number of the independent equations of

(17) is smaller than Cn, and thus the combined system (13’) and (17) still has a solution,
Bga 8ga
1 + 2

for example if = %g:f for certain (or several) k. The number of the dependent
equations of (17) may run from C to zero. If the curvature R,”;;(x) of the tensorial
connection v vanishes, then there exists g,(z), such that (17) yields identities: presents
no new equation for v,%.

1 T
Theorem 4 If vy is metrical (satisfies (17)), and takes every b=y ® --- Q@ y into a similar
tensor (satisfies (13’)), then the induced non-linear connection N is also metrical with
respect to the F™ with polynomial metric. The condition for this is n® > (O

Such « exists for any Finsler space with polynomial metric only if 7 = 2 (in this case
the Finsler space is a Riemannian space) or in case of r = n = 3. Such ~ exists also for
arbitrary r and n, but not for every polynomial metric.

Finally we make two remarks:
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Remark 1 ays(z) of (1) may have the form
aijie(2) = gij () hume(),

where g;;(x) and hpe(z) are metric tensors of two Riemannian spaces V* and V3' on M.
Then

Fix.y) = lylle = lylI7, 1y,

This may have a mathematical inteterest, but ||y|lv, and ||yllv, could also mean two
different impacts of a physical phenomenon.

Remark 2 A Randers space R" = (M,R(x,y)) is a special Finsler space ([7], [16]), where
R(z,y) = (95(2)y'y’)"? + bi(x)y’

in place of F(x,y) means the Randers metric. In a degenerate case we may have R(x,y) =
bi(x)y'. If we endow in the vector bundle € (see (2)) of rank N each fiber n=(x) = VN with
the metric R(z,y) = aa(x)b?, then we obtain a degenerate Randers vector bundle RY,. Thus
any Finsler space with polynomial metric (1) can be considered as a degenerate Randers
vector bundle. — It could have some interest to consider a Finsler space with polynomial
metric as a degenerate Randers vector bundle.
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