FINSLER SPACES WITH POLYNOMIAL METRIC

L. Tamássy

Department of Mathematics, Debrecen Univ., Hungary tamassy@math.klte.hu

1. Introduction

Let M be a paracompact n-dimensional manifold and a an r-form, that is a covariant tensor $a \in \mathcal{T}_r^{\circ}$ of type (0, r) on M with components $a_{i_1...i_r}(x)$, $1 \leq i_1, \ldots, i_r \leq n$ is a local coordinate system (x). Then $a_{i_1...i_r}(x)y^{i_1}\ldots, y^{i_r}, y \in T_xM$ (summation over $1 \leq i_1, \ldots, i_r \leq n$) is a homogeneous polynomial in $T_xM(y)$. We suppose that

$$a_{i_1\dots i_r}(x)y^{i_1}\dots y^{i_r}=1$$

is a star-shaped convex hypersurface in $T_x M(y)$. Then $F^n = (M, \mathcal{F})$ with the Finsler metric

$$\mathcal{F}^{r}(x,y) = a_{i_{1}\dots i_{r}}(x)y^{i_{1}},\dots,y^{i_{r}}$$
(1)

is a Finsler space with *polynomial metric*. Such F^n are generalizations of the Berwald-Moór metric (see [12] p. 53 or [20], [21], [16], [17], [18]). F^n with polynomial metric were recently investigated by several authors, such as V. Balan, N. Brinzei, S. Lebedev, D. G. Pavlov etc. in [2], [3], [13], [15], [19]. They considered these spaces endowed with linear metrical connections acting in the vector bundle

$$TM \times_M TM = \mathcal{V}TM = (VTM, \pi, \mathcal{V}^n)$$
$$\pi^{-1}(x, y) = \mathcal{V}^n = \{\xi(x, y)\},$$

where \mathcal{V}^n is an *n*-dimensional real vector space, and (x, y) is a line-element. $\mathcal{V}TM$ is no tangent bundle, for dim $TM = 2n \neq n = \dim \mathcal{V}^n$. In $\mathcal{V}TM$ there exist linear metrical connections (e.g. Cartan connection), which allow to develop a curvature theory, etc. in a way similar to that of Riemannian geometry. But using this bundle and line-elements (x, y)has some disadvantages too. The theory becomes more complicated, and the difference between the dimensions of the base space TM and the fiber \mathcal{V}^n is sometimes incovenient, especially in physics. A linear connection acting in the bundle $\tau_M = (TM, \pi, M, \mathcal{V}^n)$ is more simple, but in a Finsler space it cannot be metrical in general. Nevertheless there are many Finsler spaces which allow linear metrical connections in the tangent bundle. Such are the Riemannian space \mathcal{V}^n , Minkowski spaces \mathcal{M}^n , locally Minkowski spaces ([23], [24]), the Finsler spaces with 1-form metric ([15], [16]), the space modelled on Minkowski spaces ([11], [12]). Some of these spaces may not exist on every paracompact manifold ([4], [24]). There are also Finsler spaces admitting metrical connections in τ_M which are only near to linear connections [25] or which are homogeneous only [13].

In this paper we want to show that Finsler spaces with polynomial metric allow metrical tensorial connections (linear for a given type of tensors). Many of them induce, in a natural way, metrical non-linear connections in τ_M .

2. Tensorial connection

Let us consider the tensors t of type (r, 0), $t \in \mathcal{T}_0^r$ over the n-dimensional manifold M. \mathcal{T}_0^r is a real vector space \mathcal{V}^N of dimension $N = n^r$. Thus t^A , $A = 1, 2, \ldots, N$ can mean the components of t.

$$\hat{\mathcal{E}} = (\hat{E}, \pi, M, \mathcal{V}^N), \quad \pi : \hat{E} \to M, \quad \pi^{-1}(p) \approx \mathcal{V}^N, \qquad p \in M$$
 (2)

is a tensor bundle, that is a vector bundle of rank N over M. A linear connection γ acting in $\hat{\mathcal{E}}$ is called *tensorial connection*. In a local coordinate system (x) it is given by the connection coefficients

$$\gamma_A{}^B{}_k(x), \qquad A, B = 1, 2, \dots, N, \quad k = 1, 2, \dots, n$$

and the parallel translated $\mathcal{P}_{x(\tau)}^{\gamma}t_0$ of $t_0 \in \pi^{-1}(x(\tau_0))$ along a curve $x(\tau)$ according to γ is defined by the solution $t(\tau)$ of the ODE system

$$\frac{Dt^B}{d\tau} \equiv \frac{dt^B}{d\tau} + \gamma_A{}^B{}_k(x(\tau))t^A\frac{dx^k}{d\tau}$$
(3)

with initial value $t(0) = t_0$. With an appropriate γ one can realize any linear mapping between $\pi^{-1}(x(\tau_0)) \approx \mathcal{V}^N$ and $\pi^{-1}(x(\tau)) \approx \mathcal{V}^N$. – An affine connection Γ with coefficients $\Gamma_j{}^i{}_k(x)$ also induces certain (linear) mappings between the above fibers. These mappings are realized by special tensorial connections. In case of r = 2 the corresponding γ has the coefficients

$$\gamma_A{}^B{}_k(x) \equiv \gamma_r{}_s{}^{ij}{}_k(x) = \Gamma_r{}^i{}_k(x)\delta^i_s + \delta^i_r \Gamma_s{}^j{}_k(x).$$
(4)

Clearly γ -s of this form are special ones, and they do not generate all linear mappings between $\pi^{-1}(x(\tau_0))$ and $\pi^{-1}(x(\tau))$. Also conversely, if a $\gamma_A{}^B{}_k$ can be represented in the form (4), then the tensorial connection γ reduces to the affine connection Γ .

The tensorial connection given by (3) is linear in $t \in \mathcal{T}_0^r$, and the operator $\frac{D}{d\tau}$ of (3) can be extended to the tensor algebra of tensors of type $(\lambda r, \mu r)$, where λ and μ can be arbitrary no-negative integers. Tensorial connection was introduced by E. Bompiani [9], and investigated by A. Cossu [10], L.Tamássy [22], M. Kucharzewski [14], and others.

Let \overline{M} be an $N = n^r$ dimensional manifold with local coordinates \overline{x} , such that $M \subset \overline{M}$, and let $\overline{\gamma}(\overline{x})$ be a C° extension of γ , such that its restriction to M yields $\gamma : \overline{\gamma}(\overline{x}) \upharpoonright_M = \gamma(x)$. Then $(\overline{M}, \overline{\gamma})$ is an (ordinary) affine connection in the tangent bundle $\tau_{\overline{M}} = (T\overline{M}, \pi, \overline{M}, \mathcal{V}^N)$. So we obtain the

Proposition 1 Any tensorial connection $(M^n(x), \gamma(x))$ is the restriction of an affinely connected space $(\overline{M}^N(\overline{x}), \overline{\gamma}(\overline{x}))$ in the form

$$(M^n, \gamma(x)) = (\overline{M}^N, \overline{\gamma}(\overline{x})) \upharpoonright M, \qquad N = n^r.$$

Here the restriction happens in the base manifold \overline{M} . This is in analogy to the fact that any Finsler space F^n can be considered as the restriction of a Riemannian space $V^{2n} = (TM, \mathcal{G})$, where \mathcal{G} is the Sasakian type metric of F^n . Here the restriction happens in the fiber. The tangent space TTM of V^{2n} is restricted to the vertical bundle $\mathcal{V}TM$ of the Finsler space.

A tensorial connection γ has two curvatures $\mathcal{A}_E{}^C{}_i$; $\mathbb{R}_j{}^i{}_{k\ell}$, and a torsion tensor $\mathcal{S}_j{}^i{}_k$. Vanishing of \mathcal{A} characterizes the reduction of γ to Γ . In this case also \mathbb{R} and \mathcal{S} reduce to curvature R^{Γ} and torsion \mathcal{S}^{Γ} of Γ ([22]).

3. Tensorial connections in case of polynomial metric

The $a(x) \in \mathcal{T}_0^r$ appearing in (1) is *parallel* along $x(\tau)$ according to γ , if

$$\frac{da_A}{d\tau} = \gamma_A{}^B{}_k(x(\tau))a_B\frac{dx^k}{d\tau},$$

and a(x) is an absolute parallel tensor field on M (or on a domain of it), if

$$\nabla_k a_A = 0,\tag{5}$$

that is

$$\frac{\partial a_A}{\partial x^k} = \gamma_A{}^B{}_k(x)a_B. \tag{5'}$$

The Finsler norm $||y||_F$ of a vector $y \in T_x M$ in our F^n with polynomial metric is $||y||_F^r = \mathcal{F}^r(x, y) = a_A b^A$, and we define the Finsler norm $||t||_F$ of tensor $t \in \mathcal{T}_0^r$ in our F^n by

$$||t||_F : a_A(x)t^A(x).$$
(6)

Thus

$$\|y\|_{F}^{r} = \mathcal{F}(x, y) = \|b\|_{F}.$$
(7)

The tensorial connection is called *metrical* if

$$\|\mathcal{P}_{x(\tau)}^{\gamma}t_{0}\|_{F} = \|t(\tau)\|_{F} = \text{const.}, \qquad \forall x(\tau) \subset N, \quad t_{0} \in \mathcal{T}^{c},$$
(8)

and thus

$$\frac{d}{d\tau} \|t(\tau)\|_F = \frac{D}{d\tau} \left(a_A(x(\tau)) t^A(\tau) \right) = \left[(\nabla_k a_A) \frac{dx^k}{d\tau} \right] t^A + a_A \frac{Dt^A}{d\tau} = \frac{d}{d\tau} \operatorname{const} = 0 \qquad (8')$$

for any $t(\tau)$ parallel along any $x(\tau)$. Since for parallel $t(\tau) \frac{Dt^A}{d\tau} = 0$ and for an appropriate $x(\tau)$ we can obtain every x_0 and \dot{x}_0 , (8) is equivalent to (5').

For given a(x) (5') is a linear equation system at any point x for the unknowns $\gamma_A{}^B{}_k(x_0)$. The equations of (5') are independent in the sense that each $\gamma_A{}^B{}_k(x_0)$ appears in a single equation only. Hence (5') is solvable for $\gamma_A{}^B{}_k(x)$. Thus we obtain

Theorem 1 Any Finsler space with polynomial metric (1) has metrical tensorial connections.

(5') consist of Nn equations, and in each of them (for fix A and k) appear N unknowns $\gamma_A{}^B{}_k$, of which N-1 can arbitrarily be choosen. Thus in the solution of (5') $Nn(N-1) = (N^2 - N)n$ of the $\gamma_A{}^B{}_k$ remain arbitrary.

The upper script indices of a totally symmetric tensor $t^{i_1...i_r} \in \mathcal{T}_0^r$ are the multiple combinations of order r from the elements 1, 2, ..., n. These tensors form a linear subspace ${}^s\mathcal{T}_0^r$ of \mathcal{T}_0^r . The dimension of ${}^s\mathcal{T}_0^r$ is $C_{r,n}^m = \frac{(n-1+r)!}{(n-1)!r!} = C$, the number of the multiple combinations of order r from n elements 1, 2, ..., n. The components of such a tensor will be denoted by t^{α} , $\alpha = 1, 2, ..., C$. Also $y^{i_1} \ldots y^{i_r} = b^{i_1...i_r} = b^{\alpha} \in {}^s\mathcal{T}_0^r$. If in (1) we draw together those $a_{i_1...i_r}$ in which the same $i_1, i_2, ..., i_r$ appear (independently from the order), and denote their sum by g_{α} , then with respect to (6), (1) gets the form

$$\mathcal{F}^{r}(x,y) = g_{\alpha}b^{\alpha} = \|b\|_{\alpha}, \qquad \alpha = 1, 2, \dots, C.$$
(1')

b is decomposable. It is an r-times tensor product of $y \in \mathcal{T}_x M$:

$$b = \frac{1}{\bar{y}} \otimes \dots \otimes \frac{r}{\bar{y}}$$

Thus

$$\phi := \{b\}$$

is a cone in ${}^{s}\mathcal{T}_{0}^{r}$. Its parameter representation is

$$b^{\alpha} = f^{\alpha}(y', \dots, y^n) := y^{i_1} \dots y^{i_r}, \quad \alpha = i_1 \dots i_r.$$
(9)

The correspondence between $(y^1, \ldots, y^n) \in \mathcal{V}^n(y)$ and $b \in \phi \subset {}^s\mathcal{T}_0^r$ is 1:1. Thus dim $\phi = n$. (9) is independent of $x \in M$. Thus ϕ has the same form in each fiber $\mathcal{V}^C \approx {}^s\mathcal{T}_0^r \subset \mathcal{T}_0^r \approx$ $\pi^{-1}(x)$ of the bundle $\tilde{\mathcal{E}} = (\tilde{E}, \pi, M, \mathcal{V}^C).$

One can see that

$$\mathcal{P}_{x(\tau)}^{\gamma}b_0 = b(x(\tau)) \equiv b(\tau) \in \phi(x(\tau)), \tag{10}$$

or in another form

$$\mathcal{P}_{x(\tau)}^{\gamma}\phi(x_0) = \phi(x(\tau)) \tag{10'}$$

does not hold in every tensorial connection γ . We want to obtain necessary and sufficient conditions for (10) to hold. We suppose that $b(x) = b(\tau) \in \phi(x(\tau)) = \phi(x)$, where $\phi(x)$ is independent of x. Hence every $b(x(\tau)) = b(x)$ can be considered as a point of a single representative ϕ of the $\phi(x)$ -s. Thus in case of (10) every $\frac{\partial b^{\alpha}}{\partial x^{k}}$ is a tangent of this ϕ :

$$\frac{\partial b^{\alpha}}{\partial x^{k}} \in T_{b}\phi. \tag{11}$$

But also conversely, if (11) is satisfied, then so is (10).

On the other hand $b(\tau)$ of (10) is a solution of

$$\frac{db^{\alpha}}{d\tau} = \frac{\partial b^{\alpha}}{\partial x^{k}} \frac{dx^{k}}{d\tau} = \gamma_{\beta}{}^{\alpha}{}_{k}(x(\tau))b^{\beta}\frac{dx^{k}}{d\tau}, \quad \alpha, \beta = 1, 2, \dots, C, \quad \forall x, \dot{x}$$

Thus $\gamma_{\beta}{}^{\alpha}{}_{k}$ must satisfy the relation

$$\frac{\partial b^{\alpha}}{\partial x^{k}}(y) = \gamma_{\beta}{}^{\alpha}{}_{k}(x)b^{\beta}(y).$$
(12)

Any tangent of ϕ is a linear combination of $\frac{\partial f^{\alpha}}{\partial y^{j}} \equiv \frac{\partial b^{\alpha}}{\partial y^{j}}$ at y. Thus the required necessary and sufficient condition (11) gets the form

$$c_k^j(y)\frac{\partial b^{\alpha}}{\partial y^j}(y) = \gamma_{\beta}{}^{\alpha}{}_k(x)b^{\beta}(y).$$
(13)

This must be satisfied identically in y.

(13) can be considered as a linear equation system for $\gamma_{\beta}{}^{\alpha}{}_{k}$ and c_{k}^{j} . We show that (13)

has a solution, while many of the unknowns $\gamma_{\beta}{}^{\alpha}{}_{k}$ and c_{k}^{j} remain undetermined (free). $b^{\beta}(y)$ is a homogeneous polynomial of order r in y. $\frac{\partial b^{\alpha}}{\partial y^{j}}$ is also a homogeneous polynomial of order r-1. Thus c_k^j must be a homogeneous polynomial of order $1: c_k^j(y) = {}_s c_k^j y^s$. So (13) gets the form

$${}_{s}c_{k}^{j}y^{s}\frac{\partial b^{\alpha}}{\partial y^{j}}(y) = \gamma_{\beta}{}^{\alpha}{}_{k}(x)b^{\beta}(y).$$
(13')

This is a special, very simple equation system. For any fixed k_0 we obtain a subsystem

$${}_{s}c^{j}y^{s}\frac{\partial b^{\alpha}}{\partial y^{j}}(y) = \gamma_{\beta}{}^{\alpha}(x)b^{\beta}(y), \quad {}_{s}c^{j} = {}_{s}c^{j}_{k_{0}}, \ \gamma_{\beta}{}^{\alpha} = \gamma_{\beta}{}^{\alpha}{}_{k_{0}}.$$
(14)

The unknowns ${}_{s}c_{k_{0}}^{j}$ and $\gamma_{\beta}{}^{\alpha}{}_{k_{0}}$ appear in one single subsystem only. Since every subsystem has the same structure, we have only to solve (14). Let us fix $\alpha = \alpha_{0}$. Then on both sides of (14) there is a homogeneous polynomial of order r in y, and (14) must hold identically. Thus the coefficients of $y^{i_{1}} \dots y^{i_{r}}$ consisting of the different ${}_{s}c^{j}$ and $\gamma_{\beta}{}^{\alpha}$ must be equal on the two sides. These yield homogeneous linear equations, C in number, for ${}_{s}c^{j}$ and $\gamma_{\beta}{}^{\alpha}$. The number of the unknowns ${}_{s}c^{j}$ and $\gamma_{\beta}{}^{\alpha}$ is $n^{2} + C^{2}$. For the different α -s (14) consists of C equations. So the number of the equations for ${}_{s}c^{j}$ and $\gamma_{\beta}{}^{\alpha}$ stemming from (14) is C^{2} , and the number of the unknowns remains $n^{2} + C^{2}$. (13') consists of n subsystems for the different k_{0} with new unknows in each. Thus (13') yields, as identities in y^{s} , $C^{2}n$ equations with $n^{3} + C^{2}n$ unknowns. So we obtain

Proposition 2 There are many tensorial connections γ taking by parallel translation any decomposable tensor $b = \frac{i}{\bar{y}} \otimes \cdots \otimes \frac{r}{\bar{y}}$ into a similar one: $\mathcal{P}_{x(\tau)}^{\gamma} b_0 = b(\tau)$.

4. Induced non-linear connection in τ_M

A tensorial connection γ for which $\mathcal{P}_{x(\tau)}^{\gamma} b_0 \stackrel{(10)}{=} b(x(\tau))$, or in another form $\mathcal{P}_{x(\tau)}^{\gamma} \phi(x_0) \stackrel{(10')}{=} \phi(x(\tau)) \approx \phi$ holds, induces a non-linear connection in τ_M . Namely, as also the diagram

$$\begin{array}{cccc} b_0 \in \phi(x_0) & \xrightarrow{\mathcal{P}_{x(\tau)}^{\gamma}} & b(\tau) \in \phi(x(\tau)) \\ & & \uparrow f & & \downarrow f^{-1} \\ y_0 \in T_{x_0}M & \dashrightarrow & y(\tau) \in T_{x(\tau)}M \end{array}$$

shows $(f^{\alpha} \text{ from } (9))$

$$\mathcal{N} := (f^{\alpha})^{-1} \circ \mathcal{P}^{\gamma}_{x(\tau)} \circ f^{\alpha} \tag{15}$$

takes any $y_0 \in T_{x_0}M$ into a $y(\tau) \in T_{x(\tau)}M$. Thus

$$\mathcal{P}_{x(\tau)}^{\mathcal{N}} y_0 = y(\tau). \tag{16}$$

 \mathcal{N} is non-linear in y, for \mathcal{P}^{γ} is so in b. Thus we obtain

Theorem 2 Any tensorial connection, which takes tensors $b = \frac{1}{y} \otimes \cdots \otimes \frac{r}{y}$ into similar ones determines in τ_M among the vectors $y \in T_x M$ a non-linear connection \mathcal{N} in a natural way.

We want to investigate *metrical* tensorial connections γ of a Finsler space with polynomial metric, which induce non-linear connections \mathcal{N} in τ_M . Then γ satisfies (13'), and it is metrical. A tensorial connection is metrical, if (5') or, in view of the symmetry of a_A ,

$$\frac{\partial g_{\alpha}}{\partial x^{k}} = \gamma_{\alpha}{}^{\beta}{}_{k}(x)g_{\beta} \tag{17}$$

holds. At a given (x) (17) means Cn linear equations for the unknowns $\gamma_{\alpha}{}^{\beta}{}_{k}$. So (13') (respectively the equations stemming from the fact that the equations of (13') must be identities in y^{s}) combined with (17) consists of $Cn + C^{2}n$ (simple) linear equations, and the number of the unknowns ${}_{s}c_{k}^{j}$ and $\gamma_{\beta}{}^{\alpha}{}_{k}$ remains $C^{2}n + n^{3}$. The rank of the combined system

is maximal. If the number of the unknowns is not less than the number of the equations, that is if $C^2n + n^3 \ge C^2n + Cn$, or

$$n^2 \ge C_{n,r}^m,\tag{18}$$

then the combined system is solvable. Since γ is metrical, in this case we have

$$\|\mathcal{P}^{\gamma}_{\alpha(\tau)}b_0\|_F \stackrel{(7)}{=} \|b(\tau)\|_F = \text{const} \stackrel{(6)}{=} \mathcal{F}(x, y(\tau)) = \|y(\tau)\|_F^r = \|\mathcal{P}^{\mathcal{N}}_{x(\tau)}y_0\|_F^r.$$

Thus $\|\mathcal{P}_{x(\tau)}^{\mathcal{N}}y_0\|_F = \text{const.}$ This yields

Theorem 3 If γ is metrical (satisfies (17)), and takes every $b = \frac{1}{y} \otimes, \ldots, \frac{r}{y}$ into a similar tensor (which satisfies (13')), then also the induced non-linear connection \mathcal{N} is metrical with respect to the F^n with polynomial metric.

The condition of the solvability of the combined system is (18). For which n and r will it be satisfied? It is clear from the notion of multiple combination that $C_{n,r}^m$ is monotone increasing in r for every fix n, and also in n for every fix r. Therefore there exists a minimal r for every n for which $n^2 \ge C_{n,r}^m$. We denote this r by r_n . Then we obtain

Proposition 3 (18) holds iff $r < r_n$. In this case the combined system (13') and (17) is solvable, and the induced non-linear connection \mathcal{N} is metrical.

In case of r = 2 we have $C_{n,r}^m = \frac{n(n+1)}{2} < n^2$. Thus (18) holds for $\forall n$, and so we have tensorial connections γ inducing metrical non-linear connections \mathcal{N} in τ_M . In this case $\mathcal{F}^2(x,y) = a_{\alpha}(x)b^a = a_{ij}(x)y^iy^j$. This means that for r = 2 the Finsler space with polynomial metric is a Riemann space: $F^n = V^n$. Then $\gamma_{\alpha}{}^{\beta}{}_k(x) = \gamma_{ij}{}^{rs}{}_k(x) = \Gamma_i{}^r{}_k(x)\delta_j^s + \delta_i^r\Gamma_j{}^s{}_k(x)$. This γ is constructed from the symmetric (torsion free) or non-symmetric Christoffel symbols of V^n . This γ yields a metrical tensorial connection, and the metrical connection \mathcal{N} in τ_M becomes linear with coefficients $\Gamma_j{}^i{}_k(x)$.

In case of r = 3 (18) reads as $C_{n,3}^m = \frac{n(n+1)(n+2)}{6} \le n^2$ or equivalently $n^2 + 1 \le 3n$. This holds for n = 2, but for r = 3 and n = 3 (18) is not yet true. For $n_0 \ge 3$, $r \ge 3$ we have $n_0^2 < C_{n_0,2}^m < C_{n_0,r}^m$, since $C_{n_0,r}^m$ is increasing in r. Thus for $n \ge 3$, $r \ge 3$ (18) does not hold. For n = 2 $C_{2,r}^m = r + 1$. Thus (18) holds for n = 2, r = 3: $2^2 = C_{2,3}^m$ (as we have already seen), but $C_{2,3}^m < C_{2,r}^m$, r > 3, since $C_{2,r}^m$ is increasing in r. So we have $n^2 = 4 = C_{2,3}^m < C_{2,r}^m$, that is (18) holds neither for n = 2, r > 3.

But there may exist special $g_{\alpha}(x)$ for which the number of the independent equations of (17) is smaller than Cn, and thus the combined system (13') and (17) still has a solution, for example if $\frac{\partial g_{\alpha_1}}{\partial \alpha^k} + \frac{\partial g_{\alpha_2}}{\partial x^k} = \frac{\partial g_{\alpha_3}}{\partial x^k}$ for certain (or several) k. The number of the dependent equations of (17) may run from C to zero. If the curvature $R_{\alpha}{}^{\beta}{}_{ij}(x)$ of the tensorial connection γ vanishes, then there exists $g_{\alpha}(x)$, such that (17) yields identities: presents no new equation for $\gamma_{\alpha}{}^{\beta}{}_{k}$.

Theorem 4 If γ is metrical (satisfies (17)), and takes every $b = \frac{1}{y} \otimes \cdots \otimes \frac{r}{y}$ into a similar tensor (satisfies (13')), then the induced non-linear connection \mathcal{N} is also metrical with respect to the F^n with polynomial metric. The condition for this is $n^2 \geq C_{n,r}^m$.

Such γ exists for any Finsler space with polynomial metric only if r = 2 (in this case the Finsler space is a Riemannian space) or in case of r = n = 3. Such γ exists also for arbitrary r and n, but not for every polynomial metric.

Finally we make two remarks:

Remark 1 $a_A(x)$ of (1) may have the form

$$a_{ijk\ell}(x) = g_{ij}(x)h_{m\ell}(x),$$

where $g_{ij}(x)$ and $h_{m\ell}(x)$ are metric tensors of two Riemannian spaces V_1^n and V_2^n on M. Then

$$\mathcal{F}^4(x,y) = \|y\|_F^4 = \|y\|_{V_1}^2 \|y\|_{V_2}^2.$$

This may have a mathematical interest, but $||y||_{V_1}$ and $||y||_{V_2}$ could also mean two different impacts of a physical phenomenon.

Remark 2 A Randers space $\mathbb{R}^n = (M, \mathbb{R}(x, y))$ is a special Finsler space ([7], [16]), where

$$\mathbb{R}(x,y) = (g_{ij}(x)y^{i}y^{j})^{1/2} + b_{i}(x)y^{i}$$

in place of $\mathcal{F}(x, y)$ means the Randers metric. In a degenerate case we may have $\mathbb{R}(x, y) = b_i(x)y^i$. If we endow in the vector bundle $\hat{\mathcal{E}}$ (see (2)) of rank N each fiber $\pi^{-1}(x) \approx \mathcal{V}^N$ with the metric $\mathbb{R}(x, y) = a_A(x)b^A$, then we obtain a degenerate Randers vector bundle \mathbb{R}_N^n . Thus any Finsler space with polynomial metric (1) can be considered as a degenerate Randers vector bundle. – It could have some interest to consider a Finsler space with polynomial metric as a degenerate Randers vector bundle.

References

- [1] G.S. Asanov: Finsler Geometry and Gauge Theories, *Reidel*, 1985.
- [2] V. Balan and N. Brinzei: Einstein equations for (h, v)-Bervald-Moór relativistic models, Balcan J. Geom. Appl. 11 (2006), 20–27.
- [3] V. Balan, N. Brinzei and S. Lebedev: Geodesics, connections and Jacobi fields for Berwald-Moór quartic metrics, in Hypercomplex Numbers in Geometry and Physies, to appear.
- [4] D. Bao and S. S. Chern: A note on the Gauss-Bonnet theorem for Finsler spaces, Ann. Math. 143 (1996), 233–252.
- [5] D. Bao, S. S. Chern and Z. Shen: An Introduction to Riemann-Finsler Geometry, Springer, New York, 2000.
- [6] N. Brinzei: Projective relations for Shimada spaces, to appear.
- [7] E. Bompiani: Le connessioni tensoriali, Atti Acad. Naz. Lincei 1 (1946), 478–482.
- [8] A. Cossu: Nozioni generali sulle connessioni di specie qualunque, Rend. Mat. ed Appl. 21 (1962), 162–218.
- [9] Y. Ichijyo: Finsler manifold modeled on Minkowski spaces, J. Math. Kyoto Univ. 16 (1976), 639–652.
- [10] Y. Ichijyo: Finsler manifold with a linear connection, J. Math. Tokushima Univ. 10 (1976), 1–11.
- [11] L. Kozma and V. Balan: On metrical homogeneous connections of a Finsler point space, *Publ. Math. Debrecen* 49 (1996), 59–68.
- [12] M. Kucharzewski: Über die Tensorübertragung, Annali di Math. Pura ed Appl. 54 (1961), 64–83.
- [13] S. Lebedev: The generalized Finslerian metric tensors, in Hypercomplex Numbers in Geometry and Physies, to appear.
- [14] M. Matsumoto: Foundation of Finsler Geometry and Special Finsler Spaces, Kaisheisha, Kyoto, 1986.
- [15] M. Matsumoto and H. Shimada: On Finsler spaces with 1-form metric, Tensor N. S. 32 (1978), 161–169.

- [16] M. Matsumoto and H. Shimada: On Finsler spaces with 1-form metric, II, Tensor N. S. 32 (1978), 275–278.
- [17] M. Matsumoto and S. Numata: On Finsler spaces with cubic metric, Tensor N. S. 33 (1979), 153–162.
- [18] M. Matsumoto and K. Okubo: Theory of Finsler spaces with *m*-th noot metric, *Tensor N. S.* 56 (1995), 9–104.
- [19] D. G. Pavlov: Generalization of scalar product axioms, Hypercomplex Numbers in Geometry and Physics, *Ed. "Mozet", Russia*, 1, 1 2004, 5–18.
- [20] H. Shimada: On Finsler spaces with 1-form metric II, Berwald-Moór metric $L = \sqrt[n]{y^1 y^2 \dots y^n}$, Tensor N. S. **32** (1978), 375–378.
- [21] H. Shimada: On Finsler spaces with metric $L = \sqrt[m]{a_{i_1...i_m}(x)y^{i_1}...y^{i_m}}$, Tensor N. S. 33 (1979), 365–372.
- [22] L. Tamássy: Uber den Affinzusammenhang von, zu Tangenzialräumen gehörenden Procdukträumen, Acta Math. Acad. Sci. Hungar 11 (1960), 65–82.
- [23] L. Tamássy: Point Finsler spaces with metrical linear connections, Publ. Math. Debrecen 56 (2000), 643–655.
- [24] L. Tamássy: Finsler Geometry in the tangent bundle, Advanced Studies in Pure Math. to appear.
- [25] L. Tamássy: Metrical almost linear connections in TM for Randers spaces, to appear.