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Preface

A historical perspective

Finsler geometry is a natural extension of the Riemannian geometry. As specific
feature, its metric encompasses information about direction – hence it provides re-
liable models for both isotropic and anisotropic phenomena. Moreover, the Finsler
energy – the square of the fundamental function, does not reduce in general to
a quadratic form in the directional coordinates – as it does in the Riemannian
subcase.

The historical traces of Finsler geometry go back to 1854, when the first Finsler
metric was pointed out by B. Riemann in his famous lecture On Hypotheses Lying
at the Basis of Geometry1. Much later, in 1918 Paul Finsler systematically studied
in his Ph. D. Thesis – having as advisor C. Caratheodory, the spaces which later
received his name.

The Finslerian framework was intensively developed by J. L. Synge, V. Wagner,
L. Berwald, E. Cartan, H. Busemann, H. Rund, M. Matsumoto, S. S. Chern and
others. Finsler geometry has become a separate branch of differential geometry,
being included in the AMS mathematics subject classification (53B40 & 53C60).
The Finsler-type structures have been further extended to fiber spaces (e.g., higher
order tangent and cotangent, osculating and jet spaces).

The applications of Finsler geometry in various branches of theoretical physics
flourished as well, especially in the last two decades. Apart from such conventional
fields as the theory of anisotropic media and Lagrangian mechanics, classical Finsler
geometry and its generalizations have found extensive applications in solving op-
timization problems, in describing systems with chaos, in statistical physics and
thermodynamics, in ecology and in the theory of evolution of biological systems,
in describing the internal symmetry of hadrons, in the theory of space-time and
gravitation as well as in unified gauge field theories.

More recently, Finsler geometry proved to successfully apply to the theory of
deformations of crystalline media, seismic phenomena, Zermelo navigation prob-
lems and interfaces in thermodynamic systems.

It should be noted that between two historical alternative approaches to Finsler
geometry due to Cartan and Busemann, the first one provides efficient tools in deal-
ing with theories of Kaluza-Klein type, offers new structural possibilities and iden-
tifies new (comparing with Riemann geometry) elements of structure with physical
observables. The physical fields in a Cartan Finsler space, apart from space-time
coordinates, turn out to be functions of supplementary so-called internal variables.

On the other hand, there is a close relation between notion of Number and
fundamental physical categories as Space, Time, matter and field. Usually, this

1 B.Riemann, Uber die Hypothesen, welche der Geometrie zu Grunde liegen, habilitation ad-
dress, 1854, translated in: M. Spivak, Differential Geometry, vol. II, Publish or Perish, 1970.
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relation is associated with particular numbers as the Real and Complex numbers,
and sometimes quaternions. Apart from denying the fundamental role of these
numbers, the authors of this book point out that there exist others generaliza-
tions of numbers, which have substantial physical and geometrical interpretation.
Emerging from the fact that the progress in physics often was stimulated by novel
geometrical points of view, a high expectation emerges that the proper scientific de-
scription of the geometrical background might lead to new qualitative consequences
in Physics.

It is a known fact that while creating the Relativity theory, Einstein was forced
to get out of the classic Euclidean geometry, replacing it with the Riemann one.
Hence it is natural to assume that the future development of Physics will also need a
certain new geometry, which might be Finsler geometry – which naturally extends
Minkowski geometry as well. It is fundamentally important, that the points of
Finsler spaces in some cases may be expressed in terms of hypercomplex numbers,
which are algebras with special properties.

The wide background Finsler spaces provides simple and wonderful particular
cases linked with hypercomplex numbers – which possess the usual associativity and
commutativity properties. Unfortunately, today there exist few attempts of classi-
fying Finsler Spaces emerging from this perspective. Such Finsler related algebras –
having their roots in the applied aspects of geometry with modern physics are, e.g.,
the algebras of the quaternions over the field of complex numbers (biquaternions)
and over the ring of duals (diquaternions), and also algebras of complex numbers
over complex numbers (bicomplex numbers) and dual numbers above dual numbers
(quadranumbers). All this spaces possess multiplicative norms of fourth order, and
prove to be tightly connected with the fundamental for physicists Lorenz group.

In Finsler geometry the class of new and classic invariants is much wider than
in the Riemannian case, which makes it very tempting to use this type of geometry
for modeling different physical phenomena, instead of using habitual Riemannian
geometry. The study of Finslerian invariants reveals the existence of interesting
special nonlinear transformations, whose Euclidean analogues are the conformal
transformations. Moreover, in Finsler spaces with fundamental form of higher order
than quadratic, due to the existence of new metric properties (besides conservation
of lengths and angles), such new invariants to (usually nonlinear) equiform-type
transformations are numerous and play a fundamental role.

The development of Finsler Geometry in parallel with Algebra of numbers had
led to a notable benefit to both these fields of mathematics. Thus, for the first
time has appeared the possibility to solve one of the key problems of the Geometry
– to find natural and simple means to generalize the concept of angle, based not
on the classic scalar product, but on a symmetric polyscalar form. This approach
shows that the concept of Finsler metric tensor – as introduced by Cartan, lacks
from being completely effective in applied models and requires its replacement by
another tensor with rank grater than two.
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From a physical perspective, as a characteristic feature, Finsler geometry is
able to provide the formal grounds for posing the problem of local anisotropy of
the real space-time, sustained by the fact that within the framework of the model of
locally isotropic (Riemann) space-time it is, in principle, impossible to embody the
Mach principle for a test body. Physical evidence leads to the conclusion that the
inertial body mass, should be a tensor rather than a scalar. Thus the discovery of
an anisotropy of inertia would be a direct evidence for a local anisotropy of space.
At the same time it has long been pointed out that the conventional experimen-
tal estimate of 3D anisotropy at the level 10−22 is not correct (S. T. Epstein and
G.Yu. Bogoslovsky), and a reliable upper bound of anisotropy should be recon-
sidered. The experimental findings of breaking of discrete space-time symmetries,
anisotropy of background radiation and the absence of the GZK effect have revived
interest in the problem of anisotropy of space-time.

On the other hand, very recent measurements of the Compton edge (made
by French, Russian, Italian and Armenian scientists) of the scattered electrons in
GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble
with respect to the Cosmic Microwave Background dipole has revealed up to 10
σ variations larger than the statistical errors. It was shown2 that the variations
were not due to the frequency variations of the accelerator, and since the nature
of Compton edge variations remains unclear, follows the imperative of dedicated
studies of light speed anisotropy. The team of scientists has conjectured that the
variations could be an effect of existence in the Universe of vector fields which
provide a certain vector distribution.

As well, recent experiments developed in Canada have shown3 that the Hubble
constant is affected by anisotropy, reinforcing thus the idea of having a direction
dependent Finsler encompassing mathematical model for General Relativity.

Recent investigations on the Finslerian generalization of relativity aim to find
a relativistically invariant Finsler metric with partially or even entirely broken
3D isotropy (e.g., G.Yu. Bogoslovsky and H.F. Goenner). All three relativistically
invariant metrics, i.e. the isotropic Riemann and two Finsler metrics (with a partial
and full anisotropy), satisfy the correspondence principle, which leads to a ”hybrid”
geometric model in terms of which spacetime may be not only in a state which is
described by Riemann geometry but also in states which are described by Finsler
geometry.

The mathematical Finslerian framework has a well-established wide basic back-
ground of monographs and a significant variety of both theoretical and applicative
research papers. Significant trends in Finslerian geometry have been developed in

2 V.G. Gurzadyan, J.-P. Bocquet, A. Kashin, A. Margarian..., On the light speed anisotropy
vs cosmic microwave background dipole: European synchrotron radiation facility measurements;
WSPC – Proceedings Compton MG11-4, arXiv:astro-ph/0701127 v1, 5 Jan 2007.

3 M.L. McClure, C.C. Dyer, Anisotropy in the Hubble constant as observed in the HST extra-
galactic distance. Scale key project results, arXiv:astro-ph/0703556 v1, 21 Mar 2007.
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recent years in many countries4.

A new significant trend in modern Finslerian framework emerges from the works
of P.K. Rashevski dated 1935–1936, who stated the problem of developing such a
geometry, whose emerging objects would include not only the analogues of the basic
notions of point and straight line, but planes and n-planes as well (his hypothetical
geometry was called at the time poly-metrical). In the last decade, the goal of
developing this theory at a superior level within the framework of the relativistic
Berwald-Moor Finslerian model has been proposed by the Russian specialists, who
have joined their efforts around Dr. D.G. Pavlov to organize two dedicated to the
subject Conferences in Cairo (2005 and 2006) and one in Moscow (2007), and have
issued the scientific journal ”Hypercomplex Numbers in Geometry and Physics”
(Moscow, Russia) – whose submission topics confine to the goal of founding a new
Finslerian-based model of Relativity.

The layout of the book

The present volume outlines achievements adjacent to this concern, and em-
braces papers written by Russian and Romanian physicists and mathematicians.

The first three papers, ”Generalization of scalar product axioms”, ”Chronom-
etry of three-dimensional Time” and ”Four-dimensional time” are authored by
D.G. Pavlov. The first article describes the generalization of the classical (pseudo-)
scalar products, by introducing the ”poly-linear” product associated to a given
Finsler structure; this leads to the new notions of related fundamental metric poly-
form and various generalized geometric objects as vector length, angle between
vectors and orthogonality. The second paper proposes a Finslerian model, switch-
ing thus from the traditional quadratic (Riemannian) metrics to the Finslerian
ones; the discussed topics are: light pyramids, specific groups of transformations,
planes of relative simultaneity, physical distance and speed. It is emphasized that
neither Euclidean, nor pseudo-Euclidean spaces with three or more dimensions do
possess analogous qualities to those exhibited in the studied Finslerian models.
The third paper specializes the study to the main properties of the Finsler met-
ric space with four-dimensional time, based on the Berwald-Moor Finsler metric
function; among the basic introduced physical objects, we mention: event, world
lines, reference frames, set of multiple relatively simultaneous events, proper time,
three-dimensional distance, speed, etc.

The paper ”Properties of spaces connected with commutative-associative H3 and
H4 algebras” (S.V. Lebedev) provides physical significance to the algebraic specific
structure H3, discussing further world lines of resting particles and properties of

4 E. g., Russia: G. S. Asanov, G. Bogoslovski, G. I. Garas’ko, S. V. Lebedev, D. G. Pavlov;
Romania: R. Miron, Gh. Atanasiu, A. Bejancu; USA: D. Bao, R. G. Beil, R. L. Bryant,
S. S. Chern, Z. Shen; Canada: P. L. Antonelli; Germany: H.-B. Rademacher; Italy: G. Bellettini,
M. Paolini; Japan: T. Aikou, S. Ikeda, T. Kawaguchi, M. Matsumoto, H. Shimada; Hungary:
L. Tamassy, L. Kozma; Serbia and Montenegro: I. Comic, etc.
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the surface of simultaneity which to defines the distance between the real axis
and a parallel to it, line of universe; as well are described Lorentz transformations
attached to the structure.

Further, in ”Generalized-analytical functions of poly-number variable” (G. I.
Garas’ko) the reader will find details on the new notion of generalized-analytic
function of polynumber variable, a primary step towards constructing a relevant
theory able to develop theoretical-physical models.

Though the next paper, ”On some questions of four dimensional topology. A
survey of modern research” (R.V. Mikhailov), has a rather abstract algebraic
character, it aims to justify the fact that 4-dimensionality plays special role in
almost all modern physical theories and provides a brief survey of some problems
of 4-dimensional topology.

In ”Normal conjugation on the polynumber manifold” (G. I. Garas’ko and
D.G. Pavlov) is defined the normal conjugation on the manifold of non-degenerated
n-numbers. In this context, the polynumber space endowed with the introduced
specific (n − 1)-ary operation appears as an ideal support for multi-dimensional
fractal sets, one of the perspective directions of applying multi-linear geometries.

Several properties of the generalized-analytic functions of polynumber variable
are studied in ”Generalized analytical functions and the congruence of geodesics”
(G. I. Garas’ko). It is shown that each such class of functions is naturally associated
to a space of congruences of geodesics.

In ”The notions of distance and velocity modulus in the linear Finsler spaces”
(G. I. Garas’ko and D.G. Pavlov), the authors determine in 4-dimensional spaces
with Berwald-Moor metrics, formulas for both the 3-dimensional distance – by
means of the surface of relative simultaneity, and for the velocity modulus – which
coincides with the corresponding expression of the Galilean space for small (non-
relativistic) velocities, while at maximal velocities (i.e., for world lines lying on the
surface of the cone), it equals unity. They obtain as well the expressions for the
transformations which play the same role as the Lorentz transformations in the
Minkowski space.

A generalization of conformal transformations to the case of Finsler spaces is
provided in ”Generalization of conformal transformations” (G. I. Garas’ko); exam-
ples are provided as well for the case of complex and hypercomplex numbers H4.

An adjacent issue to the main flow, is the study of the commutative algebra of
bi-complex numbers endowed with a metric of signature (+,−,−, +), performed
in ”Some properties of bicomplex numbers” (A.V. Smirnov).

Further, in ”Philosophical and mathematical reasons for Finsler extensions of
Relativity Theory” (D.G. Pavlov), the author provides an overview of arguments
to show that Finsler Geometry (and in particular the 4-dimensional quadratic
Berwald-Moore Finsler model) is by far the best candidate to provide relevant
models for the further development of Physics (in general) and Relativity Theory
(in particular). The associated commutative and associative algebra (quad-numbers
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algebra) is essentially described, and it is suggested to generalize the notion of
”symmetry” and to widen the classic case, based on isometric and conformal trans-
formations, by introducing generalized conformal transformations.

Elementary generalized conformal transformations in the space of nondegener-
ate poly-numbers and generalized analytical functions of the same polynumber vari-
able are further provided, with concrete examples for complex and hypercomplex
numbers H4, in ”The relation of elementary generalized conformal transformations
with generalized analytic functions in the polynumber space” (G. I. Garas’ko).

In ”4-momentum of a particle and the mass shell equation in the entirely
anisotropic Space-Time” (G.Yu. Bogoslovsky), the author motivates the use
of Finsler geometry models in physics, especially of those, whose metric is of
Berwald-Moor type, and studies a certain Finslerian model which involves a pref-
fered direction in the 3D isotropy space, and a dimensionless parameter r which
determines the deviation of the metric from the metric of isotropic Minkowski space.
Further it is investigated the model for the entirely anisotropic flat space-time,
which generalizes of the Finslerian Berwald-Moor one. The variational principle
is used to obtain the formulas that relate the 4-momentum of a particle to the
3-velocity of the latter, and the invariants with respect to the relativistic symmetry
group of the entirely anisotropic space-time, are determined.

The way in which a Finslerian metric function provides a 3- and 4-rank gener-
alized Finslerian metric tensors is described further in ”The generalized Finslerian
metric tensors” (S.V. Lebedev). For these tensors the author determines the
generalized rank five Christoffel symbols and the generalized differential equations
of Finsler geodesics.

In ”Hamilton canonical equations and the Berwald-Moor metric (on the formal-
ism of physical theories)” S.V. Siparov presents an overview of different approaches
used to investigate a Finsler space: the pure mathematical approach, the approach
which belongs to theoretical Physics and the approach characteristic for philosophy
or for some meta-theory. As effective results, the Hamilton canonical equations are
obtained, on the base of the function related to the Berwald-Moor metric, and it
is pointed out that these equations can be used to construct the physical theory in
a Finsler space.

The theory of finite-dimensional algebras and its methods can be successfully
employed in geometry, physics and computer science. This fact is illustrated by
the paper ”On defining equations for the elements of associative and commutative
algebras and on associated metric forms” (V. M. Chernov), where the author stud-
ies the three non-isomorphic 4D algebras H4, H2⊕C, C ⊕C, their automorphisms
and metric forms, and provides a generalization for algebras of higher dimension
2d, constructed using the Grassmann-Clifford algebra, emphasizing that the coef-
ficients of the defining equations of an automorphism of algebras are associated
with the Minkowski and Berwald-Moor metrics. Authored by V.M. Chernov as
well, the paper ”Generalized n-ary composition laws in the algebra H4 and their
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relation to associated metric forms” examines the problem of poly-linearization
of norms in the algebra H4. It is shown that the quadratic Minkowski element
norm, the Berwald-Moor norm associated to the 4-th order form, and the cubic
norm examined by the author in the previous paper respectively coincide with
the introduced composition laws of order 2, 3, and 4 of Zassenhaus type, for an
appropriate choice of the Zassenhaus co-factors.

In ”The prolongations of a Finsler metric to the tangent bundle T kM (k > 1)
of the higher order accelerations”, Gh. Atanasiu studies the prolongation of Finsler
structures from a differentiable manifold M to the bundle of k-jets T kM (k > 1);
the author introduces a new type of prolongation, which is 0-homogeneous; the
introduced almost (k−1)n-contact structure is shown to be homogeneous and met-
rical w.r.t. the prolonged metric, providing thus a geometrical model for the
basic subiacent Finsler structure. Further, as an application of previous results
obtained by the first author, the paper ”The Berwald-Moor metric in the tangent
bundle of the second order” (Gh. Atanasiu and N. Brinzei) develop the geometry
of the second order tangent bundle T 2M endowed with two special types of met-
rics compatible with the 2-contact structures. Then, in ”The 2-cotangent bundle
with Berwald-Moor metric”, Gh. Atanasiu and V. Balan develop the d-geometry
on the total space of the dual bundle (T 2∗M,π2∗, M) of the 2-tangent bundle
(T 2M, π2,M), study the nonlinear connection existence, distinguished tensor fields,
almost contact structure, Riemannian structures, N -linear connections and associ-
ated convariant derivations. The Ricci identities are derived, and the local expres-
sions of the d-tensors of torsion and curvature are provided. The metric structures
and the metric N -linear connections are studied, and the results are specialized to
the case when the metric tensor field is of Berwald-Moor type.

The paper ”Berwald-Moor - type (h, v)-metric physical models” (V. Balan and
N. Brinzei) provides several physical (h, v)-models for relativity, where the vertical
part is provided by the flag-Finsler Berwald-Moor metric, while the horizontal
part is specialized to the conformal and to Synge-relativistic optics metrics; basic
properties of the models are described and the extended Einstein equations are
determined. Further, in ”The horizontal and vertical semisymmetric metrical d-
connections in the Relativity Theory”, Gh. Atanasiu and E. Stoica determine the
Einstein equations of an h- and v-semisymmetric metrical distinguished connection
on the tangent space of a differentiable manifold endowed with a (h, v) Riemann -
local Minkowski metric structure.

Within the dual framework, in the paper ”The Pavlov’s 4-polyform of mo-
menta K(p) = 4

√
p1p2p3p4 and its applications in Hamilton geometry” authored

by Gh. Atanasiu, V. Balan and M. Neagu, a generalized Hamilton space is associ-
ated to a 4-pseudoscalar product, which are given in terms of the Cartan metrical
fundamental d-tensor; for the function K(p) = 4

√
p1p2p3p4, the components of the

v-covariant derivation of this generalized Hamilton space are derived.
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After providing a brief recall of the known results within the study of gauge
field theory in terms of complex Finsler geometry on the total space of a G-complex
vector bundle E, in ”The Lagrangian-Hamiltonian formalism in gauge complex field
theories”, Gh. Munteanu develops a similar theory on the dual bundle E∗, using
the complex Legendre transformation (the L-dual process). The complex field
equations are determined with respect to a gauge complex vertical connections.
The complex Hamilton equations are written for the general L-dual Hamiltonian
obtained as a sum of particle Hamiltonians, Yang-Mills and Hilbert-Einstein Hamil-
tonians.

The paper ”Geodesics, connections and Jacobi fields for Berwald-Moor quartic
metrics” (V. Balan, N. Brinzei and S. Lebedev) determines – for Finsler spaces
(M,F ) with quartic metrics, the equations of geodesics and the corresponding
arising geometrical objects: canonical spray, nonlinear Cartan connection, Berwald
linear connection; as well, are studied the geodesics and the Jacobi fields for certain
(h, v)- metric models.

In ”Finsler spaces with polynomial metric” (L. Tamassy), the author proves the
existence in such spaces of metrical tensorial connections (i.e., which are linear for
a given type of tensors); it is shown as well, that many of these connections induce
in a natural way, metrical non-linear connections on the considered manifold. The
existence of connections which are compatible with a given pair of metrical Finsler
metrics is studied in ”Pairs of metrical Finsler structures and Finsler connections
compatible to them” (Gh. Atanasiu); the results are extended to the case when one
of the two structures is degenerate.

The state-of-art on the geometry of constant mean curvature (CMC) surfaces in
Finsler spaces is briefly presented in ”CMC and minimal surfaces in Berwald-Moor
spaces” (V. Balan), where it is shown that for the Berwald-Moor type Finsler metric
there exist structural differences among Berwald-Moor fundamental functions of
various orders, leading to different CMC approaches.

A new definition of simultaneous events using the signal method in Finsler
Space-Time, is investigated in ”The definition of a simultaneity in Finsler
Space-Time” (R.G. Zaripov). He obtains general transformations which preserve
the metric function of the considered projective space and, using the Hamiltonian
formalism, are discussed the relations for energy and impulse of a particle and their
transformations.

Using the concept of ”world function”, the paper ”On the world function and
the relation between geometries” (G. I. Garas’ko) gives a detailed motivation to the
fact that the Minkowskian space and the polynumber space correspond to the same
Physical World.

The construction of the metric tensor of a 4-dimensional pseudo Riemannian
space (Space-Time) emerging from the 4-contravariant tensor of the tangent indi-
catrix equation of the Berwald-Moor space and the World function is provided in
”Construction of the pseudo-Riemannian geometry on the base of Berwald-Moor
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geometry” (G. I. Garas’ko and D.G. Pavlov). It is emphasized that the algebra of
commutative and associative hypercomplex numbers, related to the direct sum of
the 4-real algebra denoted by H4 and the corresponding Finsler geometry can be
used as a mathematical model of the real Space-Time, more productive than the
pseudo-Riemannian constructions prevailing in Physics now.

In the paper ”On Field Theory and some Finsler spaces”, G. I. Garas’ko dis-
cusses the construction of Lagrangians depending on fields, based solely on the
metric function of a Finsler space. In spaces which are conformally connected to
Minkowski spaces, under supplementary assumptions, the cosmological equation is
written for the field describing the Universe (within the geometry connected to the
polynumbers H4, related to Berwald-Moore metrics), yielding the Hubble law for
a small neighborhood of the origin.

A review of the actual research on the algebraic, geometric and differential
properties of the quaternionic (Q-)numbers and their applications, is presented in
”Quaternions: Algebra, Geometry and Physical Theories” (A.P. Yefremov).

Based on the fact that in field theories endowed with twistor structure, one may
identify particles with caustics of null geodesic congruences defined by the twistor
field, in ”The algebrodynamics: primodial light, particles-caustics and flow of time”,
V.V. Kassandrov considers as a realization the ”algebro-dynamical” approach,
which is based on the field equations which originate from the noncommutative
analysis over the algebra of biquaternions. The author discusses related concepts
of generating the ”World Function” and of multivalued physical fields, while the
picture of the Lorentz invariant light-formed aether and of matter born from light
is shown to arise naturally; as well, the notion of Time Flow is introduced and stud-
ied. Further, in ”Quaternionic analysis and the algebrodynamics”, the same author
describes the “algebrodynamical” approach to field-particle theory, which is based
a nonlinear generalization of the Cauchy-Riemann conditions to non-commutative
algebras of quaternion-like type. It is shown that for complex quaternions, the
theory is Lorentz invariant, and naturally carries certain gauge and twistor struc-
tures. A novel “causal Minkowski geometry with additional phase” is induced by
means of the structure of biquaternion algebra, serving as a background for the
self-consistent algebraic dynamics of singularities.

Main results of the geometry of Finslerian 4-spinors are stated in ”Finslerian
4-spinors as a generalization of twistors” (A.V. Solovyov). It is shown that R. Pen-
rose’s twistors form a special case of Finslerian 4-spinors of the 16-dimensional vec-
tor space equipped with a metric form, and can be associated with Finsler geometry.
Also, is formulated the procedure of dimensional reduction which allows to rewrite
the expression of the Finslerian length of a 16-vector in terms of 4-dimensional
geometric objects, and is described the corresponding isometry group.

The next paper, ”On quartic geometries” (P.D. Suharevsky) provides argu-
ments for employing quartic symmetric forms as metric tensors. To this aim, a
non-associative algebra of anti-commuting 4-order matrices is built, are determined
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the associated equations of motion, which are quartic analogues of the Dirac equa-
tions, and is derived the corresponding Lagrangian. As well, the author yields
the infinite-dimensional extension of quaternions and their matrix representation,
a prerequisite for solving problems in the multilinear framework.

In the paper, ”Theory of the zero order effect suitable to investigate the Space-
Time geometrical properties”, S. V. Siparov studies the applicability of Einstein’s
relativity theory at galactic scale and the role of geometry for solving the problems
of observational astrophysics are discussed, and is described the theory of the zero
order effect.

In ”Experimental investigation of spinning massive body influence on fine struc-
ture of distribution functions of α-decay rate fluctuations” (V.A. Panchelyuga,
S. E. Shnoll), the authors present a short review of the phenomenology of the
macroscopic fluctuation effect and describe a method used for experimental data
processing within the study of the influence of the rapidly spinning massive body
on the distribution function of the α-decay rate fluctuations.

The paper ”Local time effect on small Space-Time scale” (V.A. Panchelyuga,
V.A. Kolombet, M. S. Panchelyuga, S. E. Shnoll) studies the existence of the local
time effect for relatively small distances between the places of measurements, em-
phasizing the distribution of time intervals in the neighborhood of the local time
peak, and the peak splitting.

The volume addresses graduate students and researchers in Mathematics,
Physics and related fields. The contents is written in a clear, discursive (though
rigorous) manner, aiming to introduce the methods and basic ideas of applied
Finsler Berwald-Moor geometry and hypercomplex algebra. Each article includes
exhaustive bibliography which permits interested reader to trace the information.

The Editors. 10 March 2007
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Emerging from the basic idea that the concept of scalar product is vital in studying
the properties of either Euclidean or pseudo-Euclidean spaces, author proposes a general-
ization of the classical (pseudo-)scalar products, by introducing the ”poly-linear” product
associated to a given Finsler structure. This permits to axiomatically introduce the notion
of related fundamental metric polyform, and further the definition of various generalized
geometric objects as vector length, angle between vectors and orthogonality. After a brief
presentation of the classic framework of (pseudo-)scalar products, the notion of scalar
polyproduct is introduced, and its properties are studied. Further, the article illustrates
several main peculiarities of the geometry of the four-dimensional linear Finslerian space
for the studied polyform, which plays a special role within the more general study of
algebraic commutative-associative hypercomplex (called quadranumerical) numbers.

MSC2000: 53B40, 53C60, 15A69, 15A99, 83D05.

1. The scalar product of the Euclidean spaces

For the last two thousand years that have past since the appearance of the
famous ”Beginnings” mathematics have tried a number of methods of describing
the Euclidean spaces. The axiom systems by Euclid and Gilbert are the best
well-known ones. But taking into consideration the modern attitude, the system
of axioms that uses the ideas of the real number, the linear space, and the scalar
product [1] is considered to be the most convenient. At the same time a few
know that the latter case owes its appearance in geometry to a discovery of the
non-commutative algebra of four-component hypercomplex numbers discovered in
1843 by William Hamilton, he called it the algebra of quaternions [2]. The discovery
was preceded by several years of attempts to find three-component numbers, the
triplets, that could be confronted to the vectors of the common space the same way
as the complex numbers are confronted to the vectors of the Euclidean Plane. The
solution was found when Hamilton rejected the commutative multiplication and in
place of the triplets limited himself to the four-component numbers.

By definition a quaternion is a hypercomplex number, that can be presented
as a linear combination:

X = x0 + i · x1 + j · x2 + k · x3,

where xi are real numbers, and i, j, k are pair-wisely different imaginary units, so
that i2 = j2 = k2 = −1 and ij + ji = jk + kj = ki + ik = 0. These rules
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including the rule of multiplication on the common real unit, sometimes are set
into the so called table of multiplication of hypercomplex numbers, that in the case
of quaternions looks the following way:

1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

.

Hamilton suggested that in the quaternion we should distinguish the scalar
part x0 from the vector part Vx = i · x1 + j · x2 + k · x3. In this case, as it is easy
to check, the product of 2 vector quaternions is a common quaternion:

VxVy = (−x1y1− x2y2− x3y3) + [i(x2y3− x3y2) + j(x3y1− x1y3) +k(x1y2− x2y1)],

whose scalar part has a symmetric bilinear form, and the vector part looks like
a conventional vector multiplication. As a matter of fact, the term of scalar and
vector product appeared right from here, and for the first time were introduced by
Hamilton.

The first explorers of the quaternions were looking at them mainly as at an
opportunity of using algebraic methods while operating with points and vectors
of common space, though it is more natural to correspond these hypercomplex
numbers with the four-dimensional space. Hamilton himself knew about this, he
thought that this circumstance once would be used to describe the time. In this
case quaternions would become a natural instrument not only in geometry, but also
in physics.

Unfortunately, nowadays only some specialists know quaternions. It is ex-
plained by the fact that the idea of scalar product that originates from the quater-
nion algebra was very convenient and soon became an independent geometrical
category, and practically stamped the hypercomplex numbers that had given birth
to it. There began a debate among physics and mathematicians between the adher-
ents of the quaternion algebra and of the arising vector calculus. As is well-known,
the vector approach won, this fact to a certain extent owes to objective difficulties
of quaternion diffusion into algebra and the function of the complex variable, that
is conditioned to the peculiarities of non-commutative multiplication.

The scalar product that is connected with the quaternion can be applied only
to the three-dimensional vectors. But if we separate the idea of scalar product
from concrete numbers and generalize it to the field of arbitrary dimensionality,
the advantages of the concept (the opportunity to define the length of vectors and
angles between them mathematically) will still be preserved. For this we should
postulate a symmetrical bilinear form of two vectors (A,B) = αijaibj in the affine
m-dimensional space. Reciprocally corresponding quadratic form (A,A) must be
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not negative. Then by definition we accept that the affine map that maps the
vector A onto A′ is congruent if it leaves the form invariant:

(A,A) = (A′,A′).

Two figures that can be mapped one onto another by a congruent reflection are
congruent. By this fact the idea of congruence is defined in the axiomatic con-
struction of the Euclidean geometry. For a congruent map takes place not only
invariance of the quadratic form but also the invariance o the bilinear form:

(A,B) = (A′,B′).

For the vectors A and A′ are congruent if and only if:

(A,A) = (A′,A′),

it is possible to introduce the (A,A) as a numerical characteristic of the vector A.
But still it is more traditional to use the value of the positive square root of (A,A),
that by definition is called the length of the vector A and usually is defined as

|A| = (A,A)1/2.

Such definition lets us introduce the definition of the unit vector. Its relationship
with common vectors is revealed in the following relation:

a = A/|A|.

If a and b, and a′ and b′, are two pairs of unit length vectors, then the figure,
built by the first two vectors, is congruent to the figure, constructed by the two
latter ones, only when the equality

(a,b) = (a′,b′)

is held true. The angle is considered to be the representative of congruency in the
Euclidean spaces. But the mere numerical characteristic is related not to bilinear
form of unit vectors, but to transcendental function of its inverse cosine

φ = arccos(a,b).

This definition of the angle is equivalent to the statement that the length of
the arc on the unit sphere between the ends of the vectors a and b is the angle.
Such complication of the numerical angle measure is compensated by the obtained
property of additivity. When composing two angles laying on the same plane their
value is summed up.

The property of perpendicularity of directions is a particular consequence of the
idea of the angle. The perpendicular condition of two vectors consists in equality
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to 0 of the value of their bilinear form. The particular status of the perpendicular
directions is accounted for many reasons, for example, for example by the sim-
plification of the form of the quadratic metric function, presented in the basis all
vectors of which are reciprocally perpendicular.

Two-dimensional case stands out among all the Euclidean spaces with quadratic
metric function. This peculiarity is reflected in the Liouville theorem, that proves
that in the three- or more-dimensional Euclidean (or pseudo-Euclidean) spaces
the conformal transformations are limited to inversions, dilations, translations and
rotations [3]. In other words, there are essentially more transformations that are
related to conformal in the two-dimensional case. Mathematically this fact is re-
flected in the vast majority of analytical functions of the complex variable. To each
of them a certain conformal reflection of the Euclidean plane is related.

2. The scalar product of the pseudo-Euclidean spaces

It is well-known that if a symmetrical bilinear form postulated over the affine
space creates an alternating-sign quadratic form, then the geometry assigned by it
becomes being of not Euclidean but Pseudo-Euclidean type [4]. We can unify both
types of geometries by surrendering the claim about the positivity of the quadratic
form. This unified system, in particular, can be presented with the following set:

(a) every 2 vectors A and B of the linear space are associated with certain
real number labeled by

k = (A,B)

and called (as well as in the Euclidean case) the scalar product of these vectors;

(b) the scalar product is commutative regarding the permutation of vectors

(A,B) = (B,A);

(c) the scalar product is distributive regarding the composition of vectors

(A + C,B) = (A,B) + (C,B);

(d) the real multiplier can be isolated from the scalar product

(kA,B) = k(A,B).

The methods of defining the metric characteristics of pseudo-Euclidean spaces,
which are the generalizing of corresponding Euclidean parameters, do not change
considerably, that enables us to save their names. So, transformations that leave
the quadratic form module of all the vectors invariant are of congruent nature:

|(A,A)| = |(A′,A)′|.
The vector length is defined as a positive value of the square root of the module of
the quadratic form:

|A| = |(A,A)|1/2.
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But in this case there appear the so called isotropic and imaginary vectors. In the
first case the length equals 0 even at nonzero components, and in the second case
the quadratic form is negative. The angle between two directions, as well as in the
Euclidean case, is defined by congruence of the figure formed by two unit vectors,
and by definition is treated as equal to the special function of their bilinear form:

φ = arcch(a,b),

which ensures the additivity of the parameter under plane rotations. So, the angle
equals the arc length between a pair of points on the unit sphere. But now, when
calculating the angle, it is important to take into consideration the area in which
the driving vector that is relative to the isotropic cone is lying, as the indicatrix
stops being simply connected.

Also the perpendicular property of vectors is generalized in the pseudo-
Euclidean spaces. In this case their scalar product must equal 0. It is customary
to call such vectors orthogonal.

The pseudo-Euclidean spaces also admit the generalizing of the idea of a congru-
ent reflection, which is defined as a transformation that saves similarity of infinitesi-
mal forms. Let us note that, as well as in the Euclidean case, the 2-dimensional case,
where conformal maps are wider than in higher dimensions, is distinguished in the
pseudo-Euclidean space. Let us note another coincidence: The pseudo-Euclidean
plane, as well as the Euclidean one, has an algebraic analogue called double numbers
which differ from the complex by the fact that their square equals not −1, but +1.
Such numbers along with the complex ones admit the idea of analytical functions
where a correspondence of a conformal reflection of the pseudo-Euclidean plane [5]
to each of them can be established. These peculiarities of 2-dimensional spaces
demonstrate the relationship between the geometries and commutative-associative
algebras, for example, the algebras of complex and double numbers.

Apart from the pseudo-Euclidean case, other approaches towards generalizing of
the conception of the scalar product are known in geometry. The system of axioms
for the so called unitary, where the metric function is set in the field of complex
and not real numbers, and symplectic spaces where antisymmetric bilinear form [4,
6] is postulated in place of the symmetric, – are sequent to the scalar product.

Analyzing the above examined examples of the usage of the concept of scalar
product and its generalization we can note that they are unified by connection with
one or another bilinear form. But such a form is just a special case of the polylinear
form. Then there emerges a question whether it is possible to obtain a substantial
geometry if we postulate the three-, four-, and so on up to polylinear symmetric
form in place of the bilinear one?

3. The scalar polyproduct

Let us try to preserve all the axioms of the real number and m-dimensional
affine spaces as the basis and add the following:
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(a): to every of n vectors A,B,C, ...,Z we will associate real number denoted by

k = (A,B,C, . . . ,Z),

which we will call the scalar polyproduct;

(b): let us try to make it the way that the scalar polyproduct would be com-
mutative with respect to permutation of any including vectors

(A,B,C, . . . ,Z) = (B,A,C, . . . ,Z) = (C,B,A, . . . ,Z) = · · · = (Z,C,B, . . . ,A);

(c): distributive to their composing

(A,B,C + E, . . . ,Z) = (A,B,C, . . . ,Z) + (A,B,E, . . . ,Z);

(d): a real multiplier at any vector could be taken outside scalar polyproduct:

(kA,B,C, . . . ,Z) = k(A,B,C, . . . ,Z).

These axioms just in a way differ from the corresponding axioms of the scalar
product. Besides they can be unified into a concept of the symmetric polylinear
form, and that is why we will call the space, endowed with one of the forms,
polylinear. The above examined Euclidean and pseudo-Euclidean spaces, according
to their primary definitions, are special cases of the polylinear spaces, in other words
they comply to the above given axiom system when n = 2, that enables us to call
them bilinear.

We will call the scalar polyproduct of the same vector, A,A, . . . ,A, by analogy
with the quadratic form of the bilinear spaces, the fundamental metric form of the
polylinear space, or simply n-polyform of the vector A.

We will call the affine reflections of the polylinear space, that shift the vectors
A into A′, the congruent if they leave the module of the fundamental metric form
invariant:

|(A,A,A, . . . ,A)| = |(A′,A′,A′, . . . ,A′)|. (1)

It is in our axiomatic construction of the polylinear space where the idea of con-
gruence, and then of other metric notions, will be defined.

If there is a set of objects over which the axioms of the affine space are held true,
we can choose any symmetric polylinear form in it and, therefore, the unambigu-
ously connected n-polyform, and ”assign” make the latter to be the fundamental
metric form and on its basis define the conception of congruence as it has been
done above. Then we a metrics gets introduced into the affine space with the help
of the form, and it becomes a correct metric geometry. Such construction is not
related neither to number of dimensions in the space nor to the specific number of
dimensions in the fundamental form, nor with the type of the latter case.
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It follows from the properties of the symmetry and from the linearity of the
form (A,B,C, . . . ,Z) where correlations, that are more general than (1), are held
true for the congruent reflection of the polylinear space:

(A,A, . . . ,A,B) = (A′,A′, . . . ,A′,B′),

(A,A, . . . ,B,B) = (A′,A′, . . . ,B′,B′),

· · · · · · · · ·
(A,B, . . . ,C,Z) = (A′,B′, . . . ,C′,Z′).

In other words the congruent reflections of the polylinear spaces leave the polyforms
invariant where the vectors are present in different combinations.

We will say that the two vectors of the polylinear space A and A′ are congruent
if the modules of the corresponding n-polyforms are equal and are nonzero:

|(A,A, . . . ,A,A)| = |(A′,A′, . . . ,A′,A′)| 6= 0.

By definition it is possible to regard a n-polyform as a numerical parameter of
the vector A. But in place of this, as well as in the bilinear spaces, striving for
additivity and unambiguity of the properties, we will use the positive root of the
n-degree of the absolute value (A,A, . . . ,A,A), calling it the vector length A:

|A| = |(A,A, . . . ,A,A)|1/n.

Then the length of the sum of two codirected vectors equals the sum of their length.
It is worth noting that this is not the only way of introducing the idea of length with
additive properties, but in this approach the length is defined for the maximum
number of directions coming from the affine space.

Now it becomes clear to which type of space we should relate the ones we try
to construct with the help of the given above axioms or the scalar polyproduct.
Firstly, these spaces are Finslerian [7,8] as their metric function is not limited
by quadratic forms. Secondly they belong to the class known in the Finslerian
geometry under the name of Minkowskian space [9], with which it is customary to
associate the manifold where the indicatrices do not depend on the point. [The
space of the Special theory of Relativity is a specific case of such spaces.] But the
examined class of spaces is even smaller, as it is related to a strict idea of polylinear
symmetric form. The latter case has a great significance as it becomes possible to
introduce characteristics, that generalize such fundamental categories of geometry
as the length, the angle, the orthogonality, the conformal reflection, etc. Let us
conventionally call such spaces the polylinear Finslerian spaces (till the appearance
of a more specific name let).

If a and b, and also a′ and b′, are two pairs of unit vectors, then the figure,
constructed with the first two vectors, will be congruent to the figure, constructed
with the latter two, if a transformation mapping one figure onto the other there will
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be found. From the above examined properties of the polylinear forms it follows
that such transformation can be found only if

(a, a, . . . ,b) = (a′, a′, . . . ,b′),

(a, a, . . . ,b,b) = (a′, a′, . . . ,b′,b′),

. . . . . . . . .

(a,b, . . . ,b) = (a′,b′, . . . ,b′). (2)

This, in particular, entails that in the bilinear spaces the congruence of the pair
of two unit vectors is related to the equality of only one form:

(a,b) = (a′,b′), (3)

which sets the idea of the angle as the parameter that characterizes the difference
between two directions. The equality (3) along with the definition of the unit vector
are tantamount to the axiom of the triangle congruence from the Hilbert system
of axioms of the Euclidean space. Two triangles are congruent in the Euclidean
space if the lengths of corresponding sides and angles between them are equal. One
may can formulate analogous axioms also for the pseudo-Euclidean spaces. But it
follows from the definition (2) that in the polylinear space with the dimension of
the form of more than two the congruence of figures constructed of two unit vectors
is defined by more than one circumstance. In the spaces with the three-linear form
(a,b, c), the two forms must be equal to ensure that the figures would be congruent:

(a, a,b) = (a′, a′,b′), (a,b,b) = (a′,b′,b′).

This seeming paradox has a very simple explanation. Usually speaking about
a spatial figure, constructed on two vectors, it is thought as of a plain element held
among sides, which are the driving vectors. But this is justified only in spaces with
the bilinear form. In the spaces with the arbitrary polylinear form, the two vectors
are now connected not with a plane but with a special cone-shaped surface, which
configuration depends on the metric properties of the surrounding space. There
can be more than one parameter, that defines the congruence of such fan-shaped
figures, limited in the edges by unit vectors, that in particular is observed in spaces
with three-linear symmetric form with two corresponding values.

On the basis of the above given brief analysis it becomes clear that polylinear
spaces admit an introduction of analogous of the idea of the angle attributed to
bilinear spaces. But we should take into account that the angle as the parameter
in the bilinear spaces unifies simultaneously two properties: on the one hand,
it serves as a characteristic of the difference between two directions, and on the
other hand, is the parameter of one of types of congruent transformations called
rotations. In the general case of the polylinear space each of the properties should
be characterized by a proper value. It is meaningful to use the negative value of
the n- polyform of the difference as the basis to getting the numerical parameter
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that would characterize the difference of directions of unit vectors: a and b, to be
more specific:

(a− b, a− b, . . . , a− b) = (a, a, . . . , a)− C1
n(a, a, . . . , a,b) + . . .

± . . . (−1)n−1Cn−1
n (a,b, . . . ,b) + (−1)n(b,b, . . . ,b),

where Cj
i are binomial coefficients. Consequently the scalar form of two unit vectors

a and b reads

S(a,b) = −C1
n(a, a, . . . , a,b)± . . . (−1)n−1Cn−1

n (a,b, . . . ,b) (4)

or its function can play the role of a numerical parameter that defines the required
property. Let us note that if the polylinear space is a two-bilinear one the expression
(4) to the constant factor coincides with the definition of the common scalar product
of two unit vectors. The value (4) can be called the scalar product of two vectors
of the polylinear space. But may be it is even justified to divide the scalar product
into items symmetrized in pairs:

S(a,b) = C1
n(−(a, a, . . . , a,b) + (−1)n−1(a,b,b, . . . ,b))

+ C2
n((a, a, . . . , a,b,b) + (−1)n−2(a, a,b . . . ,b))± · · · =

= S1(a,b) + S2(a,b) + . . . , (5)

where every term Si(a,b) receives its proper value.
In the polylinear spaces there are pairs of vectors with definite ability of posi-

tional relationship similar to orthogonal vectors in the bilinear spaces. In the Fins-
lerian space theory the corresponding idea is called the transversality. Let us call
the vector A transversal to the vector B, if (A,A, . . . ,A,B) = 0. It is seen here that
the transversality is not commutative, that is, the vanishing (A,A, . . . ,A,B) = 0
does not entail (B,B, . . . ,B,A) = 0. But if we use the symmetrized forms (5),
then the transversality, assigned by them, will have commutative properties. By
definition, we will consider A and B mutually transversal of the first degree, when
S1(A,B) = 0; and of the second degree, if S2(A,B) = 0, and so on up to n/2
or (n − 1)/2 degree. Such differentiation of transversality demonstrates the abil-
ity of vectors of the linear Finslerian spaces to form pairs with a multitude of
characteristic connection with the direction, – that generalizes the conception of
orthogonality.

Apart from the quantities defined by the forms (4) it is meaningful to introduce
one more ”angle-like” characteristic in some polylinear spaces that have continuous
congruent transformations like rotations. We will relate its value with the arc length
in the unit sphere outlined by a ray simultaneously with a continuous one-parameter
rotation. So generalized conception includes the property of the common angle –
to be the additive measure that follows from the additivity of the length.

Not only pairs can be included into polyforms, but also three-, four-, etc., up
to n different vectors. It is difficult to say to which quality consequences must
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lead this circumstance in the area of simple figures. Only one thing is clear: this
property of polylinear spaces exists objectively that means that it should be as well
taken into account.

There are such spaces among the polylinear ones where in one of the bases all
the forms are nullified but for the ones that include only different vectors. For such
spaces the fundamental metric forms take the following structure in the special
basis:

(A,A, . . . ,A) = ±a1a2 . . . am ± a1a2 . . . am−1am+1

± · · · ± a2a3 . . . amam+1 ± · · · ± an−man−m+1 . . . an. (6)

Among these emerge the pseudo-Euclidean spaces labeled (1,m−1), which play an
important role in the modern theoretical physics. Though the classical quadratic
form seems to be more convenient for the spaces, the second degree of the intervals
in some of the isotropic bases looks like:

|A|2 = (A,A) = a1a2 + a1a3 + a1a4 + · · ·+ am−1am =
∑

k 6=l

akal.

For example, the square of interval of Minkowskian space S2 = (ct)2− x2− y2− z2

after the substitution

ct =
√

3/8(u + v + w + z), x =
√

1/8(u− v + w − z),

y =
√

1/8(u + v − w − z), z =
√

1/8(u− v − w + z)

(similar to (16)) gets an attractive symmetric form:

S2 = uv + uw + uz + vw + vz + wz.

The expression (6) looks more concise in the cases with n = m, that is, when
the dimension of the fundamental form coincides with the dimension of the space.
In this case the nth degree of a vectors with respect to the corresponding basis
takes on the form

|A|n = (A,A, . . . ,A) = ±a1a2 . . . an.

In these circumstances the specific role of the pseudo-Euclidean plane, where
such correlations are held, is defined. It seems probable that there must exist a
connection with associative-commutative algebras, that involves the appearance
in the space of a large group of conformal reflections, only in spaces with n =
m. At the same time the conformal reflections can be seen in a number of cases
which follow from the works [10, 11] where the eight-dimensional biquaternions
are examined, that, according to the above given axiom, have metric forms of the
fourth degree which come outside the Liouville theorem. We can only hope that
the property of some polylinear spaces has a vast group of conformal reflections
which appears to be perspective in geometry as well as in physics.
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On the other hand even superficial study of the properties of the polylinear
spaces let us state that in some of them there are not only conformal, but also
non-linear transformations that do not have analogies within common bilinear
spaces. The presence of such transformations ensues merely from that the studied
spaces require extension of the notion of orthogonality up to several respective
members. As is well known, the nonlinear transformations that leave invariant or-
dinary orthogonality relates to conformal. In this connection it is natural to expect
that the transformations retaining the transversality would occur preferable, too.
This makes the existent polylinear spaces even more interesting.

4. Examples of polylinear spaces

There is a great number of polylinear spaces. The task to classify such spaces
seems to be difficult even if we work with three-linear forms, not to mention the
forms with a larger number of dimensions. But if we limit ourselves to the three-
dimensional case, and if among symmetric three-dimensional spaces we examine
those whose metric forms do not depend on permutation of vector components (it
is suggested in the work [12], that examines a similar classification, to call them the
high-symmetric) than we can single out 8 independent classes, where a fundamental
canonical polyform can be related to each of them. The simplest look among all
the forms has the following:

(A,A,A) = a3
1 + a3

2 + a3
3 = F1;

(A,A,A) = a2
1a2 + a2

1a3 + a2
2a1 + a2

2a3 + a2
3a1 + a2

3a2 = F2;

(A,A,A) = a1a2a3 = F3.

In the work [12] they are called basic. Any of the eight non-isomorphic high-sym-
metric tree-linear polyforms can be presented as a linear combination of the bases:

(A,A,A) = ω1F1 + ω2F2 + ω3F3.

But no matter how great the variety of spaces with three-linear symmetric form is,
the space with the following form stands out with its concise symmetry:

(A,A,A) = a1a2a3.

As the result of its high involved symmetry we can confront the corresponding space
with the algebra of commutative-associative numbers that is the sum of three real
algebras. Let us call such hypercomplex system the triple numbers and label it as
H3. Mathematical, geometrical and may be physical structures related to the triple
numbers are not trivial at all, that is proved in the works [13, 14] published in this
issue. It will be noted that most three-linear polyforms cannot be juxtaposed by
algebras in general [12].

In the 4-dimensional polylinear spaces with n = m the basic forms are:
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(A,A,A,A) = a4
1 + a4

2 + a4
3 + a4

4; (7)

(A,A,A,A) = a3
1(a2 + a3 + a4) + a3

2(a1 + a3 + a4)

+a3
3(a1 + a2 + a4) + a3

4(a1 + a2 + a3); (8)

(A,A,A,A) = a2
1a

2
2 + a2

1a
2
3 + a2

1a
2
4 + a2

2a
2
3 + a2

2a
2
4 + a2

3a
2
4; (9)

(A,A,A,A) = a2
1(a2a3 + a2a4 + a3a4) + a2

2(a1a3 + a1a4 + a3a4)+

a2
3(a1a2 + a1a4 + a2a4) + a2

4(a1a2 + a1a3 + a2a3); (10)

(A,A,A,A) = a1a2a3a4, (11)

and to each of them their particular, not isomorphic to others, geometries of the
polylinear space.

As well as in the three-dimensional case the variety of four-dimensional poly-
linear spaces is not limited to these examples. It seems to be a very difficult task to
present the full classification of corresponding geometries. Let us study at least one
case before setting about its realization. For example, the geometry related to the
most symmetric among the basic polyforms (7) – (11), and to be more specific (11).
Its high symmetry again gives us an opportunity to confront the space defined by
it to the algebra of commutative-associative hypercomplex numbers, that in order
to be brief we will call the Quadra-numbers labeled as H4. Some of the properties
of the space, related to the Quadra-numbers are given in [15]. We can get the
Quadra-number algebra by adding the axiom of real numbers to the axiom of com-
posing and multiplication of the following objects: A = a1 ·1+a2 · I +a3 ·J +a4 ·K
and B = b1 · 1 + b2 · I + b3 · J + b4 ·K, where ai and bi – real numbers called the
components, and 1, I, J,K the basic units. We accepting by definition that the
sum of the numbers A and B is called the number

C = (a1 + b1) · 1 + (a2 + b2) · I + (a3 + b3) · J + (a4 + b4) ·K,

and their product – another number of the same class:

D = (a1b1 + a2b2 + a3b3 + a4b4) · 1 + (a1b2 + a2b1 + a3b4 + a4b3) · I+

+ (a1b3 + a2b4 + a3b1 + a4b2) · J + (a1b4 + a2b3 + a3b2 + a4b1) ·K,

By the method given above we get the algebra of commutative-associative hyper-
complex numbers, where the multiplication table of basic units have the form:

1 I J K

1 1 I J K

I I 1 K J

J J K 1 I

K K J I 1

.
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It follows from the table that I2 = J2 = K2 = 1, namely all its imaginary units
are hyperbolic. We can get the same algebra another way: by applying for 2 times
the algebra of the real number using two independent hyperbolical-imaginary units
I and J the doubling operation. Let us denote the product of I and J as an
independent object k, the number A from the corresponding multitude can be
presented as a linear combination:

A = (a1 + a2 · I) + (a3 + a4 · I) · J = a1 + a2 · I + a3 · J + a4 ·K,

where the symbol of the real unit 1, as it is accepted in the complex-numbers and
quaternions, is omitted.

Let us call the numbers Ā, Â, Ã conjugate to the number A = a1 + a2 · I + a3 ·
J + a4 ·K, if they look like:

Ā = a1 − a2 · I + a3 · J − a4 ·K,

Â = a1 + a2 · I − a3 · J − a4 ·K,

Ã = a1 − a2 · I − a3 · J + a4 ·K. (12)

Notice that ̂̃̄
A = A. (13)

The product of such fours, as it is easy to check by the direct substitution, are
always real numbers

AĀÂÃ = a4
1 + a4

2 + a4
3 + a4

4 − 2a2
1a

2
2 − 2a2

1a
2
3 − 2a2

1a
2
4

− 2a2
2a

2
3 − 2a2

2a
2
4 − 2a2

3a
2
4 + 8a1a2a3a4. (14)

By analogy with the algebra of complex numbers we will relate the value to the
fourth degree of the corresponding number modulus and denote it as |A|4. The
introduced conception has the common properties of the modulus:

|λA| = |λ| · |A|, |AB| = |A| · |B|,

where λ is a real, and A, B are complex numbers. In the product the property of
mutually conjugated to result in the real number let us introduce into the examined
algebra the operation of division, interpreted as an action inverse to multiplication.
So, let us understand the number

A−1 =
ĀÂÃ

|A|4 (15)

under the number A−1 which is inverse to A. Only the numbers whose module is
nonzero have their inverse analogues. Such numbers do not have such analogs. The
examined algebra is associated with the form (11). It can be proved by examining a
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shift from the basis 1, I, J,K to the basis S1, S2, S3, S4,, whose objects are connected
with the initial correlation:

S1 =
1

4
(1 + I + J + K), S2 =

1

4
(1− I + J −K),

S3 =
1

4
(1 + I − J −K), S4 =

1

4
(1− I − J + K). (16)

These bases are the divisors of zero and are distinguished by the fact that their
multiplication table is the most vivid one:

S1 S2 S3 S4

S1 S1 0 0 0

S2 0 S2 0 0

S3 0 0 S3 0

S4 0 0 0 S4

.

We will call the divisor of zero with such properties the principle, and the bases
formed of them – the absolute. The feedback of the units 1, I, J,K with the principle
zero divisor of the algebra H4 is evaluated the following way:

1 = S1 + S2 + S3 + S4, I = S1 − S2 + S3 − S4,

J = S1 + S2 − S3 − S4, K = S1 − S2 − S3 + S4.

It is easy not only to sum but also multiply and divide the numbers from H4 written
in the absolute basis. So, the product of two numbers A and B looks is following:

(AB) = (a′1b
′
1)S1 + (a′2b

′
2)S2 + (a′3b

′
3)S3 + (a′4b

′
4)S4,

and their fraction reads

A

B
=

a′1
b′1

S1 +
a′2
b′2

S2 +
a′3
b′3

S3 +
a′4
b′4

S4.

(Henceforth the components with primes will relate to the absolute basis). the
absolute basis reveals the structure of the quadrahypeboloic number algebra, which
is isomorphic to the algebra of real diagonal matrices. The group of mutually
conjugated written in the absolute basis looks like:

A = a′1S1 + a′2S2 + a′3S3 + a′4S4,

Ā = a′2S1 + a′1S2 + a′4S3 + a′3S4,

Â = a′3S1 + a′4S2 + a′1S3 + a′2S4,

Ã = a′4S1 + a′3S2 + a′2S3 + a′1S4. (17)
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The modulus of the number A in such special basis looks like:

|A| = |a′1a′2a′3a′4|1/4, (18)

that proves the correspondence of the algebra to geometry defined by the funda-
mental metric form (11). We can introduce the conception of function for the
multitude of the Quadra-numbers. The exponential function is one of the most
interesting. Under it we will understand the following series:

eX = 1 + X +
X

2!
+ . . . ,

where X is an arbitrary Quadra-number. With the introduction of the exponen-
tial function we can examine along with the algebraic form of the number H4 its
exponential form. So, the number A = a′1S1 + a′2S2 + a′3S3 + a′4S4, where all the
components of a′i in the absolute basis are positive, corresponds to:

A = |A| eαI+βJ+γK , (19)

where the positive value |A| is its modulus. By analogy with the complex and
double numbers we will call the real numbers α, β and γ, the argument of the
Quadra-number A. The connection of the arguments with the components a′i in
the absolute basis looks like:

α =
1

4
ln

a′1a
′
3

a′2a
′
4

=
1

4
(ln a′1 − ln a′2 + ln a′3 − ln a′4),

β =
1

4
ln

a′1a
′
2

a′3a
′
4

=
1

4
(ln a′1 + ln a′2 − ln a′3 − ln a′4),

γ =
1

4
ln

a′1a
′
4

a′2a
′
3

=
1

4
(ln a′1 − ln a′2 − ln a′3 + ln a′4),

where ln x is a logarithmic function of the real x. As the hyperboloic analog to the
Euler formula works for every imaginary unit:

eαI = cosh α + I sinh α,

then the following expression for the exponent from an arbitrary Quadra-number
X = δ + αI + βJ + γK is true:

eX = (cosh δ + sinh δ) · (cosh α + I sinh α)·
· (cosh β + J sinh β) · (cosh γ + K sinh γ), (20)

where cosh x and sinh x are hyperbolic sinus and cosine. We can introduce an
analogous function for the quadranumerical variable X as the following rows:

cosh X = 1 +
X2

2!
+ . . . , sinh X = X +

X3

3!
+ . . . .
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We can connect the notion of the derivative with the function of the quadranu-
merical variable by the direction and analyticity the same way as the corresponding
ideas are introduced into the algebra of double numbers [2]. The analyticity of the
function from H4 denotes the independence of its derivative from directions, [5]
dF = F ′da, and appears in simultaneous execution of 12 equations, which are
analogs to the Cauchy-Riemann terms for the complex and double variables:

∂U

∂a1

=
∂V

∂a2

=
∂W

∂a3

=
∂Q

∂a4

,
∂U

∂a2

=
∂V

∂a1

=
∂W

∂a4

=
∂Q

∂a3

,

∂U

∂a3

=
∂V

∂a4

=
∂W

∂a1

=
∂Q

∂a2

,
∂U

∂a4

=
∂V

∂a3

=
∂W

∂a2

=
∂Q

∂a1

, (21)

where

F (A) = U(a1, a2, a3, a4)+V (a1, a2, a3, a4)I +W (a1, a2, a3, a4)J +Q(a1, a2, a3, a4)K

is an analytical function of a quadranumerical variable, and U, V, W,Q are
hypercomplex-conjugated functions of four real arguments. In the algebra of quad-
ranumbers there are 16 typical unit objects e1− e16 that have in their basis, where
the form (11) is written, the following components:

e1 ↔ (1, 1, 1, 1); e5 ↔ (−1,−1,−1,−1);

e2 ↔ (1,−1, 1,−1); e6 ↔ (−1, 1,−1, 1);

e3 ↔ (1, 1,−1,−1); e7 ↔ (−1,−1, 1, 1);

e4 ↔ (1,−1,−1, 1); e8 ↔ (−1, 1, 1,−1);

e9 ↔ (1,−1,−1,−1); e13 ↔ (−1, 1, 1, 1);

e10 ↔ (1, 1,−1, 1); e14 ↔ (−1,−1, 1,−1);

e11 ↔ (1,−1, 1, 1); e15 ↔ (−1, 1,−1,−1);

e12 ↔ (1, 1, 1,−1); e16 ↔ (−1,−1,−1, 1).

The vectors ei that correspond to the numbers can be used to illustrate the presence
in the Quadra-space of two types of transversality, that generalize the idea of
orthogonal directions for the Finslerian space. This is true that the 2 symmetrized
forms (5) enter the Quadra-space. They look like:

S1(a,b) = (a, a, a,b) + (a,b,b,b) (22)

S2(a,b) = (a, a,b,b). (23)

The equality to zero of any of them means the transversality of the corresponding
directions. By direct substitutions of the components of vectors ei in (22) and (23)
we can make ourselves absolutely sure of the fact that every vector of the multitude
faces 1, form mutually transversal pairs of the first order, and of the second with
8 of them. We can construct the basis that is an analog to the orthogonal from
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the four the first order transversal vectors. One of the specific cases of the basis is
the above examined four-set 1, I, J,K. It is impossible to construct a basis from
the second order transversal vectors as for each pair of the third and what is more
fourth order do not have such correlation of directions.

Conclusion

The offered method of studying the examined class of Finslerian linear spaces,
called polylinear, seems to be promising for it is based on the same principles
as the scalar product. Let us note that the arising abilities allow us to move
the focus of research from the common vivid base to the soil of mathematical
constructions. Thus the pseudo-Euclidean spaces demonstrate advantages of the
analogous substitution. Not all geometrical effects are vivid in these spaces but
the extension of the scalar product in its time was very useful.

References

[1] I.M. Gelfant, Lectures on Linear Algebra, Nauka, M. 1966 (in Russian).
[2] I. L. Kantor, A. S. Solodovnikov, Hypercomplex Numbers. Springer, Berlin, 1989.
[3] B.A. Rosenfeld, Multidimensional Spaces, Nauka, M. 1966 (in Russian).
[4] A. I. Maltsev, Foundations of Linear Algebra, TTL, M. 1956 (in Russian).
[5] M. A. Lavrentiev, B.O. Shabat, The Problems of Hydrodynamics and their Mathe-
matical Models, Science, M., 1977 (in Russian).
[6] B.A. Rosenfeld, Non-Euclidian Spaces, Nauka, M. 1969 (in Russian).
[7] G. S. Asanov, Finslerian Extension of General Relativity, Reidel, Dordrecht 1984.
[8] P.K. Rashevsky, The Geometrical Theory of Partial Differential Equations, 2-nd ed.,
Editorial URSS, M., 2003 (in Russian).
[9] H. Rund, The Differential Geometry of Finsler Spaces, Springer, Berlin, 1959.
[10] V.V. Kassandrov, Vestnik of Peoples Friendship University, Physics, 1, 1993.
[11] V.V. Kassandrov, Number, Time, Light, http:www.chronos.msu.ru.
[12] G. I. Garas’ko, Three-numbers, whose cube of norm is nondegenerate three-form,
Hypercomplex Numbers in Geometry and Physics, 1, Vol 1, 2004.
[13] S. V. Lebedev, Properties of spaces connected with commutative-associative H3 and
H4 algebras, Hypercomplex Numbers in Geometry and Physics, 1, Vol 1, 2004.
[14] D. G. Pavlov, Chronometry of the three-dimensional time, Hypercomplex Numbers
in Geometry and Physics, 1, Vol 1, 2004.
[15] D. G. Pavlov, Four-dimensional time, Hypercomplex Numbers in Geometry and
Physics, 1, Vol 1, 2004.



32 Space-Time Structure. Algebra and Geometry

Chronometry of the Three-Dimensional Time

D.G. Pavlov

Moscow State Technical University n. a. N. E. Bauman

hypercomplex@mail.ru

The concept of multi-dimensional time has often tried to take its deserved place in
natural sciences, but each time, under the pressure of some paradox, it was rejected.
Meanwhile, emerged a philosophical question: why does Space admit several dimensions
while Time does not, still remained. In this work a new attempt has been made to
resolve this matter, by switching from the traditional quadratic metrics to the Finslerian
ones, which may admit several vector components as arguments for the metric function.
Though this method enables us to build continuums of Time of any natural dimension-
ality, in order to point out the specificity of the topic, we shall focus on lower temporal
dimensions.

MSC2000: 53B40, 53C60, 15A63, 15A69, 83D05.

1. Introduction

The idea of space is accepted much easier and vividly than the idea of time. This
circumstance is conditioned by the fact that the space is looked over all at one time,
and above all in the three-dimensional shape, meanwhile we see just a side of the
time and only in one dimension. This situation forced some scientists ”to get rid” of
the time, either limiting to fixed problems or driving the time into the condition of
an extra space dimension. The first approach is related to Archimedes, the latter
approach for the first time appeared in the works of Galilei, reached perfection
in Lagrange’s and in fact reigns nowadays, – though special theory of relativity
practically confronted the category of time to space, denoting them absolutely
different in their essence, having differences already on the geometrical level.

There grows the belief formulated for the first time by Synge [1] that Euclid put
the natural science on the wrong track, as he took the space but not the time as the
fundamental idea of the science. The lack of any adopted term for time studying
according to Synge is the proof of such disregard. He suggested that we should use
the word ”chronometry” to define the branch of science that deals with the idea of
time in the same wide meaning as geometry does with the idea of space. Though
Synge is unlikely to mean the multi-dimensional time, his statement is applicable
to this aspect of the problem.

2. Two-dimensional time

The essence of the multy-dimensional time, that serves as an alternative to the
multy-dimensional space, can be illustrated by a paradoxical-seeming statement:
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practically all physicians know about the two-dimensional time, but by tradition go
on looking at it in another way. We mean the pseudo-Euclidean plane. It is surpris-
ing that among all the Euclidean spaces only the two-dimensional is distinguished
with its unique peculiarities, it is worth mentioning the following.

Firstly, the theorem of Liouville, that enumerates the types of possible confor-
mal transformations, coming to translations, rotations, dilatations and inversions,
is true for all the pseudo-Euclidean spaces with 3 or more dimensions. In the
two-dimensional case the list of their conformal transformations is by far longer.

Secondly, there are several concepts of the total product of the plane vec-
tors, and the majority of them have the inverse ones; meanwhile in other
pseudo-Euclidean spaces only scalar product is introduced, as well as division is
not defined at all.

Thirdly, isotropic vectors always divide the pseudo-Euclidean planes with the
signature (1, n − 1) into 3 simply connected domains, with an exception of the
plane, with 4 such domains.

Fourthly, it does not matter which of the two typical coordinates of the Euclid-
ean space we will choose as the temporal and which as the spatial, as the result
will change to permutation. Another case appears in planes with a bigger number
of dimensions, where such symmetry collapses and to the time we can apply only
change of the sign.

And finally, only the plane admits the accordance with the associative-
commutative algebra, whose main objects are called the double numbers. Their
algebra has all the characteristics of usual algebras of real and complex numbers,
including the product commutativity, with an exception of presence of specific ob-
jects, called the divisors of zero. Each divisor of zero has a counterpart such that
their product is a divisor. Though the double numbers are trivial in comparison
with the complex, even such algebras cannot be related with pseudo-Euclidean
spaces with more than 2 dimensions.

But, thinking that the uniform order starts with 3 and more dimensions, scien-
tists, due to some reasons, don’t notice or at best attribute it to the reducible nature
of the two-dimensional space. It is interesting to note that we face practically the
same in the Euclidean case: the two-dimensional representatives stand separately
out and are juxtaposed with the algebra of complex numbers.

We can make a supposition basing on only these two examples that because
of some reasons the connection of some metric spaces with the commutative-
associative algebra make them in a way distinguished and that is why the very
algebras and the corresponding spaces deserve a special attention.

When we stated above that we have a reason to treat the pseudo-Euclidean
space as a special case of the multy-dimensional time, we based on the fact that in
the space there is no objective reason for us to distinguish which of its directions can
act as time and which not. Then we must admit that in such space all non-isotropic
directions are equal in rights. Their differentiation by physical meaning takes place
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only after subjectively choosing one quadrant as the field of future.

Note. The subjective choice is related mostly to the world line, an element of
whose length is interpreted as the proper time of an observer, and the future region
is defined as the consequence of the line direction.

Only after the given procedure the points of the facing quadrant automatically
acquire the meaning of the past actions, and the points of the two side – become
absolutely distant. But few things will change on the pseudo-Euclidean plane if we
choose to use any other quadrant as the field of the future, as only all the others will
trade places. With an exception of this inessential-seeming moment, any further
construction in the pseudo-Euclidean plane does not differ from the construction
in its usual interpretation as the time-space.

But a move to 3 and more dimensions leads to the fact that the difference be-
tween the pseudo-Euclidean space-time and the dimension-corresponding pure time
becomes principal, and moreover if we think of the conceptual multy-dimensional
time as of a possible geometrical alternative to the space of the Special Theory of
Relativity, it is important to revise not only mathematical, but also philosophical
attitudes towards the structure of physical reality.

3. Three-dimensional time

To make a move from the two-dimensional time model to the three-dimensional
let us use the observation that in the case of the pseudo-Euclidean plane the corre-
sponding geometry becomes related with the idea of the commutative-associative
hyper-complex number, which are related to the commutative-associative hyper-
complex algebras. William Hamilton is the pioneer of hyper-complex numbers;
while speaking at one of the sittings of the Royal Irish Academy he stated that if
there existed geometry – the pure mathematical space science, there must be the
same pure time science, and such a science should be algebra [2]. It is paradox-
ical but he on the example of the quaternions, discovered by himself, disproved
the multitude of principally different algebras. But let us take his statement,
as a presentiment of the great mathematician, and by analogy with the algebra
of binary numbers we will try to make the algebra of triple number, and try to
correspond with them geometry, or using Synge’s suggestion, the chronometry of
three-dimensional time.

The presence of the basis in binary numbers makes the expression for the second
degree of the module to take an absolutely symmetrical form:

|X|2 = x′1x
′
2, (1)

It indirectly shows that there must be a basis for the numbers that admittedly
can be an algebraic analog to the vectors of the three-dimensional time. In this
basis the fourth degree of the module becomes connected with the next absolutely
symmetrical form out of three components:

|X|3 = x′1x
′
2x
′
3. (2)
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It is not difficult to make sure that the algebra of such numbers exists, it is commu-
tative and associative, and is the direct sum of three real algebras that continues the
tendency that started at the example of binary numbers, whose algebra becomes
the direct sum of the two real. As is well known, the one-dimensional time can be
compared with the real numbers themselves, that is another confirmation of the
chosen algebraic way of searching for models of the multy-dimensional time.

The manifolds for which the differentials of the vector length are expressed
by means of the types (1) – (2), are well known in geometry and are called the
Finslerian spaces with the Berwald-Moor metric function [3]. Usually under the
term Finslerian spaces we understand the manifold of the most common type with
a null meaning of curvature and torsion. The concerned metric (2) is defines the
linear space, that is why it is in near relation with Euclidean and pseudo-Euclidean
spaces, though they do not look alike in everything.

Let us call the linear Finslerian spaces, whose metric function in one of the
bases looks like:

F (x′) =
∣∣∣

n∏
i=1

x′i
∣∣∣
1/n

, (3)

the n-dimensional time. To have not only axiomatical but also physical right to
use this name let us interpret every point of the spaces as an event, and every line
as a world line of an inertial reference frame.

Note. The concept of an event is introduced in this way that though having
something common with the classical analogue introduced by Minkowski, still dif-
fers from the latter. This is related to the fact that the concept of event in the
multy-dimensional time stops having a single meaning and becomes dependent on
the reference frame. In other words the same point of the space should be inter-
preted as different events if the world lines are separated by isotropic hypersurfaces.
The concepts of time and space are as if substituting with one another. There are
cases 2n of such domains in n-dimensional time, and every point may have the same
number of interpretations. But there does not emerge polysemy if we examine only
the reference frames where the world lines lie only in the light cone, and the concept
of event practically does not differ from its classical analogue.

In such reference frame the interval of proper time between an arbitrary pair
of the equals the length of the vector related to the event. It follows from the
symmetry of the examined spaces that all their non-isotropic directions are ab-
solutely equal in rights if we decide to relate, according to the given above thesis,
the length of the vector to the proper time in the distinguished reference frame
then its justified to call the spaces, this time not by definition, rather than because
of physical reasons, the multy-dimensional time.

But still preserves the question: whether such verities have any connection
with the real world? To approach the answer let us try to examine the properties
and peculiarities of the three-dimensional time. We will start from examining its
structure and isotropic subspaces.
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4. Light pyramids

The form (2) nullifies in the points that correspond to the three distinguished
planes, defined by the equalization:

x′1 = 0, x′2 = 0, x′3 = 0. (4)

The vectors lying on the plane have the zero meaning of the modulus and in this
meaning are isotropic. At the same time, lines, that simultaneously belong to
2 planes (as well as the point of intersection of all the 3) automatically become
marked out. As there are only three lines, it is quite natural to try to connect
the vectors with the special basis. This basis is unique up to permutation and the
form (2) given above defines the value of an arbitrary number module and also the
length of the vector, – all being of the simplest shape. Concerning the originality
of such basis, we will give it a proper name of the Absolute basis.

In this respect the concerned space turns out to be arranged in an absolutely
another way, than the usual Euclidean and pseudo-Euclidean spaces, where there
are no preferred bases (with an exception of the pseudo-Euclidean plane), and
that is why we usually try to turn the studying of analogous geometries into a
non-coordinate form. The existence of special bases in the multy-dimensional
time means that if some day a connection between corresponding varieties and
the physical reality will be found then some frame of reference will play a clearly
distinguished role.

Figure 1: Isotropic planes of tree-dimensional time

The isotropic planes (4) can be thought about for example as they are presented
on Fig. 1. As we can see on the picture the three-dimensional space is divided by
isotropic planes into 8 equal camera-octants, that are domains of simple connect-
edness in fact. At the same time every camera is separated from the 3 side ones by
the two-dimensional isotropic planes, it borders upon isotropic rays with another 3
cameras and with the opposite one it contacts through only one point. By analogy
we can characterize, only taking into consideration the dimension, the mentioned
above the two-dimensional time, where all the space is divided by isotropic lines
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into 4 camera-octants. Every quadrant is separated from 2 adjoining ones by
isotropic rays, and with the opposite borders through a point. At the same time
the one-dimension time also obeys the rule, as we can look upon the corresponding
line as 2 opposite simply connected domains, divided by a special point, a zero that
in a way can be considered to be an extreme singular case of the isotropic cone.

Figure 2: Light cones of tree-dimensional time (right) and tree-dimensional pseudo-
Euclidian space (left)

Figure 3: The fragments of unit hyperboloids

If we choose 2 facing camera-octants from the 8 of the three-dimensional time
and examine their united border we will get a figure depicted on Fig. 2. Such
the sub-space looks like a light cone of the Euclidean space (depicted on the same
picture to the left side) but for the fact that the first does not have a continuous
axis symmetry. There are non-zero vectors in the inside of both facing octants,
and the ends of the unit length vectors form 2 planes of a specific hyperboloid,
which is the Finslerian analogue of the double-band hyperboloid of the pseudo-
Euclidean space. Both figures are depicted on Fig. 3, the left corresponds to the
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three-dimensional time and represents only a quarter of the hyperboloid of space,
which has 8 cavities, each for every simply connected area. The points of the figure
satisfy the equalization: |x′1x′2x′3| = 1, and its general form is represented on Fig. 4.

Figure 4: The eight-sheet hyperboloid of tree-dimensional time

Among the unit vectors that are set against one and the same plane of such
hyperboloid continuous transfers, exercised by the Abelian two-parameter group
of linear transformations, is possible. The transformations can be displayed as a
diagonal matrix:




a1 0 0

0 a2 0

0 0 a3


 , (5)

with a1a2a3 = 1. Transformations of the group are invariant to the interval of the
three-dimensional time (2) and that is why it is its motion. In their character
the motions are similar to the boosts of the corresponding pseudo-Euclidean space
with the only difference that the points of the line stay static in the one-parameter
turnings in space-time, and in the analogous case of the concerned space – only
one single point. We will call transformations of the group the hyperbolic turning
of the three-dimensional time.

Among motions of the space, apart from turnings, we can single out a three-
parameter group of parallel shifts, that are a common idea in linear planes. There
is no other continued transformation that would be invariant to the interval in the
three-dimensional time.

The isotropic edges and unit hyperboloids of the distinguished group of facing
octants whose ends are to end at infinity are depicted on Fig. 2 and Fig. 3, but
due to the limited plane of the draft, their ends are cut short, but not at a plane,
common for pseudo-Euclidean space, but in a more sophisticated way according
to the following considerations. If we intersect the border of one of the octants
with the border of the facing octant dislocated along their mutual axis we will get
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Figure 5: The two light cones couple intersection

a rectilinear hexagon, and not a plane but the broken as it is demonstrated on
Fig. 5. The volume that belongs to the interior of both octants is a common cube,
and the mentioned above hexagon is composed of its edges that do not intersect
the main axis.

Figure 6: The two hyperboloids couple intersection with 0 < R < T

Note. We can say that in case of the n-dimensional time the figure that is the
interception of two deposed towards each other facing cameras, consists of a half
of (n− 2) edges of the formed by it hypercube, on top of all only edges that do not
have common points with the main axis of symmetry participate in the formation.

If we construct two sets of concentric hyperboloids (per se they are Finslerian
generalizing of spheres) inside the octants that form the cube with their centers in
the opposite tops, the intersection of pairs with equal radius will result into a set of
continuous closed graphs, whose form depends on the ratio of the corresponding to
the curve radius of the hyperboloid R to half of the main diagonal of the cube T .
When the radius of hyperboloids equal 0 they coincide with the isotropic edges of
the octants, and their interception is a broken in space hexagon already examined
on Fig. 5. When 0 < R < T the hyperboloids are intercepted on curves that look
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Figure 7: The two hyperboloids couple intersection with R ≈ T

like the curve on Fig. 6. They are three-dimensional and have 6 round corners.
While the value of the hyperboloid radius approaches to the value T the curves
that are the result of their interception become more smooth and flattened out,
and when R → T they turn into absolutely plane circumferences, though with
infinitesimal radius Fig. 7.

In the three-dimensional pseudo-Euclidean space the analogous constructions
lead to a group of concentric circumferences that lie in the same plane, you can see
the circles on Fig. 5–7 to the right of them. The circumference that belongs to two
light cones, that is corresponds to the interception of the pseudo-Euclidean sphere
with R = 0 which in the Special Theory of Relativity is interpreted as a momentary
position of the light front, that can be registered by the observer that is at the top
of one of the cones, supposing that there is a flash at the top of the other. In general
we should apply an analogous interpretation to the three-dimensional time case.
So, the broken hexagon depicted on Fig. 5 can be interpreted as the multitude of
points of the observer space, that is situated at the point T , with which it connects
the momentary position of the light front, whose flash took place in −T . To make
this situation true we must admit that the isotropic borders of the facing octants
are analogues of the light cones of the past and future that corresponds in number
of dimensions with the pseudo-Euclidean. This method looks rather natural and
the only effort, in comparison with the common idea of the Special Theory of
Relativity, we should make is to admit the borderness of the light cone. Taking
into consideration that this borderness is executed in the space not available for the
contemplation of the observer, the question whether is complies with the realities
of our world turns out to be not so obvious.

Though we could save the name of light cones, usually used in the pseudo-
Euclidean spaces in order not to emphasize peculiarities of geometry of the multy-
dimensional time, for the isotropic borders of the simply-connected cameras, so
let us call the corresponding figures the light pyramids, first of all singling out the
pyramids of the past and future.
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5. Planes of relative simultaneity

We should logically go further and accept an analogy not only between
isotropic sub-spaces and the related to them light fronts but also we should put
into correspondence with every common circle of two equal hyperboloids of the
pseudo-Euclidean space an analogous curve, that is the interception of a pair of
Finslerian spheres of the multy-dimensional time. There emerges quite a natural
way to define the plane of the relative simultaneity of the three-dimensional time,
as the same physical sense was played in the pseudo-Euclidean geometry by a plane
represented with the above examined set of circles. Following the logic we should
understand a multitude of points, equidistant in the meaning of the correspond-
ing Finslerian metrics of two fixed points, under the simultaneous events of the
multy-dimensional time. At the same time one of the fixed points coincides with
the momentary position of the observer, and the second is the reflection of it with
respect to the studies plenty of events.

The straight line that goes through the two points defines the inertial refer-
ence frame, but as it follows from the accepted definition of simultaneity now this
property depends not only on the speed of the observer but also on his momentary
position concerning the layer, to which he is going to give the equal time of perfor-
mance. In the pseudo-Euclidean case (that has become practically classical) while
defining the simultaneity meant only the relative speed of the relative speed of the
reference frame, and the momentary position of the observer was not important.
It is not so in the three-dimensional time and this circumstance seems to be one
of the most important items, that differ the physical properties of the examined
manifold from the common pseudo-Euclidean constructions.

It is convenient to describe the plane of simultaneity that corresponds to a
fixed pair of points by an equalization that relates it coordinates to the coordinates
of the initial affine space represented in the absolute basis. It is not difficult to
get such equalization for an arbitrary pair of points, but it looks most vividly
when momentary position of the observer is related to the point (T, T, T ), and its
reflection has coordinates (−T,−T,−T ). In this case the equality of intervals leads
to the equalization:

|(x′1 + T )(x′2 + T )(x′3 + T )| = |(T − x′1)(T − x′2)(T − x′3)|, (6)

then after opening the brackets it leads to:

x′1x
′
2x
′
3 + (x′1 + x′2 + x′3)T

2 = 0. (7)

The plane corresponding to the equalization is depicted on Fig. 8.
The curves examined on Fig. 5 and Fig. 7 mark points on the plane in a certain

sense equidistant from their geometrical center. Such curves in many ways are
analogous to common concentric circles, though the related to it geometry does
not coincides with the usual Euclidean.
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Figure 8: The simultaneous surface of three-dimensional time

On the other hand we can get a new group of curves, that corresponds to the
multitude of radial lines of the Euclidean circle the canonic planes by intercepting
the plane of simultaneity by canonic planes, called in the work [4] the cones of
rotation, have tops in the point (T, T, T ) and include the real axis. So, there is a
net of curvilinear coordinates, that in the two-dimensional physical space play the
same role as the polar scheme of coordinates does in the Euclidean plane.

Transformations that turn into themselves the plane of simultaneity so that the
circles and radial curves at the same time map into the same curves and become
in many ways analogous to spatial turns around the point of origin in the pseudo-
Euclidean space, as the physical distance in either of the cases remain the same.
But in the case of the three-dimensional time these transformations are not linear,
and on top of all do not leave invariant the three-dimensional intervals.

6. Physical distance and speed

It could seem that we have approached to the possibility of introduction into the
three-dimensional time of two-dimensional physical distance and speed, it is enough
to bring on the simultaneity plane in correspondence the set of circumferential and
radial curves with the lines of the polar reference frame. But it is not like this. The
fact is that the examined multitude does not admit the introduction as one-digit
such physical notions as the distance and speed at least if the construction is based
on the starting measurement of time intervals. What seems to be practically an
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obvious property of the pseudo-Euclidean spaces turns out to be not-compatible
with the idea if the multy-dimensional time. This circumstance not only decreases,
but on the reverse increases the possibility of the multi-dimensional time to compete
with the Minkowski space for being the geometrical basis of the real world. In fact,
if we follow the idea of chronometry we should associate associate the time intervals,
that are needed to send a desired signal and receive its reflection, with physical
distance. But any attempt to unite this natural and vivid physical principle with
the necessity of one-digitness comes upon obstacles. The idea of rejecting the
one-digitness of the physical distance and speed seems to be a nice and far-reaching
exit (cf. interpretations of quantum-mechanical uncertainty principle).

The above said does not mean that an entirely amorphous structure should
replace the Euclidean geometry of the physical space. The analysis shows that our
radical supposition touches upon not the quality, but only quantity aspect of the
phenomenon. The distance and speed as independent physical categories are not
completely excluded in the multy-dimensional time, but only change their status,
getting the traits uncertainty on the initial geometric level. In particular the idea
of equidistant in the physical meaning objects becomes dependent on which signals
the observer, that defines this equidistance, uses as the reference. In its way the
reference signals are defined by the principle of equality of proper times, where the
hours pass in the corresponding inertial reference frames between sending, reflecting
and receiving the signals. Taking into consideration that the time intervals are the
only value that by definition are measurable in our Finslerian multitude, the task of
distinguishing among the continuous specter of inclined world lines the ones would
be characterized by the equality of intervals is quite possible. Let us note that we
already used the method above, while defining the relatively simultaneous events.
So, we can consider the signals to be etalons if their world lines start in one point,
reach the plane of simultaneity and after refraction gather together and in another
fixed point of the world line of the same observer. It is clear that all the intervals
should be equal either before or after the refraction.

Such logic in constructing drives us to the fact that the physical space of the
observer with its geometrical properties becomes in a way dependent on which set
of reference signals define the geometry. So if the world lines of reference frames
are practically parallel to the line of the observer, he starts to see a space, which in
its characteristics practically coincides with the Euclidean. This is related to the
fact that the ends of the vectors with the same value of the intervals in this cases
lie (as it has been said above) on practically plane and ideal circle, and the latter
while constructing the physical space plays the role of the Finslerian indicatrix.
A common circle is the indicatrix of the two-dimensional Euclidean space. When
tuning to the signals whose world lines are inclined more significantly, the ends
of the corresponding vectors form this time not a circle, but a more sophisticated
closed curve, which is not a plane one. At limit of the signals, whose speeds are
interpreted as the light, this curve transforms into a broken hexagon, examined on
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Fig. 5. The geometry of the two-dimensional physical space is the Finslerian, and
it is this geometry that differs greatly from the Euclidean, but in connection with
the fact that the indicatrix even in this limit case is still closed and flattened out.
The differences between the two geometries are not significant, in connection with
which it is probably possible to mix them up, especially if the experimental cases
are limited to low speeds.

So, if we suppose that our real world has a direct connection with the examined
Finslerian geometry, the appearance of Euclidean and pseudo-Euclidean ideas in
observer outlook should be a natural process of consistent approaches to a more
exact description. On the other hand in our everyday life we use signals whose
speed is by far lower than the light when we try to find the zones that manage
the world. As the matter of fact we use the light only to identify the objects,
and the distance is defined by other slower means – for example by a ruler. This
circumstance leads us to the fact that when in special experiments really high-speed
signals become of great importance, the geometry is considered to be defined before
hand, and that is why even abnormal results will be treated anyhow, but only not
in the direction of revising the obvious geometrical properties.

Conclusion

Among all the above listed properties and peculiarities of the three-dimensional
time, as a representative of a very specific class (the non-linear) of Finslerian spaces,
we should treat as the most important the one, thanks to which it is related to the
most fundamental notion of mathematics – the number – which is the object of
algebra, that has the most common arithmetical properties. We should emphasize
ones more the fact that neither Euclidean nor pseudo-Euclidean spaces with three
or more dimensions do not possess the analogous qualities. The quaternions and
biquaternions used in similar situations are not genuine numbers, as there algebra
has commutative multiplication, as the result of which the construction of a valu-
able theory that would generalize the theory of functions of the complex variable is
not possible (or is extremely difficult). At the same time the given above examples
demonstrate how common Euclidean and pseudo-Euclidean conceptions can come
out of the idea of substitution of the pseudo-Euclidean metric to multy-temporal
case – rather interesting and actual.
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1. Introduction

For the last 100 years the idea, that the Pseudo-Euclidean metric with an
alternating-sign quadratic dependence on the length of the vectors from the mag-
nitude of its components lays in the basis of geometry, has taken root in physics.
But still numerous and various attempts to connect all the known natural forces
nature with the metric and make true the idea of the total geometrization of physics
have failed. This drives to the idea that the reason lies not in the lack of scientists’
creativity, but in the metrics itself, even better to say in the classical quadratic
form, in place of which it is admittedly to use other dependences. Unfortunately,
this attitude, the possibility of which indicated Riemann [1], was for the first time
studied by Finsler [2], and up to nowadays used by hundreds of investigator [3],
did not give eventual pictures. Though nowadays the work in this direction is
continued, it considerably differs from many of them, as it is based on the idea of
scalar poly-products, which is new for the Finslerian geometry, and metric form
that is connected with one of the most fundamental notions in mathematics – the
real number.

2. Multidimensional time

The spaces that have unique correspondence with algebras, that are the sum of
several real number algebras, stand out from Finslerian linear spaces. The metric
functions do not depend on the point and in one of the bases look like:

F (x′) =
∣∣∣

n∏
i=1

x′i
∣∣∣
1/n

, (1)
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where x′i are the components of the vector and n is the number of dimensions.
Such metric functions are well-known in the theory of Finslerian spaces and took
the name of Berwald-Moor’s function [3].

Geometries with such metrics in many ways are of the same type and the
difference is related only to the dimension. The total equality of all non-isotropic
directions is their main peculiarity. As any of such directions can be related to the
proper time of the inertial reference frame, it is appropriate to call such spaces the
multi-dimensional time.

Note. It seems that it is possible to relate a general line with an inertial
reference frame in any linear space, where the element of the length is defined in
every point. But in many spaces some reference frames do not admit the presence
of isotropic connections with other lines that go in a parallel way with the given.
For the viewer related to such reference frames, the existence of isotropic vectors,
with which it is traditional to associate the light signals, becomes the origin to the
idea of the physical distance and consequently the physical space.

The defined in this way spaces not always have the same shape as the one we
got used to (in every day life and thanks to Euclid and Minkowski). At the same
time we have to put a more general meaning than usually into the idea of physical
space. On the other hand nothing prevent us from considering that in the sectors
or dimensions, where isotropic connection is not set or have an extraordinary char-
acteristics, that physical directions are undetectable, though representable from
geometrical point of view. Consequently, it is quite logical to suppose the existence
of some spaces, some parts of directions and even dimensions of which are not
apparent from their physical side. From such point of view it would be interesting
to analyze arbitrary linear spaces and in particular those, connected with quadratic
forms and the Berwald-Moor’s metrics treated over the field of complex numbers.

The chosen geometrical element of every n-dimensional time is its isotropic
sub-space, that is a figure constructed from n-hyperplanes, that divide the multy-
formity into 2n-equal simply connected cameras. Any of the cameras adjoins to
the others, but for the facing, with which it borders in a point. The adjoining
cameras can be classified according to the distinguished by the dimension of the
frontier planes from 1 to (n− 1). All simply connected cameras are equal and have
the shape of regular pyramids, n-hyperplanes of which start from the top and go
to the infinity. We will call such pyramids, by analogy with isotropic cones of the
Minkowski space, the light pyramids. Every light pyramid has n one-dimensional
edges that can easily be connected with a special basis. In the basis the geometrical
correlation of the multy-dimensional time appears in a vivid shape and, as such a
basis is to permutation unique, it is quite natural to call it the absolute.

Any single vector that belongs to the inner area of a light pyramid can be
continuously introduced into any other single vector that belongs to the same pyra-
mid. The respective transformation form (n − 1)-parametrical Abelian subgroup
of movements, that leaves initial metric function (1) invariant. The metrics of such
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transformations in the absolute basis is reduced to the diagonal form:




a′1 0 . . . 0

0 a′2 . . . 0

. . . . . .

0 0 . . . a′n




, (2)

where
∏n

i=1 a′i = 1. The corresponding reflections can be classified as Hyperbolic
turn (that in a way are analogous to the busts of the pseudo-Euclidean spaces)
because such transformations leave on the place a point of convergence of the
tops of all the pyramids and isotropic edges of the last at the same time turn
into themselves. Among continuous movements of the multy-dimensional time
along with hyperboloic turns there is also a n-parametrical subgroup of parallel
transfers. The examined variety doesn’t include any other continuous congruent
transformations and that is why has less freedom than the spaces with quadratic
types of metrics.

The very circumstance made Helmholtz, Lee, Weyl prove a number of theorems
that stated that the oneness of the quadratic metrics [4 – 6]. The main emphasis
was made to maximum mobility in quadratic spaces. This according to them gave
grounds to reject all other metric forms in the meaning of the basis of the real space-
time. Let us note without rejecting the theorem accuracy that its approval is based
on the examination of only the distinguished linear transformations, which means
that it gives a chance to other theorems, where non-linear symmetries play the
same role. In contrast to continuous congruent transformations the discrete group
of symmetry of the multy-dimensional time excels the corresponding Euclidean-
and pseudo-Euclidean spaces, but this is not enough to compete with the latter
one. What really makes the multy-dimensional time the multy-dimensional time
interesting is the presence of distinguished groups of non-linear transformations
which are practically as fundamental as the groups of movements.

Such transformations save invariant not the intervals, but specific scalar forms
of several vectors, that do not have direct analogous quadratic spaces, and that is
why are not well-studied.

It is better to come to the understanding of such polyforms through the general-
izing of the idea of the scalar product. It turns out that in a number of Finslerian
linear spaces the poly-linear symmetry form of n vectors [7] (its special case is
the classical bilinear form) can play the role of the scalar product. Let us call
the poly-linear form the scalar poly-product. Founding on this generalizing we can
enlarge with some Finslerian spaces such fundamental ideas of geometry as the
length, the angle, the orthogonality, etc., the introduction of which is difficult due
to some problems [8].
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In the absolute basis the scalar poly-product of the multy-dimensional time
looks like:

(A,B, . . . ,Z) =
1

n!

∑

(i1,i2,...,in)

a′i1b
′
i2

. . . z′in , at ij 6= ik, if j 6= k. (3)

It is not difficult to believe that with A = B = . . . = Z the form (3) turns into the
metric function (1). We can build the geometry of the linear time in an arbitrary
natural scale using the poly-linear symmetrical form (3). But let us focus on this
case if we base on common ideas about physical measurements and vivid typological
detailedness of the four-dimensional space [9].

3. Four-dimensional time

According to (3) the scalar poly-product, that defines the four-dimensional
time, in the absolute basis looks like:

(A,B,C,D) =
1

4!

∑

(i1,i2,i3,i4)

a′i1b
′
i2
c′i3d

′
i4
, when ij 6= ik if j 6= k, (4)

it follows that the fourth degree of the vector length of such linear space is defined
by the expression:

(X,X,X,X) = |X|4 = x′1x
′
2x
′
3x
′
4. (5)

While turning to the basis analogous to the orthonormalized [7] (it is more visual
than in the absolute case) the expression transforms into a more complicated but
still symmetrical form:

|X|4 = x4
1 +x4

2 +x4
3 +x4

4− 2(x2
1x

2
2 +x2

1x
2
3 +x2

1x
2
4 +x2

2x
2
3 +x2

2x
2
4 +x2

3x
2
4)+8x1x2x3x4. (6)

In a number of cases it is more convenient to use the form picking out one of the
coordinates, in particular x1:

|X|4 = x4
1 − 2(x2

2 + x2
3 + x2

4)x
2
1 + 8(x2x3x4)x1+

+ (x4
2 + x4

3 + x4
4 − 2x2

2x
2
3 − 2x2

2x
2
4 − 2x2

3x
2
4). (7)

The main arguments in favor of the chance of confronting the four-dimensional
time to the real physical world is the presence of a group of continuous symmetries
[10], that can be examined as an alternative to the linear group of spatial turning
of the Minkowsky space. Not a scalar poly-product of the four-dimensional time
(4) is an invariant to the transformations, but a specific form, that is defined by 2
vectors:

S(A,B) =
(A,A,A,B)

(A,A,A,A)1/2
+

(A,B,B,B)

(B,B,B,B)1/2
. (8)

Though the form S(A,B) is not an additive quantity of the vectors that belong
to the interior of domain of a light pyramid, it complies with other very important
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characteristics of the common scalar product, to be more specific: the symmetry,
the rule of multiplication by the vector, the sign distinctness and the triangle rule
[10]. According to this there exists a principal opportunity in the four-dimensional
time to introduce the idea of the three-dimensional distance, that corresponds to
most of common conceptions of the physical quantity, but for the additivity. From
philosophical point of view the last characteristic is very important. No, really, why
should the rule of composition differ from the one of three-dimensional distances,
as both values are relative? Such linearity appears only when we work with big
distances, as well as the non-linearity of the rule of speed composing is essential
only in the relativist field. At the same time an additional fundamental constant
– the maximum possible magnitude of the physical system, or, in other words, the
radius of the Universe, acts as the light speed in the three dimensional distance.
For everyday distances we can still use the linear approximation, but in the space
scale, in case of logical appliance of the multy-dimensional time conception, certain
corrections should be made.

4. Plenty of relatively simultaneous events

We should first of all clarify the situation about a number of simultaneous
events to give the definition of the four-dimensional time, three-dimensional speed
and distance. Let us understand under it the total of points equidistant (of course
in the meaning of the accepted Finslerian metrics (5)) from a pair of fixed events.
In contrast to the Minkowskian space, where a multitude of points constitute hy-
perplanes, in the four-dimensional time the corresponding planes are non-linear
[10]. Their form depends not only on the direction of the world line, that connects
the fixed points, but also on the magnitude of the interval that separates them.
This is the most fundamental difference from the space of the Special Theory of
Relativity, as the idea of simultaneity is defined now not only by the speed of the
reference frame, but also by the interval of time that separates the instantaneous
position of the observer and the examined spatial layer of events. So the relativism
in the four-dimensional time touches upon not only the hyperbolic turns, with
the help of which realizes the switch between one system to another, but also the
transmission, that enables to change the reference point.

From philosophical point of view such generalization is quite logical, but in fact
establishes a sort of relationship between the two subgroups of the total group of
congruent symmetries. As an indirect affirmation of the made conclusion can serve
the fact that in algebra transmissions lack the operation of composition, which are
a part of the four-dimensional time, and hyperboloic turnings – multiplication, and
mathematics do not question relationship between them. A natural way of intro-
ducing the idea of the physical distance in the four-dimensional time is offering a
method that from conceptual point of view is analogous to the method of defining of
the idea in the Minkowskian space. By definition under distance we can understand
a value that equals (or is proportional) the tie intervals, that go along the world
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line of the observer, between sending some uniformly moving model signals to the
world lines of the examined objects, and receiving the reflected signals. It leads to
the fact that it is senseless to use the idea of distance towards single events in the
four-dimensional time, and is productive concerning only chains of them, that are
presented by certain lines. We can pay no attention to the fact in the Minkowskian
space, as multitudes regarding simultaneous events are hyperplanes, as a result the
distance defined for an arbitrary pair of parallel lines were still substantial and for
a pair of points.

Not to overload the brief article with excessive community, but at the same
time to be rather specific, we will give the result to which the described above
algorithm drives only in one case – when the world line of the observer coincides
with the real axis, it itself is situated at the point (T, 0, 0, 0) and the necessary
layer goes through the point (0, 0, 0, 0) (Fig. 1) [Here and later on the appearing
coordinates relate to the generalized orthogonal basis [7] that differs tremendously
from the absolute].

Figure 1: The world lines of direct and opposite signals with speed module

In this case the equalization, that relates the real coordinate θ of a point of the
plane simultaneity to three other coordinates x2, x3 and x4, follows from the rule of
equality of the vector length that have the following components (T + θ, x2, x3, x4)
and (T − θ,−x2,−x3,−x4). (Variable θ means deviation of concrete point from
hyperplane x1 = 0.) Using the expression for the magnitude of the interval (7) and
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at the same time concerning that for even degrees (−x)n = xn, we have:
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2
4−2x2
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2
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Opening the brackets and collecting terms we get:

Tθ3 + (T 2 − x2
2 − x2

3 − x2
4)Tθ + 2x2x3x4T = 0. (9)

introducing sizeless value η = θ/T, χ2 = x2/T, χ3 = x3/T, χ4 = x4/T and taking
into consideration that T 6= 0 we get a cubic equalization relatively to η:

η3 + (1− χ2
2 − χ2

3 − χ2
4)η + 2χ2χ3χ4 = 0. (10)

Its real root characterizes the relative value of deflection of the simultaneity plane
abscissa from the coming through its center according to the hyperplane x1 = 0. We
will call such parameter the coefficient of non-platitude. When χ2 ≈ χ3 ≈ χ4 → 0,
η also stems to 0, we mean around the point (0, 0, 0, 0) the plane of the simultaneity
turns into the hyperplane x1 = 0.

The plane of simultaneity has physical meaning only inside the light pyramid,
that has the world line of the observer, in other case it would be necessary to admit
the physical meaning of the superlight speed. Following the method of the Special
Theory of Relativity, with every vector that start at (−T, 0, 0, 0) and ends at the
plane of simultaneity, or in other words at (ηT, x2, x3, x4) it would be quite natural
to connect the world line of the signal, that has a definite uniform speed. We will
transform the signals of the vectors, if they have equal interval values, according
to the value of the speed module: |Vdir|. Logically the signal, that is confronted
to the vector, connecting the points (ηT, x2, x3, x4) and (T, 0, 0, 0), has the value
that is inverse to the speed |Vrev|. On contrast to the Minkowskian space such
vectors have components that differ not only in sign but also in value (Fig. 1), to
be more specific: Vdir ↔ (ηT +T, x2, x3, x4) and Vrev ↔ (T − ηT,−x2,−x3,−x4).
In the Minkowskian space the coefficient of the non-platitude η for every point of
the plane of the simultaneity equals 0, as the result the components of the vectors
that correspond to direct and inverse signal look like: Vdir ↔ (T, x2, x3, x4) and
Vrev ↔ (T,−x2,−x3,−x4).

To give a definition of distance between the real axis and an arbitrary line
parallel to it, which is totally defined by 3 fixed coordinates x2, x3, x4, we should
have a model signal, or even better to say vectors related to it, with the help of
which it is possible to make intervals that would equal the distance of different
directions. As well as in the space of the Special Theory of Relativity, in the four-
dimensional time it is more convenient to relate such symbol signals to isotropic
vectors, that at one end have the same beginning and from the other – they set
against the plane of simultaneity. In the Minkowskian geometry a number of ends
of such vectors represent an intersection of two light cones: the future with the
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top at point (−T, 0, 0, 0) and the past whose top is deposed to (T, 0, 0, 0). As is
well known the result of such interception is a common sphere, that lies completely
in the hyperplane x1 = 0. This is typical only for spaces with a quadratic metric
type. In any case in the fur-dimensional time an analogous figure that is the result
of interception of two facing light pyramids, is not plane though consists of linear
elements.

Tit is better to make sure of it using the three- and four-dimensional time
[12] as the example, in particular looking at Fig. 2 where it is demonstrated the
interception of two light pyramids. For comparison, an interception of two light
cones of the three-dimensional pseudo-Euclidean space is demonstrated on the same
picture. In the three-dimensional time the interior of domain, that belongs to either
of the pyramids, is a common cube, one diagonal of which is a segment of the real
axis [−T, T ]. At the same time the interception of two light pyramids results in a
figure, built from (n − 2) edges of such cube, excluding the points −T and T . In
this case this is a hexagon ABCDEF and it does not belong to the plane x1 = 0,
though compiles one of it rectilinear elements.

Figure 2: The simultaneous surface of three-dimensional time (right) and in three-
dimensional pseudo-Euclidian space (left)

It is analogous in the four-dimensional time: the area that belongs to two facing
light pyramids is a four-dimensional cube and the plane of the interception of their
isotropic edges is built by 20 2-edges of the cube, that do not include the main
diagonal [−T, T ]. It is difficult to demonstrate this figure using a plane scheme that
is why we will limit to the examined above a three-dimensional prototype. In the
work [13] there was made an attempt to examine the corresponding dodecahedron
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(but it seems that the author has lost its principle four-dimensional character and
depicted it as a common three-dimensional figure).

In the Minkowskian space the world lines that are parallel to the world line of
the observer and touch the figure, which is the interception of two light cones, are
accepted as equidistant points of the physical space of the observer, and the value
proportional to the axis length of such double cone is referred as the distance. We
can act in the analogous way in the four-dimensional time. In this case the parallel
to the real axis lines, that come through the point of interception of the edges of
two facing light pyramids, become equidistant from it, and in the role of the distant
act the value that proportional to the main diagonal of the hypercube that is the
result of such interception. In order to find the numerical value of it we should
choose 2 real roots from the equalization:

x4
1−2(x2

2 +x2
3 +x2

4)x
2
1 +8(x2x3x4)x1 +(x4

2 +x4
3 +x4

4−2x2
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2
3−2x2

2x
2
4−2x2

3x
2
4) = 0, (11)

which are nothing but the abscises of the interception point of the line, which is
related to the coordinates x2, x3, x4, and 4 isotropic hyperplanes. One of the roots
x1,1 corresponds to the point that belong to the pyramid of the past, another x1,2

– to the future, as the other 2 redundant roots x1,3 and x1,4 belong to the edges
of the plane of the side pyramids. In this case we can consider the distance to
be half of the sum of the first 2 roots: Rc = 1/2(x1,1 + x1,2), while the index ”c”
emphasizes that the value is defined by light signals.

The three-dimensional space that appears as the result of such procedure is
the Finslerian and is characterized by its indicatrix whose role plays the described
above [13] dodecahedron. The space in its characteristics is quite close to the
Euclidean, it comes from the convexity and two-dimensional restraint of its indi-
catrices, that does not differ greatly from the indicatrix of the Euclidean space,
which is a common sphere. But the difference between the Euclidean sphere and
the examined dodecahedron is rather principle to mix up their geometries. That is
why there was made a conclusion in the work [13] that the idea that in the basis of
the geometry of the real macro-world lies the four-dimensional time metrics. But
still we think that while making the conclusion one very important circumstance,
that when orientating in the real space the observer uses much slower signals rather
than the light ones, was not taken into consideration. The light only helps, it is to
identify the objects, as the comparison of their distances is realized by other slower
means. The fact was not important in the Special Theory of Relativity as the
indicatrix of the physical space did not depend on the speed of the signal. It is not
like this in the multy-dimensional time. The more the relative speed of the probing
signals differs from the light, the less the corresponding indicatrix distinguished
from the hyper-plane, the more round become its angles and the more it looks like
the three-dimensional sphere. At the limit when the relative speed of signals, with
the help of which the physical space is examined, stems to 0, it stops being different
from the Euclidean. So if we detect some static objects in the four-dimensional
time with the help of the light, and define the distance with the help of other
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slower signals, so in this case we will come upon only the Euclidean geometry. Let
us note that the very condition is complied in the vast majority of common for a
man situations.

On the other hand it is not questioned that there is a principle opportunity to
carry out an experiment in order to get to know which geometry better suits the real
physical space – the Riemannian or the Finslerian. In this case it is important that
the distance between fixed objects should be made by other light or slower signals.
It is paradoxical but such experiments that do not accept double interpretation
lack among the huge number of experimental materials. But the differences that
should be traced are not large and that is why can be explained in different ways.

The above accepted conception of building the three-dimensional time explains
why in absolutely equal in geometrical rights coordinates of the four-dimensional
time the observer, associated with a world line, will register a significant difference
between the coordinate that relate to his proper time and the other three. The
answer lies in the topological difference between indicatrices of the geometrical and
physical spaces. So if the first has the look of a specific 16-line hyperboloid, the
second is a ring closed in two dimensions, its right form though depends on the
used in measurements signals, is static from topological point of view.

5. Conclusions

Forms that save the scalar form (8), do not leave the intervals invariant, and
tot ell the truth are not movements of the four-dimensional time. But as they turn
the hyper-planes of the simultaneity (10) into themselves and do not change the
three dimensional distances Rc they can act as common physical turns. There can
emerge an explanation of the famous paradox – between the forward and rotatory
movement. It is difficult to use the principle of relativity to the latter case, and
the most famous attempt to examine it was made by Mach, who thought that the
centrifugal forces owe their existence to the enormous mass of all the bodies in the
Universe. According to Mach if we start turning the whole Universe a static small
body will be affected by the centrifugal force that equals the force that emerge
during the turning of the body itself. For many people it stays unclear the truth
of the statement, and the question itself is still acute. In case we correspond to
the real world in place of the Galileo or Pseudo-Euclidean metrics the geometry of
the four-dimensional time the problem itself will not appear as the transformation
that is responsible for the forward and rotatory movement, correspond to absolutely
different continuous symmetries.

The analysis of the multiformity characteristics made in the work that claims
to become an alternative to the Minkowski space is far from being finished. But the
fact that we can give such condition for one of the most simple Finslerian metrics
of the fourth degree that has nothing in common with the usual quadratic form,
when it can stimulate not only classical but relative conceptions about the physical
space, is worth paying attention to.
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Introduction

The H3 and H4 algebras belong to the commutative–associative algebras of the
Hn type which are of the simplest structure. These algebras are characterized by
some preferred basis. The multiplication of numbers is realized in terms of this basis
in a componentwise manner similarly to the addition in arbitrary algebras. On the
other side, in Hn type algebras, which can be called hyperbolic, H3 and H4 algebras
directly follow after the algebras of real (H1) and double (H2) numbers, which
possessed important properties for their physical applications [6, 11]. We set forth
an assumption of ”inheriting” these properties by 3- and 4- dimensional algebras
under consideration. As a motivation of this assumption we recall the relation
between Berwald–Moor’s metrics and H4 algebra in Finsler generalization of the
relativity theory [1]. From the point of view of possible applications, hyperbolic H4

algebra is the most promising one because the n = 4 dimensional spaces have the
topological preference [7]. However, H3 algebra possesses one evident advantage.
It is possible to use the computer visualization animation for figures, surfaces, and
lines in the three dimensional metrical space associated with this algebra. Although
it is not worth overestimating the analytical capacities of such applications, it gets
a special visuality to geometric properties of this space. Therefore a sufficiently
general approach to physical treatment of the hyperbolic space properties, offered
in the first part of this paper, is represented for a space accounted with H3 algebra.
Its properties give the cube of norm as

|A|3 = |a1a2a3|,
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where ai are components of the vector in the preferred basis, combined from three
numbers ei, where i = 1, 2, 3, with properties (ei)

2 = ei, ei ·ej = 0 when i 6= j. Real
numbers on a line can be shared in two classes: they are positive numbers, placed
on the right side from zero, and the negative ones, placed on the left side from zero.
Two isotropic lines in the double numbers algebra divide the pseudo-euclidian plane
into 22 quadrants. Similarly to this the associated space is divided into 23 octants,
and for all numbers appropriated to one octant points it is typical that the same
sign combination of components is taken with respect to the preferred basis. The
boundaries of the octants are three isotropic planes with equations ai = 0, where
i = 1, 2, 3. It will be noted also that since a hyperbolic algebras are algebras with
a unity, defined by an expression

1 = e1 + e2 + · · ·+ en,

two octants of the treated space can be preferably be selected. They are the
octants, containing 1 and -1; they are characterized by numbers with all positive
or all negative components, respectively.

Using considered algebras requires an availability of euclidian or pseudo-
euclidian properties. In the order of algebras: the Dirac algebra [2], quaternions [3],
biquaternions [5] – the existence of such properties provides a classical appearance
of the norm of the number. However, there is a slight amount of such algebras, but
amongst commutative-associative algebras only the double number algebra belongs
to such class, in which a square of the norm of the numbers is given by

|A|2 = |(a1)2 − (a2)2|
(see [4]). Chronogeometry method [8], [12] gives an other opportunity to establish-
ing properties which are similar with the properties of euclidian or pseudo-euclidian
spaces, in the spaces associated with the considered algebras; the first part of this
paper is devoted to application of this method to H3. Some more opportunity to
establishing the sought properties appears on application of symmetric polyform
associated with the algebra [9], which, for example, has the following form for H3

algebra:

(A,B, C) =
1

3!
(a1b2c3 + · · ·+ a3b2c1).

The second part of this paper is connected with such opportunity applied to H4 al-
gebra, where the form having appearance as pseudo-euclidian metric is determined
by a polylinear form of four vectors.

1 A simultaneity surface in the commutative-associative algebras
(as examplified by H3)

1.1 Axiomatics

We shall treat the following statements, playing the role of axioms, as a principle
to interpret physically the properties of the considered algebras class.
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1. It is possible to connect an algebra number with some spatial-temporal
event.

2. The real axis of the space, which direction is given by means of the unity
of the algebras, is treated as a temporal axis, while the norm of the number is
interpreted as an observer’s time interval whose world line coincides with the vector
corresponded to this number.

3. The increase of a relative velocity of particle or signal results in increasing
an inclination of tangent line to the particles world line in the given point to the
observer world line, and resting material points have world lines which are parallel
to the observer line.

4. Light signals, which have a maximal velocity, are connected with isotropic
hypersurfaces of the algebra; and it is supposed that the velocity of the light signals
does not depend on their propagation direction. According to these statements two
selected octants with 1 and −1, which are referred to above, are the analogs of the
cone of the future and the past Minkowski space in the space associated with H3

algebra, respectively. Contrary to the Minkowski space in the considered space
a domain outside these cones also possesses isotropic directions, because consists
of six side cones. In this paper we restrict our attention to the most common
particular case, when the observer world line coincides with the real axis.

1.2 Exponential form of the H3 algebra number representation
with respect to the basis (1, j, k)

Any number in the selected basis is represented as:

A = a1 · e1 + a2 · e2 + a3 · e3.

For an exponential function in terms of this basis the following formula takes place:

exp(a1 · e1 + a2 · e2 + a3 · e3) = exp(a1) · e1 + exp(a2) · e2 + exp(a3) · e3. (1)

Since in the considered algebra we get |A|3 = |a1a2a3|, any number with ai > 0
is represented as

A = |A| · exp(b1e1 + b2e2 + b3e3)

with a restriction
b1 + b2 + b3 = 0, (2)

which implies the identity:

| exp(b1e1 + b2e2 + b3e3)| = 1.

The other basis of the algebra is composed from vectors:




1 = e1 + e2 + e3

j = sin ϕ0 · e1 + sin(ϕ0 + 2π/3) · e2 + sin(ϕ0 + 4π/3) · e3

k = cos ϕ0 · e1 + cos(ϕ0 + 2π/3) · e2 + cos(ϕ0 + 4π/3) · e3

(3)
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The vectors appearing in this basis are mutually orthogonal (in the usual euclid-
ian sense), while an arbitrary parameter ϕ0 can be treated in a certain sense as
the angle of a simultaneous rotation of a pair of vectors j, k around the real axis.
If t, x, y – are coordinates of the number in a new basis, then according to the
transformation rules of coordinates of the number we have a system in the other
basis: 




a1 = t + sin ϕ0 · x + cos ϕ0 · y
a2 = t + sin(ϕ0 + 2π/3) · x + cos(ϕ0 + 2π/3) · y
a3 = t + sin(ϕ0 + 4π/3) · x + cos(ϕ0 + 4π/3) · y

(4)

from which it follows that t = (a1 + a2 + a3)/3. Therefore by (2) the number
representable in a exponential form in the basis (1,j,k) is given by

A = |A| · eα·j+β·k.

If we modify this exponential representation, introducing an definition ρ =√
α2 + β2, we obtain

A = |A| · eρ(cos ϕ·j+sin ϕ·k). (5)

Thus, in agreement with (5), the number at this representation is given by three
parameters: the norm of the number |A|, the ”radial coordinate” ρ, and the ”angle
coordinate” ϕ. Making use of (1) and (3), formula (5) takes simple and elegant
form in components:





a1 = |A| · exp(ρ sin[ϕ0 + ϕ])

a2 = |A| · exp(ρ sin[ϕ0 + 2π/3 + ϕ])

a3 = |A| · exp(ρ sin[ϕ0 + 4π/3 + ϕ])

1.3 Method of setting the distance between the real axis and the parallel line

For determination of the distance between the world lines of resting particles,
one of which lying on the real axis, we use the chronogeometry method. Consider
the exchange of signals with the constant velocity ν ≤ c; for simplicity we shall
arrange point-events of signal transmission and the reception of the reverse signal
on the real axis symmetrically with respect to zero time moment. Because of an
equality of lengths of straight and reverse signals velocity |B − A1| = |A2 −B|, so
we have:

(a1 + T )(a2 + T )(a3 + T ) = (T − a1)(T − a2)(T − a3),

where ai + T > 0, T − ai > 0, which after expanding takes form:

(a1 + a2 + a3) · T 2 + a1a2a3 = 0. (6)
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Figure 1: The measuring of a distance between world lines by prelight signals exchange.

The multitude of points-events satisfied to equation (6) form a surface of a
simultaneity: it is for the observer on the real axis, being in the point with T
coordinate, all these events are taking place in the same zero moment of time.
Point A = (0, 0, 0) belongs to the simultaneity surface, and the tangent plane to
this surface in the origin has an equation:

a1 + a2 + a3 = 0. (7)

Substitution of (4) into (6) allows to obtain the equation of the simultaneity surface
in form of the dependence of the time of the signal passing (on a clock of resting
observer) T from introduced coordinates {t, x, y} of point of the simultaneity sur-
face:

T 2 =
1
12

(x2 + y2)− 1
3

{
t2 +

1
t

[
3
4
xy(y · sin 3ϕ0 − x · cos 3ϕ0) +

+ x3 sinϕ0 sin(ϕ0 + 2π/3) sin(ϕ0 + 4π/3) + y3 cosϕ0 cos(ϕ0 + 2π/3) cos(ϕ0 + 4π/3)
]}

.

According to this equation (and similar equations for other algebras, in partic-
ularly, H4 algebra) the first items on the right side have an euclidian form, and then
they dominate on other remaining items, square of travel time of signal depends
linearly on square of the euclidian distance in the world lines space, which can be
useful for the next physical interpretations.

1.4 The system of curvilinear coordinates of the simultaneity surface
and the transformations mapping it to itself

Keeping in mind an important of an invariant transformations in modern
physics, we shall briefly consider the topic of finding the transformations of the
simultaneity surface, mapping it to itself. We introduce two-dimension coordinate
system {ρ, ϕ} on this surface, somewhat analogous to polar coordinate system on
two-dimension plane to get:
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a1 = (T − ρ) · eR(ρ,ϕ) sin(ϕ0+ϕ) − T,

a2 = (T − ρ) · eR(ρ,ϕ) sin(ϕ0+2π/3+ϕ) − T,

a3 = (T − ρ) · eR(ρ,ϕ) sin(ϕ0+4π/3+ϕ) − T,

(8)

where the function R = R(ρ, ϕ) taken from transcendent equation is obtaining by
using the coordinates (8) into (6):

Z̄3 − Z̄2
[
e−R sin(ϕ0+ϕ) + e−R sin(ϕ0+2π/3+ϕ) + e−R sin(ϕ0+4π/3+ϕ)

]

+2Z̄
[
eR sin(ϕ0+ϕ) + eR sin(ϕ0+2π/3+ϕ) + eR sin(ϕ0+4π/3+ϕ)

]− 4 = 0,

where Z̄ = (T − ρ)/T .

Figure 2: Curvilinear coordinates system ρ, φ on simultaneity surface.

In the vicinity of zero at a1, a2, a3 ¿ 1, R ¿ 1, ρ ¿ 1, the equations (8) are
got simplified:





a1 ∼= R · T · sin(ϕ0 + ϕ),

a2 ∼= R · T · sin(ϕ0 + 2π/3 + ϕ),

a3 ∼= R · T · sin(ϕ0 + 4π/3 + ϕ),

so that
a1 + a2 + a3 ∼= 0 and (a1)2 + (a2)2 + (a3)2 ∼= (R · T )2. (9)
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Thus, according to (9), the coordinate system (8) is distinguished: in the vicin-
ity of zero the parameter R is proportional to euclidian distance from a point,
located on the simultaneity surface, to the center of this surface, in which R = 0.

Then independent transformations of the simultaneity surface we seek are ”ro-
tations” by angle ∆ϕ(ϕ → ϕ + ∆ϕ) and ”a similarity transformations” with a
coefficient K(ρ → K · ρ).

2 The representation a Lorentz transformations by rotations
in the space, associated with H4 algebra.

Following [10], we define the inner product of two arbitrary (with positive values
of components) vectors A and B in the space under consideration by a symmetric
four-form of H4 space as:

(A, B) :=
(A,A, B,B)

|A| · |B| .

The inner product of two vectors satisfying to properties of positiveness, homo-
geneity, and normality:

1. (A,B) > 0;
2. (kA,B) = (A, kB) = k(A,B);
3. (A,A) = |A|2.

The inner product of units vectors a = A/|A| and b = B/|B| may be regarded
as an angle characteristic, setting a relation between two directions defined by these
vectors – it is expressed via quotient components of these vectors (d = b/a):

(a, b) = (d1d2 + d1d3 + . . . d3d4)/6. (10)

Consider a basis in the space associated with H4 algebra, consisting of these vectors:




1 = e1 + e2 + e3 + e4,

j′ = 3e1 − e2 − e3 − e4,

k′ =
√

2(2e2 − e3 − e4),

l′ =
√

6(e3 − e4).

We denote coordinates of relation of two considered vectors in a new basis via
td, xd, yd, zd and expressing (10) via these components, we obtain:

(a, b) = t2d − x2
d − y2

d − z2
d.

We shall denote the nonlinear transformation of 4-space, associated with H4 al-
gebra, which remains all vectors in the direction setting by vector A in rest, and
retains the introduced inner product, as a rotation of vector B round a vector A.
Thus, in addition to the other representations of Lorentz group [13] the represen-
tation by rotations round arbitrary time-like axis in the space, associated with H4

algebra, can be used.
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3 Results and conclusions

The method of determination of the distances between the world lines intro-
duced for the space associated with a commutative-associative H3 algebra (or H4)
allows to distinguish ”a euclidian part”.

A new geometric interpretation of the Lorentz transformations as rotations in
the space connected with algebra H4 is obtained. Arbitrary setting of a rotation axis
is possible; all said above gives a hope on the application of such new interpretation
in relativity physics.
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We introduce the notion of the generalized-analytical function of the polynumber
variable, which is a non-trivial generalization of the notion of analytical function of
the complex variable and, therefore, may turn out to be fundamental in theoretical
physical constructions. As an example we consider in detail the associative-commutative
hypercomplex numbers H4 and an interesting class of corresponding functions.
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1. Introduction

Let Mn be an n-dimensional elementary manifold and Pn denote the system
of n-dimensional associative-commutative hypercomplex numbers (polynumbers,
n-numbers), and a one-to-one correspondence between the sets be assigned. Under
these conditions, we choose in Pn the basis

e1, e2, ..., en; eiej = pk
ijek, (1)

X = x1 · e1 + x2 · e2 + · · ·+ xnen ∈ Pn, (2)

where e1, e2, ..., en – symbolic elements, pk
ij stand for characteristic real numbers,

and x1, x2, ..., xn – real coordinates with respect to the basis (e1 ≡ 1, e2, . . . , en).
Obviously, the numbers x1, x2, ..., xn can be used not only as the coordinates in Pn,
but also as coordinates in the manifold Mn , so that (x1, x2, ..., xn) ∈ Mn. Though
in Mn we can go over to any other curvilinear reference frame, the reference frame
{xi}, as being built by the help the basis of polynumbers and a fixed one-to-one
correspondence Mn ↔ Pn, ought to be considered preferable (as well as any other
reference frame connected with this by non-degenerate linear transformation). The
polynumber algebraic operations induce the same operations in the elementary
manifold (formally) and in the tangent space at any point of manifold (informally).
Accordingly, the tangent spaces to Mn are isomorphic to Pn.

The function

F (X) := f 1(x1, · · · , xn)e1 + · · ·+ fn(x1, · · · , xn)en (3)

of the polynumber variable, where f i are sufficiently smooth functions of n real
variables, will be considered to be a vector (contravariant) field in Mn. Hence,
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apart from addition and multiplication by number, any operation of multiplication
of vector fields

fk
(3) = f i

(1) · f j
(2) · pk

ij (4)

can also defined in Mn. It is useful but not obligatory to consider the space Mn to
be the main (“the examined”) object and the space Pn to be a sort of an instrument
with the help of which the space Mn is “examined”. In the general case the parallel
transportation of a vector in the space Pn does not correspond to the “parallel
transportation” of the same vector in the space Mn, so that for a due definition
of absolute differential (or the covariant derivative) we are to have the connection
objects or the quantities which may replace them. If we avoid introducing the pair
{Mn, Pn}, restricting the treatment only to associative-commutative hypercomplex
numbers, then it is natural to introduce the definitions

dX := dxi · ei (5)

and

dF (X) := F (X + dX)− F (X) =
∂f i

∂xk
· ei · dxk. (6)

The function F (X) of polynumber variable X is called analytical, if such a
function F ′(X) exists that

dF (X) = F ′(X) · dX, (7)

where the multiplication in the right-hand part means the polynumber operation.
From (7) it follows that

∂f i

∂xk
= pi

kj · f ′j. (8)

Since with respect to the basis ei with the components e1 = 1 the equalities

pi
1j = δi

j (9)

hold, we have

f ′i =
∂f i

∂x1
. (10)

Inserting (10) in (8) yields the Cauchy-Riemann relations

∂f i

∂x1
− pi

kj ·
∂f j

∂x1
= 0 (11)

for the functions under study. The number n(n − 1) of these relations is grow-
ing quicker that the number n of components of analytical function. This leads
to the functional restriction of the set of such functions at n > 2. The present
work is just attempting to elaborate a non-trivial extension of the notion of ana-
lytical function of polynumber variable subject to the condition that number of
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the Cauchy-Riemann-type conditions does nor exceed the number of unknown
function-components. The first step in this direction has been made above when
introducing the pair {Mn, Pn}. Therefore it seems natural to replace the differential
6) by means of the absolute differential

DF (X) := 5kf
i · ei · dxk, (12)

where

5kf
i :=

∂f j

∂xk
+ Γi

kj · f j (13)

is the covariant derivative, and Γi
kj means ”the connection coefficients”. Instead of

the formulas (8) and (10) we get

5kf
i = pi

kj · f ′j and (14)

f ′i = 51 · f i, (15)

and the Cauchy-Riemann conditions take on the form

5kf
i − pi

kj · 51f
j = 0. (16)

Of course, ”the connection objects” Γi
kj in the formula (13) are not obligatory to

be uniform for all the set of functions obeying the conditions (16).

2. Definitions and basic implications

Let us call the function F (X) generalized-analytical, if such a function F ′(X)
exists that

D̃F (X) = F ′(X) · dX, (17)

where
D̃F (X) ≡ 5̃kf

i · ei · dxk (18)

and the definition

5̃kf
i :=

∂f i

∂xk
+ γi

k (19)

has been used. It is assumed that under the transition from one (curvilinear) coor-
dinate system to another coordinate system the involved objects γi

k are transformed
according to the law

γi′
k′ =

∂xk

∂xk′ ·
∂xi′

∂xi
· γi

k −
∂xk

∂xk′ ·
∂2xi′

∂xk∂xi
· f i. (20)

It will be noted that such a definition entails that 5̃kf
i behaves like a tensor. The

quantities γi
k will be called the gamma-objects. In general we do not assume the

relations
γi

k = Γi
kj · f j (21)
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with a single ”connection object” Γi
kj for generalized-analytical functions. It would

be more precise to say of the pair {f i, γi
k}, such that the analytical function of

polynumber variable is the pair {f i, 0}, but this pair transform to the pair {f i, γi′
k′ 6=

0} under going over from the special coordinate system to another curvilinear one.
From the definition of generalized-analytical functions it follows that

5̃kf
i = pi

kj · f
′j (22)

and
f
′j = 5̃1f

i; (23)

the respective generalized Cauchy-Riemann relations take on the form

5̃kf
j − pi

kj5̃1f
j = 0. (24)

The number of unknown functions in the pair {f i, γi
k} equals n+n2 = n(n+1), –

which is more than number n(n− 1) of the generalized Cauchy-Riemann relations
(24). Thus, to use the notion of generalized-analytical function in theoretical-
physical constructions it is necessary to additionally establish and formulate the
set of requirements (possibly one requirement) which, when used in conjunction
with the notion of generalized-analytical function, would lead unambiguously to
equations of some field of physical meaning. Usually, they are n partial differential
equations of second order for n independent function-component field.

If {f i
(1), γ

i
(1)k} and {f i

(2), γ
i
(2)k} – two generalized-analytical functions, then their

arbitrary linear sum with real coefficients α, β is a generalized-analytical function.
This ensues directly from the definition, on using also the formulae (22)–(24) and
(20). Thus, we have

α · {f i
(1), γ

i
(1)k}+ β · {f i

(2), γ
i
(2)k} = {α · f i

(1) + β · f i
(2), α · γi

(1)k + β · γi
(2)k}. (25)

Now, let us consider the polynumber product of two generalized-analytical func-
tions f i

(1) and f j
(2):

fk
(3) = f i

(1) · f j
(2) · pk

ij (26)

and try to find the object γi
(3)k such that the pair {f i

(3), γ
i
(3)k} be generalized-

analytical function. To this end we formally differentiate the left and right parts
of (26) with respect to xk and use the formula (22), obtaining

∂f i
(3)

∂xk
+ γi

(3)k = pi1
kjp

i
i1i2

f ′j(1)f
′j2
(2) + pi2

kjp
i
i1i2

f i1
(1)f

′j
(2). (27)

Owing to the formula
pr

im · pm
kj = pr

km · pm
ij (28)

(which is an implication of the properties of associativity and commutativity of
polynumbers), we can write
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∂f i
(3)

∂xk
+ γi

(3)k = pi
kjp

j
i1i2

(f ′i1(1)f
i2
(2) + f i1

(1)f
′i2
(2)), (29)

where
γi

(3)k = pi
i1i2

· (γi1
(1)kf

i2
(2) + f i1

(1)γ
i2
(2)k). (30)

The result (29) can conveniently be represented in terms of the absolute differential
as follows:

D[F(1)(X) · F(2)(X)] = [DF(1)(X)] · F(2)(X) + F(1)(X) · [DF(2)(X)] or (31)

D[F(1)(X) · F(2)(X)] = [F ′
(1)(X) · F(2)(X) + F(1)(X) · F ′

(2)(X)] · dX. (32)

From the last formula we obtain the relation

[F(1)(X) · F(2)(X)]′ = F ′
(1)(X) · F(2)(X) + F(1)(X) · F ′

(2)(X). (33)

It remains to clarify whether the transformation law of the objects γi
(3)k under

the transitions to arbitrary coordinate system is correct. With this aim the formula
(30) should be written in a varied form:

γi
(3)k = pi

i1i2
· (γi1

(1)kf
i2
(2) + f i1

(1)γ
i2
(2)k) + (Γi

kmpm
i1i2

− Γm
ki1

pi
mi2

− Γm
ki2

pi
i1m) · f i1

(1)f
i2
(2), (34)

where Γj
im ≡ 0 with the respect to our special coordinate system; however, under

the transition to an arbitrary coordinate system the objects Γj
ik transform like

ordinary connection objects and in general Γj′
i′k′ 6= 0 . The condition Γj

ik ≡ 0 can
also be replaced to apply the more general condition

Γi
kmpm

i1i2
− Γm

ki1
pi

mi2
− Γm

ki2
pi

i1m ≡ 0 (35)

and, moreover, the three coefficients Γ in (35) can be regarded as different. It
is possible to restrict ourselves to but the class of generalized-analytical function
obeying the property

((1)Γi
kmpm

i1i2
− (2)Γm

ki1
pi

mi2
− (3)Γm

ki2
pi

i1m) · f i1
(1)f

i2
(2) ≡ 0. (36)

Given the special coordinate system. If one has Γi
jk ≡ (1)Γi

jk ≡ (2)Γi
jk ≡ (3)Γi

jk ≡
0, then the tensor pk

ij is transported ”parallel” without any changes in components.
Thus, the poly-product of two generalized-analytical functions of polynumber

variable is again a generalized-analytical function, and the formula (33) takes place
for derivatives if one adopts that the ”connection coefficients” associated to the
tensor pk

ij with respect to the special coordinate system vanishes identically over
all three indices. In terms of the pairs {f i, γi

k} the poly-product of two generalized-
analytical function can be written as follows:

{f i1
(1), γ

i1
(1)} · {f i2

(2), γ
i2
(2)} = {pi

i1i2
f i1

(1)f
i2
(2), p

i
i1i2

· (γi1
(1)kf

i2
(2) + f i1

(1))γ
i2
(2)k)}. (37)
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So, the polynomial or the converged series with real or polynumber coefficients of
one or several generalized-analytical functions is a generalized-analytical function.
The ordinary differentiation rules are operative for the respective derivative (which
was denoted my means of the prime (′)) of such polynomials and series, whenever
the tensor pk

ij with respect to the special coordinate system vanishes identically
over all three indices.

Since in such a theory of generalized-analytical functions of polynumber variable
(in which the ”connection objects” as well as the gamma-objects are different
for each tensor and, generally speaking, for each index), the concept of ”parallel
transportation” is deprived of the geometrical simplicity that is characteristic of
the spaces of affine connection, the Riemannian and pseudo-Riemannian spaces
included. This notwithstanding, the concepts of absolute differential and covariant
derivative can readily be extended on the basis of invariance of their form with
respect to any curvilinear coordinate system. The covariant derivative 5̃k for
arbitrary tensor is defined quite similarly to the way which is followed to define
the covariant derivative 5k in the spaces of affine connection; at the same time,
for each tensor and probably for each index there exist, in general, their own
”connection objects” or gamma-objects. The respective differential is constructed
in accordance with the definition

D̃ := dxk · 5̃k. (38)

Here, the converted indices can not be ignored, for ”connection coefficients”
correspond to them.

The Cauchy-Riemann relations (24) are necessary and sufficient conditions in
order that f i be a generalized-analytical function. Let us show that these relations
can be written in an explicitly invariant form if the matrix composed of the numbers

qij = pr
impm

rj, (39)

is non-singular, that is if
q = det(qij) 6= 0. (40)

In this case the inverse matrix (qij) forms the tensor (qij) showing the properties

qjkq
ki = qikqkj = δi

j. (41)

Whence, when the formula (22) is applied instead of the formulae (23) and (24),
we get the invariant expression for the derivative

f ′i = qispr
sm5̃r · fm (42)

and for the Cauchy-Riemann relations

5̃kf
i − pi

kj · qjspr
sm5̃rf

m = 0. (43)
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Let us turn to the generalized-analytical functions F(1)(X) and F(2)(X), which
are constrained by the relation

F(2)(X) = F (X) · F(1)(X), (44)

where F (X) – some function of polynumber variable. The function is generalized-
analytical in the field where the function F(1)(X) is not a divisor of zero. In this
case

F (X) =
F(2)(X)
F(1)(X)

, (45)

D̃F (X) =
F(1)(X)D̃[F(2)(X)]− D̃[F(1)(X)]F(2)(X)

F 2
(1)(X)

(46)

or

F ′(X) =
F(1)(X)F ′

(2)(X)− F ′
(1)(X)F(2)(X)

F 2
(1)(X)

. (47)

If
F (X) = F(2)[F(1)(X)], (48)

then the function F (X) is generalized-analytical with

F ′(X) = F ′
(2)(F(1)) · F ′

(1)(X). (49)

3. Similar geometries and conformal transformations

Actually, we are interested in not only the pair {Mn, Pn} and generalized-
analytical functions {f i, γi

k} but (eventually) possible ways of application of these
notions to constructing physical models and solving new physical problems. Two
spaces in which congruences of extremals (geodesics) coincide are similar in many
respects. The extremals are meant to be solutions to set of equations for definition
of curves over which the length of the curve acquires its extremum; alternatively,
they are meant to be the curves which in a given geometry are defined to be
geodesics (for example, geodesics in geometries of affine connection). However,
for some physical as well as mathematical problems it is not of great importance
which length element is used in applied space, – a real use is made to only the set
of equations that define extremals (or to extremals proper). We shall say that two
n-dimensional geometries are similar, if there exist such coordinate systems and
parameters along curves that with respect to them the equations for extremals are
equivalent and the initial and/or final date set forth in one space may also be given
in another space.

All the set of generalized-analytic functions can be broken into the subsets
{f i, Γk

ij} that involve the same connection coefficients Γk
ij, so that for all generalized-

analytic functions from the subset the relation

Γi
kjf

j = γi
k (50)
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is fulfilled. It should be stressed (once more) that the coefficients Γk
ij are inde-

pendent of any choice of functions in the subset {f i, Γk
ij}. Generally speaking,

the subset may be formed by only one generalized-analytic function. If f i and γi
k

are prescribed, then the relations (50) can be treated to be a set of equations for
definition of the coefficients Γk

ij. Having find and fixed them, they can be applied
for all tensors and indices, thereafter we get a due possibility to work with the
space of affine connection Ln(Γk

ij) in which the set of equations for geodesics is of
the form

d2xi

dσ2
= −Γi

kj

dxk

dσ

dxj

dσ
. (51)

Generally speaking, in this way we loose the possibility to use the polynumber
product for construction of new generalized-analytical functions and should give
up the simple differentiation rules (33). In the last case the covariant derivative 5̃k

in the special coordinate system must act on the tensor pi
kj. In order to have simul-

taneously on the subset {f i, Γk
ij} the polynumber product of generalized-analytical

functions and the rules (33), which application yields again a generalized-analytical
function, we are to restrict ourselves to the functions subjected to the condition
(36) with Γi

jk ≡ (1)Γi
jk ≡ (2)Γi

jk ≡ (3)Γi
jk.

Let us require that the space Ln(Γi
jk) be similar to a Riemannian or pseudo-

Riemannian one Vn(gij), where gij is a (fundamental) metric tensor. Then instead
of (50) we get the system of equations

[
1

2
gim

(
∂gkm

∂xj
+

∂gjm

∂xk
− ∂gkj

∂xm

)
+

1

2
(pkδ

i
j + pjδ

i
k) + Si

kj

]
· f j = γi

k, (52)

where Si
kj stands for an arbitrary tensor (torsion tensor) obeying the property of

skew-symmetry with respect to two indices, and pi may be arbitrary one-covariant
tensor [1]. This system may be used to define the fundamental tensor gij.

There exist such Finslerian spaces which are not of Riemannian or pseudo-
Riemannian type, but in which, however, one has the system of equations

d2xi

dσ2
= −Γi

kj[L(dx; x)] · dxk

dσ

dxj

dσ
, (53)

where the coefficients Γi
kj[L(dx; x)] are defined by means of a relevant metric func-

tion L(dx1, . . . , dxn; x1 . . . , xn) of Finsler type. The corresponding Finsler spaces
are similar to spaces of affine connection endowed with the connection coefficients
Γi

kj deviated possibly from the coefficients Γi
kj[L(dx; x)] by occurrence of an additive

torsion tensor and/or an additive tensor 1
2
(pkδ

i
j + pjδ

i
k) [1].

Let a generalized-analytical functions define spaces of the affine connec-
tion Ln((1)Γk

ij) and Ln((2)Γk
ij) similar to corresponding Riemannian or pseudo-

Riemannian spaces Vn(gij) and Vn(K2
V gij) and/or the Finslerian spaces Fn[L(dx; x)]

and Fn[KF L(dx, x)], where KV (x1, .., .xn) > 0, KF (x1, ..., xn) > 0 – scalar func-
tions (invariants). Then the transformation (coordinate and/or in the space of
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generalized-analytical functions) going over the set f i
(1) in the set f i

(2), can be called
conformal, for under this procedure one has

gij(x) → K2
V (x) · gij and (54)

(dx; x) → KF (x) · L(dx; x). (55)

4. Possible additional requirements

From the definition of a generalized-analytical function it follows that it is
possible to present the function by choosing two arbitrary one-covariant fields
f i(x1, . . . , xn) and f ′i(x1, . . . , xn). Then the formula (23) entails the following
representation for the gamma-objects:

γi
k = − ∂f i

∂xk
+ pi

kjf
′j (56)

The Cauchy-Riemann conditions are fulfilled automatically. So, to get the field
equations for the unknown function-components f i(x1, . . . , xn) and f ′i(x1, . . . , xn),
it is necessary to set forth at least 2n additional relations, for example, some
partial differential equations of the first-order with respect to f i(x1, . . . , xn) and
f ′i(x1, . . . , xn).

(1): Let us consider the subset of generalized-analytical functions f i such that

D̃F (x) ≡ 0, ↔ ∇̃kf
i ≡ 0, ↔ f ′i ≡ 0 (57)

In this case the Cauchy-Riemann conditions are fulfilled automatically and
arbitrary vector-function coupled with γi

k = − ∂f i

∂xk , that is the pair {f i,− ∂f i

∂xk }, is
a generalized-analytical function. It is important to note that the properties of
polynumbers do not influence this procedure. In other words, this subset (treated
on the level of the Cauchy-Riemann conditions) are independent of any choice of
the system of polynumbers.

(2): If instead of the conditions (57) we assume the relations

D̃F (X) = λ · F (X) · dX, ↔ ∇̃kf
i = λ · pi

kj · f j, ↔ f ′i = λ · f i, (58)

where λ is a real number, then the pairs {f i,− ∂f i

∂xk +λpi
kjf

j} with arbitrary vector-

functions f i will form the subset of the generalized-analytical functions which to
some extent account for properties of polynumbers.

(3): Farther generalizing the requirements (57) and (58) can be formulated in
the form

F ′(X) = Λ · F (X), (59)

where
Λ = λ1e1 + λ2e2 + ... + λnen (60)
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an arbitrary polynumber. In this case the pair
{

f i,− ∂f i

∂xk
+ pi

kjp
j
mrλ

mf j

}
(61)

will be the generalized-analytical functions.

(4): Using the formulas (23) and (24), we can prove the following statement.
If the relations

1) Γi
kjf

j = γi
k, (62)

2) Γi
1jp

j
kr − pi

kjΓ
j
1r = 0, (63)

3)
∂Γi

1r

∂xk
− ∂Γi

kr

∂x1
+

[
(Γi

kj − pi
kmΓm

1j)Γ
j
1r − Γi

1j(Γ
j
kr − pj

kmΓm
1r)

]
= 0 (64)

hold, then together with the generalized-analytical pair {f i, γi
k}, the pair

{f ′i, Γi
kjf

′j}, {f ′′i, Γi
kjf

′′j}, . . . , {f (m)i, Γi
kjf

(m)j}, . . . (65)

are also generalized-analytical. In the last formulas the notation

f (m)i ≡ ∂f (m−1)j

∂x1
+ Γi

1jf
(m−1)j (66)

has been used.

(5): One additional requirements can sound: for the subset {f i, Γi
kj} of

generalized-analytical functions a Riemannian or pseudo-Riemannian geometry
Vn(gij) similar to the affine connection geometry Ln(Γi

jk) can be found.

(6): If a Finsler space Fn[L(dx; x)] is similar to a space of affine connection,
then one among possible requirements can claim that the subset {f i, Γi

jk} give rise
to an affine connection geometry similar to the Finsler geometry Fn[L(dx; x)].

(7): Let
xi = xi(τ) (67)

be a parametric presentation of some curve joining two points xi
(0) = xi(0), xi

(0) =

xi(0), that is, the parameter along curves varies in the limits τ ∈ [0; 1]. Let us
consider the functional with integration along indicated curve

I[xi(τ)] =
∫ 1

0
F (X) dX =

[∫ 1

0
pi

kjf
k(x1(τ), . . . , xn(τ))dxj

]
· ei =

[∫ 1

0
pi

kjf
k dxj

dτ

]
· ei,

(68)
where F (X) – some generalized-analytical function, and require that value of the
integral (68) be independent of integration way, in which case the variation of this
functional at fixed ends of curves should vanish, that is the Euler conditions

d

dτ

(
pi

kjf
j
)− pi

mj

∂f j

∂xk

dxm

dτ
= 0 (69)
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or (
pi

kj

∂f j

∂xm
− pi

mj

∂f j

∂xk

)
· dxm

dτ
= 0 (70)

must be valid. Assuming that xi(τ) are arbitrary smooth functions, from these
equations we get

pi
kj

∂f j

∂xm
− pi

mj

∂f j

∂xk
= 0, (71)

or, recollecting that {f i, γi
k} is a generalized-analytic pair,

pi
kjγ

i
m − pi

mjγ
j
k = 0. (72)

From these relations it ensues that for the functions f i the Cauchy-Riemann con-
ditions (11) hold fine.

Thus, the assumption of independence of the integral (68) of the path leads to
the conclusion that the function F (X) is analytical, that is such an assumption is
superfluous for non-trivial generalization of the concept of analyticity.

5. Case H4

It is convenient to work with the associative-commutative hypercomplex num-
bers in term of the ψ-basis which relates to the basis

e1 = 1, e2 = j, e3 = k, e4 = jk, j2 = k2 = (jk)2 = 1 (73)

by means of the linear dependence

ei = sj
i · ψj, (74)

where

sj
i =




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




, sk
i · sj

k = 4 · δj
i . (75)

For the basis elements ψ1, ψ2, ψ3, ψ4 the multiplication law

ψi · ψj = p
(ψ)k
ij · ψk (76)

involves the characteristic numbers

p
(ψ)k
ij =

{
1, if i = j = k,

0, in other cases
(77)

We shall use the following notation:

X = x1e1 + ... + x4e4 = ξ1ψ1 + ... + ξ4ψ4 (78)
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and
F (X) = ϕ1(ξ1, ..., ξ4) · ψ1 + ϕ4(ξ1, ..., ξ4) · ψ4. (79)

Thus, if ϕi(ξ1, ..., ξ4) – a generalized-analytical function of the H4-variable used,
then such a vector-function ϕ′i(ξ1, ..., ξ4) can be found that

∂ϕi

∂ξk
+ γ

(ψ)i
k = p

(ψ)i
kj · ϕ′j. (80)

Taking into account (77), we get

∂ϕ1

∂ξ1 + γ
(ψ)1
1 = ϕ′1, ∂ϕ1

∂ξ2 + γ
(ψ)1
2 = 0,

∂ϕ1

∂ξ3 + γ
(ψ)1
3 = 0,

∂ϕ1

∂ξ4 + γ
(ψ)1
4 = 0,

∂ϕ2

∂ξ1 + γ
(ψ)2
1 = 0,

∂ϕ2

∂ξ2 + γ
(ψ)2
2 = ϕ′2, ∂ϕ2

∂ξ3 + γ
(ψ)2
3 = 0,

∂ϕ2

∂ξ4 + γ
(ψ)2
4 = 0,

∂ϕ3

∂ξ1 + γ
(ψ)3
1 = 0,

∂ϕ3

∂ξ2 + γ
(ψ)3
2 = 0,

∂ϕ3

∂ξ3 + γ
(ψ)3
3 = ϕ′3, ∂ϕ3

∂ξ4 + γ
(ψ)3
4 = 0,

∂ϕ4

∂ξ1 + γ
(ψ)4
1 = 0,

∂ϕ4

∂ξ2 + γ
(ψ)4
2 = 0,

∂ϕ4

∂ξ3 + γ
(ψ)4
3 = 0,

∂ϕ4

∂ξ4 + γ
(ψ)4
4 = ϕ′4.




(81)

These relations involve the expression for the derivative

ϕ′i =
∂ϕi

∂ξi−
+ γ

(ψ)i
i− (82)

(i = i−, for which no summation is assumed), and also the Cauchy-Riemann rela-
tions

∂ϕi

∂ξk
+ γ

(ψ)i
k = 0, i 6= k. (83)

The space H4 is the metric (Finslerian) space in which the length element ds
is expressible through the form dξ1dξ2dξ3dξ4 in a conic region defined possibly in
various ways. Let us stipulate that

ds = 4
√

dξ1dξ2dξ3dξ4, (84)

assuming that the region is prescribed by the inequalities

dξ1 ≥ 0, dξ2 ≥ 0, dξ3 ≥ 0, dξ4 ≥ 0 . (85)

Let us consider the four-dimensional Finslerian geometry with the length ele-
ment of the form

ds = 4
√

κ4 · dξ1dξ2dξ3dξ4, (86)

where κ ≡ κ(dξ1dξ2dξ3dξ4) > 0. Such a geometry is not Riemannian or pseudo-
Riemannian. Let us show that such a geometry is similar (according to terminology
adopted above) to some affine geometry with a connection L4(Γ

i
kj). Let us write
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equations for extremals of this Finslerian space by using the tangential equation of
indicatrix [2]:

Φ(p1, ..., p4; ξ
1, ..., ξ4) = 0 , (87)

where

Φ(p; ξ) = p1p2p3p4 −
(κ

4

)4

, (88)

and

pi =
∂(ds)

∂(dξi)
=

1

4
·

4
√

κ4 · dξ1dξ2dξ3dξ4

dξi
. (89)

Then the set of equations for definition of extremals reads

dξ1

∂Φ
∂p1

= ... = dξ4

∂Φ
∂p4

= dp1

−∂Φ
∂ξ1

= ... = dp4

−∂Φ
∂ξ4

,

Φ(p, ξ) = 0;





(90)

or
dξi =

∂Φ
∂pi

· λ · dτ, dpi = −∂Φ
∂ξi

· λ · dτ, Φ(p; ξ) = 0, (91)

where τ – a parameter along extremals, and λ ≡ λ(p; ξ) 6= 0 – a function. For the
tangential equation of the indicatrix (87), (88) the set of equations (91) takes on
the form

.

ξi=
p1p2p3p4

pi

· λ,
.

pi= (
1

4
)4∂k4

ξi
· λ, p1p2p3p4 =

(
k

4

)4

, (92)

with
.

ξi=
dξi

dτ
,

.
pi=

dpi

dτ
. (93)

Let us consider λ = λ(ξ) > 0 to be a function of only coordinates. Then, by expli-
cating pi, we get the set of equations for definition of extremals in the Finslerian
space (86) in the form

..

ξi= −Γi
kj

.

ξk
.

ξj, (94)

where

Γi
kj = −





∂ln

(
λ

λ0

)

∂ξj , if i = j = k,

δi
k

∂ln

(
σ

σ0

)

∂ξj , in other cases;

(95)
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σ =
(κ

4

)4
· λ, (96)

λ0 and σ0 are constants of relevant dimensions. Let us write down explicitly the
coefficients Γi

kj:

(Γ1
kj) = −




∂ln

(
λ

λ0

)

∂ξ1

∂ln

(
σ

σ0

)

∂ξ2

∂ln

(
σ

σ0

)

∂ξ3

∂ln

(
σ

σ0

)

∂ξ4

0 0 0 0

0 0 0 0

0 0 0 0




, (97)

(Γ2
kj) =




0 0 0 0

∂ln

(
σ

σ0

)

∂ξ1

∂ln

(
λ

λ0

)

∂ξ2

∂ln

(
σ

σ0

)

∂ξ3

∂ln

(
σ

σ0

)

∂ξ4

0 0 0 0

0 0 0 0




, (98)

(Γ3
kj) = −




0 0 0 0

0 0 0 0

∂ln

(
σ

σ0

)

∂ξ1

∂ln

(
σ

σ0

)

∂ξ2

∂ln

(
λ

λ0

)

∂ξ3

∂ln

(
σ

σ0

)

∂ξ4

0 0 0 0




, (99)

(Γ4
kj) = −




0 0 0 0

0 0 0 0

0 0 0 0

∂ln

(
σ

σ0

)

∂ξ1

∂ln

(
σ

σ0

)

∂ξ2

∂ln

(
σ

σ0

)

∂ξ3

∂ln

(
λ

λ0

)

∂ξ4




. (100)

It will be noted that instead of the matrices (97) – (100) one can take their
transforms. Thus, the Finslerian geometry with the length element (86) is similar
to the geometry of the affine connection L4[Γ

i
kj + Si

kj + 1
2
(pkδ

i
j + pjδ

i
k)], where Si

kj

– a tensor which is assumed to be skew-symmetric with respect to the subscripts,
and pk stands for an arbitrary one-covariant tensor.

Let us consider the generalized-analytical functions ϕi of H4-variable that obey
the additional condition 3), that is the pair

{
ϕi,−∂ϕi

∂ξk
+ p

(ψ)i
kj µjϕj

}
, (101)
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where
Λ = λi · ei = µj · ψj. (102)

Let us select from such pairs a subset {ϕi, Γi
kj}, where Γi

kj are defined by the
matrices transposed to the matrices (97) – (100). In this way, the requirement 6)
is retained. Then the pair (101) should fulfill the 16 relations (50) the first four of
which are

∂ϕ1

∂ξ1
= µ1ϕ1 +

∂ ln

(
λ

λ0

)

∂ξ1
ϕ1,

∂ϕ1

∂ξ2
=

∂ ln

(
σ

σ0

)

∂ξ2
ϕ1, (103)

∂ϕ1

∂ξ3
=

∂ ln

(
σ

σ0

)

∂ξ3
ϕ1,

∂ϕ1

∂ξ4
=

∂ ln

(
σ

σ0

)

∂ξ4
ϕ1.

For the compatibility it is necessary and sufficient that the mixed derivatives
obtained with the help of the formulae (103) be equal. A part of these equations,
except for three ones, is automatically satisfied. If we consider all the 16 equa-
tions, not confining ourselves to the first four equations, we get the following 12
conditions:

∂2ln

(
κ

κ0

)4

∂ξiξj
= 0, i 6= j; (104)

from which it ensues that

ln

(
κ

κ0

)4

= a1(ξ
1) + a2(ξ

2) + a3(ξ
3) + a4(ξ

4) (105)

or
κ = κ0 · exp{[a1(ξ

1) + a2(ξ
2) + a3(ξ

3) + a4(ξ
4)]/4}, (106)

where ai are four arbitrary functions of one real argument. Then from equations
(103) and relevant equations for other components of the generalized-analytical
function, we get

ϕi = ϕi
(0)

(
κ

κ0

)4 (
λ

λ0

)
bi(ξ

i−) · exp(µi−ξi), (107)

where
ai(ξ

i−) = ln
∣∣bi(ξ

i−)
∣∣ . (108)

Thus, despite of two additional requirement, the generalized-analytical function
(107) in general case is not reducible to an analytical function of H4-variable, and
besides we obtain the expression (106) for the coefficients κ in the metric function

of the Finslerian space with the length element (86). If λ
λ0

=
(

κ0

κ

)4
, then ϕi is an

analytical function.
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If
κ = κ0 · exp{[(ξ1)2 + (ξ2)2 + (ξ3)2 + (ξ4)2]/4}, (109)

then with respect to the coordinates xi

κ = κ0 · exp{(x1)2 + (x2)2 + (x3)2 + (x4)2}. (110)

Conclusion

Having introduced the concept of the generalized-analytical function of
polynumber variable in the present work, we have made the first step in the direc-
tion of constructing a relevant theory aiming to develop theoretical-physical mod-
els. An important ingredient of such investigations must be search for additional
requirements to be obeyed by the generalized-analytical functions and for the con-
sequences implied by the requirements. The conditions that lead to trivial results
– to analytical functions – should especially be analyzed. This may admit formu-
lating the properties that are forbidden to attribute proper generalized-analytical
functions of polynumber variable (in contrast to analytical functions proper). As
it has been shown above, the independence of integral of integration path relates
to such properties. Of course, it is necessary to carry out a particular attentive
study to compare the properties of analytical functions of complex variable and
generalized-analytical functions of polynumber variable in case of the dimension
exceeding 2. It can be hoped, therefore, that the concepts and results of the
present work may face future novel theoretical-physical applications.
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Introduction

Our physical intuition distinguishes four dimensions in a natural correspon-
dence with material reality. Four dimensionality plays special role in almost all
modern physical theories. High dimensional quantum fields theory and string the-
ory are considered together with their compactifications, i. e. the main space,
describing the reality is a product of a four-dimensional manifold with some com-
pact high-dimensional space. In this way we come to the well-known Kaluza-Klein
model and ten-dimension superstring theory.

It is an interesting fact that the dimension four is a more complicated dimension
from pure mathematical point of view. It seems that there is a contradiction with
our intuition in understanding of the dimension concept, really, new dimensions
give us new complexity. But it is not true in general. Additional dimensions
often give a new freedom. It is natural that we must have some golden mean in
this approach, in which we don’t have a necessary freedom, but low-dimensional
methods weakly work. In topology this mean is dimension four.

The goal of this note is to give a small survey of some problems in four-
dimensional topology.

S-cobordism problem

One of the main questions of geometric topology is the problem to classify
manifolds lying in a given category with respectively chosen equivalence relation.
Working in the topological category, the question about classification of topological
manifolds up to homeomorphism rises, for example, assuming compactness, con-
nectness and closedness. In dimension one we have only circles, in dimension two
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we come to the complete classification: every connected closed compact manifold
is homeomorphic to the two-dimensional sphere with handles and Mobius bands.
In this case, the fundamental group is a complete topological invariant. In the
dimension three the question about classification becomes a hard problem, the
existence of the connected 1-connected three-dimensional manifold, which is not
homeomorphic to the three-dimensional sphere, is a well-known Poincare Problem.
It is interesting that in dimension ≥ 5 many difficulties, occurring place in low
dimensions, are disappear. First of all, this fact is connected with the concept of
general position in high-dimensional spaces. Roughly speaking, in many important
cases small deformations give possibility to cancel self-intersections of complexes.
But in low-dimensional case we can not do the same.

Let’s introduce one of the central equivalence relation in the topology of mani-
folds, so called s-cobordism relation. Let M1 and M2 be n-dimensional manifolds.
We say that they are cobordant if there exists a (n + 1)-dimensional manifold W ,
such that ∂W = M1 ∪M2. Further, if the embeddings Mi → W, i = 1, 2 are ho-
motopical equivalences, then this cobordism is called h-cobordism (and manifolds
are h − cobordant). Every homotopical equivalence defines an element from the
Whitehead group, which depends only on the fundamental group of a given man-
ifold (or in general, fundamental group of cell complex). The Whitehead group
can be defined as a quotient of the K1-functor of the integral group ring of the
fundamental group by the natural action of group. In this way, the homotopical
equivalence represents a trivial element of the Whitehead group if and only if it
is homotopic to the composition of elementary cell extensions and collapsings, i.e.
so-called simple homotopy equivalence. H-cobordism with simple homotopy equiv-
alence is called s-cobordism. In particular, every homotopy equivalence between
1-connected manifolds is homotopic to the simple one.

The main result of the high-dimensional topology is the following Theorem
(see [1], [2]).

The S-cobordism Theorem. Let n ≥ 5. The connected h-cobordism W be-
tween n-dimensional manifolds M1 and M2 is homeomorphic to the direct product
W ≡ M1 × I, if and only if this cobordism is an s-cobordism.

In particular, if we consider only 1-connected manifolds then arbitrary h-
cobordism between them is a direct product. The higher-dimensional Poincare
Conjecture then follows from this, i.e. every homotopical sphere is homeomorphic
to the standard one in dimension ≥ 5. The proof of the s-cobordism Theorem fails
in the case of dimension 4 and analogical statement presents an open problem:

Problem. Does the s-cobordism Theorem hold in dimension 4?

The proof of the high-dimensional s-cobordism Theorem is based on handle-
body decomposition of the manifold W and reduction of a given manifold to the
structure of the direct product of Mi with interval. The crucial point in this
method is so-called Whitney trick. It gives a possibility to cancel the intersection
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points of the immersed submanifolds due to the embedding of a 2-dimensional disk
(Whitney’s disk), (see [1]). The main obstruction to extend the proof on the case
of dimension four is the fact that Whitney trick does not work in dimension four.
Actually, it is well-known that every 2-dimensional complex can be isotopically re-
duced to the embedded one in the 5-dimensional manifold. But in dimension four
it is not true in general and we can consider the Whitney’s disk only as immersed
one. This easy fact destroys all prove of the s-cobordism theorem in the case of
dimension 4.

To get over the difficulties related to the immersed Whitney disc, some new
methods have been developed. The method given by A. Casson is most effective.
The meaning of this method is to paste a self-intersection step by step by new
immersed discs. This process can be extended infinitely long but the neighborhood
of the final 2-complex is a handle, which is homotopically equivalent to the standard
one. This idea was used by M. Freedman in the proof of the topological Poincare
Conjecture in dimension four.

In general, as it was mentioned above, the s-cobordism problem in dimension 4
is still open. The analog of the s-cobordism Theorem was proved by M. Freedman
and P. Teichner in 1996 in the class of 4-dimensional manifolds with fundamental
groups of the subexponential growth (more precisely, of the growth ≤ 2n) [4].

False and exotic 4-dimensional manifolds

There is a natural question of comparison of given equivalence relations, i.e. ho-
motopical equivalence, homeomorphisms, diffeomorphisms, in the class of manifolds
of a fixed dimension. So, any two continuously homeomorphic smooth manifolds
are diffeomorphic in the dimension less than four. The situation in dimension four
is much more complicated.

A manifold N is called a false copy of the manifold M if N is homotopically
equivalent to M but not homeomorphic to M . N is called an exotic copy of M if
N and M are homeomorphic, but not diffeomorphic as manifolds.

The existence of the false and exotic spheres is connected with the topological
and smooth versions of the Poincare Conjecture respectively. The smooth Poincare
Conjecture is true in the dimensions less than four: there are no exotic three (and
less) dimensional spheres. The analysis of the high-dimensional question leads to
the beautiful theory of exotic spheres: there exist 28 7-dimensional manifolds, which
are homeomorphic to the standard 7-dimensional sphere, but not diffeomorphic,
due to wonderful result of Milnor. The most intriguing case is again dimension
four. This is the only dimension, in which the existence of the exotic spheres is
still open.

The situation with exotic copies of R4 is also very surprising. It is known
that there does not exist any exotic Rn in dimension n 6= 4 and the analogical
question was open for a long time in dimension four. In eighties due to the results
of Freedman and Donaldson it was proved that there exist infinitely many smooth
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pair-wise nondiffeomorphic four-dimensional manifolds, such that each of them is
homeomorphic to R4. The proof of this fact essentially used the methods of math-
ematical physics: instantons, Yang-Mills connections etc (see [5]). One of the main
invariants of 1-connected four-dimensional manifolds is so-called intersection form,
i.e. symmetric bilinear form, define on the second cohomologies of a given manifold.
Classical Whitehead’s theorem says that two given 1-connected oriented closed
smooth four-dimensional manifolds are homotopically equivalent if and only if they
have isomorphic intersection forms. In this connection, there is an actual question
to classify all symmetric bilinear forms which can be realized as intersection form
for some four-dimensional manifold. M. Freedman has shown that every symmetric
bilinear form can be realized as an intersection form of some compact 1-connected
four-dimensional manifolds and that there exist no more than two manifolds with
given form. Donaldson classified all intersection forms of smooth manifolds and
concluded from this the existence of the exotic structures on R4. The structure of
exotic R4 is very complicated and takes important place in modern research. There
are still many open questions related to such manifolds. In particular, does there
exist any exotic R4 such that it can not be divided by properly embedded R3 onto
two exotic pieces (Problem 4.43 (D), [6]).

The false four-dimensional manifolds construction requires an application of
other techniques. As it was mentioned above, there are no false four-dimensional
spheres (four-dimensional topological Poincare Conjecture). Very often the ques-
tion about homeomorphicity of a given homotopic four-dimensional manifolds is
very difficult. One of the first such type examples of four-dimensional manifolds
is Cappell-Shaneson construction (see [2]): there exists a false projective RP 4,
which is homotopically equivalent but not diffeomorphic to RP 4. This space is not
PL-homeomorphic to RP 4.

Finishing this section let’s present more open problems in dimension four, re-
lated to exotic structures. The reader can find many classical and modern problems
of this type the Kirby Problem List [6] (see also [7]).

Problem (4.77 [6]): An exotic smooth structure on R4 with R1 is diffeomor-
phic to R5. How can we usefully see the exotic R4 in R5?

Problem (4.86 [6]): Do all closed, smooth 4-manifolds have more than one
smooth structure? (The generalization of the smooth 4-dimensional Poincare Con-
jecture).

Problem (4.87 [6]): Does every non-compact, smooth 4-manifold have an
uncountable number of smoothings?

Schoenflies Conjecture

Consider one more problem, which has the solution in all dimensions besides
four. This problem is about knotting in codimension equal to one. Recall that the
embedding f : Mm → Nn+m is called locally-flat if the image of each point in Nm+n
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has neighborhood U such that the pair (Im(f)∩U,U) is homeomorphic (piecewise-
linearly, in the case we work in this category) to the pare (Dm ×Dn, Dm × {0}).

Conjecture Let f : Sn → Sn+1 be a piece-linear locally-flat embedding. Then
Sn+1 \ im(f) is 2-component and the closure of each of the components is a piece-
linear n-dimensional ball.

Roughly speaking, this conjecture states that n-dimensional sphere can not
knot in (n+1)-dimensional one. This conjecture turn out to be true in dimensions
n + 1 6= 4. But in the case of dimension four, again we can not apply the methods
which we use in other dimensions.

Finishing this note, we want to emphasize that there exist not so much fields
in mathematics which use so different methods as four-dimensional topology. The
problems of four-dimensional topology lead to the difficult questions of group the-
ory. This is a theory of growth in groups, Andrews-Curtis-type problems, lower
central series in groups etc. Also we can see many applications of high-dimensional
methods in dimension four, for example, surgery exact sequences, methods of the
link and knot theory. The dimension four is the unique dimension from the topolog-
ical point of view, where we can find so many application of different techniques and
which has so many open problems, the development of new techniques of algebra
and topology will be needed for their solution.
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The polynumber space is a linear space with several poly-linear forms. We introduce
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but, in general, is not associative. Such an operation is equivalent to the usual conju-
gation for complex and hyperbolic numbers. The normal conjugation may be applied to
scrutinize the algebraic and geometric structure of the n-numbers coordinate space. It is
also useful to introduce the notions of the scalar product and angular characteristics of
two and more numbers (vectors).
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Introduction

The polynumber spaces are the examples of vector spaces, where the poly-forms
of several arguments play the role of the fundamental metric forms. [1]. Such spaces
are principally different from the habitual Euclidian and pseudo-Euclidian spaces.
Therefore they demand the development of the notions of the angle, orthogonality,
scalar product etc. The necessity of the proper investigations is caused by the
frequent attempts to consider the Finslerian spaces (the polynumber spaces as a
rule are the ones) as the geometrical fundament of physics. [2, 3]. The physics
progress strongly depends on the adequacy of it’s mathematical apparatus and
geometrical ideas.

Surprisingly, the first known mention about such spaces belongs to Riemann.
In 1854th while entering the professor post of the Goettingen university he read a
famous lecture, in which he noticed that beside the usual quadratic metric forms
the linear element may be represented as a fourth degree root from the differential
expression of the same degree [4]. Per se he described the particular case of the
spaces which later were named the Finslerian spaces.

Finslerian metric functions are very multifarious even for the linear spaces.
Therefore they require the individual approach for every single case. However,
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if the hypercomplex numbers stand behind the Finslerian spaces it is possible to
suggest the unified algorithm, some elements of it are represented bellow.

The exclusive role of the polynumber spaces is beyond any doubt. Despite of
it they are very rarely mentioned in the modern geometrical literature. Obviously,
it is explained by the seaming simplicity of the polynumber algebraic structure. It
does not encourage neither the scrutiny of the polynumbers them selves, nor the
scrutiny of the spaces related to them. However, even the thoroughly examined
complex numbers recently brought the surprise to the mathematicians. It turned
out that the fractals may be built on the ground of the complex numbers. This fact
makes us think that we may expect something similar from others of the hyper-
complex numbers. The simplicity of the fractal construction algorithm underlines
the potential variety hiding behind the most trivial number structures.

Such notions as the scalar product, orthogonality, angle between two vectors
are the essential parts of the Euclidean space theory apparatus. These notions
are naturally generalized for the pseudo-Euclidean spaces. The approach given
bellow allows the similar generalization of the concerned notions for the polynumber
spaces.

The polynumber spaces Pn with n > 2 are not Euclidean or pseudo-Euclidean.
Thus, if e1, e2, ... , en ∈ Pn – the basis and

eiej = pk
ijek, (1)

Pn 3 X = x1e1 + x2e2 + ... + xnen, (2)

then n-th degree of the number X norm may be expressed with the n-linear sym-
metric form

(X, Y, ..., Z) = ωi1i2...inxi1yi2 ...zin (3)

of one argument X. When n > 2 with two arguments X and Y we obtain (n− 1)
different forms, therefore we can introduce the scalar product and the angle between
two vectors (numbers) in several ways.

Besides the metric form (3) we may take other invariant forms in the Pn-space,
the bilinear for example.

((X, Y )) = qijx
iyj, (4)

where
qij = Cpk

impm
kj, (5)

C 6= 0 – some real number. For every concrete polynumber system this number may
be chosen according to the simplicity and symmetry of the obtained formulas. As
it follows from the definition, the given form is symmetric, i.e. ((X, Y )) = ((Y, X)).

Thus, the Pn-space is n-dimensional space with several poly-linear forms. Two
of the forms are dedicated: the metric form of the n-th order and the bilinear form.

The notion of the conjugated number is related (complex numbers, quater-
nions) with the changing of the sign of imaginary (symbolic) units. This makes us
introduce (n− 1) conjugations in general and use the number itself and it’s (n− 1)
conjugations to construct of them the polynumber (|X|n · 1 + 0e).
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Normal conjugation

We shall call the n-numbers nondegenerated, if the matrix (qij) (5) is nonde-
generated, i.e.

det(qij) 6= 0. (6)

In this case, besides the two-times covariant tensor qij, the two times contravariant
tensor qij is defined in the Pn-space.

Let us define the (n−1)-nary operation of the normal conjugation of a complex
{X(1), X(2), ..., X(n−1)} with the following way:

[X(1), X(2), ..., X(n−1)] = ωi1i2...in−1inqinkxi1
(1)...x

in−1

(n−1)ek. (7)

It is obvious from this formula that the normal conjugation operation is commuta-
tive for every argument, but, generally, is not associative. The constant C in the
formula (5) may be chosen with the following condition: [1, 1, ..., 1] = 1.

We shall say that the number Z = [X(1), X(2), ..., X(n−1)] is normally conjugated
to the complex of numbers {X(1), X(2), ..., X(n−1)}.

Let’s define the scalar product of the number X and the complex {X(1), X(2),
..., X(n−1)} with the bilinear form

((X, Z)) = (X, X(1), X(2), ..., X(n−1)). (8)

Let us introduce the designation

X̃ = [X,X, ..., X], (9)

then

((X, X̃)) = |X|n, (10)

If in the given polynumber system the n-th degree of the number X norm may be
expressed as

|X|n = (X, X, ..., X). (11)

According to the definition, the number X̃ is normally conjuncted to the number
X.

Now shall we illustrate the introduced notions with some examples.

Complex Numbers

X = x1 + ix2, i2 = −1, (12)

(X, Y ) = x1y1 + x2y2, (13)

(ωij) =

(
1 0

0 1

)
, (14)
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(qij) = 2C

(
1 0

0 −1

)
. (15)

Let’s take C = 1
2
, then

(ωikq
kj) =

(
1 0

0 −1

)
, (16)

X̃ = x1 − ix2, (17)

i.e. the normal conjugation for complex numbers is the usual conjugation. The
scalar product of the numbers X and Y is

((X, Ỹ )) = x1y1 + x2y2 = (X,Y ). (18)

Thus
((X, X̃)) = |X|2, (19)

X · X̃ = |X|2 · 1 + 0 · i. (20)

Hyperbolic numbers, H2

X = x1 + jx2, j2 = 1, (21)

(X, Y ) = x1y1 − x2y2, (22)

(ωij) =

(
1 0

0 −1

)
, (23)

(qij) = 2C

(
1 0

0 1

)
. (24)

Let us take C = 1
2
, then

(ωikq
kj) =

(
1 0

0 −1

)
, (25)

X̃ = x1 − jx2, (26)

i.e. the normal conjugation for hyperbolic numbers is the usual conjugation. The
scalar product of the numbers X and Y is

((X, Ỹ )) = x1y1 − x2y2 = (X, Y ). (27)

Thus
((X, X̃)) = |X|2, (28)

X · X̃ = |X|2 · 1 + 0 · j. (29)
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Hypercomplex Numbers H3

The most easy way is to work in ψ-basis:

X = x1ψ1 + x2ψ2 + x3ψ3, (30)

pk
ij =





1, if i = j = k,

0, in all other cases ,
(31)

(qij) = C · diag(1, 1, 1), (32)

(X,Y, Z) =
1

6
(x1y2z3 + x1y3z2 + x2y1z3 + x2y3z1 + x3y1z2 + x3y2z1). (33)

Let us take C = 1
3
, then

[X,Y ] =
1

2
[(x2y3 + x3y2)ψ1 + (x1y3 + x3y1)ψ2 + (x1y2 + x2y1)ψ3], (34)

[1, 1] = 1, (35)

X̃ = x2x3ψ1 + x1x3ψ2 + x1x2ψ3, (36)

X · X̃ = |X|3 · 1 + 0 · e, (37)

if the norm X ∈ H3 is defined with

|X|3 = x1x2x3. (38)

The scalar product of the complex {X,Y } and the number Z is the scalar

((Z, [X, Y ])) = (X, Y, Z). (39)

The bilinear form (4) from two numbers X and Y looks like

((X, Y )) =
1

3
(x1y1 + x2y2 + x3y3). (40)

Let’s find all numbers of H3, that satisfy the equation

X̃ = X. (41)

Solving the system of three quadratic equations with three unknowns we have
five roots: (0, 0, 0), (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1). The four latter
numbers (if we consider them radius-vectors) constitute the regular tetrahedron
while the first number is it’s center.

If X,Y ∈ H3 are the divisors of zero for the normal conjugation (i. e. [X, Y ] =
0, with X 6= 0, Y 6= 0), they have to be the divisors of zero for the polynumber
multiplication.
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Any number Y ∈ H3 may be represented as

Y = [1, Z], where Z = (−y1 + y2 + y3, y1 − y2 + y3, y1 + y2 − y3). (42)

Let’s scrutinize the eigenvectors and eigenvalues problem that is

[1, Y ] = λY, (43)

where λ – some real or complex number. All eigenvalues are real: λ1 = 1, λ2,3 = −1
2
,

because the matrix of the linear transformation in the right side of the formula (43)
is symmetric. Eigenvectors appropriate to the first eigenvalue constitute a straight
line 1t, where t – parameter along the straight line. The eigenvectors appropriate
to the eigenvalue (−1

2
), constitute a plain, which is Euclid-perpendicular to the

straight line along the unity and contains the coordinate zero. I.e. this plain is
strained on two radius-vectors. For example: (2,−1,−1), (0, 1, 1).

Formulas (30) – (40) may be automatically generalized for polynumbers 1 Hn

with replacement 3 → n, C = 1
n
.

The examples given above makes us suppose (while comparing the formulas
(20), (29) and (37) )that for the complex and Hn numbers the following formula is
true.

X · X̃ = |X|n · 1 + 0 · e. (44)

It is also possible, that it is true for any non-degenerated polynumbers, but this
requires further prove.

We may say that X is ”orthogonal” for Y , if

((X, Ỹ )) = 0. (45)

Notice that this notion in general is not symmetric for n > 2, i. e. the fact that
X is orthogonal for Y , does not mean that Y is orthogonal for X. Is these two are
orthogonal to each other then X and Y are mutually orthogonal.

If we have (n − 1)-number complex (some of numbers may coincide), and Z
is a normally conjugated for this complex, then X is ”orthogonal” for the given
complex, if

((X,Z)) = 0. (46)

Angular parameters of several numbers

In the polynumber spaces n > 2 we can introduce the angle between two
numbers (vectors) with several ways. In this paper we use the algebraic approach
based on the triangle-formula analog form the Euclid space.

Let us illustrate this on the H3 example. If X and Y are such that

xi > 0, yi > 0, i = 1, 2, 3. (47)

1Hn – the hypercomplex numbers isomorphous to the real square diagonal matrixes algebra
n× n.
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In this case they are not the divisors of zero. Shall we find the expression for the
norm of the cube of their summa Z = X + Y

|Z|3 = (X + Y, X + Y, X + Y ) = |X|3 + 3(X, X, Y ) + 3(X, Y, Y ) + |Y |3. (48)

Let’s introduce two hyperbolic angles βX , βY according to the formulas:

coshβX =
(X, X, Y )
|X|2|Y | , coshβY =

(X, Y, Y )
|X| |Y |2 , (49)

then
|Z|3 = |X|3 + |Y |3 + 3|X|2|Y | cosh βX + 3|X| |Y |2 cosh βY . (50)

These two hyperbolic angles βX , βY we shall call the angular characteristics of
the pair of numbers X, Y .

Let us elucidate the meaning of the forms that appear in formulas (48), (49).
For this let us consider the complex {X, Y } and the normal conjugated number
for this complex W = [X,Y ]. The form (X, X, Y ) is a scalar product of X and
complex {X, Y }, and the form (X,Y, Y ) is a scaler product of Y and the same
complex.

If X, Y are not divisors of zero, but also they do not satisfy the (47) conditions,
then the right sides of (49) may take negative values. If we want to preserve the
formula (50), then the angular characteristics βX , βY become, in general, complex
numbers βX , βY . Opposite, if we want to have real angular characteristics, we have
to change the formulas (49) and (50). For example, if the right side in the first
formula (49) is lesser than zero, then we can replace cosh βX by sinh βX in this
formula and in (50).

Why do we need two angular characteristics for two numbers(vectors) in three-
dimensional H3 instead of one angle in the three-dimensional Euclid space? It is
related with the fact that H3-space and all the polynumber spaces of the dimension
≥ 2 has marked out directions and planes., i.e. they are anisotropic.

Fractals

Over the last thirty years there was an impetuous progress of the direction of
the dynamic systems theory related with complex fractals. [5]. The most brilliant
representatives of latter are the Julia and Mandelbrot sets. Lots of beautiful and
useful results have shaded the important fact that they all were obtained from
the complex numbers and the Euclid plane basis. Opposite, the construction of
multi-dimensional fractals based on quaternions was not impressive after all.

The deepest cause of the problems, appearing on this way, is the principal
impossibility to generalize the theory of analytical functions of the complex variable
for the quaternions. This impossibility is caused by the non-commutativity of
quaternionic multiplication.

The polynumbers structure does not contain the difficulties that appear in
non-commutative or un-associative number algebras. Therefore we may expect
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that there is a possibility to construct the fractals based on polynumbers, and such
fractals could be much more interesting than the quaternionic ones. Turning to
the Hn-numbers for example it is easy to see that it is impossible to construct
interesting fractals using the usual for Julia sets dependencies. For example:

X(i+1) = X2
(i) + C. (51)

It is related with the very simple structure of Hn-numbers, H3 in particular.
In the special basis the analytical functions of Hn-variable break up to n functions
of one variable. Therefore the iterative process may be turned to n independent
one dimensional iterative process, which is not very interesting. But there is a
great possibility to introduce some additional operations for the polynumbers (one
of them is the normal conjugation). These new operations may be used to build
more complicated non-breaking iterative processes.

Thus, we can propose several simple non-trivial iterative processes for H3:
Xi+1 = F (Xi):

1. F (X) = X̃ + C,
2. F (X) = [X, X̃] + C,
3. F (X) = [X, [X, 1]] + C,
4. F (X) = [X, [X, [X, 1]]] + C,
5. F (X) = X · [X, 1] + C,
6. F (X) = [X, [X, C]]− 1,
7. F (X) = [X ·X, X] + C = [X, X] · [X, 1] + C,

where C ∈ H3. The initial numbers for these iterative processes were taken on
the planes which are perpendicular (in Euclid meaning) to the straight 1 · t. The
parameter t indicates the point where the straight and the plane intersect. With
t = 0 the plain contains the coordinate zero. It is interesting that with C = 0, t = 0
processes 2,3,4 gives the convergence area that looks like a round hexagon.

The scrutiny for the convergence of the process 1 gives some interesting in geo-
metric aspect three-dimensional convergence areas. Appropriate results for process
7 are even more interesting.

Conclusion

The constructions proposed above, of course, may be generalized farther. So,
we can examine the n-dimensional linear space with poly-linear symmetric form
(3), divide the arguments manifold on two complexes and say that this form is a
scalar product of these two complexes. This shall cause a further generalization of
the notions introduced above.

It is undoubted that the normal conjugation has it’s own algebraic meaning.
We have proposed useful generalization algorithm for well-known from the Euclid
and pseudo-Euclid spaces geometrical objects and values, such as scalar product,
orthogonality, angles an so on.
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The introduction of additional operations on the hypercomplex numbers turns
them into something more than linear algebras. These operations allow us to ob-
tain the geometries which have much more inner symmetries than the polynumbers
themselves contain. It would be appropriate to introduce the term ”linear geome-
try”, besides the usual ”linear algebra”. The new term contains the old one plus all
possible independent poly-linear linear operations which natural follow from some
constructions of linear algebra itself.

The construction of many-dimensional fractal sets is one of the perspective
directions of applying the potential of such linear geometries.

Probably, we should underline once again, that the fractal sets, constructed
by the mean of the introduced by authors specific (n− 1)-nary operation, are the
objects of polynumber, instead of arbitrary, space. This fact makes them perspec-
tive, unlike the quaternion-based fractals. It is well known that the quaternionic
multiplication is not commutative. Therefore quaternions have poor mathematical
perspectives. Thus, it is impossible to create a complete analytical functions the-
ory. Since there no such problem with polynumbers and taking into account the
hypothetic possibility of the replacement of the Minkowsky space with one of the
poly-spaces [6], the proposed approach seems to be very perspective.

References

[1] D.G. Pavlov, Generalization of scalar product axioms, Hypercomplex Numbers in
Geometry and Physics, 1, Vol 1, 2004.

[2] G.Yu. Bogoslovskiy, The Theory of Locally Anisotropic Space-Time, MSU, M., 1992.
[3] G. S. Asanov, Finslerian Extension of General Relativity, Dordrecht, 1984.
[4] B. Riemann, About hypotheses in foundation of geometry, – in the book: On Foun-

dation of Geometry.
[5] H.O. Peitgen, D. H. Richter, The Beauty of Fractals: Images of Complex Dynamical

Systems, Springer-Verlag, NY, 1986.
[6] D.G. Pavlov, Four-dimensional time, Hypercomplex Numbers in Geometry and

Physics, 1, Vol 1, 2004.



94 Space-Time Structure. Algebra and Geometry

Generalized Analytical Functions

and the Congruence of Geodesics

G. I. Garas’ko

Russian Electrotechnical Institute

gri9z@mail.ru

The author defines the notion of generalized-analytic function of polynumber variable,
a primary step towards constructing a relevant theory able to develop theoretical-physical
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Introduction

Very impressive success of the theory of complex variable and it’s applications
to physics makes us to search for a generalization of this theory for spaces of more
than two dimensions. It is possible that the construction of polynumber variable
[1] is one of such generalizations. We have to put some additional conditions to
allow automatically apply such functions for theoretic physics models and some
concrete physical questions.

Generalized analytical function (for further details see [1]) – is the pair {f i; γi
k}:

∂f i

∂xk
+ γi

k = pi
kj ḟ

j, or ∇̃kf
i = pi

kj ḟ
j, (1)

where f i, ḟ i – single-covariant vector fields in the space {Mn;Pn}, Mn –
n-dimensional elementary manifold admissive of inter-single-valued correspondence
Mn ↔ Pn on n-dimensional space of polynumbers Pn, and the objects γi

k while
switching to another frame of reference transform as the objects (Γi

kjf
i), where

Γi
kj – objects of the affine connectivity. We postulate that one of the necessary

properties of the space {Mn;Pn} is that it’s tangent space is isomorphous to the
space of associative-commutative hypercomplex numbers (polynumbers) Pn. in any
point X ∈ {Mn;Pn}. Due to the presence of the inter-single-valued transformation
Mn ↔ Pn we may introduce the special frames of references in the space {Mn;Pn}.
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In such frames of reference we define the rules of polynumber multiplication, which
does not depend on the concerned point. If Pn 3 e1, e2, ..., en – a basis, then

eiej = pk
ijek. (2)

Let εi – the coordinates of a unity breakdown then

εipk
ij = δk

j . (3)

Using this formulae and the formulae (1), we obtain an explicit stating for the
generalized derivative

ḟ i = εk∇̃kf
i (4)

and the Cauchy-Riemann correlations:

∇̃kf
i − pi

kjε
m∇̃mf j = 0. (5)

We may juxtapose a manifold of the affine connectivity Ln(Γi
kj) to any

generalized-analytical function {f i; γi
k}. The objects of the affine connectivity Γi

kj,
are a solutions of the equation set

Γi
kjf

j = γi
j. (6)

Thus defined manifold of functions with a same object of connectivity forms a
manifold (a function class), noted {f i; Γi

kj}.
In the space of the affine connectivity always exist a parameter τ , such that

the equation set of geodetic xi = xi(τ) takes [2] form

d2xi

dτ 2
+ Γi

kj

dxk

dτ

dxj

dτ
= 0. (7)

If we replace the connectivity object Γi
kj with a different one:

Γ̃i
kj = Γi

kj +
1

2
(pkδ

i
j + pjδ

i
k) + Si

kj, (8)

where pi – an arbitrary single-covariant field, and Si
kj – an arbitrary tensor, which

is antisymmetric by the down indexes, i.e. torsion tensor, then the geodetic remain
the same. (see, for example, [2]).

Geodetic congruence, appropriate for generalized-analytical function

Let {f i; γi
k} – generalized-analytical function, and vector field f i defines the

congruence of geodetic with connection object (8), where the object Γi
kj is related

with the concerned generalized-analytical function by the relation (6), moreover
the tangent vector along the geodetic xi = xi(τ) is

dxi

dτ
= f i. (9)
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Then the differential equations (7) with Γi
kj replaced by Γ̃i

kj become relations that
define generalized-analytical function

fk∇̃kf
i + (pmfm)f i = 0, (10)

or
fkpi

kj ḟ
i + (pmfm)f i = 0. (11)

Thus, to define geodetics congruence by the way given above (or, as we speak
farther, to have X-property), the generalized-analytical function has to satisfy the
relations (10), (11).

We call generalized-analytical functions with X-property the X-functions.
The equation set (11) is a set of linear equations for n unknowns ḟ i is consistent,

since there certainly is one solution.

ḟ i = −(pmfm)εi. (12)

If the matrix
(aij) = fkpi

kj (13)

is non-degenerate in some area, then (12) is the only solution of system (11) in this
area of the space {Mn;Pn}.

The n-th degree of ”norm” in the polynumber X ∈ Pn space may be expressed
in terms of the form

Ω(X) = det(xkpi
kj). (14)

This form’s value does not depend on basis:

Ω(Y X) = Ω(Y )Ω(X) (15)

with any X, Y ∈ Pn; at last Ω(1) = 1. Thus, we may define the n-th degree of
”norm” by

|X|n = Ω(X) (16)

or by
|X|n = |Ω(X)|. (17)

On account of the said above we may expect that the solutions of the equation
(10) will strongly depend on X-function equal zero or not.

Let us demonstrate that for arbitrary polynumbers the analytic function

F (X) = ωX + V0 (18)

(ω – an arbitrary real number, and V0 – an arbitrary polynumber) is namely a
function that define the congruence of the geodetics, i.e. an X-function.

If ω 6= 0, then it may be written as

F (X) = ω(X −X0), (19)
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where X0 – an arbitrary polynumber. Let us substitute (18) into (10) and, taking
into account that for analytic functions γi

k = 0, we obtain

f i[ω + (pmfm)] = 0. (20)

Since pm – m for arbitrary functions-components, we may always construct
such m components, that (pmfm) = −ω. Which was to be proved.

Let us find out a kind of curves, defined by the function (18). To do it, we have
to find a general solution of the system of ordinary differential equations

dxi

dτ
= ωxi + vi

0. (21)

It has the appearance of

xi = vi
0τ + aieωτ . (22)

We imply by the congruence of curves in some area of n-dimensional space the
(n−1)-parametric family of curves. At that one and only one curve passes through
every point of this n-dimensional space.

There is (2n+1) independent real parameters and the parameter along the curve
in the general solution (22). Therefore parameters vi

0, a
i, ω have to be expressible

as (n−1) independent parameter for equations (22) to define the congruence. And
the region of variation of the parameter τ may be limited according to the values
of these (n− 1) independent parameters. If we fix the direction of the parameter τ
changing (for example – from lesser to bigger values), every curve gets a direction,
i.e. it has a view of a current line or a ”field line”.

Despite of simplicity of appearance of the general solution (22), these formulas
define a great variety of congruences of curves. And not all of them are straight,
i.e. geodetic. Thus, the manifold of solutions of (10 includes the X-functions as a
subset. This means that the fulfilment of (10) is necessary, but not enough for the
generalized-analytical function to have the X-property.

In physics we often meet the condition ∇if
i = 0. The law of conservation of

charge and the 4-vector calibration of electro-magnetic field are expressed like that
for example.

Let us calculate the same convolution product for the generalized-analytic func-
tion. We obtain

∇̃if
i = pi

ij ḟ
j. (23)

For X-function in case the condition (12) is satisfied we have

∇̃if
i = −(pmfm), (24)

and for X-function (18), (19)

∇̃if
i = nω. (25)
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Examples of analytic X-function

Complex numbers

Let us take up the analytic function

F (z) = u(x, y) + iv(x, y) (26)

of complex variable
z = x + iy, i2 = −1. (27)

For first, let us write out the matrix(13)

(aij) =

(
u −v

v u

)
(28)

and calculate it’s determinant

det(aij) = u2 + v2. (29)

Thus, for complex numbers the following formulae(16) is true

det(aij) = |F (z)|2. (30)

Let us solve the equation set (10). In this case it takes form




u∂u
∂x

+ v ∂u
∂y

+ (p1u + p2v)u = 0,

u ∂v
∂x

+ v ∂v
∂y

+ (p1u + p2v)v = 0.
(31)

Using the Cauchy-Riemann conditions

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
, (32)

From this equation set we have two sets:




(u2 + v2)
[

∂u
∂x

+ (p1u + p2v)
]

= 0,

(u2 + v2)∂u
∂y

= 0,
(33)





(u2 + v2) ∂v
∂x

= 0,

(u2 + v2)
[

∂u
∂y

+ (p1u + p2v)
]
= 0.

(34)

Let us examine these equation set in the area u2 + v2 6= 0. In that case, reducing
by this non-zero factor and writing the integrability conditions of the obtained
equation sets, we have

∂

∂x
(p1u + p2v) =

∂

∂y
(p1u + p2v) = 0 ⇒ (p1u + p2v) = const, (35)
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and the only solution in this case

F (z) = ωz + w0, (36)

where ω – an arbitrary real number, w0 = u0 + iv0 – an arbitrary complex number.
Let us calculate a convolution ∇if

i of two X-functions (36), we get

∇if
i =

∂u

∂x
+

∂v

∂y
= 2ω, (37)

which matches the formula (25).
So we have proven that all analytic X-functions of complex variable have the

appearance of (36). There is no analytic X-function of complex variable (excluding
a constant), for which ∇if

i ≡ 0.

Hyperbolic numbers, H2

Let us consider an analytic function

F (z) = u(x, y) + jv(x, y) (38)

of hyperbolic variable
z = x + jy, j2 = 1. (39)

Let’s calculate the matrix (13)

(aij) =

(
u v

v u

)
(40)

and it’s determinant
det(aij) = u2 − v2. (41)

Thus, if v = ±u the matrix (aij) is degenerate, and for hyperbolic numbers formulae
(16) is true (16)

det(aij) = |F (z)|2, (42)

if we take the square of norm in H2 space as

|z|2 = x2 − y2. (43)

The relations (10) for hyperbolic numbers have the same appearance as for
complex numbers, and the Cauchy-Riemann equations change a bit :

∂u

∂x
=

∂v

∂y
,

∂u

∂y
=

∂v

∂x
(44)

– therefore we only have to change the common factor in the equations (33), (34)
to (u2 − v2). Doing that, we obtain not a single, but three qualitative different
solutions:

F(0)(z) = ωz + w0, (45)
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where ω – an arbitrary real number and w0 – an arbitrary hyperbolic number;

F(1)(z) = f(1)(x + y)(1 + j), (46)

where f(1)(ξ) – an arbitrary one real number function;

F(2)(z) = f(2)(x− y)(1− j), (47)

where f(2)(ξ) – an arbitrary one real number function. In the ψ-basis:

ψ1,2 = 1
2
(1± j), ψ1ψ1 = ψ1, ψ2ψ2 = ψ2, ψ1ψ2 = 0,

x + jy = (x + y)ψ1 + (x− y)ψ2 = ξ1ψ1 + ξ2ψ2

(48)

the two latter X-functions take the appearance of

F(1)(z) = 2f(1)(ξ
1)ψ1, F(2)(z) = 2f(2)(ξ

2)ψ2, (49)

at that |F(1)(z)| = 0, |F(2)(z)| = 0.
So, the analytic X-functions of H2 variable are more multifarious than appro-

priate functions of complex variable. It is related with the presence of the divisors
of zero in H2 algebra.

Let us calculate the scalar ∇if
i of three obtained X-functions:

∇if
i
(0) = 2ω, ∇if

i
(1) = 2ḟ(1)(x + y), ∇if

i
(2) = 2ḟ(2)(x− y). (50)

Note that there are no analytic X-functions of H2 variable (excluding a constant)
for which ∇if

i ≡ 0.

Hypercomplex numbers H4

These polynumbers algebra is isomorphous to the algebra of real diagonal
square matrices 4 × 4. It is the most easy to work with such numbers in ψ-basis:
ψ1, ψ2, ψ3, ψ4;

ψiψj = pk
ijψk, pk

ij =





1, if i = j = k,

0, in all other cases.
(51)

An arbitrary analytic function of H4-variable has an appearance of:

F (x) = ϕ1(ξ1)ψ1 + ϕ2(ξ2)ψ2 + ϕ3(ξ3)ψ3 + ϕ4(ξ4)ψ4, (52)

where ϕi – arbitrary even functions of a real variable, and ξi – the coordinates of
X ∈ Pn in ψ-basis. The matrix (13) has the appearance of

(aij) =




ϕ1 0 0 0

0 ϕ2 0 0

0 0 ϕ3 0

0 0 0 ϕ4




(53)
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and it’s determinant equal

det(aij) = ϕ1ϕ2ϕ3ϕ4. (54)

Thus, for hypercomplex numbers H4 the formulae (16) is true:

|F |4 = det(aij), (55)

if the fourth degree of norm in H4 space is

|X|4 = ξ1ξ2ξ3ξ4. (56)

The equation set (10) after substituting (52) into it is written like: (52)

ϕi

[
∂ϕi−

∂ξi−
+ pmϕm

]
= 0, (57)

where i ≡ i− (no summation). As we noted above, the qualitative difference of the
equation set (57) solutions is related with the presence of the divisors of zero in
the polynumbers system. Let us classify polynumbers X 6= 0 in H4 space in the
following way:

A) X is not a divisor of zero;

B) three coordinates ξi, ξj, ξk, i 6= j, i 6= j, j 6= k not equal zero, and the fourth
coordinate equal zero;

C) only two coordinates ξi and ξj, i 6= j differ from zero, and another two coordinate
equal zero;

D) only one coordinate ξi is not zero.

According to this classification we classify the solutions of the equation set (57):

A) F(0)(X) = ωX + W0, (58)

where ω – an arbitrary real number, a W0 – an arbitrary polynumber;

B) F(i,j,k)(X) = ω(ξiψi− + ξjψj− + ξkψk−) + ζ i
0ψi− + ζj

0ψj− + ζk
0 ψk− , (59)

where ω, ζm
0 – four arbitrary real numbers for each X-function of this kind;

C) F(i,j)(X) = ω(ξiψi− + ξjψj−) + ζ i
0ψi− + ζj

0ψj− , (60)

where ω, ζm
0 – three arbitrary real numbers for each X-function of this kind;

D) F(i)(X) = ϕi(ξi−)ψi− , (61)

where ϕi(ξi−) – an arbitrary flat function of a real variable for each X-function of
this kind;

Let us calculate the scalar ∇mϕm of each obtained X-function.

A) ∇mϕm = 4ω, B) ∇mϕm = 3ω,

C) ∇mϕm = 2ω, D) ∇mϕm = ϕ̇i(ξi−).
(62)

Thus, there are no analytic X-functions of H4 variable (excluding a constant)
for which ∇mϕm ≡ 0.
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Non-degenerate X-functions

Let us call the X-function non-degenerate if it is not a divisor of zero, i.e.
|F (X)| 6= 0.

Then it follows from the above-stated that such generalized-analytic function
has an appearance of

{f i; γi
k} = {f i;− ∂f i

∂xk
+ δi

ka(x)}, (63)

where f i – an arbitrary flat vector field, and a(x) an arbitrary scalar field. Thus,
there are non-degenerate X-functions for any polynumbers, all of them have an
appearance of (63), at that

ḟ i = εia(x), ∇̃if
i = na(x). (64)

Formally the non-constant non-degenerate X-functions with ∇̃if
i = 0 do exist,

but they are trivial, since the scalar field a(x) at that identically equal zero. Mark
that the derivative of the non-degenerate X-function in the basis generally has an
appearance of e1 = 1, e2, ..., en

Ḟ (X) = a(x) + 0e2 + 0e3 + ... + en. (65)

Let us find out the conditions for the product of two non-degenerate X-
functions F(1)(X), F(2)(X) to be a non-degenerate X-function F(3)(X) too. Since
|F(1)(X)F(2)(X)| = |F(1)(X)| |F(2)(X)|,, the function F(3)(X) is non-degenerate.

All we have to do is to check the fulfillment of the formulae (63) for it. From
the article [1] we take the formulae for the polynumber product of two generalized-
analytical functions:

{f i
(1); γ

i
(1)k}{f i

(2); γ
i
(2)k} = {f i

(3); γ
i
(3)k}, (66)

where

γi
(3)k = pi

i1i2
(f i2

(2)γ
i1
(1)k + f i1

(1)γ
i2
(2)k). (67)

Let us demand all γ-objects in the formulae (67) to have the appearance, defined
by the formulae (63). Then, after some transforms we obtain:

a(3)δ
i
k = a(1)p

i
kjf

j
(2) + a(2)p

i
kjf

j
(1). (68)

These are the wanted conditions: two nondegenerate X-functions must satisfy them
in order to their product be nondegenerate X-function too.
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Conclusion

In this article have introduced the generalized-analytical functions of an arbi-
trary polynumber variable, which have been called the non-degenerate X-functions
and they are the equivalent of function F (z) = z of complex variable z. While
these functions are not divisors of zero, they may define a congruence of geodetics
in space {Mn;Pn}. At that the derivative of such function is a poly-numeral unity
multiplied by a scalar field. Formally the non-constant non-degenerate X-functions
with ∇̃if

i = 0 do exist, but they are trivial, since the scalar field a(x) at that iden-
tically equal zero. Possible, namely the non-degenerate X-functions shall play the
very same fundamental role as the complex variable z does in theory of analytical
functions of complex variable, i.e. non-degenerate X-function F (z) = z.

Author expresses his thanks to I. N. Dhoulkin for his kind attention to his job,
D.G. Pavlov for the detailed discussion of results and L.M. Fisher for the serious
technical assistance.
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In the framework of 4-dimensional linear spaces with Berwald-Moor metrics, are
determined formulas for the 3-dimensional distance and for the the velocity modulus.
The used algorithm is applicable both for the Minkowski space and for an arbitrary
multi-linear Finsler space with fixed time-like component. The constructed modulus co-
incides with the corresponding expression of the Galilean space for small (non-relativistic)
velocities, while at maximal velocities (i.e., for world lines lying on the surface of the
cone), this modulus equals unity. Further, the notion of the surface of relative simultane-
ity (employed in special relativity too) is used to construct the 3-dimensional distance.
The formulas for the velocity transformation which describe the change between inertial
frames are obtained as well. In the case when both velocities are directed along one of the
three selected future straight lines, it is shown that the obtained relations coincide with
the analogous relations of Special Relativity - unlike the general case. Moreover, for the
Berwald-Moor space are obtained the expressions for the transformations which play the
same role as the Lorentz transformations in the Minkowski space. It is proved that, if the
3-space coordinate axes are straight lines along which the velocities are added as in special
relativity, then if considering the velocity of the new inertial frame collinear to the one of
these coordinate axis, one can see that both the transformation of this coordinate and of
the time coordinate coincide with the Lorentz transformations, while the transformations
of the two transversal coordinates differ from the corresponding Lorentz transformations.
The main addressed issues can be summarized as follows: physical interpretation of the
main geometrical objects, definitions of distance and velocity modulus in the Minkowski
space and in the H4 space, addition of velocities, and transition from the motionless
inertial frame to the moving one.

Mathematics Subject Classification: 53B40, 83D05, 83A05.

Introduction

The geometry of the classical (non-relativistic) space is usually connected with
the names of Galileo and Newton. It can be considered the second order approxi-
mation with regard to the small parameter (the ratio of the velocity modulus to the
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speed of light) of the Minkowski space geometry. But there are other geometries
whose metrics is not quadratic, for which the corresponding limit transition leads
to the Galilean space, that is, to the classical non-relativistic mechanics.

Starting with four dimensions that are definitely present in the physical world
and wishing first of all to regard the simplest metrics of the fourth order, it seems
necessary to begin with the linear space with the Berwald-Moor metrics. In one of
the basis its interval can be represented as the product of four coordinates

S = 4
√

ξ1ξ2ξ3ξ4 . (1)

This space we designate as H4 [1]. The metrics function (1) is a particular case of
the more general metrics function ([2], [3])

S = ξ
(1+r1+r2+r3)/4
1 ξ

(1+r1−r2−r3)/4
2 ξ

(1−r1+r2−r3)/4
3 ξ

(1−r1−r2+r3)/4
4 , (2)

for which all the parameters r1, r2, r3 are set equal to zero. The important property
of H4 is that it is connected with the commutative associative algebra and has an
analogue of the scalar product that can be introduced as a symmetric poly-linear
form of several vectors [4].

Notice, that despite of its exotic view, the eq. (1) metrics can be regarded as
a 4-dimensional generalization of the usual quadratic form characteristic for the
pseudo-Euclidean plane.

S2 = x2
0 − x2

1 (3)

in the special basis constructed out of the isotropic vectors can be presented as

S2 = ξ1ξ2. (4)

This is already enough to expect the space with the eq. (1) metrics to have proper-
ties close to the properties of the pseudo-Euclidean space (especially, 2-dimensional
one), one of such properties being certain relativistic features.

Remark: To simplify the formulas we will usually write the tensor indices as
subscripts and sometimes will not write the vector coordinates as the differences
between their ends. This should not lead to errors or misunderstandings since we
use only affine spaces and the lifting and lowering of the indices is not used.

Physical interpretation of the main geometrical objects

Regarding a 4-dimensional multiple set as a model of the space-time, one should
first of all look for the effects taking place in its 3-dimensional subspace. The last
one should be preferably able to be interpreted as the regular 3-dimensional classical
space of the observer. In Minkowski space (and its Riemann generalizations) the
Euclidean properties of its 3-dimensional subspace are present in the fundamental
metrics form containing the positively defined quadratic components. As a result
of this, the methodological problems of comparing the properties of such multiple
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sets with the properties of the real 3-dimensional space (undoubtedly close to the
Euclidean geometry), arise only as the corollaries of the rejection of the absolute
simultaneity.

Leaving the Minkowski space with its quadratic form for the Finsler space,
particularly to H4, where the intervals are expressed by the fourth-order form, the
observer ”living” in such a space could not be sure what kind of geometry he finds
around him. To answer this question let us find out which objects of this multiple
set are related to the common physical notions and values. But before that, let us
first give the interpretations of the analogues geometric objects connected with the
special relativity (SR). These interpretations are:

1. point in the 4-dimensional space – event;
2. straight line – world line of the inertial frame;
3. distance between the points on the straight line – interval between the events;
4. set of isotropic (with the zero interval) straight lines crossing at one point –
light cone;
5. hyper-surface with the points that are equidistant from the fixed point – space-
time hyper-sphere or set of events equidistant in the observer’s proper time from
the fixed event;
6. hyper-surface with the points equidistant from the two fixed points – set of the
relatively simultaneous events in the selected inertial frame whose world line passes
through the fixed points;
7. straight lines parallel to the fixed line – set of points that are motionless in the
3-dimensional space of the observer located in the fixed inertial frame.

For geometrical objects in H4 (as well as for many other Finsler spaces) prac-
tically the same physical interpretations can be used. The differences reveal them-
selves only in particular cases, and for H4 they constitute the following three facts:
instead of a circular light cone there is a cone with flat sides; the set of relatively
simultaneous events (i.e. the set of events equidistant from the two fixed points of
space-time) is now not flat but it presents rather complicated hyper-surface; and
instead of the pseudo-Euclidean sphere consisting of three hyperboloids (second
order surfaces) there is now a hyper-surface consisting of 16 hyperboloids (fourth
order surfaces). All these circumstances follow from the fact that now the interval
is not the square root of quadratic form, but the fourth order root of the fourth
order form (1).

The special basis in which the H4 interval has the laconic form (1) is connected
with the special isotropic vectors. In the analogous basis in SR the square of the
interval looks rather unusually too:

S2 = ξ1ξ2 + ξ1ξ3 + ξ1ξ4 + ξ2ξ3 + ξ2ξ4 + ξ3ξ4. (5)

Such representation of the Minkowski space interval is rarely used, therefore,
not to step away from the usual SR constructions, let us transform the metrics of
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H4 to the basis that is a Berwald-Moor analogue of the ortho-normal basis [5]. To
do this we use the linear substitution:

ξi = Aijxj, (Aij) =




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




, AikAkj = 4δij (6)

– and obtain the following expression for the fourth power of the interval :

S4 = x4
0 − 2x2

0(x
2
1 + x2

2 + x2
3) + 8x0x1x2x3+

+x4
1 + x4

2 + x4
3 − 2x2

1x
2
2 − 2x2

1x
2
3 − 2x2

2x
2
3.

(7)

Raising the square of the Minkowski interval

S2 = x2
0 − x2

1 − x2
2 − x2

3 (8)

to the second power to have the powers of four in both expressions, we get the
polynomial similar to that in the r.h.s of eq. (7):

S4 = x4
0 − 2x2

0(x
2
1 + x2

2 + x2
3) + x4

1 + x4
2 + x4

3 + 2x2
1x

2
2 + 2x2

1x
2
3 + 2x2

2x
2
3. (9)

In the regions characteristic for the non-relativistic physics where |vα| ¿ 1, vα =
xα/x0, α = 1, 2, 3, the expressions (7) and (9) coincide within the accuracy of the
second power of small parameter |vα|. This justifies the mentioned limit transition
from the H4 geometry to the Galilean geometry, that is to the geometry of classical
Newtonian physics.

Definitions of distance and velocity modulus in Minkowski space

The observer in Minkowski space who attributes the equal distances (in the
3-dimensional sense) to a certain set of events can follow a simple geometric rule
– intercross two spheres with the same radii (hyperboloids in Minkowski space)
located in two different centers (Fig.1). The straight line passing through the
centers of these hyperbolic spheres can be associated with the inertial frame in
which the events on the cross-section of the corresponding hyperboloids appear to
be equidistant.

With no loss of generality, the centers of hyperboloids could be located on
the time axis x0 symmetrically from the coordinates origin, i.e., in the points
(−T, 0, 0, 0) and (T, 0, 0, 0). To obtain the equation of the intersection of the two
pseudo Euclidean spheres with radii S and with centers in these points, one has to
solve the system of equations

S2 = (T + x0)
2 − x2

1 − x2
2 − x2

3,

S2 = (T − x0)
2 − x2

1 − x2
2 − x2

3.



 (10)
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Figure 1: The cross-section of the hyperboloids in Minkowski space

After addition and subtraction of these equations, one gets

S2 = T 2 + x2
0 − x2

1 − x2
2 − x2

3,

0 = 2Tx0,



 (11)

The first of these equations describes the single-cavity spherical hyperboloid (time
axis is the axis of its symmetry), the second equation describes the hyper-plane
x0 = 0 orthogonal to the x0 axis (Fig. 2).

Figure 2: The cross-section of the plane and hyperboloid in Minkowski space
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Varying the value of the interval S from 0 to T , we get a set of 2-dimensional
surfaces put into one another. Each of these surfaces should be attributed a real
positive value, which the observer in the fixed frame could call ’distance’. To do
this, he should attribute these values to the arbitrary points of the surfaces and
expand these values on all the other points of the surfaces. The simplest realization
of this procedure is the drawing of a line across all the surfaces, then the linear
parameter along this line could be used as ’distance’. In particular, one can use the
x1 axis as this line. Taking the linear rule for the correlation between the distance
l and the coordinate x1, i.e. substituting x0 = 0, x1 = l, x2 = 0, x3 = 0 into the
first equation in (11), we obtain the expression

l =
√

T 2 − S2, (12)

Eq. (12) gives the relation between the distance l and the radius (interval) S of the
hyperboloids that were used to find the surfaces with the same value of distances.
This relation can be used to rewrite the first of eqs. (11) in the form of the well
known in SR expression for the 3-dimensional distance between the x0 axis and the
world lines parallel to it:

l =
√

x2
1 + x2

2 + x2
3. (13)

The described procedure of obtaining the expression for the distance is never
used in SR, but it is equivalent to one that is used. Here we need such a complicated
procedure to perform the analogous construction in H4 space in which the SR
algorithms do not lead to the result.

To obtain the 3-dimensional velocity in Minkowski space one can use similar
speculations. Two points (x(1)0, x(1)1, x(1)2, x(1)3) and (x(2)0, x(2)1, x(2)2, x(2)3), (the
second one is in the cone of future of the first one) define a vector with coordinates
(x(2)i − x(1)i) that can be rewritten as

(x(2)i − x(1)i) ≡ (x(2)0 − x(1)0)vi, (14)

where v0 ≡ 1, and the components v1, v2, v3 generate the 3-dimensional velocity
vector. Then the interval for these three points can be expressed with the help of
the velocity components

S21 = (x(2)0 − x(1)0)
√

1− v2, (15)

where

v =
√

v2
1 + v2

2 + v2
3. (16)

Notice, that the modulus of the 3-dimensional velocity in SR has the property

S21 = (x(2)0 − x(1)0)f(v), (17)

where f(v) is a function of one real variable. If vector (1, v1, v2, v3) and, conse-
quently, vector (x(2)0 − x(1)0, x(2)1 − x(1)1, x(2)2 − x(1)2, x(2)3 − x(1)3) approach the
isotropic direction, then v → 1.
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Definition of the distance and the velocity modulus in the H4 space

Let us take as a definition that in the H4 space in the same way as in Minkowski
space, the cross-section of the two spheres (hyperboloids) with equal radii but
different centers is a set whose points are spatially equidistant from the observer
whose world line passes through these centers. Apart from the analogy with the
pseudo-Euclidean case, this statement is supported by the equality of the proper
times for the signals emitted from the (−T, 0, 0, 0) point and coming to the points
of the cross-section of two hyperboloids and the proper times of the back signals
emitted in these points and coming to the point (T, 0, 0, 0). From the point of view
of the observer whose world line passes through these points, i.e. coincides with
the x0 axis, and who can use only the information concerning himself and these
signals, the latter reflect from the points of the 3-dimensional space equidistant
from the observer. The total travel time (on the ”signal’s watch”) appears to
be equal to 2S for all pairs of signals and does not depend on the direction of
travel. The watch of the observer, who considers himself motionless, will read the
interval 2T . Therefore, neither the readings of the signal’s watch, nor the readings
of the observer’s watch do not contradict the suggestion that the distances from
the observer to the world lines passing through the points of the cross-section of
two hyperboloids, are the same. Consequently, they are completely characterized
by the two values S and T .

To get the equation for the surface of the cross-section of the two hyperboloids
with the centers in the points (−T, 0, 0, 0) and (T, 0, 0, 0) in the H4 space, substitute
first (T + x0, x1, x2, x3) and then (T − x0,−x1,−x2,−x3) instead of (x0, x1, x2, x3)
into eq. (7):

S4 = (T + x0)
4 − 2(T + x0)

2(x2
1 + x2

2 + x2
3) + 8(T + x0)x1x2x3+

+x4
1 + x4

2 + x4
3 − 2x2

1x
2
2 − 2x2

1x
2
3 − 2x2

2x
2
3 ,

S4 = (T − x0)
4 − 2(T − x0)

2(x2
1 + x2

2 + x2
3)− 8(T − x0)x1x2x3+

+x4
1 + x4

2 + x4
3 − 2x2

1x
2
2 − 2x2

1x
2
3 − 2x2

2x
2
3 .





(18)

Taking as in the case of Minkowski space the sum and the difference of these
equations, one gets

S4 = x4
0 + 2x2

0(3T
2 − x2

1 − x2
2 − x3

3) + 8x0x1x2x3 + T 4−
−2T 2(x2

1 + x2
2 + x2

3) + x4
1 + x4

2 + x4
3 − 2(x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3) ,

0 = x3
0 + (T 2 − x2

1 − x2
2 − x2

3)x0 + 2x1x2x3 .





(19)

It is not so easy to draw even schematically the 2-dimensional surfaces corre-
sponding to eq. (18) in the 4-dimensional space. That is why to illustrate the result
we will use the similar surface in the 3-dimensional case, Fig. 3, corresponding to
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Figure 3: The cross-section of the hyperboloids in H3 space

H3 space, which is constructed similarly to H4 and has the following metrics in the
isotropic basis

S3 = ξ1ξ2ξ3. (20)

Having passed from eqs. (18) to eqs. (19), we pass from the cross-section of two
hyperboloids to the cross-section of two new hyper-surfaces. The first of them is
in a sense equivalent to the single-cavern hyperboloid of the Minkowski space, and
the second is analogous to the hyper-plane x0 = 0 of the pseudo-Euclidean space,
because there are equal intervals from every point of it to the points (−T, 0, 0, 0) and
(T, 0, 0, 0), Fig.4. But now the second equation of eqs. (19) defines the essentially
nonlinear surface, this being the result of using the Finsler metrics that has higher
order than the quadratic one. From the physical point of view, such hyper-surface
could be related to the notion of relative simultaneity. This is reasonable only
in case when both the inertial frame is fixed, and the characteristic scale T (that
gives the time between the instantaneous location of the observer and the event
with regard to which the simultaneity is defined) are fixed. In the pseudo-Euclidean
case this scale is unnecessary, since the hyper-surface related to the notion of the
relative simultaneity remained the same for every interval separating the observer
and the layer of the relatively simultaneous events. In the linear Finsler spaces this
is not so, and this leads to the reconsideration of the properties of time, at least,
for the spaces with the non-quadratic metrics.

The cross-section of the hyperboloids (18) with the centers at points
(−T, 0, 0, 0) and (T , 0, 0, 0) is such a set of events that the observer whose
world line passes through these points would consider equidistant from himself
(from his world line). Varying the interval S from 0 to T , we obtain the set of
2-dimensional surfaces enclosed in each other, each of which corresponds to a cer-
tain spatial distance. To characterize each of these 2-dimensional sets with one and
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Figure 4: The cross-section of the special surface and hyperboloid in H3 space

the same value of distance automatically, it is sufficient to attribute certain values
of distances to at least one of the points on each surface, and then extend these
values over all the points of the corresponding surface. As in the pseudo-Euclidean
case mentioned above, one can take a straight line crossing all these surfaces, and
call the linear parameter l along this line the ’distance’ already not in the regular
pseudo-Euclidean space, but in the linear Finsler space-time.

The analysis of eq. (19) shows that all the straight lines passing through the
coordinates origin and lying on one of the three planes (x1, x2), (x1, x3) or (x2, x3)
belong to the surfaces of relative simultaneity of the H4 space, corresponding to
this equation. Particularly, one of these lines is the x1-axis, therefore, relating the
distance l and the coordinate x1, one gets the distance l from the observer to the
motionless (with regard to him) observers for whom the initial hyperboloids have
the radii equal to S and the half of the interval between their centers is equal to
T . Substituting x1 = l, x2 = 0, x3 = 0 into eq. (19), one gets

S4 = x4
0 + 2x2

0(3T
2 − l2) + T 4 − 2T 2l2 + l4,

0 = x3
0 + (T 2 − x2

1 − x2
2 − x2

3)x0.



 (21)

The second equation gives x0 = 0, therefore, the first equation gives

S4 = T 4 − 2T 2l2 + l4. (22)

Solving this equation for l, one gets

l =
√

T 2 − S2. (23)

Thus, the 3-dimensional distance from the world line (0, 0, 0) to the parallel world
line (x1, x2, x3) is expressed by the formula

l(T, x1, x2, x3) =
√

T 2 − S2(T, x1, x2, x3), (24)
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where S2(T, x1, x2, x3) is the square root of the r.h.s of the first of eqs. (19) in
which x0 is the real cubic root of the second of eqs. (19))).

The expression for the 3-dimensional distance, being essentially different from
the regular spherically symmetric form (13), contains the parameter T lacking
in SR. These differences lead to rather unusual properties of the 3-dimensional
distances in H4. Particularly, the distance from world line AA to the world line
B is usually not equal to the distance from world line B to the world line A. But
such effects reveal themselves only when any of the values |xα| can not be neglected
with regard to T . If we can neglect the third and higher powers of the ratio |xα|/T
with regard to unity, then the expression for the distance (24) takes the form

l(T, x1, x2, x3) '
√

x2
1 + x2

2 + x2
3. (25)

New qualitative feature that appears when constructing the surface of relatively
simultaneous events in H4 and that distinguishes it from Minkowski space case
is the need for the concrete parameter T measured in the units of length. It
seems logical to connect this characteristic scale, which is absent in SR, to the
observer, that is to the reference frame, and interpret it as an additional parameter
characterizing the reference frame and providing the possibility to construct the
fixed surface of relative simultaneity.

Let us now pass to the 3-dimensional velocity.
Two points (x(1)0, x(1)1, x(1)2, x(1)3) and (x(2)0, x(2)1, x(2)2, x(2)3) in the H4

space (the last point is in the cone of future of the first one) define the vector with
coordinates (x(2)i − x(1)i) that can be rewritten with the help of velocity as

(x(2)i − x(1)i) ≡ (x(2)0 − x(1)0)vi, (26)

where v0 ≡ 1, while the components v1, v2 and v3 form the 3-dimensional veloc-
ity vector. Then the interval between these two points can be expressed by the
components of velocity as follows

S21 = (x(2)0 − x(1)0)
4
√

W, where (27)

W = (1 + v1 + v2 + v3)(1 + v1 − v2 − v3)(1− v1 + v2 − v3)(1− v1 − v2 + v3). (28)

The modulus v of the 3-dimensional velocity in H4 must have the property

S21 = (x(2)0 − x(1)0)f(v), (29)

where f(v) is a function of one real variable. If only one of the components of the
3-dimensional velocity differs from zero, for example, v1, then, naturally, v = |v1|,
and expression (27) gives

S21 = (x(2)0 − x(1)0)
√

1− v2. (30)

In general case, the speculations similar to those for 3-dimensional distance give
√

1− v2 = 4
√

W (v1, v2, v3), or (31)
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v =

√
1−

√
W (v1, v2, v3). (32)

In the non-relativistic approximation

v '
√

v2
1 + v2

2 + v2
3. (33)

If vector (1, v1, v2, v3), and, consequently, vector (x(2)0 − x(1)0, x(2)1 − x(1)1, x(2)2 −
x(1)2, x(2)3 − x(1)3) approach the isotropic direction, then v → 1. Notice also, that
in general case, W (−v1,−v2,−v3) 6= W (v1, v2, v3).

Addition of velocities

The symmetry group G1(H4) preserves invariant the interval (1) and consists
of linear continuous transformations

x′i =
1

4
AikDkmAmjxj, (34)

where

(Dkm) = diag(exp ε0, exp ε1, exp ε2, exp ε3), (35)

The real parameters εi vary in (−∞,∞) and suffice the condition

ε0 + ε1 + ε2 + ε3 = 0, (36)

This group can be parameterized with the three real values, V1, V2, V3 that can
have the meaning of the components of velocity obtained by the motionless object
after the transformation ((35)

exp εi =
AijVj√
1− V 2

, (37)

where i, j = 0, 1, 2, 3; V0 = 1. If an object had the velocity components (v1, v2, v3)
in the initial reference frame, then in the new reference frame it will have

v′1 =
v1 + V1 + v2V3 + v3V2

1 + v1V1 + v2V2 + v3V3

,

v′2 =
v2 + V2 + v1V3 + v3V1

1 + v1V1 + v2V2 + v3V3

,

v′3 =
v3 + V3 + v1V2 + v2V1

1 + v1V1 + v2V2 + v3V3

.





(38)

The definition of the G1(H4) group gives

(x′(2)0 − x′(1)0)
√

1− (v′)2 = (x(2)0 − x(1)0)
√

1− v2, (39)
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Thus, the formula for the 3-dimensional velocity in the new reference frame is

v′ =

√
1− (1− v2)(1− V 2)

(1 + v1V1 + v2V2 + v3V3)2
, (40)

because the transformations (34) – (37) give

x′(2)0 − x′(1)0 =
1 + v1V1 + v2V2 + v3V3√

1− V 2
(x(2)0 − x(1)0). (41)

If the components of vα and Vα contain only one component different from zero
each, and these correspond to the same specially chosen direction, for example,
(v1, 0, 0) and (V1, 0, 0), then the formulas (38) coincide with the corresponding
formulas for addition of velocities in SR.

Transition from the motionless inertial frame to the moving one

In this Section we will regard the transition from the old (no strokes) reference
frame to the new (stroked) inertial frame moving with the velocity (V1, V2, V3)
relatively to the old one. That is, the point that has the velocity (V1, V2, V3) in the
old frame will have the velocity (0, 0, 0) in the new one. The formulas (34) – (36)
will remain the same, while the formula (37) will be

exp (−εi) =
AijVj√
1− V 2

, (42)

That is, the transitions from one frame to another considered here and in the
previous Section are reverse to each other. Notice, that the change of (V1, V2, V3) to
(−V1,−V2,−V3) in (34) – (37) does not give the transition reverse to (34) – (37).

So, the transition to the frame moving with velocity (V1, V2, V3) in the old
coordinates can be expressed by the new ones as




x0

x1

x2

x3




=
1

4
√

1− V 2
· Â ·




(1 + V1 + V2 + V3)(x
′
0 + x′1 + x′2 + x′3)

(1 + V1 − V2 − V3)(x
′
0 + x′1 − x′2 − x′3)

(1− V1 + V2 − V3)(x
′
0 − x′1 + x′2 − x′3)

(1− V1 − V2 + V3)(x
′
0 − x′1 − x′2 + x′3)




, (43)

where matrix Â has the components Aij (6).
Let us regard this transition for the case when all the components but one of

the velocity of the new frame in the old frame coordinates along the three special
directions are equal to zero, for example, V1 6= 0, but V2 = 0 and V3 = 0. Then

V = |V1|, (44)
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and formulas (43) take the form




x0

x1

x2

x3




=




1√
1−V 2

1

V1√
1−V 2

1

0 0

V1√
1−V 2

1

1√
1−V 2

1

0 0

0 0 1√
1−V 2

1

V1√
1−V 2

1

0 0 V1√
1−V 2

1

1√
1−V 2

1



·




x′0

x′1

x′2

x′3




, (45)

or

x0 =
x′0 + V1x

′
1√

1− V 2
1

x1 =
V1x

′
0 + x′1√

1− V 2
1

x2 =
x′2 + V1x

′
3√

1− V 2
1

x3 =
V1x

′
2 + x′3√

1− V 2
1





. (46)

Such transformation of the coordinates (x′0, x
′
1) ↔ (x0, x1) coincide with the

corresponding transformation in SR, and the transformation (x′2, x
′
3) ↔ (x2, x3)

differs from the corresponding transformation in SR where x2 = x′2, x3 = x′3.

Conclusion

The H4 space which is the space of associative commutative hyper-complex
numbers (poly-numbers) is rather simple from the algebraic point of view – it is
isomorphic to the algebra of the square diagonal real matrices 4× 4. This space is
an anisotropic metric Finsler space with the three parametric Abel symmetry group
and it can not be reduced to a space with the quadratic metrics function. It is the si-
multaneous consideration of the algebraic and geometric properties of H4 that leads
to the appearance of a non-trivial mathematical object. As it was shown in this
paper, the consideration of the physical contents of H4 together with its algebraic
and geometrical structures makes it even more complicated and interesting, despite
its initial algebraic simplicity: in the non-relativistic limit (neglecting second and
higher orders of the ratio of the velocity of the physical object to the velocity of
light), it is indistinguishable both from the Galilean space (the classical mechanics
space) and from the Minkowski space (SR). Moreover, even in the general case
there are some special directions and 2-dimensional planes for which the properties
of H4 coincide with the corresponding properties of the Minkowski space for the
same directions and planes.

The difference between the H4 space and the Minkowski space is due to the
anisotropy of the first one and to the physical effects proportional to the third and
higher powers of the ratio of the velocities of the physical objects to the velocity
of light. That is why, to our view, the question, which of the spaces is most
adequate for the description of the real World is open. In any case, the need
for the thorough investigation of the H4 space and other similar spaces is even
more obvious, since they happened to be left aside from the mainstream of modern
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geometric and physical research. This means that they could contain essences close
to the properties of the real World.

It should be underlined that the approach developed in this paper to get the
modulus of the 3-dimensional velocity and the 3-dimensional spatial distance is
applicable for any linear Finsler space for which there is a special coordinate system
where one time and three space coordinates can be separated.

References

[1] D.G. Pavlov, Four-dimensional Time, Hypercomplex Numbers in Geometry and
Physics, 1, Vol 1, 2004, 33.

[2] G.Yu. Bogoslovsky, H. F. Goenner, On the possibility of phase transitions in the
geometric structure of space-time, Phys. Lett. A 244, N 4, (1998) 222–228.

[3] G.Yu. Bogoslovsky, H. F. Goenner, Finslerian spaces possessing local relativistic
symmetry, Gen. Relativ. Gravit. 31, N 10, (1999) 1565–1603.

[4] D.G. Pavlov, Hypercomplex Numbers, Associated Metric Spaces, and Extension of
Relativistic Hyperboloid, ArXiv: gr-qc/0206004.

[5] D.G. Pavlov, Generalization of scalar product axioms, Hypercomplex Numbers in
Geometry and Physics, 1, Vol 1, 2004, 5.



118 Space-Time Structure. Algebra and Geometry

Generalization of Conformal Transformations

G. I. Garas’ko

Russian Institute for Electrotechnics, Moscow, Russia

gri9z@mail.ru

Conformal transformations of the Euclidean complex plane are deeply involved in
many mathematical and physical-mathematical problems formulated on the plane, con-
nected to completeness and in providing solutions for these problems. This is not the
case for the Euclidean, pseudo-Euclidean or polynumber spaces of dimension greater than
two. Using the concepts of analogical geometries, the author generalizes conformal trans-
formations not only to the case of Euclidean or pseudo-Euclidean spaces, but also to the
case of Finsler spaces, like this is done in spaces with affine connection. Examples of such
transformations for the case of complex and hypercomplex numbers H4 are included, and
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of a distinguished class which is fixed by a choice of metric structure in affine coordinates.
It is pointed out that the relation between the generalized conformal transformations and
generalized analytical functions might provide advances in solving fundamental problems
in theoretical and mathematical physics.
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Introduction

Conformal transformations play a distinguished role in mathematics and
physics. Riemannian and pseudo-Riemannian spaces of constant curvature are not
less important (among such spaces are Lobachevsky space and spherical space),
their homogeneity is as complete as in the case of a Euclidean space, since their
motion groups have the same number of parameters as in the Euclidean case [1].
This work studies only Finslerian spaces admitting an affine coordinate system, so
in the case of metric spaces, that is why we consider the length element to be the
basic concept, and the concept of angle will be considered secondary. The proposed
approach (of course, changed slightly) can be also applied for spaces (geometries)
having the length element not defined, but with angles between vectors defined in
each point.

If Vn is a Riemannian or a pseudo-Riemannian space with coordinates xi and
a metric tensor gij(x), then the connection coefficients Γi

kl in this space are well-
known to be defined by the following formula:

Γi
kl(g) =

1

2
gim

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)
. (1)

If
Gij(x) = Λ(x) · gij(x), (2)
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where Λ(x) > 0 is a scalar function defined on coordinates, then

Γi
kl(G) = Γi

kl(g) +
1

2Λ

(
∂Λ

∂xl
δi
k +

∂Λ

∂xk
δi
l − gim ∂Λ

∂xm
gkl

)
. (3)

Spaces with metric tensors gij and Gij are called conformally connected [1].
Since connectivity coefficients are transformed by the following formulas when

changing the coordinate system:

∂xi′

∂xi
Γi

kl = Γi′
n′p′

∂xn′

∂xk

∂xp′

∂xl
+

∂2xi′

∂xk∂xl
. (4)

These are conformal transformations of coordinates, realized by functions f i in
some area Wn ⊂ Vn, where the metric tensor gij does not depend on the point of
the space, and they satisfy the following system of equations:

∂2f i

∂xk∂xl
=

1

2Λ

(
∂Λ

∂xl
δm
k +

∂Λ

∂xk
δm
l − gmp ∂Λ

∂xp
gkl

)
∂f i

∂xm
. (5)

The convolution of both sides of the equations (5) and the tensor gkl over both
indexes gives us the following:

gkl ∂2f i

∂xk∂xl
=

2− n

2Λ
gkl ∂Λ

∂xk

∂f i

∂xl
. (6)

Thus the functions realizing conformal transformation in Euclidean and pseudo-
Euclidean spaces are the solutions of the differential equation (6).

For analytical functions of a complex variable (the first type conformal trans-
formations of the Euclidean plane) and for complex conjugate analytical function
of a complex variable (the second type conformal transformations of the Euclidean
plane)

Λ =

(
∂f 1

∂x1

)2

+

(
∂f 1

∂x2

)2

, (7)

and equations (5) are valid in the area of analyticity and simple-connectedness.

Generalization of conformal transformations
in Euclidean and pseudo-Euclidean spaces

The concept of analogical geometries was introduced in [2]. It is proposed to call
geometries analogical in some areas, if these geometries have same dimensions and if
there exists a mapping of one area onto another, under which some set of geodesics
(extremals) of one geometry is mapped exactly on some set of geodesics (extremals)
of the second geometry. Under certain assumptions the similarity of geometries
means that there exist coordinate systems in which the differential equations of
geodesics (extremals) coincide.
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If in some geometry of affine connectedness we add to the connectivity coeffi-
cients the tensor

T i
kl =

1

2
(pkδ

i
l + plδ

i
k) + Si

kl, (8)

where pi is an arbitrary covariant field, and Si
kl is an arbitrary tensor field, an-

tisymmetric with respect to the lower two indexes, then the geodesic curves will
remain the same [1].

Let functions f i map an area in a Euclidean or a pseudo-Euclidean space with
a metric tensor gij bijectively onto another area in the same space, and suppose
also that these functions satisfy the following system of equations:

∂2f i

∂xk∂xl
=

[
1

2
(plδ

m
k + pkδ

m
l )− gmp ∂L

∂xp
gkl

]
∂f i

∂xm
, (9)

where pi is a covariant vector field and L a scalar field. Then this map (a coordinate
transformation) will be called elementary generalized conformal.

Notice that in the case of using the additional term (8) with non-zero tor-
sion tensor Si

kl to obtain the formulas (9) instead of a generalization additional
conditions appear:

Sm
kl

∂f i

∂xm
= 0 , (10)

as far as all the other additive terms in both sides of the system (9) are symmetric
under the permutations of indexes k and l.

It follows from the definition of elementary generalized conformal transforma-
tions of Euclidean and pseudo-Euclidean spaces that these transformations and
functions f i realizing them are closely connected with the concept of projective
Euclidean geometries [1].

Thus each function (a component) of an elementary generalized conformal
transformation satisfies the following scalar equation:

gkl ∂2f i

∂xk∂xl
= gkl

(
pk − n

2

∂L

∂xk

)
∂f i

∂xl
. (11)

Though for proper generalized conformal transformations the formula (2) is not
valid, we will suppose by definition that

Λ = Λ0 · exp(L). (12)

In certain sense the scalar field Λ defined this way will be a characteristic for the
squared coefficient of the space ”stress-strain” under an elementary generalized
conformal transformation.

To show the non-triviality of such a generalization let us perform a solution of
the system (9):

f i =
xi

a + b · gklxkxl
, (13)
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where a and b – are real numbers and

Λ =
d

(a− b · gklxkxl)2
, (14)

where d is a real number.
In the case of the Euclidean (complex) plane (x, y)

z = x + iy, F (z) = f 1 + if 2, (15)

the function (13)

F (z) =
z

a + bzz̄
(16)

is neither analytical nor complex conjugate analytical when a 6= 0 and b 6= 0, but
it realizes an elementary generalized conformal transformation of the plane. When
a = 0 this function becomes complex conjugate analytical

F (z) =
1

bz̄
, (17)

which corresponds to a conformal map of the second type. When b = 0 the function
F (z) is analytical,

F (z) =
1

a
z, (18)

which corresponds to a conformal map of the first type.

Polynumbers H4

In the space H4 the fourth power of the length element written in the basis ψ
looks like

(ds)4 = dξ1dξ2dξ3dξ4, (19)

and a conformally connected geometry will have the length element

(ds)4 = Ξdξ1dξ2dξ3dξ4, (20)

where Ξ > 0 is a scalar field. This geometry is similar to the geometry of affine
connectedness with the connectivity coefficients [2]

Γi
kj =

1

2
(pkδ

i
j + pjδ

i
k)− pi

kj

1

Ξ

∂Ξ

∂ξj−
+ Si

kj, (21)

where

ψkψj = pi
kjψi, pi

kj =





1, if i = j = k,

0, otherwise,
(22)

pk, Si
kj = −Si

jk are arbitrary tensor fields.
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Thus we obtain the system of equations for functions f i, which realize an ele-
mentary generalized conformal transformation in the coordinate space of polynum-
bers H4:

∂2f i

∂xk∂xl
=

[
1

2
(plδ

m
k + pkδ

m
l )− pm

kl

∂L

∂xl−

]
∂f i

∂xm
, (23)

where
Ξ = Ξ0 · exp(L). (24)

Any function analytical with respect to the variable H4 realizing a one-to-one
correspondence between two ares contained in the coordinate space of polynumbers
H4 satisfies the system (23), and at the same time

pi = 0, Ξ = ḟ 1ḟ 2ḟ 3ḟ 4, L = ln |Ξ/Ξ0|. (25)

Functions analytical with respect to the variable H4 are not the only solutions of
the system (23). Another solution of this system is the function

f i =

f i
0 ln

∣∣∣∣
ξi−

ξ
i−
0

∣∣∣∣

a + b ln

∣∣∣∣
ξ1ξ2ξ3ξ4

ξ1
0ξ

2
0ξ

3
0ξ

4
0

∣∣∣∣
, (26)

which becomes analytical with respect to the variable H4 only when b = 0. In the
formula (26) a, b, ξi

0, f i
0 are constants but, of course, they are not all independent.

For the function (26)

Ξ =
const

ξ1ξ2ξ3ξ4
. (27)

As far as in the space H4 the following tensor can be defined

qij = pm
ikp

k
mj, (qij) = diag(1, 1, 1, 1), (28)

there also exists a twice contravariant tensor qij,

(qij) = diag(1, 1, 1, 1). (29)

This is why each component of an elementary generalized conformal transformation
of H4 should satisfy the following scalar equation:

qkl ∂2f i

∂xk∂xl
= qkl

(
pk − ∂L

∂xk

)
∂f i

∂xl
. (30)

Comparing the equations (11), (30) and taking into account the formulas (12)
(24), we see that the scalar equation (11), solutions of which are the functions
realizing generalized conformal transformations in the four-dimensional Euclidean
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space, and the scalar equation (30) describing the functions realizing generalized
conformal transformation in the space H4 have the same structure:

δkl ∂2f i

∂xk∂xl
= δkl

(
pk − 4

∂l

∂xk

)
∂f i

∂xl
, (31)

where the coefficient λ of linear ”stress-strain” can be expressed in the terms of a
scalar field l for the both four-dimensional Euclidean space and space H4 with the
same formula

λ = λ0 exp(l). (32)

Notice, however, that we cannot claim that pk and l are the same in the four-
dimensional Euclidean space and in the space H4. At the same time it would be very
interesting to find such a class of elementary generalized conformal transformations,

that for all its elements the covariant field

(
pk − 4

∂l

∂xk

)
would be the same in the

four-dimensional Euclidean space and in the space H4, i.e. that in both cases
the functions f i would satisfy the same scalar equation not only formally. Linear
transforms automatically form a subset of such a class of transformations.

Generalized conformal transformations

The preceding constructions allow us to suppose that the system of equations
defining elementary generalized conformal transformations of a metric geometry
(at this moment Finsler geometry is developed more than enough for the needs of
theoretical and mathematical physics) admitting affine coordinates and for which
all its conformally connected spaces are always similar to some geometry of affine
connectedness has the following most general view in the affine coordinates:

∂2f i

∂xk∂xl
=

[
1

2
(plδ

m
k + pkδ

m
l )−∆pm

kl

∂L

∂xp

]
∂f i

∂xm
, (33)

where ∆pm
kl is a symmetric with respect to the lower indexes number tensor in

an affine coordinate system of the initial metric geometry, L and pk are a scalar
and a covariant fields; and for conformal transforms the coefficient λ of linear
”stress-strain” is expressed in the terms of the scalar field L with the formula

λ = λ0 exp(L/m) ≡ λ0 exp(l). (34)

Here λ0 is a real number and m is a natural number, equal to the order of the
Finsler geometry form, by which the length element is expressed, for instance, for
Euclidean and pseudo-Euclidean geometries m = 2 and for H4-numbers m = 4.

It follows from the formulas (33) that any linear non-degenerate transformation
is elementary generalized conformal with

pi = 0, L = const. (35)
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Though we do hope that for all possible tensors ∆pm
kl the concept of Finsler

geometry is enough (it is possible that the concept of polynomial geometry [3]
might be enough), this conjecture (same as the stronger one) needs a rigorous
proof.

For non-degenerate polynumber spaces Pn there always exists a tensor qij (see
(28), (29)), that is why in such spaces elementary generalized conformal transfor-
mations satisfy the following scalar equation:

qkl ∂2f i

∂xk∂xl
=

(
pkq

km − qkl∆pm
kl

∂L

∂xp

)
∂f i

∂xm
. (36)

Elementary generalized conformal transformations (33) do not form a group.
But all their products (i.e. consequent executions) together with the inverse ones do
form a group, which will be denoted as Gn(∆pm

kl ) and called a group of generalized
conformal transformations. The elements of this group are the solutions of the
system

∂2f i

∂xk∂xl
=

[
1
2
(plδ

m
k + pkδ

m
l )−∆pm

kl

∂L

∂xp

]
∂f i

∂xm
−

[
1
2
(p′rδ

i
s + p′sδ

i
r)−∆pi

sr

∂L′

∂fp

]
∂f s

∂xk

∂f r

∂xl
,

(37)
where pl, p′k, L, L′ are some fields, ∆pi

sr is the same scalar tensor as in the system of

equations (33); and the derivatives
∂L

∂fp
are meant to be explicitly expressed it terms of

partial derivatives by xi.
Generalized conformal transformations can be viewed as transitions in the uniquely

characterized by the tensor ∆pi
sr subset (class) of projective Euclidean spaces. Let us

emphasize once again that it is enough to investigate elementary generalized conformal
transformations, as far as an arbitrary generalized conformal transformation can be con-
structed as a product of an elementary and an inverse to an elementary transformation (of
course another one if we do not wish to obtain an identity transform). Riemannian and
pseudo-Riemannian conformally Euclidean spaces are always spaces of constant curvature
[1], hence the proposed constructions define a class of Finsler spaces, which can be called
Finsler spaces of constant curvature. Thus generalized conformal transformations form
a group of transitions between the elements of such a class of Finsler spaces.

Generalized analytical functions

If the initial metric space with a number tensor ∆pm
kl corresponding to it is polynum-

ber Pn 3 X, then analytical functions realize conformal transformations in the area where
the Jacobean of their coordinates is different from zero, and a concept of generalized
analytical functions can be introduced in this space [3]. Of course, in this case functions
realizing generalized conformal transformations are generalized analytical functions of
the given polynumber variable. The following problem seems to be more interesting:
find a class Υ(∆pm

kl ) 3 F (X) of generalized analytical functions, each element of which is
a solution of the system (37).

Notice that if F(1)(X), F(2) ∈ Υ(∆pm
kl ), then F(1)

(
F(2)

) ∈ Υ(∆pm
kl ). It follows from

the group properties of generalized conformal transformations.
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A generalized analytical function of a polynumber variable X ∈ Pn,

F (X) = f1(x1, x2, ..., xn)e1 + f2(x1, x2, ..., xn)e2 + ... + fn(x1, x2, ..., xn)en, (38)

X = xiei, ei is a basis, satisfies the correlations

∂f i

∂xk
+ γi

k = pi
kj ḟ

j , (39)

where ḟ j is a generalized derivative, tensor pi
kj is defined by the correlations

ekej = pi
kjei, (40)

and the object γi
k should change under transition to another coordinate system according

to the following law

γi′
k′ =

∂xk

∂xk′
∂xi′

∂xi
γi

k −
∂xk

∂xk′
∂2xi′

∂xk∂xi
f i. (41)

If εi are the coefficients of the unit’s decomposition in the basis ei then taking into
account the following formula:

εkpi
kj = δi

j , (42)

from the formula (39) we get

ḟ i = εm ∂f i

∂xm
+ εmγi

m (43)

and an analogue of Cauchy-Riemann correlations:

∂f i

∂xk
+ γi

k − pi
kj

(
εm ∂f j

∂xm
+ εmγj

m

)
= 0. (44)

The conditions of correlations (39) integrability (with respect to the functions f i) are as
follows:

∂

∂xm

(
−γi

k + pi
kj ḟ

j
)

=
∂

∂xk

(
−γi

m + pi
mj ḟ

j
)

. (45)

If the polynumbers system Pn is non-degenerate and the generalized derivative is also
a generalized analytical function {ḟ i, γ̇i

k} then each component f i formally satisfies the
following scalar equation:

qmk ˙̃∇m∇̃kf
i = Qi

rf̈
r, (46)

where
Qi

r = qmkpi
kjp

j
mr. (47)

For analytical functions of a complex variable this equation becomes
(

∂2

∂x2
− ∂2

∂y2

)
f i = 2f̈ i (48)

and is identical. Thus the field (2f̈ i) can be considered as the field of a field source f i

for the operator
∂2

∂x2
− ∂2

∂y2
. (49)



126 Space-Time Structure. Algebra and Geometry

Consider a two-dimensional non-homogeneous (with the right-hand side) hyperbolic
equation in partial derivatives.

(
∂2

∂t2
− a2 ∂2

∂x2
s

)
us = fs(t, xs), (50)

where t is time, xs is the coordinate along the string, us(t, xs) is the amplitude of small
lateral oscillations of the string, ρfsdxs is the lateral force acting on an element (xs, xs +
dxs) of the string, ρ is the mass density. When changing the variables

f i = us, at = x, y = xs ,
1
a2

fs(t, xs) = 2f i(x, y) (51)

the equations (48) and (50) switch places but the right-hand side of the equation (48) is
an analytical function of a complex variable (x, y), which restricts sufficiently the variety
of sources.

Thus if the source function (the right-hand side) of a two-dimensional non-
homogeneous hyperbolic equation (a wave equation) written in a special form (48) is
an analytical function of a complex variable, then one of the solutions of this equation
will be the second antiderivative of the source function divided by two.

Except for the equation (48) each analytical function of a complex variable satisfies
the Laplace equation, which can be obtained analogically to how the equation (46) was
obtained, having changed the tensor qmk into the tensor gmk, which is inverse to gij , the
metric tensor of the Euclidean plane:

gmk ˙̃∇m∇̃kf
i = 0 ⇒

(
∂2

∂x2
+

∂2

∂y2

)
f i = 0. (52)

Similar equations are valid also for analytical functions of an H2-variable,

X = x + jy, j2 = 1, (53)

but the elliptic and hyperbolic types of equations switch places:
(

∂2

∂x2
+

∂2

∂y2

)
f i = 2f̈ i,

(
∂2

∂x2
− ∂2

∂y2

)
f i = 0. (54)

So, if the source function (the right-hand side) of a two-dimensional non-homogeneous
Laplace equation is an analytical function of an H2-variable, then one of the solutions of
this equation will be the second antiderivative of the source function divided by two.

Thus when changing C ↔ H2 not only the wave equation and Laplace equation
”switch places”, but one of them loses the source (the non-homogeneous right side) and
another one gains it. It is quite reasonable now to suppose that such symmetry might
take place for polynumbers of dimension greater than two and not only for analytical but
also for generalized analytical functions.

The scalar equation (46) for analytical functions of an H4-variable in the coordinate
system of the ψ-basis (22) becomes

(
∂2

∂(ξ1)2
+

∂2

∂(ξ2)2
+

∂2

∂(ξ3)2
+

∂2

∂(ξ4)2

)
f i = f̈ i, (55)
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or in the coordinate system (x0, x1, x2, x3) of the basis {1, j, k, jk} consisting of the unit
and three symbol units j2 = k2 = (jk)2 = 1:

ξ1 = x0 + x1 + x2 + x3, ξ2 = x0 + x1 − x2 − x3,

ξ3 = x0 − x1 + x2 − x3, ξ4 = x0 − x1 − x2 + x3



 (56)

that same equation becomes
(

∂2

∂(x0)2
+

∂2

∂(x1)2
+

∂2

∂(x2)2
+

∂2

∂(x3)2

)
f i = 4f̈ i. (57)

Thus if the source function (the right-hand side) of a four-dimensional non-
homogeneous Laplace equation is an analytical function of an H4-variable, then one
of the solutions of this equation will be the second antiderivative of the source function
divided by four.

Notice also that in the equations (48), the first one in (54) and (57) one can take
an arbitrary linear combination of the source function’s components and not change the
coordinates, because the index i is free in both sides, and also use the symmetry (which
the corresponding polynumbers do not have) of the scalar operators from the right-hand
side to change the coordinates not ”shuffling” the components of analytical functions.
These circumstances extend in a way the corresponding set of source functions.

Conclusion

In the present paper a generalization of conformal transformations of a metric space is
proposed. If we restrict ourselves to considering the spaces admitting affine coordinates
then generalized conformal transformations of a given metric space can be considered
as the group of transitions between the elements of some class of spaces of constant
curvature.

If the problem of finding a one-to-one correspondence (modulo a discrete group of
transformations) between generalized conformal transformations of the space Pn and gen-
eralized analytical functions of the polynumber variable Pn is solved then it is reasonable
to hope to build a powerful mathematical instrument for solving mathematical problems
and problems of theoretical physics appearing in the spaces Pn.
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I. Introduction

Objects like quaternions were proposed already in the 18-th century by Euler
and Gauss, while the quaternions had got their classical realization in 1843 due
to W. R. Hamilton as vector extension over the field of complex numbers [1, 2, 3,
4]. Their vector part present from itself a generalized imaginary part and form
the three dimensional quaternion vector space. D.C. Maxwell has formulated the
electrodynamics just in the language of quaternions, but they had not entered
into the standard mathematical tool of the XX-th century. Only now they are
included into the basic mathematical packages MathCADTM and MathematicaTM

discovering interesting applications in Computational Mathematics (for example,
processing of images) and many physical domains including Mechanics and Special
Theory of Relativity [4], Theory of Elementary Particles and Astrophysics, Field
Theory and Optics. In Physics of beams of charged particles quaternions are ef-
fective, for example, in the solution of the problem of transportation of spin [5, 6].
Evidently, that despite elegance of differential geometry of quaternions the absence
of commutativity does not permit their generalization in the region of theory of
functions of hypercomplex variables. For the considered here numbers an attempt
of such enlargement was done for the first time in the theory of functions of space
complex variable (TFSCV, see. [7, 22]).

In analytical investigations and models we come non rarely across with expres-
sions containing not only complex numbers, but 2× 2 matrix also. Nevertheless, a
matrix representation may have more convenient alternatives. Quantum Mechan-
ics, for example, may be elegantly formulated with the help of Geometric Algebra.
In others situations it is non rarely more suitable tackle with transformations of
entirely commutative scalar expressions rather than traditional quaternions which
are carriers of vector properties. It is especially actual in combination with func-
tions of complex variable. The corresponding practical cases include, for example,
an analysis of proper modes of some boundary problems [8, 9], a transportation
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of a beam of charged particles and its dynamics in accelerators [10] and electronic
devices [11, 12]. It is possible to suppose, that the space of scalar or pseudoscalar
numbers may implicitly include (encapsulate) elementary matrix transformations
through enlarged properties of ”scalar quaternions”. This space is the union of two
independent fields of usual complex numbers (associated as a rule with time and
space coordinates).

L. Levin was one of the first [9] who practically implemented scalar bicomplex
objects for analysis of electromagnetic waves spreading in different wave transfer-
ring structures: with dielectrics and ferromagnetic, surface anisotropy and crimps.
He has introduced a phenomenologically additional imaginary unit (see (1.1)), that
to distinguish complex numbers corresponding for different properties of time vari-
able (and/or tangent phase coordinate) on the one side and space (either transver-
sal/angle) variables on the other side. The corresponding imaginary units form the
commutative group:

i2 = −1, j2 = −1, ij = ji 6= −1 or
√−1. (1.1)

Using this approach Levin has gotten compact scalar dispersion equation for
normal modes with four-component complex numbers. Further development of this
method [13, 14, 15] allowed to characterize rigorously a self-consistent system, in
which a beam interacts with a slow-wave structure in a solenoidal field. It was
shown in [13], that the usual matrix approach gives an equivalent solution of a
system of dispersion equations and finally leads to precisely the same increment
of a threshold current of regenerative transversal instability of a ”beam break-up”
(BBU). Nevertheless, a usage of scalar quaternions simplifies significantly calcula-
tions and gives much more transparent physical solution. For example, a collective
frequency ν̃ found algebraically from a unique hypercomplex dispersion equation
has clear meaning of its components: ReiRej ν̃ is the detuning of collective fre-
quency relative to the eigenmode frequency; ImiImj ν̃ is the angular velocity of
rotation of a degenerate collective dipole mode; while ImiRej ν̃ ± ImjReiν̃ give
increments of right-hand and left-hand polarized collective modes of gyromagnetic
instability. Note, that in work [10] a deficiency of additional imaginary unit has
led to an incorrect mixing between degrees of freedom and an incorrect result for
the threshold current of transversal instability.

The commutative algebra for the corresponding hypercomplex numbers was
introduced in [13] for partial applications of physics of beams in accelerators in
[7, 22] for more general region of physical problems. It was defined as a closed
generalization over different i- and j- fields of complex numbers, which form a
commutative algebra of the 4-th rank with division and basic attributes of usual
complex numbers. In this article we give basic properties and the simplest analyti-
cal extension. We consider here as equivalent such terms as: ¿a four-componentÀ,
¿hypercomplexÀ, ¿bicomplexÀ number and ¿a scalar quaternionÀ. In the algebra
of manifolds the considered numbers can be related to the bicomplex variety of
poly-numbers.
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II. Elementary properties of the commutative algebra
of four-component numbers

We write down a four-component number, which looks like usual quaternion
(but it is not such):

ã = α0 + iα1 + jα2 + ijα3, (2.1)

where components α0, α1, α2, α3 are real; i, j are independent imaginary units and
ij is the hypercomplex (compound) unit from (1.1).

We consider in this work hypercomplex numbers (2.1) as having commuta-
tivity and associativity, distributivity and closeness relative to multiplication and
division.

In particular, the product of two simple complex numbers from different i- and
j- spaces form ”a scalar quaternion”, representing the three dimensional space as

the particular case of the four dimensional hyperspace (when

∥∥∥∥∥
α0 α1

α2 α3

∥∥∥∥∥ = 0 ):

(a + ib) · (c + jd) = α0 + iα1 + jα2 + ijα3, where α0 = ac, α1 = bc, α2 = ad, α3 = bd.
(2.2)

It is possible to consider spaces of usual complex numbers as two dimensional
projections of hypercomplex numbers. Therefore, it is natural to redefine operators
of real and imaginary parts in the following way:

Rei ã = α0 + jα2, Imi ã = α1 + jα3, (2.3)

where the imaginary units i and j denote the corresponding projection space as
the domain of action of the corresponding operation.

Consider now the Pauli matrices σ̂1 =

(
0 1

1 0

)
, σ̂2 =

(
0 −j

j 0

)
, σ̂3 =

(
1 0

0 −1

)
as

operators acting, for example, only in the j-space. Then putting ã being the row

matrix

(
Rej ã

Imj ã

)
, we can transfer to the algebraic form, using the corresponding

rules of substitution:

σ̂1ã → jã∗j, σ̂2ã → −ã and σ̂3ã → ã∗j, (2.4)

that is, matrix operators may be formally presented as σ̂1 → j()∗j, σ̂2 → −1 and
σ̂3 → ()∗j.

Like the algebra of spin matrices from (2.4) we have an analogous relation:

σ̂1σ̂2σ̂3σ̂3ã = σ̂1σ̂2ã = −jσ̂3ã; σ̂2σ̂3ã = −jσ̂1ã; σ̂3σ̂1ã = −jσ̂2ã.

The convenience is in the commutativity of operators in such writing. Thus, an
arbitrary matrix 2× 2 operator Û in the complex (j-) space can be presented, for
example, in such form:

Û ≡ ρÊ − j(λσ̂1 + µσ̂2 + νσ̂3) → ρ + jµ + (λ− jν)()∗j,
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where Ê is the unit 2×2 matrix, ρ2 + λ2 + µ2 + ν2 = det Û , and ρ, λ, µ, ν are real
numbers describing related with the j-space operator Û .

It remains to generalize an action of a matrix 2×2 operator together with the
corresponding representation of rotations on the entire i j- hyperspace. We can
formally substitute the complex unit j on i in Û and σ̂2 (that is, σ̂2 → ij):

Û = ρÊ − i (λσ̂1 + µσ̂2 + νσ̂3) → ρ + jµ− (ijλ + iν) ()∗J . (2.5)

If Û is a unimodular matrix and ρ2 + λ2 + µ2 + ν2 = 1 , then (2.5) represents
rotations in the four dimensional i, j- space.

Before giving a definition of an entire length in this hyperspace we define a
partial determinant in each projection space:

det
i

ã = (Reiã)2 + (Imiã)2 = ã · ãi∗ ≡ |ã|2i = α2
0 + α2

1 − α2
2 − α2

3 + 2j (α0α2 + α1α3) .

(2.6)
From the rules of commutativity (1.1) and definitions (2.1, 2.3, 2.6) it follows

the following evident identities:

ã · b̃ = b̃ · ã,

ReiRej ã = RejReiã = α0 ≡ Reij ã = Rejiã ≡ Re ã,

ImiRej ã = RejImiã = α1,

ImiImj ã = ImjImiã = α3 ≡ Imij ã = Imjiã ≡ Im ã,

(ã∗i)∗j ≡ ã∗i∗j = ã∗j∗i ≡ (ã∗j)∗i = α0 − iα1 − jα2 + ijα3,

ã + ã∗i = 2Reiã, ã− ã∗i = 2iImiRej ã + 2jReiImjReiã,

(ã + ã∗i∗j) + C.C.i = (ã + ã∗i∗j) + C.C.j = 4ReiRej ã ≡ 4Re ã,

deti detj ã ≡
∣∣∣|ã|2j

∣∣∣
2

i
=

∣∣|ã|2i
∣∣2
j
≡ detj deti ã ≡ ‖ã‖4 .

(2.7)

The given previously rules and relations describe a simple scalar unification-
superposition of two fields of complex numbers. These relations may be useful in
some applications, where there is necessary a useful algebraic form of wave conduc-
tors [9], wake fields [8], polarimetry and analytical representation of magneto-static
fields [14]). Nevertheless, for working with such forms it is necessary to construct
a complete algebra of hypercomplex space, which is closed with respect to the
operations of multiplication and division, raising to a power, taking a root.

Therefore we postulate additional to (1.1) rules, which give in general the fol-
lowing table of multiplication of base units:

1 i j k

i −1 k −j

j k −1 −i

k −j −i 1
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Here k ≡ ij is the hypercomplex unit and as it can be lightly seen the metric is
(+−−+).

The remaining properties of ¿scalar quaternions À and the corresponding func-
tional analytical extensions may be derived like the theory of complex numbers.
For example, it is not difficult to see, that:

1/ij = ij;
√

1 = ±1, ±ij; ij = exp
(±(i + j)π/2

)
(2.9)

Thus in this algebra of the fourth rang the quadratic root has four values.
Another example is the rule of multiplication of hypercomplex numbers ã = α0 +
iα1 + jα2 + ijα3

and b̃ = β0 + iβ1 + jβ2 + ijβ3:

ã · b̃ = α0β0 + α3β3 − α1β1 − α2β2 + i(α1β0 + α0β1 − α3β2 − α2β3)

+j(α2β0 + α0β2 − α3β1 − α1β3) + ij(α3β0 + α2β1 + α1β2 + α0β3).

III. Conjugation and absolute value, divisors of zero

The complete conjugation can be defined through partial conjugations:

ã∗ = ã∗iã∗j ã∗i∗j (3.1)

We give several useful properties of conjugation which follow from (2.8):

ã + ã∗iã∗j + ã∗i∗j = 4ReiRej ã

ã∗i∗j ã = α2
0 + α2

1 + α2
2 + 2ij(α3α3 − α1α2)

(3.2)

and in the general case

ã + ã∗i∗j 6= 2Re ã, ã + ã∗ 6= 2Re ã.

The natural means to define a complete determinant through partial determi-
nants (2.6) is:

det ã = deti detj ã ≡
∣∣∣|ã|2j

∣∣∣
2

i
≡ ãã∗iã∗j ã∗i∗j =

= ã · ã∗ = (α2
0 + α2

1 − α2
2 − α2

3)
2
+ 4 (α0α2 + α1α3)

2 .
(3.3)

It can be mentioned, that the determinant (3.3) may vanish for some nonzero
components αn. The corresponding numbers are divisors of zero. We have the
matter of such numbers, for example, when either |α0| = |α3| 6= 0 for α1 = α2 = 0,
or when |α1| = |α2| 6= 0 for α0 = α3 = 0.
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Complete determinants in contradistinction to partial determinants are real and
nonnegative. Therefore, we define an absolute value (or through an arithmetical
root of the fourth order):

‖ã‖ ≡ N(ã) =
4
√

det ã ≡ 4
√

ãã∗iã∗j ã∗i∗j =
4

√∣∣∣|ã|2j
∣∣∣
2

i
. (3.4)

Note, that the numbers i±j, 1±ij have the zero norm (or the hyper-length). As
we shall see below the numbers 2π(i± j) and π(i± j) are the hyper-periods for the
hyperbolic functions cosh(x̃), sinh(x̃) and tanh(x̃), cotanh (x̃), as well as 2π(1± ij)
and π(1 ± ij) are the hyper-periods for the trigonometric functions cos(x̃), sin(x̃)
and tan(x̃), cotan(x̃) respectively.

It can be easily seen, that (3.4, 3.3) coincide with expressions for the norm
obtained in [7, 22] for polynomial and bi-exponential as well representation of
a bicomplex (in polar system of coordinates for each of projection space). It
is interesting, that for ¿three dimensionalÀ bicomplex (2.2) we have the length:
‖ã‖ =

√
α2

0 + α2
1 + α2

2 + α2
3, which reduces to the Euclidean form due to the

relation α0α3 = α1α2. Indeed, for a conventional vector {x, y, z} to get
x2 + y2 + z2 = α2

0 +α2
1 +α2

2 +α2
3 the corresponding components of a bicomplex can

be found, for example, as follows:

α0 = x, α1 = y, α2 = xz/
√

x2 + y2, α3 = yz/
√

x2 + y2.

The complete determinant introduced above may be used directly for a search
of inverse value of a bicomplex number with the zero norm:

ã−1 ≡ 1

ã
=

ã∗

det ã
. (3.5)

One can obtain (3.5) also through subsequent transformations in projection spaces
applying the rules given above we get:

1

ã
=

ã∗j

|ã|2j
≡ ã∗i

|ã|2i
≡ ã∗i

ã · ã∗i =
ã∗i · (ãã∗i)∗j

ãã∗i · (ãã∗i)∗j
=

ã∗iã∗j ã∗i∗j

ãã∗iã∗j ã∗i∗j
=

ã∗

‖ã‖4 .

Inverted divisors of zero (hyper-zeros) may be interpreted as hyper-infinities of
the ij-algebra.

It is not difficult to verify, that the norm (a determinant) of a product is equal
to the product of norms (determinants):

∥∥∥ã · b̃
∥∥∥ = ‖ã‖ ·

∥∥∥b̃
∥∥∥ , det

i,j
ãb̃ = det

i,j
ã det

i,j
b̃.

Apart from complex numbers and conventional modules the modules of hyper-
complex numbers may be, nevertheless, smaller than one of its components. Along
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with presence of divisors of zero it makes the Frobenius’ theorem inapplicable ([17],
[22]) for the given metric.

We show that an interval between two events is similar to a norm of a bicomplex.
For a bi-square of an interval we have: dS4 = c4dt4 + dl4− 2c2dt2dl2. On the other
hand, the determinant (3.3) has the form:

det ã =
(
α2

0 + α2
1

)2
+

(
α2

2 + α2
3

)2
+ 4 (α0α2 + α1α3)

2 − 2
(
α2

0 + α2
1

) (
α2

2 + α2
3

)
.

We complement the definition det ã = dS4 with the following:

c2dt2dl2 =
(
α2

0 + α2
1

) (
α2

2 + α2
3

)
. (3.6)

The system of these two equations can be reduced to a conventional square equation
in the domain of real numbers:

T 2−
((

α2
0 + α2

1

)2
+

(
α2

2 + α2
3

)2
+ 4 (α0α2 + α1α3)

2
)

T +
(
α2

0 + α2
1

)2 (
α2

2 + α2
3

)2
= 0,

solutions of which always exist and are equal to T1 = c4dt4, T2 = dl4, since the
determinant of the equation

D =
((

α2
0 + α2

1

)2 − (
α2

2 + α2
3

)2
)2

+4 (α0α2 + α1α3)
2
((

α2
0 + α2

1

)2
+

(
α2

2 + α2
3

)2
+ 4 (α0α2 + α1α3)

2
)

is always positive.
Thus, the norm of a bicomplex number may be presented in a form of a rela-

tivistic interval. In an important particular case, when α2 = 0 = α1, we have

|cdt| = |α0| , |dl| = |α3| (see below (4.3)).

IV. The Euler’s formula, factorization and taking a root

Prior defining the rooting for an arbitrary bicomplex we consider two particular
cases.

The first case is related to a product of two complex numbers a + ib and
c + jd (see (2.2)). This simple case corresponds to the matrix 2×2 opera-
tor (or rotation) applied to ¿planeÀ vector (that is, usual complex number),
belonging to the i-space (Imj = 0). Indeed, from (3.3) and (2.2) we have

‖ã‖ =
√

a2c2 + b2c2 + a2d2 + b2d2 and from (2.5): Û → ρ − iν + jµ − ijλ putting
the ¿scalar quaternionÀ {α0, α1, α2, α3} proportional {ρ, −ν, µ, −λ}.

Evidently, in this case a root of the n-th order is taken trivially:

n
√

ã = n
√

(a + ib) · (c + jd) = n
√
‖ã‖ exp [(i arctan b/a + j arctan d/c + 2π(ki + lj))/n] ,

(4.1)
where k, l = {0, 1..., n− 1} are natural numbers.

Thus, the period of the exponential function in our hyper-space is 2π(ki + lj).
In the general case this gives n2 values for

n
√

ã.
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Another interesting case is a hypercomplex represented by only two compo-
nents: Ã = a + ijd. From (2.8) and the Taylor’s expansion it is possible to get the
basic formula for such number:

exp(ijϕ) = cosh ϕ + ij sinh ϕ. (4.2)

For |d/a| 6= 1 there is the following representation:

Ã = a + ijd =
√
|a2 − d2| exp

(
ij arctanh

d

a

)
(4.3)

Note that arctanh d/a is real for |d/a| < 1 otherwise it is complex in either i-, or
in the j- space. Analogously, for |d/a| > 1 there exists an additional ¿symmet-
ricÀ representation in the i, j-space

Ã = ij (d + ija) = ij
√
|a2 − d2| exp (ij arctanh a/d) =

=
√
|a2 − d2| exp ((i + j) π/2 + ij arctanh a/d)

(4.4)

From the comparison of (4.4) and (4.3) we get the hyper-extension of the known
formula arctan x = (π/2) sgnx− arctan (1/x):

arctanhx = − (i + j)
π

2
sgn (|x| − 1) + arctanh

1
x

. (4.5)

Thus the range of definition of inverse hyperbolic tangent is expended over en-
tire real axis resulting in extension of the function values into the space of scalar
quaternions.

Using (4.3), we can extract square root from a simple two-component number
B̃ = Ã2 = b + ijc:

n
√

B̃ = n

√∥∥∥B̃
∥∥∥ exp

(
2π(ki + lj)

n
+

1
n

ij arctanh
(c

b

))
(4.6)

where |c/b| 6= 1 and k, l = {0, 1..., n− 1}.
Supposing that B̃ = Ã2 it is possible to accomplish a verifying comparison for

Ã ≡ a + ijd and
√

B̃. Substituting in (4.6) b = a2 + d2 and c = 2ad we have:

√
B̃ = ±

√
|a2 − d2| ·

(
cosh

ϕ

2
+ ij sinh

ϕ

2

)
, where ϕ = arctanh

(
2ad

a2 + d2

)
. (4.7)

Simple transformations of hyperbolic functions in (4.7) give:

√
(a + ijd)2 =

(
±a± ijd

±d± ija

)
, (4.8)

where different combinations of signs give eight values of the radical
√

B̃. Nev-
ertheless, only four among them are linearly independent in the sense of (2.9),
whereas others are obtained by the way of the multiplication on ij.
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In general, when
∥∥∥Ã

∥∥∥ 6= 0, we can generalize the Euler’s formula in the following
way:

Ã ≡ a + ib + jc + ijd = exp (α0 + iα1 + jα2 + ijα3) ≡ exp(ã) (4.9)

where a relation between Ã and ã may be found from the system:

α0 = ln
∥∥∥Ã

∥∥∥ , and



bN = sin α1 cos α2 cosh α3 − cos α1 sin α2 sinh α3

cN = cos α1 sin α2 cosh α3 − sin α1 cos α2 sinh α3

dN = sin α1 sin α2 cosh α3

, (4.10)

where bN = b/
∥∥∥Ã

∥∥∥, cN = c/
∥∥∥Ã

∥∥∥ and dN = d/
∥∥∥Ã

∥∥∥ are normalized components.

Like a three dimensional rotation presented by a usual quaternion [1], (4.9–4.10)
present the rotation α1, α2, α3 in the considered hyper-space. The degenerate case
(2.2, 4.1) may be interpreted by analogy with the Cardan suspension (when α3 = 0
in (4.9)).

Note that apart from usual complex numbers and cases (2.2, 2.5, 4.1) the
normalized components bN , cN , dN in the general case may vary in the entire real
domain from −∞ up to +∞.

There (4.10) can be reduced to the algebraic system of two variables tan α1 and
tan α2:





tan2 α1 − tan2 α2 = (b2
N − c2

N) (1 + tan2 α1) (1 + tan2 α2)

(bN tan2 α1 tan α2 + cN tan α1 tan2 α2 = dN) (tan2 α1 − tan2 α2)
(4.11)

and

α3 = ln (sin (α1 + α2) / (cN + bN)) . (4.12)

System (4.11) may be resolved in an explicit form, but the expressions we obtained
with the help of symbol methods appear to be too complicated, that to give them
here.

To provide in (4.12) sin (α1 + α2) / (cN + bN) > 0 one can always find suitable
solutions (4.11) in the form α1,2 + πm due to the periodicity of the tangent. For
b = −c we formally have a singularity in (4.12). Nevertheless, this singularity is
removable by the way of complex conjugation (4.9–4.12) (in the i- or j- space) and
applying the conjugation once again (in the same space) to a result obtained on
the right side.

For taking a root it can be proposed also another way of factorization of ¿the
scalar quaternionÀ (2.2) in multipliers:

α0 + iα1 + jα2 + ijα3 = (a + ib) · (c + jd) · (e + ijf) , (4.13)
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where a, b, c, d, e, f are real. Put in (4.13) for simplicity, that α0 = 1 = a = c =
e. Then (4.13) leads to the following algebraic system:





α3 = bd(1− bdf) + f

α2 = d(1− bdf)− bf

α1 = b(1− bdf)− df

(4.14)

The solutions b, d, f of System (4.14) are expressible in an explicit form much
more compactly, than the solution of the System (4.11). It can be shown, that
solutions of (4.14) always exist and they are real. For one of the solutions there is a
singularity (for example, for α2 + α1α3 = 0), which is removable. Thus, a nonzero

(
∥∥∥Ã

∥∥∥ 6= 0) ¿scalar quaternionÀ can be represented as a product of elementary

multipliers (two complexes and one hypercomplex), and the root can be taken in
accordance with (4.13), (4.9), either (4.1), or (4.6).

V. Differentiability

Let us take a hypercomplex function of the argument z̃ = x+iy+js+ijt in the
general form: f̃(z̃) = u(x, y, s, t) + iv(x, y, s, t) + jw(x, y, s, t) + ijq(x, y, s, t). The
Cauchy-Riemann conditions are expressible, as it is known by n(n− 1) number of

equations, where n is the dimension of a space. A function f̃(z̃) is differentiable, if
the following twelve relations are satisfied:

∂u

∂x
=

∂v

∂y
=

∂w

∂s
=

∂q

∂t
,

∂v

∂x
= −∂u

∂y
=

∂q

∂s
= −∂w

∂t
,

∂w

∂x
=

∂q

∂y
= −∂u

∂s
= −∂v

∂t
,

∂q

∂x
= −∂w

∂y
= −∂v

∂s
=

∂u

∂t
(5.1)

In the work [16] an attempt of a nontrivial generalization of a notion of an
analytical function was done, for which a number of conditions analogous to that
of Cauchy-Riemann would not exceed a number of component functions. In the
work [22] it was done with elegant compactization of Cauchy-Riemann conditions
in the more familiar form, where the variables are generalized, that is, not single di-
mensional but two dimensional (conventional complex) arguments from projection
space were taken. In the case when these arguments are representable in the three
dimensional form (2.2), the Cauchy-Riemann conditions take a visual and simple
form, and in the four-dimensional hyper-space of arguments Conditions (5.1) can be
reduced to six complex equations using complex exponents and complex projections
of bicomplex functions [22].

VI. Discussion

Among a variety of associative algebras (see, for example, [17, 18, 19]) the given
associative-commutative algebra has the complete heritage of properties of complex
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numbers. A key possibility is in construction of the corresponding theory of a
function of a hypercomplex variable [20]. Divisors of zero, usually understandable
as world’s lines [20], coincide with generalized functions in this algebra, which
points out on a fundamental importance of these objects. Divisors of zero are
inherently related to a relativistic interval, which in its turn is absolutely similar
to a norm of a hypercomplex number in the complete agreement with the classical
statements of STR.

Thus, the serious steps in the development of bicomplex numbers are made, new
foundations of their differential and integral calculus are constructed, mappings by
conformal type, ¿hyper-surfacesÀ and some analytical extensions [22], generalized-
analytic functions of hypercomplex variables [18].

The application of this hyper-space has shown an effectiveness in problems with
a outlined direction of a space-time interaction (especially of that of quasi-periodic),
propagation and energy exchange.

One can expect a further development of a further development and new ap-
plications of this ij-algebra and the corresponding TFSCV in the Fundamental,
Mathematical and Applied Physics, Computational Mathematics, Biophysics and
Molecular Chemistry.
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The paper provides arguments to show that Finsler Geometry is by far the best can-
didate to provide relevant models for the further development of Physics (in general) and
Relativity Theory (in particular). In the 4-dimensional case, the quadratic Berwald-Moor
Finsler model is associated to a metric algebra (called quad-numbers algebra), which is
commutative, associative, and it is isomorphic to the direct sum of four real algebras. The
geometry beyond this simple algebra is non-trivial, because of diverse non-linear opera-
tions related with the generalized conformal transformations. The complexity brought
by the Berwald-Moor Finsler spaces allows, using a new extended analysis apparatus,
to construct three-dimensional time-varying fractals in the multi-dimensional space, by
means of quad-numbers. The perspective brought by these spaces might shed a new view
on Klein’s Erlangen Program, where geometry focused on studying symmetry groups.
Now it is suggested to generalize the notion of ”symmetry” and to widen the classic case,
based on isometric and conformal transformations, by introducing generalized conformal
transformations.

MSC2000: 15A69, 53B40, 83D05.

Historically, first mention on possibility of existence of geometries with linear
element not related to the square root from quadratic form of component’s dif-
ferentials, belongs to Riemann. As a result, calling such geometries Riemannian
should be quite appropriate. However, nowadays such geometries are known as
Finsler geometries. Partially, Riemann himself is guilty of this curious incident, as,
since the possibility of non-quadratic metrics stated, Riemann decided that such
geometries are too complex, interpreted poorly and hardly possess any significant
matter. Strange enough, but the most part of modern physicists, in fact, realizes
the same. One of the aims of this work is to shake this unfair confidence, at least
partially, and show that Finsler Geometry could be that very arena where further
development of Physics generally and Relativity Theory specifically will continue.

Of course, inattention to Finsler Geometry is not for no reason at all. Pes-
simistic conclusion was made by Riemann and many of his followers for some sig-
nificant considerations. The first reason, carrying subjective nature, – related to
pretended complexity and poor clearness -– is mentioned above. Proof of some the-
orems [2, 3] in the end of XIX century have became an another deterrent. According
to these theorems, symmetry groups, which leave linear component as invariant,



D.G. Pavlov Reasons for Finsler extensions of Relativity Theory... 141

have maximum quantity of independent parameters just in case of non-quadratic
geometries. Probably, one shouldn’t doubt that using manifolds with maximum
symmetries in physics is the most convenient today. The third reason is related
to absence of widely used in Riemannian constructions natural alternative to dot
product until recently. Thus, so-called Finsler Metric Tensor [4] have got ascen-
dancy in Finsler Geometry. Since in fact being a slight modification of Riemannian
Metric Tensor, it’s usage only aggravated the problem. The next argument against
Finsler Geometry is observed high grade of isotropy of our three-dimensional space.
Since Finsler metrics lead to anisotropy, and we have to use non-quadratic geome-
tries, those should be close to Riemannian. And the last, seemingly not related
to geometry at all, reason is Frobenius Theorem which stated, that hypercomplex
algebras with usual arithmetic laws of multiplication and addition are related with
real and complex numbers only. Some mathematicians, mistakenly based upon
this theorem, concluded that there is no number classification beyond complex
numbers, thus eliminating a significant stimulus to research geometries related to
hypercomplex algebras.

As it will be shown further, all mentioned above arguments against apply-
ing Finsler Geometry to the real space-time are at least shaken, if not overcame;
therefore there is no reason to treat Finsler Geometry as a secondary add-on to
Riemannian.

* * *

Let us begin from the thesis on complexity and poor clearness of Finsler Geom-
etry. In fact, the only difference of some Finsler Spaces from the usual (and in
many respects, clear just because of this) Euclidean geometry is that a set of dots
equidistant from some fixed dot (nothing but the definition of a sphere) in Finsler
Geometry turns out to be a bit more complex hypersurface. However, even in
already almost classical Minkowsky Geometry such set is different from Euclidean
sphere and appears as a union of three hyperboloids: two real and one imaginary.
Usually they are represented in three-dimensional affine space as in fig. 1, a.
Today the one’s hardly surprised to see this surface really appears to be a sphere
in geometrical sense. In primary linear Finsler spaces it is almost the same as in
the pseudoeuclidean case, with the only difference, that in affine space the sphere
(indicatrix) may appear even more exotic, for example, like on fig. 1, b.

Following spheres, the one can define other elementary surfaces, according the
euclidean term ¿hypercomplexÀ for example. Thereto is enough to notice, that
hyperplane in quadratic spaces is a set of dots with any dot equidistant from two
fixed dots. (fig. 2, a). In spaces with another metric the hypersurface defined
alike does not coincide with affine plane and could appear, say, like on fig. 2,
b. When operating these and some other primary geometrical objects, geometry,
significantly different from Euclidean, appears quite simple and reasonable if not
evident.
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Figure 1: Indicatrix examples in three-dimensional a) pseudoeuclidean
and b) Finsler spaces.

Figure 2: Example of surfaces with dots, equidistant from two fixed dots (T and −T )
in three-dimensional a) pseudoeuclidean and b) Finsler spaces.

Thus, in non-quadratic spaces, surfaces, which are hyperplanes in metrical
sense, are not such in affine sense. It turns out to be a significant condition,
as it leads to denying automatic use of many Riemannian methods based upon the
plane properties, particularly, the tangent bundle method. At the same time, such
a denial should not be absolute. The one just should be very cautious with formal
adoptions and, if needed, develop natural alternatives.
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* * *

Passing on to the problem of the unique richness of symmetries in quadratic
(i.e., Riemannian) geometries, the one should notice, that this fact only relates to
the simple movement symmetries, i.e., to linear transformations, which save dis-
tances between dots invariant. However, even in the case of quadratic spaces, except
metrically marked out isometric transformations, there are metrically marked out
transformations, which save not distances, but angles invariant. Sometimes such
transformations are called conformal movements. But these are the same symme-
tries, but non-linear. So, quite unexpectedly, some Finsler spaces, while yielding
in variety of isometric transformations to quadratic spaces, are significantly richer
in variety of non-linear symmetries [6].

But, speaking of symmetries, there is an even more important circumstance.
Symmetries of spaces, including Finsler spaces, are not limited to isometries and
conformal transformations. There are also metrically marked up transformations,
saving invariant not distances and angles only, but some specific Finsler Geometry
values, related not only to one or two vectors, but three and more. Such values can
not be expressed in quadratic spaces, therefore there is no alike transformations
in Riemannian Geometry in principle. Such transformations exist only in Finsler
spaces and probably are even more interesting than conformal. Consequently, in
some Finsler spaces, as for original compensation for relative poverty in isometries,
not only greater groups of conformal transformations arise, but also conditions for
appearance of the whole classes of new metrically marked up non-linear represen-
tations. We shall temporary call such representations as generalized conformal [6].

Today, only separate representations of generalized conformal transformations
are known, and only for specific Finsler spaces. At that, in our opinion, their full
enumeration is a priority task for modern Finsler Geometry. It should be noticed,
that stated task is quite complex, because it supposes work not only with groups
of symmetries, but also their generalizations, for example, such with some sets of
transformations related not only by bi-, but also n-ary operations, and that, in
turn, might not have direct or reverse conversion. In fact, it’s a question of a new
view on famous Klein’s Erlangen Program, where the aim of geometry was marked
as researching symmetry groups. Now it is suggested to concentrate on generalizing
of the term ’symmetry’ and proceed from its quite a special case, based on isometric
and conformal transformations to generalized conformal transformations.

* * *

Let us turn to dot product problem and closely related to it metric tensor term.
In twenties, in previous century Sing, Taylor and Berwald proposed a definition of
the Finsler metric tensor, which on the one hand derived one of the main properties
of Riemannian metric tensor (having two indices) and on the other hand – reflected
specific property of non-quadratic geometries to base upon the ’generalized sphere’
term (so called indicatrix). While being quite comfortable, it is sufficiently limited
because of this metric tensor is based not on a private for current Finsler geometry
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dot product generalization, but adopts tensor structure from opposite kind (i.e.
quadratic) nature. Figuratively, Finsler geometry was built not on specific foun-
dation, but on the basement for another building. The one shouldn’t expect any
elegance from the obtained structure. And at that time the most part of mathe-
maticians and physicists are based in their conclusions about poor perspective of
Finsler geometry on regarding that very structure.

Meanwhile, there is a whole class of Finsler spaces, capable of natural gener-
alization of a dot product. In such spaces polylinear symmetrical form from m
vectors [5] plays a role of bilinear symmetrical form; and the square of distance
is replaced by it’s n-th power. Principal consequence of such generalization is in
necessity to revise existing practice of using two-index Finsler metric tensor with-
out any alternative and to use a tensor related to corresponding polylinear form
instead. It is obvious that such tensor will have more than two indices. Advantage
of such exchange, except it is absolutely natural, is that a number of independent
variables increases greatly with number of dimensions staying the same. Thus,
in 4-dimensional spaces with cubic form metric tensor has not nine independent
components as in General Relativity Theory, but twelve. In spaces with quadra-
nar form metric tensor already has thirty five independent components. In fact,
it means that equation systems, defining fields of a new tensor in corresponding
Finsler manifolds will be sufficiently richer than Einstein’s equation system, at that
staying in four-dimensional space!

It should be noted, that such way of researching Finsler geometry and its phys-
ical interpretations ideologically quite close to GRT, related however with necessity
in a new mathematical apparatus.

* * *
The problem of isotropy of directions is not less interesting. Traditionally, it

is considered, that if based on condition that the real space-time is 4-dimensional,
then almost the only metrics, consistent with experimentally observed high grade
of isotropy of surrounding three-dimensional space, are Galileo and Minkowsky
metrics, holding Euclidean space as a subspace. At that it’s usually missed, that
these 4-dimensional spaces themselves are typically anisotropic, as any time-like
direction sufficiently differs from any space-like direction. Besides, there are exam-
ples of 4-dimensional Finsler spaces, not including Euclidean subspace, but from
the viewer’s point percepted 3-dimensional space will appear as almost isotropic,
at least at some range of parameters. Moreover, even today the one can call at
least two Finsler metric functions leading to such quasi-isotropical effect.

One of such Finsler metrics is related not to quadratic, but to cubic form, and
takes shape of symmetrical cubic polynomial:

S3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 . (1)

The first one to detect this metric in a context of its possible relation to real
space-time geometry was Professor Vladimir Chernov from Samara Aerospace Uni-
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versity, so I’ll permit myself to call this metric and a corresponding space by his
name. Unusual property of Chernov’s space is that it doesn’t contain any continu-
ous rotations, in other words, the transformation group similar to Lorentz group is
null-parametric. However in spite of this, statement about this space to compete
successfully with Minkowsky space as the arena for physical phenomenon is not
absurd. Point is that, while absent as an isometric symmetries, Lorentz group may
be present in it as a subgroup of generalized conformal transformations. Unfortu-
nately, Chernov space is not researched well yet to unambiguously state this. I am
sure that further research of this space and groups of its non-linear symmetries will
help us to exceed the limits of usual quadratic representations and to make a step
to better understanding of sufficiently more complex Finsler spaces with metrics of
even greater power.

Particularly, 4-dimensional space with Berwald-Moor metric refers to such
spaces. It’s metric in one of its’ basis is given by symmetrical quadratic polynomial
(in fact, monomial):

S4 = x1x2x3x4. (2)

By the way, it would not be out of place to notice, that quadratic form of Minkowsky
space in similar basis, which consists of four vectors in the light cone, is also given
by a symmetrical, but square polynomial:

S2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4. (3)

This really wonderful condition, which strangely almost wasn’t discussed by physi-
cists, in our opinion is a key to understanding close relationships between three
geometries, one universally recognized and two with metrics (1) and (2) (which,
maybe will be as popular as the first one in future). Whatever the case, in any of
these geometries from the viewer’s point, surrounding world appears as a pair of
one-dimensional time and three-dimensional space, where bundles in some range of
parameters correspond to Euclidean geometry. In other words, in defined approxi-
mation we have a time-space geometry with classical Galileo–Newton physics.

* * *
Strangely enough, the most substantial and complex from these three spaces

is related to Berwald-Moor metric function, which, though appearing as the most
simple, leads to geometries, including as sequential approximations two others,
and at one geometry of classical physics, as it is was marked up earlier. But
there is a very important condition related to this space. In contrast to Galileo,
Minkowsky and Chernov spaces, it is directly connected to the most fundamental
mathematical term -– the number. At that this connectivity realized almost the
same as between Euclidean plane geometry and complex numbers algebra; also as
between 4-dimensional euclidean space geometry and quaternion algebra. Unlike
the last, corresponding to the space with Berwald-Moor metric algebra (let us call
it quad-numbers algebra) is commutatively-associative, and it is isomorphous to
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direct sum of four real algebras. It’s hard to imagine a simpler four-component
algebra.

From the other side, geometry beyond this simple algebra is far from trivial.
It turns out to be so because of variety of non-linear operations related with gen-
eralized conformal transformations, almost alike as existence of infinite-parametric
group of conformal transformations of Euclidean plane leads to conversion of, in
fact, elementary algebra of complex numbers to the powerful complex analysis
apparatus. It is known, that one of the consequences of such symbiosis is an ability
to construct on the complex plane quite interesting geometric objects: algebraic
fractals, carrying names of G. Julia and B. Mandelbrot among of them. Beauty
and harmony of complex fractals is so deep, that, while staring at them, a will to
construct something similar in multidimensional spaces arises. It is conceived, that
using quad-numbers we are offered such ability. In this case fractal objects may
appear three-dimensional and time-varying.

The idea, that physics can be based on hypercomplex number structures be-
longs to William Hamilton, who is a well-known inventor of the first hypercomplex
algebra – quaternion algebra. I should notice, that he is also known for many other
inventions, but he treated quaternions as his main discovery. He selflessly devoted
the most part of his life to quaternions. And, however, neither he nor the others
could put into practice the finest idea on connecting physics with quaternions, the
last still remain the most well-known hypernumbers, and their applications are
broad and interesting. Who knows, maybe the matter, failed to be done with
quaternions by Hamilton could be achieved with simpler quad-numbers, and some-
day, we will exclaim like Pythagorean: ¿All existing is expressed in numbersÀ. Of
course, instead of a narrow sense of numbers as rational, real or complex we will
take up significantly broader circle of their hypercomplex extensions and instead
of usual Euclidean or pseudoeuclidean geometry – their Finsler generalizations.
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accomplished by components of analytic functions, are obtained analytic functions.

MSC2000: 30G35, 30G30, 30C35.

1 Introduction

In the complex plane conformal transformations are accomplished by analytic
functions of the complex variable (conformal transformations of kind I) or complex
conjugate analytic functions (transformations of kind II). For polynumbers of
dimension greater than two it is necessary to make some generalization of the
notion of analyticity of functions [1] and conformal transformations [2], therefore
relations between these notions it is necessary to study anew.

The polynumber space Pn 3 X,

X = xiei , ekej = pi
kjei , (1)

where xi are coordinates in the basis ei is called non-degenerate, if components of
the tensor

qij = pm
ikp

k
mj (2)

form the non-degenerate matrix and hence it is possible to construct twice contra-
variant qij:

qimqmj = qjmqmi = δi
j . (3)

The function

Φ(X) = ϕ1(x1, x2, ..., xn)e1 + ϕ2(x1, x2, ..., xn)e2 + ... + ϕn(x1, x2, ..., xn)en (4)
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of the polynumber variable X ∈ Pn is called generalized analytic [1], if there exists
such object of connectedness Γ̃i

kj and such function

Φ̇(X) = ϕ̇1(x1, x2, ..., xn)e1 + ϕ̇2(x1, x2, ..., xn)e2 + ... + ϕ̇n(x1, x2, ..., xn)en , (5)

that
D̃Φ(X) = Φ̇(X)dX , (6)

where

D̃Φ(X) = (∇̃kϕ
i)dxkei , ∇̃kϕ

i =
∂ϕi

∂xk
+ Γ̃i

kjϕ
j . (7)

From formulas (6), (7) we get

∂ϕi

∂xk
+ Γ̃i

kjϕ
j = pi

kjϕ̇
j . (8)

If εi – are coordinates of the unit in the basis ei, then

εkpi
kj = δi

j, (9)

therefore

ϕ̇i = εm

(
∂ϕi

∂xm
+ Γ̃i

mjϕ
j

)
. (10)

Thus, generalized analytic functions must satisfy the Cauchy-Riemann rela-
tions:

∂ϕi

∂xk
+ Γ̃i

kjϕ
j = pi

kjε
s

(
∂ϕj

∂xs
+ Γ̃j

smϕm

)
, (11)

or briefly
∇̃kϕ

i = pi
kjε

s∇̃sϕ
j . (12)

Functions ϕi are components of a contra-variant tensor. If Γ̃j
sm = 0, then Φ(X) –

is an analytic function of the polynumber variable Pn.
A bijective mapping of one domain OX 3 X on the same or on another domain

OY 3 Y
yi = f (i)(x1, x2, ..., xn) (13)

of the polynumber space Pn ⊃ OX , OY is called elementary generalized conformal
[2], if functions f (i) are solutions of the system of differential equations

∂2f (i)

∂xk∂xl
= Γm

kl

∂f (i)

∂xm
, (14)

where

Γm
kl =

1

2
(plδ

m
k + pkδ

m
l )−∆pm

kl

∂L

∂xp
, (15)

pl, L – are some tensor fields, while ∆pm
kl – is a number tensor, which is defined

by the metric of the polynumber space, that is, by the tensor pi
kj. Functions

f (i)(x1, x2, ..., xn) – are scalar functions of a point of this space.
Groups of generalized conformal transformations include in itself elementary

generalized conformal transformations, inverse to them and all products of the
aforementioned of them.



G. I. Garas’ko The relation of generalized conformal transformations... 149

2 Construction of generalized analytic functions

Suppose that it is known to us an elementary generalized conformal transfor-
mation (13)

OX
f→ OY (16)

in the space Pn, when n scalar functions are known to us f (i)(x1, ..., xn), of which
it is possible to generate n covariant tensors

ϕ
(k)
i =

∂f (k)

∂xi
. (17)

There exist many different means of a construction of generalized analytic func-
tions on the base of functions ϕ

(k)
i . Among them especially important are those

means of construction, which give analytic functions, if functions f (i)(x1, ..., xn) are
components of analytic functions. We give two the most interesting from our point
of view and simple means.

2.1 I-st mean

Since the polynumber space is non-degenerate, then there exists a tensor qij

(2), (3); hence it is possible to construct n contra-variant vectors

ϕ(s)i = qijϕ
(s)
j . (18)

For functions ϕ(s)i be components of generalized analytical function Φ(s)(X) there
is necessary and sufficient the satisfaction of the Cauchy-Riemann relations (11).
Substituting (18) into (11) and using the formula

∂f (s)

∂xm

∂xk

∂f (s)
= δk

m (19)

and (3) we get

Γ̃i
kj + qimΓ̃r

kmqrj = pi
ktε

s
(
Γ̃t

sj + qtmΓ̃r
smqrj

)
. (20)

This system of linear equations relative to Γ̃i
kj contains n3 indeterminates. Not all

of these equations are linearly independent, at least n2 linear dependences of linear
correlations between these linear equations, that to establish this, it is necessary to
convolute the left and the right parts of this system (20) with the tensor εk. The
general solution of this system of linear equations can be always presented as the
sum of a partial solution, which is in this case

Γ̃i
(p)kj = −qimΓr

kmqrj , (21)

and a general solution Γ̃i
(0)kj of the corresponding homogeneous equation. The

object
Γ̃i

(0)kj = pi
ktD

t
j(x

1, ..., xn) + δi
kdj(x

1, ..., xn) , (22)
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where Dt
j, dj – are arbitrary fields, is the solution of the homogeneous system of

equations (20) and formally contains (n2 + n) arbitrary functions, but we were
not successful in proving rigorously for arbitrary polynumbers Pn, that (22) is the
general solution of the homogeneous system of equations. Nevertheless, an arbi-
trariness, which is contained in (22), is sufficient for a construction of generalized
analytic functions of complex and H4 variables.

Thus, if f (i)(x1, x2, ..., xn) – are functions accomplishing an elementary gen-
eralized conformal transformation, then the functions ϕ(s)i are components of n
generalized analytic functions

Φ(s)(X) = ϕ(s)iei (23)

with objects of connectedness

Γ̃i
kj = Γ̃i

(p)kj + Γ̃i
(0)kj , (24)

at the same time due to the available arbitrariness there must be satisfied the
necessary condition: if Φ(s)(X) – is an analytic function, then

Γ̃i
kj ≡ 0 . (25)

Mention that this condition can always be satisfied, if Γ̃i
(0)kj is a general solution

of the homogeneous system of equations (20), since the Cauchy-Riemann relations
are satisfied on the condition (25) for analytic functions of the variable Pn.

2.2 II-nd mean

Construct a tensor of the form

ωij = a(st)(x
1, ..., xn)

∂f (s)

∂xi

∂f (t)

∂xj
, (26)

where a(st) are scalar functions of a point, where a matrix (a(st)) is non-degenerate.
Then the matrix (ωij) is also non-degenerate, therefore, it is possible to construct
the tensor ωij:

ωikωkj = ωjkω
ki = δi

k . (27)

If a matrix (a(st)) is non-symmetric, then the matrix (ωij) – is also non-symmetric.
Partial derivatives of elements of the matrix (ωij) are defined by the formula

∂ωij

∂xk
=

∂a(st)

∂xk

∂f (s)

∂xi

∂f (t)

∂xj
+ Γm

kiωmj + ωimΓm
kj , (28)

then partial derivatives of the contra-variant tensor ωij can be calculated by the
formula

∂ωir

∂xk
= −ωip ∂ωpj

∂xk
ωjr . (29)
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Construct components of the generalized analytic function by the following
procedure:

ϕ(s)i = ωir ∂f (s)

∂xr
. (30)

Substitute ϕ(s)i in the Cauchy-Riemann relations for generalized analytical func-
tions, we get the system of linear equations for the definition of Γ̃i

kq, moreover, the
general solution of the corresponding homogeneous system will be the same, as in
the I-st mean, while a partial solution will be of the form

Γ̃i
(p)kq = Γi

kq + ωir ∂a(st)

∂xk

∂f (s)

∂xr

∂f (t)

∂xq
. (31)

If a matrix (ast) consists of numbers, then we get

Γ̃i
(p)kq = Γi

kq . (32)

A general solution of the corresponding homogeneous system should be chosen, as
above by the way that a resulting solution would have the property: functions (30)
are components of an analytic function, Γ̃i

kq ≡ 0.

3 Complex numbers

Let

F (z) = f (1) + if (2) = u + iv (33)

be the analytic function of the complex variable z = x + iy.
In the paper [2] the objects Γm

kl were obtained for components of an analytic
function F (z) of the complex variable,

Γm
kl =

1

2Λ

(
∂Λ

∂xl
δm
k +

∂Λ

∂xk
δm
l − gmp ∂Λ

∂xp
gkl

)
, (34)

where

(gij) = (gij) = diag(1, 1) , Λ =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

. (35)

3.1 I-st mean

Taking into account that

(qij) = (qij) = diag(1, −1) , (36)

we get

(ϕ(1)i) =

(
∂u

∂x
,

∂v

∂x

)
, (ϕ(2)i) =

(
∂v

∂x
, −∂u

∂x

)
. (37)
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The components ϕ(1)i and ϕ(2)i are components of two analytic functions. The first
is the derivative of the initial analytic function and since the components of the
second function satisfy the Cauchy-Riemann relations, then it is analytic.

Choose Γ̃i
(0)kj in such a way that for a conformal transformation of the first

kind Γ̃m
kl = 0. Substitute (34) into (21), add Γ̃m

(0)kl (22) and this sum equate to
zero. As the result we get the system of equations

−1

2

(
qim ∂ ln |Λ|

∂xm
qkj +

∂ ln |Λ|
∂xk

δi
j − qi

k

∂ ln |Λ|
∂xp

qp
j

)
+ pi

ktD
t
j + δi

kdj = 0 , (38)

where

(qi
k) = diag(1 ,−1) . (39)

From this system we find:

D1
1 =

1

2

∂ ln |Λ|
∂x

− d1 , D1
2 =

1

2

∂ ln |Λ|
∂y

− d2 ,

D2
1 = −1

2

∂ ln |Λ|
∂y

, D2
2 =

1

2

∂ ln |Λ|
∂x

,





(40)

where d1 and d2 – are arbitrary functions.

3.2 II-nd mean

Let

(a(st)) =

(
1 0

0 1

)
, (41)

that is,

ωij =
∂u

∂xi

∂u

∂xj
+

∂v

∂xi

∂v

∂xj
. (42)

Using the Cauchy-Riemann relations for the analytic function F (z) = u + iv we
get

(ωij) = ∆

(
1 0

0 1

)
, (43)

where

∆ =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

, (44)

and hence

(ωij) =
1

∆

(
1 0

0 1

)
. (45)



G. I. Garas’ko The relation of generalized conformal transformations... 153

Construct functions ϕ(s)i:

(ϕ(1)i) =

(
ωij ∂u

∂xj

)
=

1

∆




∂u

∂x

−∂v

∂x


 , (46)

(ϕ(2)i) =

(
ωij ∂v

∂xj

)
=

1

∆




∂v

∂x

∂u

∂x


 . (47)

Since
(

∂u

∂x
+ i

∂v

∂x

)−1

=
1
∆

(
∂u

∂x
− i

∂v

∂x

)
,

(
∂v

∂x
− i

∂u

∂x

)−1

=
1
∆

(
∂v

∂x
+ i

∂u

∂x

)
, (48)

ϕ(1)i and ϕ(2)i – are components of analytic functions of a complex variable. Eluci-
date whether it is possible to choose in this case functions Dt

l and dl in the objects
of connectedness Γ̃m

kl such that Γ̃m
kl = 0. For this it is necessary to solve the system

of linear equations

∂L

∂xl
δm
k +

∂L

∂xk
δm
l − gmp ∂L

∂xp
gkl + pm

ktD
t
l + δm

k dl = 0 (49)

relative to unknown functions Dt
l , dl. This system of equations is compatible and

has the following solution:

D1
1 = −1

2

∂L

∂x
− d1 , D1

2 = −1

2

∂L

∂y
− d2 ,

D2
1 =

1

2

∂L

∂y
, D2

2 = −1

2

∂L

∂x
.





(50)

4 Polynumbers H4

In the space H4 an arbitrary analytic function in the ψ-basis has the form

F (X) = f (1)(ξ1)ψ1 + f (2)(ξ2)ψ2 + f (3)(ξ3)ψ3 + f (4)(ξ4)ψ4 , (51)

where
X = ξiψi , ψiψj = pk

ijψk , pk
ij = δijδ

k
i− , (52)

i = i−, but by this pair of indices the summation is not accomplished. The system
of equations for functions f (i), which implement elementary generalized conformal
transformations in the coordinate space of polynumbers H4, has the following form:

∂2f (i)

∂ξk∂ξl
=

[
1

2
(plδ

m
k + pkδ

m
l )− pm

kl

∂L

∂ξl−

]
∂f (i)

∂ξm
. (53)
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An arbitrary analytic function of the variable H4, which accomplish a bijective
mapping of some domain of the coordinate space H4 on the same or some other
domain of the same space, defines the conformal transformation and satisfies the
system of equations (53) with

pi = 0 , L = − ln

∣∣∣∣∣
ḟ (1)ḟ (2)ḟ (3)ḟ (4)

const

∣∣∣∣∣ . (54)

4.1 I-st mean

Since in the space H4 it can be generated the tensor

qij = pm
ikp

k
mj, (qij) = diag(1, 1, 1, 1), (55)

then there exists twice contra-variant tensor qij, moreover,

(qij) = diag(1, 1, 1, 1). (56)

Evidently: if f (s) – are components of an analytic function, then also ϕ(s)i (18) –
are components of an analytic function. Try to choose Γ̃i

(0)kj (22) such that in this

case Γ̃i
kj = 0. Solving the system of linear equations

qimpr
km

∂L

∂ξm−
qrj + pi

ktD
t
j + δi

kdj = 0 (57)

relative to variables Di
j and dj we get:

Di
j = −δi

j

∂L

∂ξj−
− dj . (58)

Thus, the condition of being zero of the object Γ̃i
kj, when functions f (s) imple-

ment a conformal transformation, can always be accomplished by putting

di = 0 , Di
k = −δi

k

∂L

∂ξk−
. (59)

4.2 II-nd mean

Define the tensor ωij by the following way:

ωij =
∂f (1)

∂ξi

∂f (1)

∂ξj
+

∂f (2)

∂ξi

∂f (2)

∂ξj
+

∂f (3)

∂ξi

∂f (3)

∂ξj
+

∂f (4)

∂ξi

∂f (4)

∂ξj
, (60)

then if f (s) are components of an analytic function of the variable H4, we get

(ωij) =




(ḟ (1))2 0 0 0

0 (ḟ (2))2 0 0

0 0 (ḟ (3))2 0

0 0 0 (ḟ (4))2




, (61)
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(ϕ(1)i) =

(
1

ḟ (1)(ξ1)
, 0, 0, 0

)
, (ϕ(2)i) =

(
0,

1

ḟ (2)(ξ2)
, 0, 0

)
,

(ϕ(3)i) =

(
0, 0,

1

ḟ (3)(ξ3)
, 0

)
, (ϕ(4)i) =

(
0, 0, 0,

1

ḟ (4)(ξ4)

)
.





(62)

Therefore, ϕ(s)i are components of an analytic function of the variable H4, hence it
is necessary to demand, that in this case objects Γ̃m

kl vanish, that is, the following
system of equations be satisfied:

−pm
kl

∂L

∂ξl−
+ pm

ktD
t
l + δm

k dl = 0 . (63)

This system of linear equations relative to Dt
l and dl is compatible and has the

following solution:

Di
j = δi

j

∂L

∂ξj−
− dj . (64)

Conclusion

In the work [1] it was mentioned that a formulated in it notion of generalized
analytic function is too common and there are necessary some additional conditions
(or a condition) for extracting from this set functions of physically valuable subset.
At the same time the notion of conformal transformations in the publication [2]
is generalized, by our opinion, in the minimal possible way. Therefore, we are
convinced that the unique and sufficient demand for an extraction of physically
valuable subset of generalized analytic functions of a polynumber variable is the
following: each physically valuable generalized analytic function of the polynumber
variable Pn may be obtained by one or another method from generalized conformal
transformation of the space Pn such that when generalized conformal transfor-
mations are accomplished by components of analytic functions, there would be
obtained analytic functions. In the present work it is shown that to establish
such correspondence between generalized conformal transformations and physically
valuable classes of generalized conformal transformations is quite possible.
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Introduction

In terms of general relativity, the space-time is known to be Riemannian. Ac-
cording to the Einstein equations, the distribution and motion of matter deter-
mine only the space-time curvature and have never affect the geometry of tangent
spaces. In other words, irrespective of the distribution and properties of the ma-
terial medium that fills the Riemannian space-time, any flat tangent space-time
remains the space-time of special relativity, i.e. Minkowski space.

Generally speaking, a flat space-time does not exhibit the Minkowski geometry
in all cases. Such geometry arises only if a given flat space-time admits the 6-
parameter Lorentz group to be a homogeneous isometry group. The 6-parameter
Lorentz group is known to include the 3-parameter Lorentz boosts and the 3D
rotation subgroup. If, however, the isotropy of 3D space is broken in a way, the
flat space-time metric can no longer be described by the quadratic form of the
coordinate differentials, but is a certain (and, generally speaking, arbitrary enough)
homogeneous function of the differentials of degree two. In this case, the flat
space-time is said to have the Finslerian geometry [1].

Attempts have long been made (see [2]–[7] for instance) to generalize the field
theory and the Einstein equations for the Finslerian space-time. That task is
difficult because, first of all, the Finslerian metric tensor depends on not only
the base manifold points, but also the geometric objects of, generally, arbitrary
nature. Therefore, any noticeable relevant advance in the field involves additional
physical concepts. In particular, the extremely bright concept of Lorentz symmetry
violation at relative velocities of inertial reference frames in immediate proximity
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to light velocity should be noted. The concept was suggested in refs. [8]–[9] to be
the most probable cause of the absence of so-called GZK effect [10]–[11] and has led
finally to construction of the viable model for flat space-time with partially broken
3D isotropy [12]. The model is described by the following Finslerian metric :

ds2 =

[
(dx0 − νdx)2

dx2
0 − dx 2

]r

(dx2
0 − dx 2) , (1)

where unit vector ν indicates a preferred direction in 3D space; the dimensionless
parameter r determines the anisotropy magnitude, i.e. the degree of deviation of
Finslerian metric (1) from the metric of isotropic Minkowski space. In this case,
the Minkowski metric is clearly ultimate case of the metric (1) at r = 0 .

Another ultimate case ( r = 1 ) is also of importance when constructing a
consistent dynamics pattern for space-time manifold. In this case, according to
Eq. (1), the metric ds degenerates into a total differential of absolute time. This
transformation of the metric leads us to conclude that some phase transitions can
occur in the space-time geometric structure and may be related to the phase tran-
sitions arising in the system of the interacting fundamental fields in case the gauge
symmetry breaks spontaneously. We shall discuss this aspect in more detail below;
but would pay attention now to another important circumstance that concerns the
specific form of the Finslerian metric (1).

Any of the Finslerian metrics ds2 = f((dx0− νdx)2/(dx2
0− dx 2))(dx2

0− dx 2)
(where f((dx0−νdx)2/(dx2

0−dx 2)) is, in many respects, an arbitrary function of
its own argument) also describes a certain flat Finslerian space-time with partially
broken 3D isotropy, i.e. an axially symmetric Finslerian space. At the same time,
if and only if f is of the form f = ((dx0 − νdx)2/(dx2

0 − dx 2))r, the respective
metric (1) will describe the flat anisotropic space-time, which permits not only
the 1-parameter group of rotations about vector ν , but also the homogeneous
3-parameter group of isometries that consists of only noncompact transformations.
Such transformations link the physically equivalent inertial reference frames in the
anisotropic space-time (1) and are called the generalized Lorentz transformations,
or the generalized Lorentz boosts. As a result, we may assert that, when going
over from the Minkowski space to the Finslerian space (1) with partially broken
3D isotropy, the Lorentzian space-time symmetry proves to be also broken, but
the relativistic symmetry represented by the group of generalized Lorentz boosts
remains valid [13]–[21].

In terms of the above described Finslerian model, the anisotropy of the
flat space-time is produced by the relativistically-invariant axially-symmetric
fermion-antifermion condensate formed under spontaneous breaking of the initial
gauge symmetry and when the fundamental matter fields acquire masses. Contrary
to the standard Higgs mechanism and to its alternative pattern [22]-[23], which
treats the scalar fermion-antifermion condensate instead of the Higgs condensate,
the vacuum rearrangement accompanied by formation the relativistically-invariant
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axially-symmetric fermion-antifermion condensate leads to changing the flat space-
time geometry, namely, the Finslerian geometry with the metric (1) replaces the
Minkowski geometry. In this case, as noted above, such a geometric phase transi-
tion preserves the relativistic symmetry, but violates the Lorentz symmetry of the
theory.

Lately, another (string-motivated) approach to the problem of breaking the
Lorentz symmetry is developed along with the Finslerian approach. The fact is
that, even if a base unified theory exhibits the Lorentz symmetry at the most
fundamental level, that symmetry can be broken spontaneously due to formation
of the condensate of the vector or (for instance) tensor field. The assumed occur-
rence of such a condensate, or a constant classical field against the Minkowski
space background implies that it may affect the dynamics of the fundamental
fields and, thereby, modify the Standard Model of strong, weak, and electromag-
netic interactions. Since the constant classical field is transformed under passive
transformations as a Lorentzian vector or tensor, this effect will properly be al-
lowed for by extension of the Standard Model Lagrangian using the additional
terms, which are every possible Lorentz-covariant convolutions of the condensate
with the standard fundamental fields. The phenomenological theory based on
the given Lorentz-covariant modification of the Standard Model was called the
Standard Model Extension (SME) [24]–[27]. By its construction, that model is
not Lorentz-invariant because its Lagrangian fails to remain invariant under ac-
tive Lorentzian transformations of the fundamental fields against the background
of fixed condensate. Additionally, in the SME context, the Lorentz symmetry
violation with respect to the active Lorentzian transformations implies also the
relativistic symmetry violation because the presence of non-invariant condensate
breaks the physical equivalence of the various inertial reference frames.

Of course, it cannot be excluded that the Nature is so organized that, on the
Planck energy scales, not only Lorentzian symmetry, but also the above-described
generalized Lorentzian symmetry, will prove to be broken either entirely or partially
[28]. Even in this case, however, the Finslerian geometric space-time model may
prove to be more adequate compared with the Riemannian model. Although the
like viewpoint has been expressed in [29], it is apt to note that the absence of some
local isometry group in the Finslerian space-time necessitates additional physical
criteria that make it possible to select only those Finslerian metrics from their set,
which permit description of the geometric properties of space-time manifold. For
example, authors of [30]–[32] used the occurrences of the conformal and projective
structures of the Finslerian space as such criteria to show that the Finslerian space-
time that satisfies the criteria must be Berwald’s special Finslerian space.

Returning to the Finslerian spaces that permit the homogeneous noncompact 3-
parameter isometry groups and, hence, have the relativistic symmetry, the present
work will pay main attention below to further investigating the flat Finslerian
space-time with entirely broken 3D isotropy.
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Relativistically invariant flat Finslerian space-time
with entirely broken 3D isotropy

In terms of the relativity theory, the basic property of axially-symmetric Fins-
lerian space-time (1) is that the latter is also relativistically symmetric. In other
words, the transformation relations that hold among the various inertial reference
frames belong to the group of its isometries and, in their turn, form a separate
3-parameter group. As to the axial asymmetry, it means that under transition
from the Minkowski space to the Finslerian space-time (1), the 3D space isotropy
is broken but partially. If the anisotropy of the fermion-antifermion condensate
formed under one or another spontaneous violation of the initial gauge symmetry
of the system of interacting fundamental fields is taken to be the source of the 3D
space anisotropy, the following conclusion will get evident. If the axially-symmetric
condensate produces the axially-symmetric relativistically-invariant Finslerian
space-time (1) and if, apart from the axially symmetric condensate, the en-
tirely anisotropic condensate can be formed, the latter must generate the entirely
anisotropic relativistically invariant Finslerian space-time. The most general form
of the respective entirely anisotropic Finslerian metric has been found in [33] and
proved to depend on three dimensionless parameters r1 , r2 and r3 and to be
presented as

ds = (dx0 − dx1 − dx2 − dx3)
(1+r1+r2+r3)/4(dx0 − dx1 + dx2 + dx3)

(1+r1−r2−r3)/4

× (dx0 + dx1 − dx2 + dx3)
(1−r1+r2−r3)/4(dx0 + dx1 + dx2 − dx3)

(1−r1−r2+r3)/4.
(2)

The range of admissible values of r1 , r2 and r3 is restricted by the conditions

1 + r1 + r2 + r3 ≥ 0 , 1 + r1 − r2 − r3 ≥ 0 ,

1− r1 + r2 − r3 ≥ 0 , 1− r1 − r2 + r3 ≥ 0

and takes the form of the regular tetrahedron AB C D, shown in Fig. 1.

At r1 = r2 = r3 = 0 , the metric (2) reduces to the fourth root of the product of
four 1-forms :

ds
B−M

= [ (dx0 − dx1 − dx2 − dx3)(dx0 − dx1 + dx2 + dx3)

× (dx0 + dx1 − dx2 + dx3)(dx0 + dx1 + dx2 − dx3) ] 1/4 .
(3)

If, following ref. [34], new coordinates ξi are introduced so that

ξi = Aijxj , Aij =




1 −1 −1 −1

1 −1 1 1

1 1 −1 1

1 1 1 −1




,
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Figure 1: The range of admissible values of r1, r2 and r3 .

expression (3) in these coordinates will take the standard form of the Berwald-Moor
metric [35]–[36], i.e. ds

B−M
= 4
√

ξ1ξ2ξ3ξ4 . So, we see that the Berwald-Moor metric
presented by expression (3) is the particular case of metric (2) at r1 = r2 = r3 = 0
(this is the central point of tetrahedron AB C D in Fig. 1) .

The tetrahedron vertex A is in correspondence with the rα values (r1 =
1 , r2 = −1 , r3 = −1) , vertex B with (r1 = −1 , r2 = −1 , r3 = 1) , vertex C with
(r1 = −1 , r2 = 1 , r3 = −1) , and vertex D with (r1 = 1 , r2 = 1 , r3 = 1) . At each
of the vertices, the metric (2) that describes the space-time with entirely broken
3D isotropy degenerates into the respective 1-form, i.e. into the total differential
of absolute time :

ds
A

= dx0 − dx1 + dx2 + dx3 ; ds
B

= dx0 + dx1 + dx2 − dx3 ;

ds
C

= dx0 + dx1 − dx2 + dx3 ; ds
D

= dx0 − dx1 − dx2 − dx3 .

If this observation is now compared with the above mentioned fact that the metric
(1) describing the space-time with partially broken 3D isotropy gets also degen-
erated at r = 1 into the total differential of absolute time, the idea arises that
the absolute time is not a stable degenerate state of space-time and may turn into
either partially anisotropic space-time (1) or entirely anisotropic space-time (2). In
any case, the respective geometric phase transition from the absolute time to 4D
space-time may be treated to be an Act of Creation of 3D space. This phenomenon
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is accompanied by rearrangement of the vacuum state of the interacting fundamen-
tal field system, resulting in that elementary particles acquire masses. Only after
the above described process is complete, the concepts of spatial extension and of
reference frame get physically meaningful; (in a massless world, a spatial extension
of anything, as well as one or another reference frame, is meaningless to speak of 1).
Finally, attention should be paid also to the fact that, formally, the absolute time
serves as the connecting link, via which the correspondence principle is satisfied for
the Finslerian spaces with partially and entirely broken 3D isotropy.

With the view to studying the fine structure of the geometric phase transitions,
it is expedient to examine some Finslerian metrics obtainable using metric (2) as
generatrix and selecting the appropriate characteristic subsets from the total set of
the admissible values of the parameters r1 , r2 and r3 .

According to Fig. 1, the relation r3 = −1−r1−r2 holds among the parameters
rα on the AB C face. Therefore, we use (2) to obtain

ds
ABC

= (dx0 − dx1 + dx2 + dx3)
(1+r1)/2(dx0 + dx1 − dx2 + dx3)

(1+r2)/2

× (dx0 + dx1 + dx2 − dx3)
−(r1+r2)/2 .

(4)

At the central point d of face AB C , the parameters rα are r1 = r2 = r3 = −1/3 ,
while (4) reduces to the cubic root

ds
d

= 3
√

(dx0 − dx1 + dx2 + dx3)(dx0 + dx1 − dx2 + dx3)(dx0 + dx1 + dx2 − dx3) . (5)

On the B C D face, the relation r3 = 1+ r1− r2 holds among the parameters rα .
Accordingly, formula (2) gives

ds
BCD

= (dx0 − dx1 − dx2 − dx3)
(1+r1)/2(dx0 + dx1 + dx2 − dx3)

(1−r2)/2

× (dx0 + dx1 − dx2 + dx3)
−(r1−r2)/2 .

(6)

At the central point a of face B C D , r1 = −1/3 , r2 = r3 = 1/3 and, according
to (6), we again obtain the metric in the form of cubic root:

dsa = 3
√

(dx0 − dx1 − dx2 − dx3)(dx0 + dx1 − dx2 + dx3)(dx0 + dx1 + dx2 − dx3) . (7)

On the AB D face, r3 = 1− r1 + r2 , resulting in

ds
ABD

= (dx0 + dx1 + dx2 − dx3)
(1−r1)/2(dx0 − dx1 − dx2 − dx3)

(1+r2)/2

× (dx0 − dx1 + dx2 + dx3)
(r1−r2)/2 .

(8)

At the central point c of face AB D , r2 = −1/3 , r1 = r3 = 1/3 and the metric
takes the form

dsc = 3
√

(dx0 − dx1 − dx2 − dx3)(dx0 − dx1 + dx2 + dx3)(dx0 + dx1 + dx2 − dx3) . (9)

1It should be noted that as early as in one of the first unified gauge theories (namely, the
conformal Weyl theory [37], [38]) the very notion of space-time interval gets physically meaningful
only after violation of local conformal symmetry and after the initially massless Abelian vector
gauge field acquires mass.



162 Space-Time Structure. Algebra and Geometry

On the last (fourth) face AC D , r3 = r1 + r2 − 1 and we get

ds
ACD

= (dx0 + dx1 − dx2 + dx3)
(1−r1)/2(dx0 − dx1 + dx2 + dx3)

(1−r2)/2

× (dx0 − dx1 − dx2 − dx3)
(r1+r2)/2 .

(10)

At the central point b of face AC D , r1 = r2 = 1/3 , r3 = −1/3 . Therefore,

ds
b

= 3
√

(dx0 − dx1 − dx2 − dx3)(dx0 − dx1 + dx2 + dx3)(dx0 + dx1 − dx2 + dx3) .
(11)

Let us find out at last what is the form that metric (2) takes on six edges of
the tetrahedron AB C D , starting from edge BD . According to Fig. 1, this edge
is the intersection of faces AB D and B C D . Therefore, the relations

1− r1 + r2 − r3 = 0 ,

1 + r1 − r2 − r3 = 0

hold among the parameters rα at that intersection, whence r3 = 1 , r1 = r2 = r̃ .
As a result, we get

ds
BD

=

[
(dx0 − dx3)− (dx1 + dx2)

(dx0 − dx3) + (dx1 + dx2)

]r̃/2 √
(dx0 − dx3)2 − (dx1 + dx2)2 . (12)

In the middle of edge BD , r3 = 1 , r1 = r2 = r̃ = 0 , and expression (12) reduces
to the two-dimensional Minkowski metric ds2 = (dx0 − dx3)

2 − (dx1 + dx2)
2 .

Consider edge AD , which is the intersection of faces AB D and AC D . The
relations

1− r1 + r2 − r3 = 0 ,

1− r1 − r2 + r3 = 0

hold among the parameters rα at that edge, resulting in r1 = 1 , r2 = r3 = r̃ and

ds
AD

=

[
(dx0 − dx1)− (dx2 + dx3)

(dx0 − dx1) + (dx2 + dx3)

]r̃/2 √
(dx0 − dx1)2 − (dx2 + dx3)2 . (13)

In the middle of edge AD , r1 = 1 , r2 = r3 = r̃ = 0 , and expression (13) reduces
again to the two-dimensional Minkowski metric ds2 = (dx0−dx1)

2− (dx2 +dx3)
2 .

Edge CD is the intersection of faces AC D and B C D . At that edge, the
relations

1− r1 − r2 + r3 = 0 ,

1 + r1 − r2 − r3 = 0

hold among the parameters rα , resulting in r2 = 1 , r1 = r3 = r̃ . Accordingly,

ds
CD

=

[
(dx0 − dx2)− (dx1 + dx3)

(dx0 − dx2) + (dx1 + dx3)

]r̃/2 √
(dx0 − dx2)2 − (dx1 + dx3)2 . (14)
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In the middle of edge CD , r2 = 1 , r1 = r3 = r̃ = 0 , so that
ds2 = (dx0 − dx2)

2 − (dx1 + dx3)
2 .

Edge CB is the intersection of faces AB C and B C D . At that edge, the
relations

1 + r1 + r2 + r3 = 0 ,

1 + r1 − r2 − r3 = 0

hold among the parameters rα , whence r1 = −1 , r2 = −r3 = r̃ , resulting in

ds
CB

=

[
(dx0 + dx1)− (dx2 − dx3)

(dx0 + dx1) + (dx2 − dx3)

]r̃/2 √
(dx0 + dx1)2 − (dx2 − dx3)2 . (15)

In the middle of edge CB , r1 = −1 , r2 = −r3 = r̃ = 0 and
ds2 = (dx0 + dx1)

2 − (dx2 − dx3)
2 .

Edge AB is the intersection of faces AB C and A B D . At that edge, the
relations

1 + r1 + r2 + r3 = 0 ,

1− r1 + r2 − r3 = 0

hold among the parameters rα , i.e. r2 = −1 , r1 = −r3 = r̃ , resulting in

ds
AB

=

[
(dx0 + dx2)− (dx1 − dx3)

(dx0 + dx2) + (dx1 − dx3)

]r̃/2 √
(dx0 + dx2)2 − (dx1 − dx3)2 . (16)

In the middle of edge AB , r2 = −1 , r1 = −r3 = r̃ = 0 and
ds2 = (dx0 + dx2)

2 − (dx1 − dx3)
2 .

The last edge AC is the intersection of faces AB C and AC D . At that edge,
the relation

1 + r1 + r2 + r3 = 0 ,

1− r1 − r2 + r3 = 0

hold among the parameters rα , whence r3 = −1 , r1 = −r2 = r̃ and

ds
AC

=

[
(dx0 + dx3)− (dx1 − dx2)

(dx0 + dx3) + (dx1 − dx2)

]r̃/2 √
(dx0 + dx3)2 − (dx1 − dx2)2 . (17)

In the middle of edge AC , r3 = −1 , r1 = −r2 = r̃ = 0 and
ds2 = (dx0 + dx3)

2 − (dx1 − dx2)
2 .

The next section will treat the relativistic point mechanics of a particle in
the entirely anisotropic space-time (2) using essentially the transformations that
constitute the homogeneous 3-parameter noncompact group of the isometries of
that space-time. By its meaning, the group is the relativistic symmetry group
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for space-time (2) and was found [39] to be Abelian, while its determinant linear
transformations are of the form

x′i = D Lik xk , where (18)

D = e−( r1 α1+r2 α2+r3 α3 ) , (19)

Lik designates the unimodular matrices, with

Lik =




A −B −C −D
−B A D C
−C D A B
−D C B A




, (20)

A = cosh α1 cosh α2 cosh α3 + sinh α1 sinh α2 sinh α3 ,

B = cosh α1 sinh α2 sinh α3 + sinh α1 cosh α2 cosh α3 ,

C = cosh α1 sinh α2 cosh α3 + sinh α1 cosh α2 sinh α3 ,

D = cosh α1 cosh α2 sinh α3 + sinh α1 sinh α2 cosh α3

and α1 , α2 , α3 being the group parameters. The transformations inverse to (18)
are of the form

xi = D−1 L−1
ik x′k , (21)

where

L−1
ik =




Ã −B̃ −C̃ −D̃
−B̃ Ã D̃ C̃
−C̃ D̃ Ã B̃
−D̃ C̃ B̃ Ã




, (22)

Ã = cosh α1 cosh α2 cosh α3 − sinh α1 sinh α2 sinh α3 , (23)

B̃ = cosh α1 sinh α2 sinh α3 − sinh α1 cosh α2 cosh α3 , (24)

C̃ = sinh α1 cosh α2 sinh α3 − cosh α1 sinh α2 cosh α3 , (25)

D̃ = sinh α1 sinh α2 cosh α3 − cosh α1 cosh α2 sinh α3 . (26)

Considering that, similar to the Lorentz transformations in the Minkowski space,
the transformations (18) link the various inertial reference frames in the Finslerian
space (2), it is expedient to replace the group parameters α1 , α2 , α3 with the
components v1 = dx1/dx0 , v2 = dx2/dx0 , v3 = dx3/dx0 of the velocity of primed
reference frame. Although the respective relations can be found in [39], we shall
still present them here:

v1 = (tanh α1 − tanh α2 tanh α3)/(1− tanh α1 tanh α2 tanh α3) ,

v2 = (tanh α2 − tanh α1 tanh α3)/(1− tanh α1 tanh α2 tanh α3) ,

v3 = (tanh α3 − tanh α1 tanh α2)/(1− tanh α1 tanh α2 tanh α3) .
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The inverse relations are

α1 =
1

4
ln

(1 + v1 − v2 + v3)(1 + v1 + v2 − v3)

(1− v1 − v2 − v3)(1− v1 + v2 + v3)
,

α2 =
1

4
ln

(1− v1 + v2 + v3)(1 + v1 + v2 − v3)

(1− v1 − v2 − v3)(1 + v1 − v2 + v3)
,

α3 =
1

4
ln

(1− v1 + v2 + v3)(1 + v1 − v2 + v3)

(1− v1 − v2 − v3)(1 + v1 + v2 − v3)
.

Relativistic point mechanics in the entirely anisotropic
flat Finslerian space-time

We shall proceed from the considerations of relativistic invariance and mini-
mality along a straight world line to write an action S for a free particle in the
entirely anisotropic flat Finslerian space (2) :

S = −mc

b∫

a

ds , (27)

where ds is an interval in the Finslerian space (2). Variation of this action is

δS = −
b∫

a

(p0dδx0 − p1dδx1 − p2dδx2 − p3dδx3) =

= (−p0δx0 + p1δx1 + p2δx2 + p3δx3)|ba +

+
b∫

a

[(dp0/ds)δx0 − (dp1/ds)δx1 − (dp2/ds)δx2 − (dp3/ds)δx3]ds .

(28)

If the world line is varied under condition (δxi)|a= (δxi)|b= 0 , the principle of least
action gives pi = const, i.e. the rectilinear inertial motion. In turn, variation of
the coordinates of point b under condition pi = const gives

p0 = − ∂S

∂x0

, pα =
∂S

∂xα

; α = 1 , 2 , 3 , (29)

whence it becomes clear the pi is a canonical 4-momentum of particle in the
Finslerian space (2). Having been expressed via 3-velocity vα = dxα/dx0 , the
components of the 4-momentum take the form

p0 =
ds

dx0

(
dx0

ds
B−M

)4

{ 1− v2
1 − v2

2 − v2
3 − 2v1v2v3

+ r1[(1− v2
1 + v2

2 + v2
3)v1 + 2v2v3]

+ r2[(1 + v2
1 − v2

2 + v2
3)v2 + 2v1v3]

+ r3[(1 + v2
1 + v2

2 − v2
3)v3 + 2v1v2]} , (30)
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p1 =
ds

dx0

(
dx0

ds
B−M

)4

{ (1− v2
1 + v2

2 + v2
3)v1 + 2v2v3

+ r1[1− v2
1 − v2

2 − v2
3 − 2v1v2v3]

+ r2[(1 + v2
1 + v2

2 − v2
3)v3 + 2v1v2]

+ r3[(1 + v2
1 − v2

2 + v2
3)v2 + 2v1v3]} , (31)

p2 =
ds

dx0

(
dx0

ds
B−M

)4

{ (1 + v2
1 − v2

2 + v2
3)v2 + 2v1v3

+ r1[(1 + v2
1 + v2

2 − v2
3)v3 + 2v1v2]

+ r2[1− v2
1 − v2

2 − v2
3 − 2v1v2v3]

+ r3[(1− v2
1 + v2

2 + v2
3)v1 + 2v2v3]} , (32)

p3 =
ds

dx0

(
dx0

ds
B−M

)4

{ (1 + v2
1 + v2

2 − v2
3)v3 + 2v1v2

+ r1[(1 + v2
1 − v2

2 + v2
3)v2 + 2v1v3]

+ r2[(1− v2
1 + v2

2 + v2
3)v1 + 2v2v3]

+ r3[1− v2
1 − v2

2 − v2
3 − 2v1v2v3] } , (33)

where

(dx0/ds)
(
ds

B−M
/dx0

)4
= (1− v1 − v2 − v3)

(3−r1−r2−r3) / 4

× (1− v1 + v2 + v3)
(3−r1+r2+r3) / 4

× (1 + v1 − v2 + v3)
(3+r1−r2+r3) / 4

× (1 + v1 + v2 − v3)
(3+r1+r2−r3) / 4 ,

(34)

Here, ds is metric (2); ds
B−M

is the Berwald-Moor metric (3). It should be noted
that, starting from formula (30), we put m = c = 1 in all the relations.

According to expressions (30)–(33), four quantities (energy p0 and 3-
momentum pα) are functions of three components, vα, of particle velocity. The
relations (30)–(33), therefore, may be treated to be the equations that determine
the parametric form of mass shell, while vα is taken to be the internal coordinates
on that mass shell. We shall demonstrate below that the mass shell equation can
be obtained to be an algebraic relation for pi . As to the associate physical aspect,
we see that, just as it should be, the energy p0 determined by (30) reaches its
absolute minimum p0 = 1 at vα = 0, i.e. for a particle at rest. However, it is
of importance to note that, apart from the rest energy p0 = 1 , a particle that
resides in the entirely anisotropic space (2) still has a non-zero rest momentum.
In virtue of (31)–(33), we get p1 = r1, p2 = r2, p3 = r3 at vα = 0. Moreover,
according also to (31)–(33), the 3-momentum direction of the particle differs from
its 3-velocity direction, thereby demonstrating that the free particle motion in the
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entirely anisotropic space is analogous to the motion of a quasiparticle in an entirely
anisotropic crystalline medium.

Similarly to the case of the Minkowski space, the 3-velocity of a particle can
be found if its 4-momentum in the entirely anisotropic space is known. To obtain
the appropriate respective formula, we shall start from certain useful intermediate
relations that are valid in virtue of (30)–(33), namely,

p0 + p3

p1 + p2

=
(1− v3)(1 + r3) + (v1 + v2)(r1 + r2)

(1− v3)(r2 + r3) + (v1 + v2)(1 + r3)
, (35)

p0 − p1

p2 − p3

=
(1 + v1)(1− r1) + (v2 − v3)(r2 − r3)

(1 + v1)(r2 − r3) + (v2 − v3)(1− r1)
, (36)

p0 + p1

p2 + p3

=
(1− v1)(1 + r1) + (v2 + v3)(r2 + r3)

(1− v1)(r2 + r3) + (v2 + v3)(1 + r1)
. (37)

These relations lead to the following set of three linear equations with respect to vα:

aγαvα = bγ , (38)

where

a11 = a12 = (p0 + p3)(1 + r3)− (p1 + p2)(r1 + r2) ,

a13 = b1 = (p1 + p2)(1 + r3)− (p0 + p3)(r2 + r3) ,

a21 = − b2 = (p0 − p1)(r2 − r3)− (p2 − p3)(1− r1) ,

a22 = − a23 = (p0 − p1)(1− r1)− (p2 − p3)(r2 − r3) ,

a31 = b3 = (p2 + p3)(1 + r1)− (p0 + p1)(r2 + r3) ,

a32 = a33 = (p0 + p1)(1 + r1)− (p2 + p3)(r2 + r3) .

At r1 = r2 = r3 = 0 , i.e. in the case of the Berwald-Moor space with metric (3),
the set (38) takes the form

(p0 + p3)v1 + (p0 + p3)v2 + (p1 + p2)v3 = (p1 + p2) ,

(p3 − p2)v1 + (p0 − p1)v2 + (p1 − p0)v3 = (p2 − p3) ,

(p2 + p3)v1 + (p0 + p1)v2 + (p0 + p1)v3 = (p2 + p3) . (39)

These relations solve the set (39).

v1 =
p1(p0

2 − p1
2 + p2

2 + p3
2)− 2p0p2p3

p0(p0
2 − p1

2 − p2
2 − p3

2) + 2p1p2p3

,

v2 =
p2(p0

2 + p1
2 − p2

2 + p3
2)− 2p0p1p3

p0(p0
2 − p1

2 − p2
2 − p3

2) + 2p1p2p3

,

v3 =
p3(p0

2 + p1
2 + p2

2 − p3
2)− 2p0p1p2

p0(p0
2 − p1

2 − p2
2 − p3

2) + 2p1p2p3
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As noted above, four functions, (30)–(33), of three variables vα determine
the parametric form of mass shell. Let now obtain the algebraic form of the
mass shell equation, i.e. H4(p0, p1, p2, p3) = 1 . The explicit form of the function
H4(p0, p1, p2, p3) can be found as follows. First, four relations, which are valid in
virtue of (30)–(33), are to be written:

p0 + p1 + p2 + p3

1 + r1 + r2 + r3
=

ds

dx0

(
dx0

dsB−M

)4

(1− v1 + v2 + v3)
[
(1 + v1)2 − (v2 − v3)2

]
, (40)

p0 + p1 − p2 − p3

1 + r1 − r2 − r3
=

ds

dx0

(
dx0

dsB−M

)4

(1− v1 − v2 − v3)
[
(1 + v1)2 − (v2 − v3)2

]
, (41)

p0 − p1 + p2 − p3

1− r1 + r2 − r3
=

ds

dx0

(
dx0

dsB−M

)4

(1 + v1 + v2 − v3)
[
(1− v1)2 − (v2 + v3)2

]
, (42)

p0 − p1 − p2 + p3

1− r1 − r2 + r3
=

ds

dx0

(
dx0

dsB−M

)4

(1 + v1 − v2 + v3)
[
(1− v1)2 − (v2 + v3)2

]
. (43)

After that, examine the structure of the expressions in the right-hand parts of
(40)–(43). Considering the structure demonstrated by formula (34) for the common

factor (dx0/ds)
(
ds

B−M
/dx0

)4
, it can readily be noted that the right-hand parts

of (40)–(43) are the products of different powers of four characteristic “brackets”
(1− v1− v2− v3), (1− v1 + v2 + v3), (1+ v1− v2 + v3) and (1+ v1 + v2− v3) . This
observation suggests that the function H4(p0, p1, p2, p3) should be sought for as

H4(p0, p1, p2, p3) =

(
p0 + p1 + p2 + p3

1 + r1 + r2 + r3

)a (
p0 + p1 − p2 − p3

1 + r1 − r2 − r3

)b

×

×
(

p0 − p1 + p2 − p3

1− r1 + r2 − r3

)c (
p0 − p1 − p2 + p3

1− r1 − r2 + r3

)d

. (44)

The first of the conditions to be imposed on the constants a , b , c and d ensues
from the physical meaning of the function H(p0, p1, p2, p3) and consists in that
the function must have a physical dimension that coincides with the dimension of
momentum pi. Therefore, the function (44) should be a homogeneous function of
its own arguments of the fourth degree of homogeneity. This requirement means
that

a + b + c + d = 4 . (45)

The rest conditions to be imposed on the constants a , b , c and d can be ob-
tained in terms of the requirement that all the power exponents, which arise for
four characteristic “brackets”, after substituting the expressions (40)–(43) in (44),
should equal zero. It is just in this case that we obtain the mass shell equa-
tion in the form H4(p0, p1, p2, p3) = 1. Considering, however, that we have put
m = c = 1, the equation H4(p0, p1, p2, p3) = 1 corresponds in the ordinary units
to H4(p0, p1, p2, p3) = (mc)4 .
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So, if the proposed program is fulfilled, then we get the following four equations
for the constants a, b, c and d to supplement the equation (45):

b + c + d− (3− r1 − r2 − r3)(a + b + c + d)/4 = 0 , (46)

a + c + d− (3− r1 + r2 + r3)(a + b + c + d)/4 = 0 , (47)

a + b + d− (3 + r1 − r2 + r3)(a + b + c + d)/4 = 0 , (48)

a + b + c− (3 + r1 + r2 − r3)(a + b + c + d)/4 = 0 . (49)

In virtue of (45), the set of five equations (45)–(49) can be rewritten as

a + b + c + d = 4 , (50)

b + c + d− (3− r1 − r2 − r3) = 0 , (51)

a + c + d− (3− r1 + r2 + r3) = 0 , (52)

a + b + d− (3 + r1 − r2 + r3) = 0 , (53)

a + b + c− (3 + r1 + r2 − r3) = 0 . (54)

Obviously, we get (50) by summing up equations (51)–(54). Therefore, (50) is not
an independent equation, so four independent equations (51)–(54), or the respective
set

b + c + d = (3− r1 − r2 − r3) , (55)

a + c + d = (3− r1 + r2 + r3) , (56)

a + b + d = (3 + r1 − r2 + r3) , (57)

a + b + c = (3 + r1 + r2 − r3) (58)

remain to determine four constants a , b , c and d. The constants

a = 1 + r1 + r2 + r3 , b = 1 + r1 − r2 − r3 ,

c = 1− r1 + r2 − r3 , d = 1− r1 − r2 + r3

solve the set (55)–(58). This result means that the equation of mass shell in the
entirely anisotropic momentum space is

(
p0 + p1 + p2 + p3

1 + r1 + r2 + r3

)(1+r1+r2+r3) (
p0 + p1 − p2 − p3

1 + r1 − r2 − r3

)(1+r1−r2−r3)

×

×
(

p0 − p1 + p2 − p3

1− r1 + r2 − r3

)(1−r1+r2−r3) (
p0 − p1 − p2 + p3

1− r1 − r2 + r3

)(1−r1−r2+r3)

= 1. (59)

Finally, we shall consider the relativistic symmetry group of the entirely
anisotropic momentum space and show that the transformations of the 4-momenta
that form the group leave the mass shell equation (59) invariant. From the general
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considerations it becomes clear that the transformations of relativistic symmetry of
the entirely anisotropic momentum space are induced by the respective transforma-
tions (18) of the entirely anisotropic event space (2). The explicit form of the linear
transformations of 4-momenta that represent the relativistic symmetry group will
be constructed proceeding from the definition of the canonical 4-momentum (29).

Thus, the relations

p′0 = − ∂S

∂xi

∂xi

∂x′0
= D−1( L−1

00 p0 − L−1
0β pβ ) , (60)

p′α =
∂S

∂xi

∂xi

∂x′α
= D−1(−L−1

α0 p0 + L−1
αβ pβ ) (61)

are valid in virtue of (29) and (21). Considering the definition (22) of matrix L−1
ik ,

we can unite the relations (60) and (61) into a single formula

p′i = D−1 Lik pk , (62)

where
D−1 = e( r1 α1+r2 α2+r3 α3 ) , (63)

Lik =




Ã B̃ C̃ D̃
B̃ Ã D̃ C̃
C̃ D̃ Ã B̃
D̃ C̃ B̃ Ã




(64)

in virtue of (19) and (22). Here, α1 , α2 , α3 are the group parameters; the matrix
element Ã , B̃ , C̃ and D̃ of the matrix Lik are determined by formulas (23)–(26).
Thus, we have constructed the explicit form (62) of the linear transformations of
4-momenta. The transformations give rise to the 3-parameter Abelian group of
relativistic symmetry of the entirely anisotropic momentum space.

To verify that the form of the mass shell equation (59) is actually invariable,
i.e. remains invariant, under transformations (62), it is expedient to find out first
in what way four independent 1-forms entering equation (59) are transformed. The
straightforward calculations by (62)–(64) and by (23)–(26) give

(p′0 + p′1 + p′2 + p′3) = e[ (r1−1) α1+(r2−1) α2+(r3−1) α3 ](p0 + p1 + p2 + p3) , (65)

(p′0 + p′1 − p′2 − p′3) = e[ (r1−1) α1+(r2+1) α2+(r3+1) α3 ](p0 + p1 − p2 − p3) , (66)

(p′0 − p′1 + p′2 − p′3) = e[ (r1+1) α1+(r2−1) α2+(r3+1) α3 ](p0 − p1 + p2 − p3) , (67)

(p′0 − p′1 − p′2 + p′3) = e[ (r1+1) α1+(r2+1) α2+(r3−1) α3 ](p0 − p1 − p2 + p3) . (68)

Thus, as should be expected, the transformations of the relativistic symmetry of
the entirely anisotropic momentum space get much simplified in terms of 1-forms
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and reduce only to the scale transformations of those independent forms. Using
(65)–(68), it can readily be verified that

(p′0 + p′1 + p′2 + p′3)
(1+r1+r2+r3)(p′0 + p′1 − p′2 − p′3)

(1+r1−r2−r3) ×
× (p′0 − p′1 + p′2 − p′3)

(1−r1+r2−r3)(p′0 − p′1 − p′2 + p′3)
(1−r1−r2+r3) =

= (p0 + p1 + p2 + p3)
(1+r1+r2+r3)(p0 + p1 − p2 − p3)

(1+r1−r2−r3) ×
× (p0 − p1 + p2 − p3)

(1−r1+r2−r3)(p0 − p1 − p2 + p3)
(1−r1−r2+r3) .

It is this equality that proves that the mass shell equation (59) remains invariant
under transformations (62).

Conclusion

We have but casually mentioned the relativistically symmetric Finslerian space
with partially broken 3D isotropy and paid main attention to studying the rela-
tivistically symmetric Finslerian space with entirely broken 3D isotropy.

To avoid any misunderstanding, we wish to note that the relativistic symmetry
is normally meant to be the symmetry with respect to the Lorentz boost or, in
the wider sense, the symmetry with respect to the 6-parameter Lorentz group.
Although any Lorentz group element can be presented to be a product of a Lorentz
boost by 3D rotation, the nontrivial point is that the set of 3D rotations constitutes
the 3-parameter subgroup of the Lorentz group, while the 3-parameter set of the
Lorentz boosts does not constitute any group. In other words, by consecutively
using two different Lorentz boosts we go over to the inertial reference frame, whose
spatial axes are not parallel to the axes of the initial reference frame, but get an
additional 3D rotation. It is this effect (which leads to the Thomas precession)
that reflects the fact that the product of two arbitrary Lorentz boosts is not,
generally speaking, a pure Lorentz boost. At the same time, it has been long
known that the Lorentz group includes a single (up to isomorphism) 3-parameter
noncompact subset that, like the compact 3D rotation subset, also constitutes
a group. Since such 3-parameter group includes only the transformations that
link the moving inertial reference frames, it is just that group, rather than the
6-parameter Lorentz group, that must be treated to be the relativistic symmetry
group of the Minkowski space. This is justified especially as the Finslerian space
with the relativistic symmetry group, which is locally isomorphic to the 3-parameter
relativistic symmetry group of the Minkowski space, arises ( instead of Minkowski
space ) under partial breaking of 3D isotropy. In the case of the entirely anisotropic
Finslerian space of events, the group of the transformations for that space, which
link different physically equivalent inertial reference frames, has also the meaning
of the relativistic symmetry group. However, as shown above, such a group is the
Abelian 3-parameter group.
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Starting from a Finslerian metric function F 2 = gij (x, y) yiyj , gij = 1
2

∂2F 2

∂yi∂yj , in

this work the generalized three rank Finslerian metric tensors Gijk = 1
6

∂3F 3

∂yk∂yj∂yi y
iyjyk

and the generalized four rank Finslerian metric tensors Gijkl = 1
24

∂3F 3

∂yi∂yj∂yk∂yl , are stud-
ied. Taking into account the generalized rank five Christoffel symbols, the generalized
differential equations of Finsler geodesics are determined and discussed.
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Introduction

The notion of metric tensor of Riemann and Finsler geometry is the central
notion that determines the metric properties of space considered. The metric tensor
is the well known notion and tensor analysis of metric space is hardly possible
without it. It is usual to consider the metric tensor as a tensor of the second rank.
Let us ask whether it is possible to generalize this fundamental notion of Finsler
space not to restrict ourselves by the second rank’s type of tensor. If this approach
is possible mathematically it will permit to look for some applications in modern
relativity and quantum physics. The more the rank of the metric tensor the more
components it has and it gives possibility to look for, for example, correspondence
between these components and fundamental physical interactions. This article is
first attempt to consider the generalized metric tensor as a mathematical notion.

The Finslerian metric tensor is well known historically to be found by
L. Berwald, G. L. Synge and J. H. Taylor at 1925 by analogy with the Riemannian
metric tensor [1]. Although this analogy has helped to develop the Finsler space
analysis it has its own boundary. The Riemannian metric tensor has fundamental
role but it is not right for Finsler geometry because the Finslerian metric tensor of
the second rank has special properties unlike its the Riemannian predecessor. Fur-
ther consideration gives possibility to doubt universal role of the Finslerian metric
tensor of second rank and therefore gives some background of its generalization.

1 Difference between the Finslerian metric tensor
and the Riemannian one

The components of the Riemannian metric tensor appeared initially as the
coefficients of the second order’s expansion of the distance between near points,
that is, we have:

ds2 = gijdxidxj . (1)
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Therefore the components in the fixed system of coordinates depend only on the
point of Riemann space:

gij = gij(x).

Unlike Riemann space Finsler manifold is determined by set of axioms one of which
represents the property of homogeneity of the Finslerian metric function. Owing
to this important axiom the metric function has the next form analogous to (1):

F 2 = gij(x, y)yiyj . (2)

Similarity between (1) and (2) is limited because the components in (2) depend
not only on the point of base manifold x, but also on the contravariant vector of
tangent manifold y. This imparts new character to (2): this expansion is multiple
and hence it has not universal nature.

There is the fundamental formula of the Finsler metric tensor components in
the books of this geometry [2–4]:

gij =
1

2

∂2F 2

∂yj∂yi
. (3)

However it should be noted that the expansion (1) with the aid of (3) is not unique.
To illustrate it we consider Finsler space associated with the commutative as-

sociative algebra H3. This algebra is the product of three real number’s algebras:
H3 = R×R×R. The metric function of it is [5]:

F 3 = y1y2y3 . (4)

It isn’t difficult to check up that the square of this very metric function can be
expanded as the following (2) using not only the classical metric tensor but also
some other matrix (6):

F 2 = gijy
iyj = ỹijy

iyj ,

gij =

∥∥∥∥∥∥∥∥∥

−1
9

(y2y3)2/ 3

(y1)4/3
2
9

(y3)2/ 3

(y1y2)1/ 3
2
9

(y2)2/ 3

(y1y3)1/ 3

2
9

(y3)2/ 3

(y1y2)1/ 3 −1
9

(y1y3)2/ 3

(y2)4/3
2
9

(y1)2/ 3

(y2y3)1/ 3

2
9

(y2)2/ 3

(y1y3)1/ 3
2
9

(y1)2/ 3

(y2y3)1/ 3 −1
9

(y1y2)2/ 3

(y3)4/3

∥∥∥∥∥∥∥∥∥
, (5)

ỹij =

∥∥∥∥∥∥∥∥

0 3
4
g12

3
4
g13

3
4
g12 0 3

4
g23

3
4
g13

3
4
g23 0

∥∥∥∥∥∥∥∥
. (6)

Besides the components of the Finslerian metric tensor unlike Riemann space
has another property. These components may have a singularity at the point y = 0
if (yi → 0) by some special way. For example in the Berwald-Moor space of the
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third order (4) a component will tend to infinity if the denominator tends to zero
more fast the numerator does.

The possibility of such singularities may be considered as another disadvantage
of two rank tensors. But the generalized metric tensor may has not this disadvan-
tage. For example the generalized three rank metric tensor of the Berwald-Moor
space associated with the algebra H3 has constant components and consequently
the notion of three rank metric tensor is more appropriate for this space.

2 The generalized three rank Finslerian metric tensors

Owing to the key property of homogeneity of metric tensor in the form

F (x, ky) = kF (x, y) .

we can determine a generalized metric tensor.
The Euler’s theorem of homogenous function gives the next identities:

F 2 =
1

2

∂F 2

∂yi

︸ ︷︷ ︸
yi

yi =
1

2

∂2F 2

∂yj∂yi

︸ ︷︷ ︸
gij

yiyj . (7)

It is usual way to determine the covariant components of tangent vector yi and met-
ric tensor gij. Their connection with the contravariant components yi is expressed
by a formula:

yij = gijy
i

Due to the Euler theorem for homogenous functions it is possible by analogy
with (7) to expand not only the second one but also the higher powers of the
Finslerian function to the sum of products of the contravariant components of the
vector. Further expanding of the 3-d and 4-th power of this function is going over
and as a consequence of which the generalized metric tensors are defined.

F 3 =
1

3

∂F 3

∂yi

︸ ︷︷ ︸
y∗i =yiF

yi =
1

6

∂2F 3

∂yj∂yi

︸ ︷︷ ︸
y
(3)
ij

yiyj =
1

6

∂3F 3

∂yk∂yj∂yi

︸ ︷︷ ︸
Gijk

yiyjyk. (8)

The components of the covariant vector y∗i are appeared to be at the first step of
(8), but they differ from the components of the covariant vector yi just by the factor
of F and that is why are out of any interest. The second step of this expansion
gives the doubly covariant metric tensor y

(3)
ij . The tensor ỹij is a result of this

tensor division by the Finslerian function F , that is, we have:

ỹij = y
(3)
ij

/
F. (9)

The tensor (9) is the tensor that takes part in the alternative expansion of the
square of the Finslerian function and that is why can be considered as a partial



S. V. Lebedev The generalized Finslerian metric tensors 177

analogue of the fundamental metric tensor gij (3). The relationship of these two
tensors is expressed by the following formula:

ỹij =
(
gij + yiyj

/
F 2

)/
2 . (10)

Easy to see that the tensor (10) has resemblance to the angular Finslerian metric
tensor hij [4]:

hij = gij − yiyj

/
F 2.

Have a look at the tensor ỹij properties.
1. As the fundamental metric tensor gij, the tensor ỹij is homogeneous function

of zero degree, that is:
ỹij(x, ky) = ỹij(x, y) .

2. As the fundamental metric tensor gij, the tensor ỹij can be used for raising
and lowering index of arbitrary tangent vector, that is:

yi = ỹijyj, yi = ỹijy
j .

3. Unlike the fundamental metric tensor gij, the tensor ỹij does not allow to
raise and lower indices of tensors of the second rank and the highest one. For
example the result of lowering index of an arbitrary tensor of two rank Tij by ỹij if
it had been raised by gij is expressed by the formula:

(ỹijg
jk)Tkl =

1

2

[
Til +

yl

F

(
yj

F
· Tjl

)]
.

4. The internal product of ỹij by the tensor gij is equal to 1:

ỹijg
ij = ỹijgij = 1 .

5. If we construct the Christoffel symbols on the base of ỹij by usual way, that
is, we have:

γ̃ijk =
1

2

[
∂ỹij

∂xk
+

∂ỹjk

∂xi
− ∂ỹik

∂xj

]
,

this geometrical object obeys the usual equations of the Finslerian geodesics:

d2xi

ds2
+ γ̃i

jk

dxj

ds

dxk

ds
= 0, γ̃i

jk = gilγ̃ljk = ỹilγ̃ljk . (11)

The proof of this property is analogous to the proof of assertion (20) (see further).
At the last, third step of the expansion (8) we determine the third rank metric

tensor Gijk:

Gijk =
1

6

∂3F 3

∂yk∂yj∂yi
. (12)

It should be noted that the generalized metric tensors (9) and (12) are symmetrical
by all their indices and so are all the metric tensors.
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3 The generalized four rank Finslerian metric tensors

It is possible to expand the fourth degree of the Finslerian function by analogy
with (8) to give the next set of identities:

F 4 =
1
4

∂F 4

∂yi
︸ ︷︷ ︸
y∗i =yiF 2

yi =
1
12

∂2F 4

∂yj∂yi
︸ ︷︷ ︸

y
(4)
ij

yiyj =
1
24

∂3F 4

∂yk∂yj∂yi
︸ ︷︷ ︸

yijk

yiyjyk =
1
24

∂4F 4

∂yl∂yk∂yj∂yi
︸ ︷︷ ︸

Gijkl

yiyjykyl .

(13)
At the first step of (13) we have the covariant vector y∗ the components of

which differ from the components yi by the factor of F 2 while we have the doubly
covariant tensor y

(4)
ij at the second step. The trebly covariant tensor yijk and four

times covariant tensor Gijkl are appeared to be at the third and the last, fourth
step accordingly.

Now, let us review the properties of the tensor Gijkl.
First, on considering an indicatrix of Finsler space, tensor Gijkl gives possibility

to write down not only the equation of tangent plane to a indicatrix’s point (14)
but also the equations of tangent surfaces of two and three order (15)–(16):

Gijkl

(
xm, ym

(0)

) · yi
(0)y

j
(0)y

k
(0)y

l = 1 , (14)

Gijkl

(
xm, ym

(0)

) · yi
(0)y

j
(0)y

kyl = 1 , (15)

Gijkl

(
xm, ym

(0)

) · yi
(0)y

jykyl = 1 . (16)

Consequently the known classifications of surfaces of the second and third order
permit us to classify the indicatrix’s points with the aid of Gijkl.

Secondly, the tensor Gijkl allows to set the five rank geometrical object the
components of which may be called the generalized Christoffel symbols. We define
the components of this object as the following:

γi1i2i3i4i5 =
1

12

{
∂Gi1i2i3i4

∂xi1
− ∂Gi1i3i4i5

∂xi2
+

∂Gi1i2i4i5

∂xi3
− ∂Gi1i2i3i5

∂xi4
+

∂Gi1i2i3i4

∂xi5

}
.

(17)
The generalized 5-rank Christoffel symbols of the first kind have properties analo-
gous to the properties of the symmetry of classic 3-rank symbols of Christoffel:

a) a symmetry property by 1, 3 and 5, and also by 2 and 4 indices:

γi1i2i3i4i5 = γi5i2i3i4i1 = γi3i2i1i4i5 = γi1i4i3i2i5 ; (18)

b) a property connected with the permutation of 1 and 2,4 and 5 indices:

γi1i2i3i4i5 + γi2i1i3i5i4 =
1

6
∂Gi1i2i4i5

/
∂xi3 ;
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c) a property connected with a shift dxi(x′i = dxi/ds) along curve with the natural
parameter s:

γi1i2i3i4i5x
′i1x′i2x′i4x′i5 =

1

12
· ∂Gi1i2i4i5

∂xi3
x′i1x′i2x′i4x′i5 . (19)

With the help of the generalized Christoffel symbols the following assertion can
be formulated:

Assertion. The following generalized form of equations for the Finslerian
geodesics is fair:

d2xi

ds2
+ γi

jklm

dxj

ds

dxk

ds

dxl

ds

dxm

ds
= 0, (20)

where
γi

jklm = ỹ(4)inγjknlm, ỹ
(4)
in = yiyn − y

(4)
in .

On the proving of this assertion we shall predicate upon the equation of Euler-
Lagrange where the length along the curve s as natural parameter is used:

d

ds

(
∂F

∂x′i

)
− ∂F

∂xi
= 0 . (21)

Transform the first item in (21):

d

ds

(
1

4F 3

∂F 4

∂x′i

)
=

1

F 6

(
d

ds

[
1

4

∂F 4

∂x′i

]
F 3 − 3

4
F 2∂F

∂s
· ∂F 4

∂x′i

)
. (22)

Now transform the incoming into (22) derivatives:

d

ds

(
1

4

∂F 4

∂x′i

)
=

dy∗i
ds

=
d

ds

(
y

(4)
ij x′j

)
=

dy
(4)
ij

ds
x′j + y

(4)
ij x′′j,

where
dy

(4)
ij

ds
=

∂y
(4)
ij

∂x′k · dx′k
ds

= 2yijkds · x′′k, while dF
ds

= ∂F
∂x′k · ∂x′k

∂s
= ∂F

∂x′k x′′k.

Substituting into (22) we get the following expression:

d

ds

(
∂F

∂x′i

)
=

1

F 6

{
F 3

[
2yijkds · x′jx′′k + y

(4)
ij x′′j

]
− 3F 5 ∂F

∂x′k
∂F

∂x′i
x′′k

}
.

Note that F (x, x′) = 1 due to our choice of the length along the curve as a para-

meter. Besides it is evident from (13) that yijkx
′jds = y

(4)
ik . As a result the first

item in the Euler-Lagrange equation looks like the following simple form:

d

ds

(
∂F

∂x′i

)
= 3

(
y

(4)
ij − yiyj

)
· x′′j.

Transforming the second item of the Euler-Lagrange equation is possible as well:

∂F

∂xi
=

1

4F 3/4
· ∂Gjklm

∂xi
· x′jx′kx′lx′l.
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Taking into account the property c) of the generalized Christoffel symbols (19)
the equations of geodesics look like the following form:

ỹ
(4)
ij x′′j + γjkilmx′jx′kx′lx′m = 0, where ỹ

(4)
ij = yiyj − y

(4)
ij .

Introducing matrix ỹ(4)ij, inversed to the matrix, ỹ
(4)
ij and denoting

γi
jklm = ỹ(4)inγjknlm we get the very equation (20).

4 Classification of the generalized Finslerian metric tensors

In conclusion to systematize the available concepts of generalized metric tensors
we shall classify them.

Definition. We’ll say that the generalized metric tensor belongs to the class
(m,n), if its rank is equal to m, and its components are the coefficients in expanding
of n-power of the Finslerian function, i.e. equality holds:

F n =
n∑

i1,..,im=1

G
(n)
i1...im

· yi1 · .... · yim . (23)

According to this definition the components of the metric tensor of class (m,n) is
determined by the formula:

G
(n)
i1...im

=
m!

n!

∂mF n

∂yi1 ...∂yim
, (n ≥ m > 2) . (24)

Note that the fundamental metric tensor belongs to the class (2, 2).

Conclusions

The generalized Finslerian metric tensor is determined in this paper, some their
properties are investigated and their classification is proposed. Besides the gener-
alized five rank Christoffel symbols are proposed; it gives possibility to generalize
the differential equations of the Finslerian geodesics.
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1 Introduction

Three different approaches can be used to investigate the Finsler spaces:

• The first of them is the pure mathematical approach. Its characteristic feature
is the logical consideration of the self-consistent constructions originating on
the base of the arbitrary axioms.

• The second approach belongs to the theoretical Physics. This means that we
need a motivation, and the new theory is to be compared with the old one.
Besides, the used mathematical objects and their properties are compared to
the results of the measurements performed in the real world.

• The third approach is characteristic for philosophy or at any rate for some meta-
theory. In it the very possibility to use this or that mathematical construction
to describe the real world and the meaning of the used notions are discussed.

The second and the third approaches naturally correlate with the origination,
use and achievements of Einstein relativity theory constructed for the isotropic
Riemann space-time. The specific feature of the Finsler geometry is the dependence
of the metric tensor not only on the coordinate of the point but on the direction of
the vector in this point also. This means that in the second and third approaches
one should deal with some experiments in which the anisotropy of the world and
the possible consequences of such anisotropy might be observed and also with the
possibility of such anisotropy.

The anisotropic Finsler generalization of the relativity theory as an order struc-
ture was performed by R. I. Pimenov in [1]. There the equations analogous to Ein-
stein equation were obtained for the Finsler spaces and the examples for various
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metric functions were considered. Paper [1] has a general mathematical character,
and the author proves a series of statements that are important for all the three
approaches mentioned above. Let us give some of these statements.

1. Finsler geometry provides such a model of the space-time that can not be
distinguished from the Schwartzschield solution by means of orbits observations
within the same accuracy of measurements. At the same time this geometry ex-
cludes the possibility of the gravitational collapse (black holes formation) while
the Finsler-Friedman scenario of the first 6 seconds could be absolutely different
though the red shift is still present.

2. In the anisotropic world the energy and momentum are not obligatory
conserved.

3. The anisotropy of the space-time does not affect the structure of Hamilton
approach when constructing a physical theory.

4. To build the formal base of the theory on the Finsler manifold the Leibnitz
rule (the derivative of a product) is essentially needed.

5. If the simultaneity is understood in the ”radar sense” (as it was done
in Einstein relativity theory), then no experiment of the Michaelson type would
lead to the conclusion that the space is anisotropic even if it is such. That is,
the anisotropy can not be observed by such an experiment. That’s why it is not
rational to take the radar definition as the only one. At the same time the metric
tensor dependence on the direction leads to the ambiguity in the definition of the
orthogonal (to the world line of the observer) hyper plane. And this in its turn
leads to the fundamental problem: is the simultaneity the notion of the causal
structure or is it the notion of the Lagrangian structure?

6. Through the construction of the Finsler theory of the anisotropic space-time
the inevitability of the passage from the smooth functions to the functions of the
wider class emerges.

The first two statements mean that it is hardly possible to discover the
anisotropy of the Universe as it is (if any) by observations. At the same time
the consequences of such anisotropy revealing themselves as the break of the con-
servation laws could be used in the interpretation of the experiments with particles
(this possibility was mentioned in [2]) and could be found on the cosmological scale.

Statements 3 and 4 mean that the canonical equations methods and Lie algebra
methods can be used while studying Finsler spaces.

Statement 5 poses a serious problem the solution of which is probably beyond
not only mathematics but beyond physics as well.

Statement 6 is additionally discussed in the separate paper [3] in which the
author proclaims that “he determinism had not been ’found in Nature’, it had not
been ’obtained logically’ or ’proved mathematically’. We only trusted in deter-
minism”. In [3] the following idea is presented. The essentially non-differentiable
structures play an important role in the empirical description of physical reality -
the fractal objects have appeared in science [4]. But the general relativity theory
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and the physical cosmology based on it both deal only with well-differentiable
structures. This means that the generalization of the general relativity theory that
should be built must be free from the functions differentiability hypothesis.

As to the particular use of the Berwald-Moor metric

s(X) =
4
√

x1x2x3x4 = (x1x2x3x4)1/4 (1)

one could mention paper [5] in which the author used the notion of ’volume’ for
the metrization and described the gravity field in Finsler space..

In [6–8] the authors also tried to use the Berwald-Moor metric on the base of
the notion of scalar poly-product introduced in [6]. It should be underlined that
though the axiomatics of poly-product is satisfactory, this object is a new one and
up to now was never used for the interpretation of physical experiments which
means that a special attention should be paid to its application. Notice also that
the simultaneity in these papers was understood in the radar sense and this can
also lead to problems while interpreting the results.

2 Kauffman’s algebraic approach

The circumstances mentioned in statements 3, 4 and 6 of paper [1] draw at-
tention to Kauffman’s paper [9]. In [9] the Lie algebras are proclaimed to be the
possible foundation of the physical reality description, and this stresses the role
of formalism in the construction of a physical theory. The latter and also the
role of determinism in the physical theory were discussed in [10]. In paper [9] the
author constructs the Lie algebra and starts with the introduction of the discrete
derivative operation, this fact immediately broadening the class of functions in use.
Then he passes to the commutators and introduces the shift operators to obtain the
new algebra elements conjugated to the initial elements – all this being to provide
the validity of Leibnitz rule. Using the Jacoby identity several formal algebraic
structures are obtained and the forms of these structures appear to coincide with
the forms of several equations of the theoretical physics, particularly, with Hamilton
canonical equations. This was performed with the help of Legendre transformation
which is characteristic to this approach.

In order to get a space with ”reasonable curvature”, several limitations on
the commutators of the variables (and on the corresponding shift operators) are
imposed. This results in the algebraic structures in which some other equations
of theoretical physics are easily recognized. Particularly, if the algebra elements
{X0, X1, ...Xn} correspond to the commutation operators {H, P1, ...Pn}, then the
introduced definitions provide the following equations

dPi

dX0

= − ∂H

∂Xi

;
dXi

dX0

=
∂H

∂Pi

; i = 1, 2, ...n (2)

the form of which coincides with Hamilton canonical equations. In the same way
the curvature operator could be formally introduced to define for the given elements
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X and Y the ”non-commutativity rate” of the corresponding operators ∇X and
∇Y with regard to the ”non-commutativity rate” of X and Y . Then there appear
the commutator gij = [Xi, Ẋj] which can be naturally correlated with the metric
tensor and the Levi-Chivita connection Γijk = 1

2
(∇igjk + ∇jgik − ∇kgij) which

appears in [9] from the calculation of the commutators and from Jacoby identity
and has no initial correlation with geometry. In a similar formal way there appear
the expressions coinciding with diffusion equation, Schroedinger equation, Maxwell
equation, gauge theories equations.

Thus, the structure of several fundamental equations of theoretical physics, and
particularly of Hamilton equations does not presume the prior choice of geometry
that would be used to model the space-time. This provides the possibility to use the
metric function in a formal way convenient to construct the canonical equations.

3 Canonical variables

Let us use this possibility to involve the Berwald-Moor metric into the theory.
Let us regard the vector space with vectors X = {xi}, i = 1, 2, ...n, choose the
appropriate coordinate system, consider all xi > 0, and introduce the following
scalar function

s2(X) =
√

x1x2x3x4. (3)

On the one hand, it is obviously related to the Berwald-Moor metric (1) and
on the other hand, it provides the possibility to use of the Legendre transformation
and to define vector P conjugated to vector X as the gradient of the introduced
scalar

P ≡ ∇1

2
s2(X) = s(X)∇s(X). (4)

(Usually the further use of function s2(X) leads to the construction of the Cartan
metric tensor hik = 1

2
∂i∂ks

2(X).)
If X = {xi} are the contra-variant components of vector X, then the co-variant

components of vector P = {pi} in n-dimensional case can be obtained with help of
formula (3) analogue and Eq. (4)

pi =
s2(X)

nxi
=

(x1x2...xn)2/n

nxi
. (5)

Then for n = 4 these components have the form

p1 =
1

4

√
x2x3x4

x1
; p2 =

1

4

√
x1x3x4

x2
; p3 =

1

4

√
x1x2x4

x3
; p4 =

1

4

√
x1x2x3

x4
. (6)

Let us define the (pseudo) scalar product (X, Y ) in the following way

(X, Y ) = Y
1

2
∇s2(X) = yixi , (7)
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where the summation over repeating indexes rule is assumed. It is essential that
the scalar product depends on the order of its terms. With regard to Eqs.(5, 7)
the scalar product (X, Y ) obtains the form

(X,Y ) = yixi = Y
1

2
∇s2(X) =

s2(X)

4

4∑

k=1

yk

xk
. (8)

One can easily see that
(X,X) = s2(X) , (9)

which corresponds to the regular correlation between the metric and the norm
defined as the square of a scalar product.

(The angle ϕ between vectors Y and X (from Y to X) can be also introduced

if needed. It will be given by the formula chϕ = (X,Y )
s(X)s(Y )

. Of course, the angle

from X to Y is not equal to the angle from Y to X because the scalar product is
not commutative. The sum of such angles in the 2-plane is not additive).

If the scalar product (X, Y ) = 0, then vector Y may be called orthogonal to
X (notice that generally speaking, vector Xis not orthogonal to Y ). Then the
hyper plane of all such Y ’s may be called the hyper plane orthogonal to λX line.
According to Eq.(8), this plane is given by the expression

4∑

k=1

yk

xk
= 0 . (10)

This expression can be used as the definition of the surface of relative simultaneity
of the inertial observer λX. In other words it is the observer’s proper space where
the trajectories (i.e. the dependencies of space coordinates over space coordinates)
of the moving bodies can be constructed. The dimensionality of this space is equal
to n− 1.

Introducing the notion of action, we see that the usual expression for momen-
tum takes place

S = −1

2
s2(X) ⇒ pi =

∂S

∂xi
; i = 2, 3, 4 . (11)

The first component (or the zeroth component in the usual notation) in Eq.(6) may
be considered to be the ‘Hamiltonian’, thus, we define

p1 ≡ H = − ∂S

∂x1
=

1

4

√
x2x3x4

x1
. (12)

Then
∂pi

∂x1
= −∂H

∂xi
; i = 2, 3, 4 , (13)

which coincides with the first equation in (2).
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To define the components of the three-dimensional velocity let us express p1

with the help of pifor (i = 2, 3, 4)

p1 = H =
16p2p3p4

(x1)2
(14)

Then the three-dimensional velocity components will be

dxi

dx1
=

∂H

∂pi

; i = 2, 3, 4 (15)

– these values being equal to vi/c if we consider x1 = ct. The expression (15)
coincides with the second equation in (2).

Taking the mentioned definitions of ”momentum” and ”Hamiltonian”, one can
try to insert the physical meaning into them. Then the obtained canonical equation
can be immediately used to describe the dynamics in the space with the Berwald-
Moor metric.

On this way one may notice that the definition of action

S = −α

∫
ds ,

in which ds is the Berwald-Moor metric (1) includes a constant.
In the regular case of the pseudo Euclidean metric of special relativity the

space time was isotropic and the light velocity was constant and did not depend on
direction. It was natural to define the constant in such a way that the Lagrangian
corresponded to the classical Lagrangian of the free particle L = mv2

2
in the limit

case c → ∞. That’s why the constant was taken α = mc. But now we can’t act
in this way. The space-time is not isotropic and the Lagrangian of the free particle
won’t have such a simple form. The velocity of light can depend on the direction
and the limit transition should be defined more accurately. These circumstances
will be regarded in more detail later.
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1 Introduction

1.1 Statement of work

The fact that theory of finite-dimensional algebras and its methods can be
usefully employed (see [1], [2]) in geometry, physics, and computer science can be
explained, from author’s point of view, as follows .

Composition algebras found the widest distribution in applications. We recall
that these algebras are unital algebras with the non-degenerate quadratic forms
N (x) (norms) which are defined in the vector spaces over these algebras and which
satisfy N (xy) = N (x) N (y). The recursive algorithm for construction and clas-
sification of these algebras over various fields is tightly related to the fact that in
algebras, obtained at every step of the recursion, there exist (anti)automorphisms
x 7→ x̄ of order 2. These (anti)automorphisms, which can be recursively con-
tinued on the next steps of the algorithm for algebra construction, induce the
above-mentioned forms N (x).

However, to construct algebras, different from R and C, but with analogues of
the real or complex norm, one has to pay a certain fee: the constructed algebras will
be non-commutative and/or non-associative. Moreover, the Cayley-Dickson recur-
sive algorithm for construction of composition algebras already at the third step
comes to a non-associative structure and cannot be continued [3]. Notwithstanding
this fact, for example, a commutative 4D quaternion algebra is usefully employed
for solving the problems of mechanics, in machine vision, in physics. This can be
explained by at least two reasons: (1) in this algebra there is a norm and, for exam-
ple, (2) using this algebra 3D orthogonal transforms can be ’elegantly’ written not
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in terms of the ’external’ matrix language, bug in terms of ’internal’ operations of
the quaternion algebra, i.e. written in the ’coordinate-free’ form. Author shares E.
Artin’s opinion, that, ’. . . mathematical training stills suffers from the enthusiasm
caused by discovery of the isomorphism 1. As a result, the geometrical reasoning
were virtually abandoned and geometry was replaced by calculations. Instead of
very illustrative space transforms, preserving addition of vectors and multiplication
of vectors by scalars ¡. . . ¿, operation on matrices are used. According to my own
experience, proofs, involving operations matrix calculations can be abridged to less
then half of the original length, if matrices are avoided’ 2 [4]. For example, consider
a four-dimensional algebra isomorphic to the algebra of (2× 2)-matrices M2 (R).
In this algebra consider the ’Clifford basis’ with the multiplication rules for basis
elements given by

e2
0 = e0, e2

1 = e0, e2
2 = e0, e2

3 = −e0;

e1e2 = −e2e1, e1e3 = −e3e1, e2e3 = −e3e2; e1e2 = e3,

Further, consider involutive morphism in this algebra (a so called symplectic invo-
lution) given by

X =

(
a b

c d

)
7→ X̄ =

(
d −b

−c a

)
,

and a ’natural’ embedding R → M2 (R) given by y 7→ ye0, y ∈ R,
Then, the coefficients of the defining equation (characteristic equation) for an

element X =

(
a b

c d

)
from this algebra can be represented in a coordinate-free form

in terms of the norm N (X) = X ·X̄ = det X and the trace Tr (X) = X+X̄ = a+d,
thus the defining equation can be written in a form

X2 − Tr (X) e0X + N (X) e0 = 0, (1.1)

This is interesting to note, that the relation (1.1) may be considered as a special
(two-dimensional) case of the Cayley-Hamilton theorem. From this it follows that,
after appropriate interpretation, all the results of ’linear’ geometry in 2D plane may
be obtained from the algebraic characteristics of the 4D Clifford algebra M2 (R).

One of the most remarkable examples of such an interpretation for Clifford alge-
bras was proposed by D. Hestenes. He proposed to construct an algebra, isomorphic
to the original one, via redefining certain algebra operations in such a way that
elements of the constructed algebra (so called ’geometric algebra’ ) have properties
of scalars or vectors, or bivectors, etc. Thus, in this algebra the above-mentioned
objects are ’equivalent’ with respect to the redefined operations, despite the fact

1 which takes a linear transform in the vector space to a certain matrix – V. C.
2 Further, however, E. Artin notes with some humour: ”Sometimes it is impossible; for exam-

ple, when it is necessary to compute determinant”.
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that if canonical interpretations of linear geometric objects are used, these objects
are elements of sets of different structure [5].

This is also important to note, that ’Clifford’s approach’ to geometry despite of
its generality is closely related to analysis of symmetries associated with automor-
phisms (or antiautomorphisms) of order equal to 2 only (i.e. only with involutions).
In contrast to composition algebras, associative-commutative finite-dimensional al-
gebras are not quadratic algebras over the field R. Therefore, defining algebraic
equations for elements of these algebras are naturally associated with automor-
phisms of higher orders. Dye to this fact, this appears promising to analyze the
properties of geometric interpretations of these algebras, expressed in terms of the
symmetry group of order greater than two.

To realize the ideas stated above so to understand better the role of high-order
automorphisms in creation of geometric and/or physical models of time-space, from
the author point of view, this is possible to start with analysis of the equations,
which elements of associative-commutative algebras satisfy, analysis of invariant
properties of these equations. Thus, as a first step, the analogues for the forms
N (X) = X · X̄ = det X and Tr (X) = X + X̄ = a + d from the relation (1.1) are
to be found. This paper can be considered as this initial step.

However paradoxical it is, the idea to use additional (or redefined) oper-
ations (associated with the automorphisms of order higher than 2) in certain
finite-dimensional algebra so to employ the power ’algebraic methods’ for solv-
ing geometric problems has a long history. For example, there was proposed an
exotic algebraic structure – the ’Zassenhaus finite quasifield’ [6]. This structure
is exotic enough and not very well known, thus, we provide the description of its
construction.

Suppose, that in a finite field Fq, q = pm, (p is prime ) there is an opera-
tion introduced x ∗ y = y (x, y ∈ Fq), which is given by the following equality:
x ∗ y = y · η (x). Here (·) is multiplication in the field Fq; η is a Frobenius
automorphism of a specific form. By Wedderburn’s theorem, the introduced op-
eration is non-associative and non-commutative. However, a certain (∗)-power
((((x ∗ x) ∗ x ) ∗ ...) ∗ x) of the element x is an element of the prime field Fp and
can be interpreted as a peculiar ’norm’ of an element from the algebra Fq over
the field Fp, induced by certain ’multilinear scalar product’. Being appropriately
interpreted, the results obtained by the author, which are cited in [6] and are
related to the finite geometries, can be reformulated and reproved in terms of the
’multilinear scalar product’. This is quite evident, but necessary to note, that the
fact that the fields Fq are finite (and, as a result, that the corresponding Zassenhaus
quasifields are finite), restricts the range of problems, which can be solved applying
this technique, to configuration problems of the finite geometry.

The idea, to consider ’multilinear’ (in contrast to classical ’bilinear’) scalar
products in associative-commutative algebras so to create adequate geometric-
physical models was most likely introduced by D.G. Pavlov [7]. Below are certain



192 Space-Time Structure. Algebra and Geometry

results of this work provided, which, from author’s point of view, are of certain
methodological importance.

1. Corollary 2.1. The coefficients of the defining polynomial Φ (ξ; w) for an
element w are invariant with respect to the 24-element automorphism group S4.
Thus, the set of roots of the quartic polynomial Φ (ξ; w) contains not only the root
w but also automorphic images of this root with respect to automorphisms σ ∈ S4.

2. Corollary 2.2. Four automorphisms used in the proof of Theorem 2.1 to
construct the defining polynomial form the subgroup of the group S4; this subgroup
is isomorphic to the cyclic group C4 of order 4. However, for construction of
the same polynomial four other automorphisms can be used, which also form the
subgroup of the group S4, but this subgroup of order 4 is isomorphic to another
group, namely to the Cartesian product C2 × C2 of 2 cyclic groups of order 2.

3. Corollary 2.3. Moreover, the same defining polynomial can be generated by
another four automorphisms, which do not form a group with respect to compo-
sition of functions. This statement allows us to make a ’cautious suggestion’ that
in general case the fact that generating automorphisms form the group is not a
necessary condition.

Terminology. The author does not consider intentionally any possible geometric
and/or physical interpretations of the obtained results, leaving this for specialists
in these fields. That is why, throughout this paper the ’neutral’ (with respect
to interpretation) concepts are used (e.g. ’defining equation’, ’defining forms’)
Although, for example, these ’defining forms’ (obtained as a result of examining
algebraic structural properties of appropriate algebras) may be easily interpreted
as metric Minkowski or Berwald-Moor forms (see relations (2.6)).

Notation. Without any additional remarks, in this paper the symbols R, C
denote the fields of real and complex numbers respectively. The direct sum of
algebras is denoted by the symbol +̇, and the symbol ⊕ is reserved for bitwise
addition (mod 2) of the integers. By the symbol H(k) the direct sum of k instances
of the field R is denoted (sometimes with certain contextual remarks).

1.2 Weierstrass theorem

Exhaustive classification of associative-commutative algebras that do not con-
tain nilpotent elements is given in the Weierstrass theorem [8]:

Theorem 1.1. Any associative-commutative finite-dimensional algebra that
does not contain nilpotent elements over is isomorphic to the direct sum of the
algebras R and C.

From this theorem it immediately follows that there exist no more than three
non-isomorphic 4D algebras of this class:

R+̇R+̇R+̇R ∼=
(
R+̇R

)
+̇

(
R+̇R

) ∼= H (2) +̇H (2) ∼= H (4) , (1.2)

R+̇R+̇C ∼= H (2) +̇C, (1.3)
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C+̇C. (1.4)

Let us prove show that these algebras are not isomorphic. Suppose that in
each of these algebras, a basis is chosen, which is associated with representation of
the algebra in a form of one of direct sums (1.2)–(1.4), and multiplication rules for
basis elements are set:

• for algebra R+̇R+̇R+̇R, the basis {E1, E2, E3, E4} is chosen, and the multi-
plication rules for elements of the basis are given by the following Cayley table:

Table 1.1

E1 E2 E3 E4

E1 E1 0 0 0

E2 0 E2 0 0

E3 0 0 E3 0

E4 0 0 0 E4

• for the algebra R+̇R+̇C, the basis {E1, E2, E3, E4} is chosen, and multipli-
cation rules for elements of the basis given by the following Cayley table:

Table 1.2.

E1 E2 E3 E4

E1 E1 0 0 0

E2 0 E2 0 0

E3 0 0 E3 E4

E4 0 0 E4 −E3

• for the algebra C+̇C, the basis {E1, E2, E3, E4} is chosen, and multiplication
rules for elements of the basis are given by the Cayley table:

Table 1.3.

E1 E2 E3 E4

E1 E1 E2 0 0

E2 E2 −E1 0 0

E3 0 0 E3 E4

E4 0 0 E4 −E3

Using these Cayley tables, one may easily notice that to calculate the prod-
uct of the ’constant’ element (aE1 + bE2 + cE3 + dE4) and the ’variable’ ele-
ment (tE1 + xE2 + yE3 + zE4) this is sufficient to apply the linear operator
onto the column-vector (t, x, y, z)T which consists of coordinates of the element
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(tE1 + xE2 + yE3 + zE4) in the basis {E1, E2, E3, E4}, i.e. this is sufficient to
calculate the matrix product

M1




t

x

y

z




=




a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d







t

x

y

z




; M2 :




a 0 0 0

0 b 0 0

0 0 c −d

0 0 d c







t

x

y

z




; M3 :




a −b 0 0

b a 0 0

0 0 c −d

0 0 d c







t

x

y

z




(1.5)
for algebras R+̇R+̇R+̇R, R+̇R+̇C or C+̇C, respectively. None of the (4× 4)-
matrices in (1.5) may be a matrix, associated with multiplication in another algebra
if in that algebra another basis is selected, which may be obtained from using a
linear transform. In fact, the characteristic equations of the matrices (1.5), being
invariant with respect to linear transforms of the basis, correspond to the different
the set of quartic polynomial root of different structure: namely (1) to the set of
roots consisting of 4 real roots, (2) to the set of roots consisting of 2 real roots
and 2 complex-conjugate roots, and (2) to the set of roots consisting of 2 pairs of
complex conjugate roots respectively.

2 Algebra R+̇R+̇R+̇R ' H(4), its automorphisms
and metric forms

2.1 ’Isotropic’ basis

Consider the algebra R+̇R+̇R+̇R ∼= H (2) +̇H (2) ∼= H (4) with the basis
{E1, E2, E3, E4} and the multiplication rules for elements of the basis given by
the Table 1.1. (In the sequel, this basis is referred to as the ’isotropic basis’ ).

The multiplicative identity element (algebra unit) in this basis is the element
I = E1 + E2 + E3 + E4 and the field R is canonically embedded into the algebra
R+̇R+̇R+̇R:

R → R+̇R+̇R+̇R ∼= H (4) , x 7→ xI, x ∈ R.

Theorem 2.1. The algebra R+̇R+̇R+̇R is an algebra of order 4 over R, i.e.
every element w ∈ R+̇R+̇R+̇R satisfies the algebraic equation with real coefficients
of degree not greater than four.

Proof. Let w = aE1+bE2+cE3+dE4 ↔ (a, b, c, d). Consider 4 maps of algebra
R+̇R+̇R+̇R into itself (it is evident that these maps are 4 automorphisms):

τ0 : w = aE1 + bE2 + cE3 + dE4 7→ aE1 + bE2 + cE3 + dE4,

τ1 : w = aE1 + bE2 + cE3 + dE4 7→ bE1 + cE2 + dE3 + aE4,

τ2 : w = aE1 + bE2 + cE3 + dE4 7→ cE1 + dE2 + aE3 + bE4,

τ3 : w = aE1 + bE2 + cE3 + dE4 7→ dE1 + aE2 + bE3 + cE4.

(2.1)

In other words, these maps are cyclic permutations of the components (a, b, c, d)
of the algebra element w. One can easily obtain that the element w is a root of
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the polynomial

Φ (ξ; w) = (ξ − τ0 (w)) (ξ − τ1 (w)) (ξ − τ2 (w)) (ξ − τ3 (w)) , (2.2)

and the coefficients of the polynomial Φ (ξ; w) are real. In fact, from (2.2) via direct
calculations, we get

Φ (ξ; w) = ξ4 − s1 (w) Iξ3 + s2 (w) Iξ2 − s3 (w) Iξ1 + s4 (w) I, (2.3)

where real coefficients sν (w) are homogeneous symmetric forms of the components
(a, b, c, d) of the algebra element w:

s1 (w) = a + b + c + d,

s2 (w) = ab + ac + ad + bc + bd + cd,

s3 (w) = bcd + acd + abd + abc,

s4 (w) = abcd. 2

(2.4)

Definition 2.1. The polynomial Φ (ξ; w) of minimal degree with real coef-
ficients and with the leading coefficient equal to 1 such that Φ (ξ; w)|ξ=w = 0 is
called the defining polynomial of the element w and its coefficients are called the
defining forms of this element.

This is quite evident, that the same element w, being represented in different
basis of the same algebra may have different defining forms, i.e. these forms differ
as functions of the element coordinates. In particular, forms (2.4) are written as
functions of components of the element w, represented in basis {E1, E2, E3, E4}
with the multiplication rules for the basis elements given by Table 1.1. etc.

Despite the triviality of Theorem 2.1, this theorem has several interesting corol-
laries, which are not typical for the ’classical’ theory of polynomials over the field.

Corollary 2.1. The forms (2.4) are invariant with respect to any permutation
σ ∈ S4 of four components (a, b, c, d) of the algebra element w. As a result, since
σ ∈ S4 is an automorphism of algebra R+̇R+̇R+̇R over R, then the equality
Φ (ξ; w) = 0 yields that

0 = σ
(

Φ(ξ; w)|ξ=w

)
=

= σ (w)4 − σ (s1 (w)) Iσ (w)3 + σ (s2 (w)) Iσ (w)2 − σ (s3 (w)) Iσ (w)1 + σ (s4 (w)) I =

= σ (w)4 − s1 (σ (w)) Iσ (w)3 + s2 (σ (w)) Iσ (w)2 − s3 (σ (w)) Iσ (w)1 + s4 (σ (w)) I =

= Φ
(

ξ; σ (w)|ξ=σ(w)

)
= 0

That is the quartic polynomial Φ (ξ; w) in addition to the root w has at least
23 other roots σ (w) , σ ∈ S4, i.e. all the automorphic images of the element
with respect to the maps σ ∈ S4. This is interesting to note, that applying the
automorphisms σ to both the parts of the equality 0 = σ

(
Φ (ξ; w)|ξ=w

)
in the form
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(2.2) in order to obtain the relation Φ
(
ξ; σ (w)|ξ=σ(w)

)
= 0 via the following chain

of computations

0 = σ (Φ (w; w)) =

= (σ (w)− (σ ◦ τ0) (w)) (σ (w)− (σ ◦ τ1) (w)) (σ (w)− (σ ◦ τ2) (w)) (σ (w)− (σ ◦ τ3) (w))

= (σ (w)− τ0 (σ (w))) (σ (w)− τ1 (σ (w))) (σ (w)− τ2 (σ (w))) (σ (w)− τ3 (σ (w)))

= Φ (σ (w) ;σ (w))

is not correct, as the automorphism group S4 is non-commutative. The fact that
the forms s1 (w) , s2 (w) , s3 (w) , s4 (w) are real is significant, and this fact is based
on specific choice of automorphisms {τ0, τ1, τ2, τ3}.

Corollary 2.2. Four automorphisms {τ0, τ1, τ2, τ3}, used in the proof of The-
orem 2.1, form the subgroup of the group S4; this subgroup is isomorphic to the
cyclic group C4 of order 4. However, one may easily prove (via direct calculations)
that the same polynomial (2.3) can be generated by four other automorphisms
{λ0, λ1, λ2, λ3}:

λ0 : w = aE1 + bE2 + cE3 + dE4 7→ aE1 + bE2 + cE3 + dE4,

λ1 : w = aE1 + bE2 + cE3 + dE4 7→ cE1 + dE2 + aE3 + bE4,

λ2 : w = aE1 + bE2 + cE3 + dE4 7→ bE1 + aE2 + dE3 + cE4,

λ3 : w = aE1 + bE2 + cE3 + dE4 7→ dE1 + cE2 + bE3 + aE4,

which form the subgroup of order 4 of the group S4, and this subgroup is isomorphic
to another group, namely to the Cartesian product C2 × C2 of 2 cyclic groups of
order 2.

Corollary 2.3. Moreover, the same polynomial (2.3) can be generated by four
other automorphisms {ν0, ν1, ν2, ν3}:

ν0 : w = aE1 + bE2 + cE3 + dE4 7→ dE1 + aE2 + bE3 + cE4,

ν1 : w = aE1 + bE2 + cE3 + dE4 7→ bE1 + cE2 + dE3 + aE4,

ν2 : w = aE1 + bE2 + cE3 + dE4 7→ cE1 + bE2 + aE3 + dE4,

ν3 : w = aE1 + bE2 + cE3 + dE4 7→ aE1 + dE2 + cE3 + bE4,

which do not form the group with respect to composition of functions.

2.2 ’Hyperbolic’ basis

The set {E, I, J,K} is called a basis of hyperbolic units (or, for short, an hy-
perbolic basis), if {E, I, J,K} is a basis of the algebra H (4) ∼= R+̇R+̇R+̇R and
multiplication rules for elements of the basis elements are given by the following
Cayley table:
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Table 2.1

E I J K

E E I J K

I I E K J

J J K E I

K K J I E

The element w ∈ H (4) can be represented in the form w = tE + xI + yJ +
zK (t, x, y, z ∈ R), where E is a multiplicative identity (unit) of the algebra. The
isotropic basis {E1, E2, E3, E4} and the hyperbolic basis {E, I, J,K} are bound
with the linear transform with the orthogonal Hadamard matrix

had4 =
1
4




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




=
1
4

(
1 1

1 −1

)
⊗

(
1 1

1 −1

)
,

where the symbol ⊗ denotes Kronecker multiplication. The author found this
possible to omit the computations, as one can easily obtain the exact formulas
that bind coordinates of the element w ∈ H (4) being represented in these two
bases (this is a trivial linear-algebraic problem).

This is also quite evident, that for every automorphism from the group S4 (this
automorphism permutes the coordinates of the element w ∈ H (4) represented
in the basis {E1, E2, E3, E4}), there exists an appropriate linear transform of the
coordinates t, x, y, z of the same element in the basis w = tE + xI + yJ + zK.
This transform also represents a certain automorphism of the algebra H (4). In
particular, such automorphisms are:

µ0 : w 7→ µ0 (w) = tE + xI + yJ + zK,

µ1 : w 7→ µ1 (w) = tE + xI − yJ − zK,

µ2 : w 7→ µ2 (w) = tE − xI + yJ − zK,

µ3 : w 7→ µ3 (w) = tE − xI − yJ + zK.

(2.5)

Suppose, that the element w ∈ H (4) is represented in the basis
{E1, E2, E3, E4}, then there is a subgroup of order 4 (isomorphic to the Cartesian
product C2 × C2 of 2 cyclic groups of order 2) of the group S4 such that action of
automorphisms from this subgroup onto components of the element is equivalent
to four transforms (2.5).

For the defining polynomial, via direct calculations, we obtain:

Φ (ξ; w) = (ξ − µ0 (w)) (ξ − µ1 (w)) (ξ − µ2 (w)) (ξ − µ3 (w)) =

= (ξ4 − S1 (w) ξ3 + S2 (w) ξ2 − S3 (w) ξ1 + S4 (w)) E,
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where

S1 (ω) = 4t

S2 (ω) = 6t2 − 2x2 − 2y2 − 2z2

S3 (ω) = −4tx2 − 4y2t− 4z2t + 4t3 + 8yzx = 4t(t2 − x2 − y2 − z2) + 8yzx

S4 (ω) = x4 + y4 + z4 − 2t2x2 − 2t2y2 − 2t2z2 + t4 + 8txyz − 2x2y2 − 2x2z2 − 2y2z2

(2.6)

Remark 2.1. This is necessary to note, that the statements of Corollaries
2.1 – 2.3 still hold when the basis {E, I, J,K} is used, but only if representations
of the automorphisms are appropriately interpreted.

2.3 ’Compound’ basis

The set {B,AB,D,CD} is called a compound basis of the algebra H (4) ∼=
R+̇R+̇R+̇R, if is a basis of this algebra which is compatible with its isomorphic
representation in the form of a direct sum H (2) +̇H (2) ∼= H (4) (a direct sum of
two 2D algebras of ’double’ numbers) and if multiplication rules for elements of the
basis are given by the following Cayley table.

Table 2.2

B AB D CD

B B AB 0 0

AB AB B 0 0

D 0 0 D CD

CD 0 0 CD D

When the compound basis is used, the element w ∈ H (2) +̇H (2) ∼= H (4) can
be represented in the form w = (t + xA) B+(y + zC) D and the element I = B+D
is the multiplicative identity of the algebra H (2) +̇H (2).

Suppose, that four automorphisms are selected,

ζ0 : w → ζ0 (w) = (t + xA) B + (y + zC) D,

ζ1 : w → ζ1 (w) = (y + zA) B + (t + xC) D,

ζ2 : w → ζ2 (w) = (y − zC) B + (t− xC) D,

ζ3 : w → ζ3 (w) = (t− xC) B + (y − zC) D,

(2.7)

then we obtain the defining polynomial Φ (ξ; w) of the form

Φ (ξ; w) = ξ4 − Σ1 (w) Iξ3 + Σ2 (w) Iξ2 − Σ3 (w) Iξ1 + Σ4 (w) I,
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where

Σ1 (w) = 2 (t + y)

Σ2 (w) = 4ty + t2 + y2 − x2 − z2 = (t + 2y)2 − 3y2 − x2 − z2,

Σ3 (w) = 2ty2 + 2t2y − 2tz2 − 2x2y,

Σ4 (w) = t2 y2 − t2z2 − x2 y2 + x2z2.

(2.8)

The algebra H (4), its different bases, and different representations of the defin-
ing polynomials and defining forms, associated with different bases are used in the
examples and considered in details, as for this algebra there exists a variety of the
isomorphic representations:

R+̇R+̇R+̇R ∼= H (2) +̇H (2) ∼= H (4)

and the automorphism group over R for this algebra consists of 24 elements and is
isomorphic to S4.

For the algebras C+̇C and in particular H2+̇C, the automorphism groups over
R consist of less number of elements. For construction the defining polynomial
with real coefficients this property results in more restrictive constraints on the
choice of four automorphisms and bases.

3 Algebra C+̇C

The set {E, I, J,K} is called a basis consisting of elliptic-hyperbolic units (or,
for short, an EH-basis) if is a basis of the algebra C+̇C and multiplication rules
for elements of the basis are given by the following Cayley table.

Table 3.1

E I J K

E E I J K

I I −E K J

J J K −E I

K K J I E

The element w ∈ C+̇C may be represented in the form w = tE + xI + yJ +
zK (t, x, y, z ∈ R), where E is the multiplicative identity (unit) of the algebra.

The set {B, AB, D, CD} is called a compound basis in the algebra C+̇C if is a
basis that is compatible with its isomorphic representation as a direct sum of two
2D algebras of complex numbers and multiplication rules for elements of the basis
are given by the following Cayley table.
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Table 3.2

B AB D CD

B B AB 0 0

AB AB −B 0 0

D 0 0 D CD

CD 0 0 CD −D

The element w ∈ C+̇C can be represented in the form w = (t + xA) B +
(y + zC) D, the multiplicative identity of the algebra C+̇C is the element I = B +
D.

In the case of the EH-basis, selecting the four automorphisms in the form

µ0 : w 7→ µ0 (w) = tE + xI + yJ + zK,

µ1 : w 7→ µ1 (w) = tE + xI − yJ − zK,

µ2 : w 7→ µ2 (w) = tE − xI + yJ − zK,

µ3 : w 7→ µ3 (w) = tE − xI − yJ + zK.

(3.1)

and in the case of the compound basis in the form

ζ0 : w → ζ0 (w) = (t + xA) B + (y + zC) D,

ζ1 : w → ζ1 (w) = (y + zA) B + (t + xC) D,

ζ2 : w → ζ2 (w) = (y − zC) B + (t− xC) D,

ζ3 : w → ζ3 (w) = (t− xC) B + (y − zC) D,

we obtain the following defining forms:

S1 (ω) = 4t,

S2 (ω) = 6t2 + 2x2 − 2y2 + 2z2,

S3 (ω) = +4tx2 − 4y2t + 4z2t + 4t3 + 8yzx = 4t(t2 + x2 − y2 + z2) + 8yzx,

S4 (ω) = x4 + y4 + z4 + 2t2x2 − 2t2y2 + 2t2z2 + t4 − 8txyz + 2x2y2 − 2x2z2 + 2y2z2

(3.2)
and

Σ1 (w) = 2 (t + y) ,

Σ2 (w) = 4ty + t2 + y2 + x2 + z2 = (t + 2y)2 − 3y2 + x2 + z2,

Σ3 (w) = 2ty2 + 2t2y + 2tz2 + 2x2y,

Σ4 (w) = t2 y2 + t2z2 + x2 y2 + x2z2,

(3.3)

respectively. This is interesting to note, that the forms (3.3) may be obtained from
the forms (2.8), and the forms (3.2) – from the forms (2.6) via the formal change
of variable x 7→ ix, z 7→ iz.
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4 Algebra H2+̇C

The set {B,AB, D,CD} is called a compound basis in the algebra H2+̇C if
the is a basis that is compatible with isomorphic representation of the algebra as a
direct sum of two 2D algebras (the algebra of ’double’ numbers and the algebra of
complex numbers) and multiplication rules for elements of the basis given by the
following Cayley table.

Table 4.1.

B AB D CD

B B AB 0 0

AB AB B 0 0

D 0 0 D CD

CD 0 0 CD −D

Similar to the previous sections, the element w ∈ H2+̇C is represented in
the form w = (t + xA) B + (y + zC) D, the multiplicative identity of the algebra
H2+̇C is the element I = B + D. However, in contrast to the algebras C+̇C
and H (2) +̇H (2) ∼= H (4), the summands of the direct sum H2+̇C do not have
the explicit symmetry over the field R. Here we omit the detailed argumentation
for the ’complex’ change of variables, but one may easily notice, that in this case
the characteristic forms can be obtained from the forms (2.8) via formal change of
variables x 7→ ix and can be represented in the form:

Σ1 (w) = 2 (t + z) ,

Σ2 (w) = 4ty + t2 + y2 + x2 − z2 = (t + 2y)2 − 3y2 − x2 + z2,

Σ3 (w) = 2ty2 + 2t2y + 2tz2 − 2x2y,

Σ4 (w) = t2 y2 + t2z2 − x2 y2 − x2z2 = (t2 − x2) ( y2 + z2) .

(4.1)

5 Some generalization for algebras of higher dimensionality

The approach to metric structures in finite-dimensional associative-
commutative algebras, which is considered in this work, would not be general
enough, if the author didn’t try to apply it to algebras of dimensionality higher
than 4.

Certainly, the Weierstrass theorem holds in the algebras of any number of
dimensions, however the number of the non-isomorphic algebras grows with the
increase of the dimensionality and this complicates detailed analysis of the all pos-
sible metric structures, generated by the coefficients of the defining polynomials for
the elements of these algebras. Nevertheless, we will examine in detail the struc-
ture of the automorphism group generating defining polynomials for a particular
class of algebras, obtained via recursive application of the dimensionality doubling
algorithm proposed by Grassman and Clifford [9] – [11].
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5.1 Grassman-Clifford dimensionality doubling algorithm

Examine the algebra A1 over the field R. Let:

z1 = z0 + z′0ε1 ∈ A1, (5.1)

where
ε2
1 = β1, z0, z

′
0, β1 ∈ R.

Grassman-Clifford dimensionality doubling algorithm consists in the successive
’execution’ of the following steps:

Step 1. Suppose that multiplication of the elements z1 = a0 + b0ε1, z′1 = a′0 +
b′0ε1 ∈ A1, be given by :

z1z
′
1 = (a0a

′
0 + β1b0b

′
0) + (a′0b0 + a0b

′
0) ε1. (5.2)

Note, that depending on the value of the parameter β1, from (5.2) we can obtain
2D algebras of complex, double or dual numbers.

Step 2. On the second step, consider the algebra A2 consisting of the elements:

z = z1 + z′1ε2 ∈ A2,

where
ε2
2 = β2, β2 ∈ R, z1, z

′
1 ∈ A1,

with the multiplication rule for elements of the basis given by

ε1ε2 = α12ε2ε1, α12 ∈ R.

Interpreting the product ε1ε2 as a basis element, we obtain the algebra of higher
dimensionality.

Step 3. Continuing inductively the above-stated algorithm, on the n-th step
we obtain the algebra An which consists of elements of the form

zn = zn−1 + z′n−1εn ∈ An,

where zn−1 , z′n−1 are the elements of the algebra constructed at the (n−1)-th step,
and εn is a new generating element.

This is evident, that the typical element zn of the new algebra An is of the form

zn =
∑

(α1, . . . , αd)

αj ∈ {0, 1}

Cα1...αd
εα1
1 · . . . · εαd

d , (5.3)

where Cα1...αd
∈ R.

Using this process, we can obtain a wide range of algebras used in applications;
in particular, in physics for construction of the mathematical models. Certain
examples [9] of these algebras follow:
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• Clifford algebra of the dimensionality 2n with ε2
s = ±1, εsεl = −εlεs, 1 ≤

s, l ≤ n;
• Grassman algebra of the dimensionality 2n with ε2

s = 0, εsεl = −εlεs, 1 ≤
s, l ≤ n;

• Pauli algebra n = 3 with βs = 1, αls = −1;
• Dirac algebra n = 4 with β1 = 1, β2 = β3 = β4 = −1, αls = −1;
• Kalutza algebra n = 4 with β1 = β2 = 1, β3 = β4 = −1, αls = −1.

5.2 Classification for algebras of dimensionality 2d, constructed using
Grassman-Clifford algorithm

The algebras which were under analysis in the previous sections (R+̇R+̇R+̇R ∼=
HR(4) and C+̇C ∼= HC(2)) can be obtained on the second step of the Grassman-
Clifford dimensionality doubling algorithm. This is interesting to note, that the
algebra R+̇R+̇C ∼= HR(2)+̇C cannot be obtained as a result of this algorithm.
This appears, that the following fact is typical for any dimensionality 2d of algebras,
obtained using Grassman-Clifford dimensionality doubling algorithm: there exist
only two ’Grassman-Clifford’ R-algebras. However, according to the Weierstrass
theorem there exist much more commutative-associative algebras of the mentioned
dimensionality. Let us prove the classification theorem for ’Grassman-Clifford’
R-algebras.

Denote by V a d-dimensional space over R with the basis ε1, ε2, . . . εd.

Definition 5.1. The commutative-associative hypercomplex algebra Bd is
called the 2d-dimensional R-algebra if the set Λ given by

Λ =
{∏

i∈I

εαi
i , αi ∈ {0, 1} ; I = {1, . . . , d}

}
, (5.4)

where ε0
i = 1, ε1

i = εi, from the basis of Λ this algebra and multiplication rules
for elements of are induced by the following relations on the basis elements of the
space V :

εiεj = εjεi, ε2
i = βi, i, j ∈ I. (5.5)

The algebras Bd may be obtained as a result of the Grassman-Clifford dimen-
sionality doubling algorithm. In fact, assigning for every binary vector of indexes
(α1, . . . , αd) the corresponding integers

t = α1 + α22 + . . . + αd2
d−1, αj ∈ {0, 1} , (5.6)

where t ∈ T =
{
0, 1, . . . , 2d − 1

}
, the elements of the set Λ can be numerated:

Et = εα1
1 · . . . · εαd

d . (5.7)

Then an arbitrary element g ∈ Bd can be represented in the form

g = ξ0E0 + . . . + ξ2d−1E2d−1 =
∑
t∈T

ξtEt. (5.8)
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Addition in the algebra Bd can be performed on the element components. Let
the elements are given by

g =
∑
t∈T

ξtEt, h =
∑
t∈T

ηtEt, g, h ∈ Bd, (5.9)

then
(g + h) =

∑
t∈T

(ξt + ηt) Et. (5.10)

Multiplication in the algebra Bd, represented in the form (5.8), is defined by the
rules (5.5) for multiplication of the basis elements of the spaceV , as the elements
of the algebra.

The following lemma establishes the relation between enumeration (5.6) of the
multiplicands and numeration (5.4) of the products.

Lemma 5.1. Denote by ⊕ – the component-wise addition modulo 2:

⊕ : T × T → T, t⊕ τ =
∑
i∈I

((
αi + α

′
i

)
mod 2

)
2i−1, where (5.11)

t = (α1, . . . , αd) , τ = (α′1, . . . , α
′
d) ; t, τ ∈ T ; αi, α

′
i = 0, 1; i ∈ I. (5.12)

Further, let the function hi : T × T → {0, 1} be given by the equality

hi (t, τ) = αiα
′
i, i ∈ I, (5.13)

and the function Ψ : T × T → {−1, 1} be given by the equality

Ψ (t, τ) =
∏
i∈I

β
hi(t,τ)
i , βi = {−1, 1} . (5.14)

Then multiplication rules for the elements of the basis Λ can be written in the
form:

EtEτ = Ψ (t, τ) Et⊕τ , ∀ t, τ ∈ T. (5.15)

Proof. By (5.7), let

Et =
∏
i∈I

εαi
i , Eτ =

∏
i∈I

ε
α′i
i ,

then

Et · Eτ =
∏
i∈I

ε
αi+α′i±2hi(αi,α

′
i)

i .

Taking into consideration, that αi + a′i − 2hi (αi, α
′)i ≡ αi + a′i (mod 2), from the

previous relation we obtain

∏
i∈I

ε
2·hi(αi,α

′
i)

i Et⊕τ = Ψ (t, τ) Et⊕τ . 2
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By Definition 5.1, this does not follow immediately that the algebra Bd with the
basis Λ and multiplication given by (5.5) is unique. Classification of the algebras,
introduced by this definition is provided in a form of the Theorem 5.1.

The following supplementary lemma is needed for the sequel:

Lemma 5.2. If for a certain index l ∈ I in (5.5) the relation βl = −1 holds,
then ∑

t∈T

E2
t = 0. (5.16)

Proof. Let the sum in the left side of the equality (5.16) be split into 2 sums
in a way such that the first sum will consists of the basis elements containing ε2

l ,
and the second sum – of the basis elements not containing ε2

l . Then we obtain:

∑
t∈T

E2
t =

∑
t∈T

hl(t,t)6=0

E2
t +

∑
t∈T

hl(t,t)=0

E2
t .

This is easy to see, that number of items in both the sums is equal:
∑
t∈T

hl(t,t)6=0

1 =
∑
t∈T

hl(t,t)=0

1 = 2d−1

As βl = −1, from the last relation we get

(1 + βl)
∑
t∈T

hl(t,t) 6=0

E2
t = 0. 2

Corollary 5.1. If there exists t ∈ T such that E2
t = −1, then among basis

elements of the algebra Bd there exist 2d−1 elements with the second power equal
to (−1). This is quite clear that if βi = 1, for every i ∈ I, then for all the second
powers of the elements of the following relation holds:

E2
t = +1

For consistency of notation, in this section the algebra Bd, with βi = 1 for all i ∈ I,
will be denoted by B+

d . One may easily get that

B+
d
∼= R+̇R+̇ . . . +̇R︸ ︷︷ ︸

2d

∼= HR

(
2d

)

The principle result of this section is the following theorem, stating that the
structure of the commutative-associative algebra with the basis (5.4) (i.e. an alge-
bra, constructed as a result of Grassman-Clifford algorithm) depends on the fact if
there exists at least one basis element εj ∈ V (an element ’generating’ the vector
space V ) with the square equal to (−1).
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Theorem 5.1. For every d ≥ 1 there exist only two non-isomorphic
2d-dimensional algebras with operations, given by (5.10), (5.15), namely:

B+
d
∼= R+̇R+̇ . . . +̇R︸ ︷︷ ︸

2d

∼= HR

(
2d

) ∼= HR (2) +̇HR (2) +̇ . . . +̇HR (2)︸ ︷︷ ︸
2d−1

, (5.17)

B−
d
∼= C+̇C+̇ . . . +̇C︸ ︷︷ ︸

2d−1

∼= HC

(
2d−1

)
. (5.18)

Proof. By Corollary 5.1, if βi = 1 for all the indexes i ∈ I, then the correspond-
ing algebra is

B+
d
∼= R+̇R+̇ . . . +̇R︸ ︷︷ ︸

2d

∼= HR

(
2d

)
.

Thus, suppose that there exists at least one element εl of the space V , for which
the following relation holds: ε2

l = −1, l ∈ I. Without loss of generality, we assume
that l = 1 (in the basis Λ to this element the element E1 corresponds). Take Et

such that E2
t = 1. Note, that this is possible, i.e. such an element exists, as there

either exists βk = 1 or exists the linear combination ε1εk = E1⊕k, where βk = −1,
k 6= 1. Then, every element h ∈ B−

d can be represented in the form

h =
∑
i∈T

ηiEi =
∑
i∈T

hk(i,i)=0

ηiEi +
∑
i∈T

hi(i,i)=1

ηiEi.

From Lemma 5.1 it follows that

Ei =
1

Ψ (t, t)
EiEtEt

or, in the case under consideration, Ei = EiEtEt. From the last relation, one may
easily get the following

h =
∑
i∈T

hk(i,i)=0

ηiEi +

( ∑
i∈T

hk(i,i)=1

ηiEiEt

)
Et.

Note, that all the possible products EiEt do not contain the generating element
εk, therefore h = a + bEt, where a, b ∈ Bd−1.

This can be verified directly, that the map Θ : Bd → Bd−1+̇Bd−1, given by
h = α + γEt 7→ (α + γ, α + Ψ (k, k) γ) ∈ Bd−1+̇Bd−1, is an isomorphism. Applying
successively Θ to B−

d−1, by induction, we obtain

Bd
∼=

(
R+̇R+̇ . . . +̇R︸ ︷︷ ︸

2(d−1)

)
+ ε1 ·

(
R+̇R+̇ . . . +̇R︸ ︷︷ ︸

2(d−1)

)
. (5.19)
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Since ε2
1 = −1, then

Bd
∼= C+̇C+̇ . . . +̇C︸ ︷︷ ︸

2d−1

= B−
d .

From the last relation it follows that any algebra for which there exists an
element of the basis of the vector space V , with the second power equal to −1 is
isomorphic to the algebra B−

d . This completes the proof. 2

Taking into consideration the classification theorem proven above, in the sequel
by B−

d we denote the algebra with the following multiplication rules for the basis
elements of the space V :

εiεj = εjεi, ε2
i = −1, i ∈ I, (5.20)

and by B+
d the algebra with the multiplication rule of the basis elements of the

vector space V :
εiεj = εjεi, ε2

i = +1, i ∈ I, (5.21)

This can be easily verified, that for an arbitrary index l, l ∈ T , the following
relations hold

0 = 0⊕ 0 = l ⊕ l, l = l ⊕ 0 = 0⊕ l. (5.22)

For the function Ψ and for an arbitrary l ∈ T the following relations hold

Ψ (0, 0) = Ψ (0, l) = Ψ (l, 0) = 1
βl

Ψ (l, l) (5.23)

and, by (5.20), the following equalities hold

Ψ (0, 0⊕ 0) = 1
βl

Ψ (l, l ⊕ 0) = Ψ (0, l ⊕ 0) = Ψ (l, 0⊕ 0) . (5.24)

5.3 Automorphism in algebras of 2d dimensions, obtained applying
Grassman-Clifford algorithm

The following theorem generalizes the statement, related to the automorphic
nature of the maps (2.5) and (3.1) for the case of the arbitrary dimensionality 2d.

Theorem 5.2. Let ψ : T × T → {−1, 1} be given by

ψ (j, t) =
∏
i∈I

(−1)hi(j,t) . (5.25)

Then the set of 2d maps σj : Bd → Bd such that

σj (χ) =
∑
i∈T

ciψ (j, i) Ei, (5.26)

where χ = (c0, . . . , c2d−1) ∈ Bd, ci ∈ R, j ∈ T , is the set of automorphisms for
the algebra Bd, regardless of what algebra (algebra B+

d or algebra B−
d ) is under

consideration.
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Proof. Let us prove that the maps from the set (5.25) are bijective and preserve
the multiplication and addition. In fact, among elements of the basis Λ there are no
zero-divisors and maps σj are linear. Thus, maps σj are bijections. Now, we show
that maps σj preserve the addition and multiplication. Let the elements g, h ∈ Bd

be represented in the from (5.8). Then the following relations hold

σj (g + h) = σj (g) + σj (h) , (5.27)

σj (gh) = σj (g) · σj (h) . (5.28)

In fact, (5.27) is yielded by the following relations

σj (g + h) =
∑

i∈T

(ξi + ηi) ψ (j, i) Ei =
∑

i∈T

ξiψ (j, i) Ei +
∑

i∈T

ηiψ (j, i) Ei = σj (g) + σj (h) .

Now, we will prove (5.28). This is evident that the following equality holds

σj (gh) =
∑
i∈T

∑
t∈T

Ψ (t, t⊕ i) ξi⊕tηtψ (j, i) Ei =

=
∑
t∈T

ηt

∑
i∈T

Ψ (t, t⊕ i) ξi⊕tψ (j, i) Ei .
(5.29)

Next, combining (5.15), (5.22) and i = t⊕i⊕t, the relation (5.29) can be converted
to the form:

σj (gh) =
∑
t∈T

ηtψ (j, t) Ψ (t, t) Et

∑
i∈T

ξi⊕tψ (j, i⊕ t) Ψ (t, t⊕ i) Ei⊕t. (5.30)

Since the index i runs through all the values from the set T , then the index i⊕t will
also run through all the elements from the set T . Thus, taking in (5.29) τ = t⊕ i,
we get:

σj (gh) =
∑
t∈T

ηtψ (j, t) Et

∑
τ∈T

ξτψ (j, τ) Eτ = σj (g) · σj (h) .

Provided that there exist the maps σj (χ) = σp (χ), where j 6= p, we obtain the
chain of equalities:

σj (χ) = σp (χ) ,
∏
i∈T

(−1)hi(j,l) =
∏
i∈T

(−1)hi(p,l) , l = 0, 2d − 1,

∑
i∈T

hi (j, l) =
∑
i∈T

hi (p, l) , l = 0, 2d − 1,

chain yields that j = p. The last relation is a controversy.
Thus, if j 6= p, then σj (χ) 6= σp (χ). Therefore, all the automorphisms σj,

numerated with the elements of the set T with card T = 2d, are different. This
completes the proof. 2
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Consider the set of 2d maps σj : Bd → Bd, defined in the Theorem 5.2. The
following statement provides the condition which being fulfilled guarantees that
the coefficients of the defining polynomial (for the element of algebra Bd) are real
if the automorphisms considered in Theorem 5.2 are used for construction of this
polynomial. The bulky, but transparent proof by induction of the following theorem
is omitted.

Theorem 5.3. Let for the element w ∈ Bd the polynomial Φ (ξ, w) be given by

Φ (ξ, w) =
∏
σj

(ξ − σj (w)) =
2d∑

k=0

ξk (−1)2d−k S2d−k (w) .

Then the following statements are true:

a) the element w and its automorphic images σj(w) are the roots of the poly-
nomial Φ (ξ, w);

b) the values of the function S2d−k (w) are real numbers;
c) the functions S2d−k (w) of the real components (c0, c1, ..., c2d−1) of the element

w are homogeneous functions of degree
(
2d − k

)
. 2

This work was supported by the non-commercial foundation for development
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The paper deals with multi-linearization of norms in the H4 algebra. New binary,
ternary and quaternary operations are introduced in the H4 algebra with the isotropic
basis (’Zassenhaus multiplication’). It is shown that quadratic Minkowski norm of the
algebra element, Berwald-Moor norm, associated with the form of degree 4 as well as
the norm, introduced in the earlier author’s paper, associated with the cubic form, are
equal to the values of the newly defined binary, quaternary and ternary operations (re-
spectively), if all the operands (Zassenhaus factors) are equal.

MSC2000: 13A99, 15A69, 53B40.

1 Introduction

1.1 Classical compositional algebras and algebras Hn

In physics, mechanics, computer science, other applications, composition alge-
bras (unital algebras without zero divisors) are the most widely spread. In the
vector spaces over these algebras, non-degenerate quadratic forms N(x) (norms)
satisfying the condition N(xy) = N(x)N(y) are defined. Classification of these
algebras and the recursive procedure for their construction over various fields is
closely related to the fact that in structures, obtained at every step of the recursion,
there exists an (anti) automorphism x 7→ x̄ of order 2. This anti(automoprhism),
which can be recursively continued on the next step of the construction procedure,
induces the above-mentioned forms N(x). However, to construct algebras different
from R and C but with an analogue of the real or complex norm available, one
has to pay a certain fee: constructed algebras will be non-commutative and/or
non-associative. Moreover, the Cayley-Dickson recursive process for construction
of composition algebras already at the third step results in a non-associative struc-
ture and cannot be continued ([1]–[3]). In addition to composition algebras, using
the Cayley-Dickson process this is possible to obtain a range of algebras with
zero-divisors (e.g., an algebra of dual numbers, isomorphic to R⊕R; an algebra of
(2×2)-matrices M2 (R)); over vector space of these algebras there is also possible
to define a quadratic multiplicative form N(x), but this form will be degenerate [1].

Non-commutative 4D quaternion algebra is usefully employed in solving various
problems of mechanics, in machine vision, in physics. To explain this, there are
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at least two reasons: (1) in this algebra a norm is defined and, for example, (2)
using this algebra the 3D orthogonal transforms can be ’elegantly’ written not in
terms of the ’external’ matrix language, but in terms of ’internal’ operations of the
quaternion algebra, i.e. in the ’coordinate-free’ form.

Further, consider, for example, an expansion of the element X from the 4D
algebra, isomorphic to the algebra of (2× 2)-matrices M2 (R), in the ’Clifford ba-
sis’ with the rules for multiplication of the basis elements given by the following
relations.

e2
0 = e0, e2

1 = e0, e2
2 = e0, e2

3 = −e0;

e1e2 = −e2e1, e1e3 = −e3e1, e2e3 = −e3e2; e1e2 = e3,

Let in this algebra an involutive map (a so called symplectic involution) be defined
by

X =

(
a b

c d

)
7→ X̄ =

(
d −b

−c a

)

and, further, the ’natural’ embedding R → M2 (R) with y 7→ ye0, y ∈ R be defined.
Then the defining (characteristic) quadratic equation for the element X of this

algebra with the coefficients being represented in a coordinate-free form, may be
written in terms of the norm N(X) = X · X̄ = det X and the trace Tr (X) = X +
X̄ = a + d:

X2 − Tr (X) e0X + N(X)e0 = 0. (1.1)

The relation (1.1) may be considered as a special (two-dimensional) case of the
Cayley-Hamilton theorem. From this it follows that, after appropriate interpreta-
tion, all the results of ’linear’ geometry in the 2D plain may be derived from the
algebraic properties of the 4D algebra M2 (R).

In contrast to the composition algebras, arbitrary associative-commutative
finitedimensional algebras are not quadratic algebras over the field R. Thus, char-
acteristic equations for elements from these algebras may be associated with the
automorphisms of higher orders, and this suggests that this is viable to investigate
properties of geometric interpretations of these algebras in terms of the ’symmetry’
groups of the order greater than two.

To understand the role of the higher order automorphisms in construction of the
geometric-physical models of the space-time, from the author’s point of view, this
is necessary to start with determination of invariant characteristic of the defining
equations for the elements of the associative-commutative algebras; i.e. to find the
counterparts of the forms N(X) = X · X̄ = det X and Tr (X) = X + X̄ = a + d
in the relation (1.1). This invariant characteristic were considered in paper by the
author [4], where (in particular) the following result was obtained (Theorem 2.1).

Consider the algebra R⊕R⊕R⊕R ∼= H4 with the basis {E1, E2, E3, E4} and
the multiplication rule for the basis elements given by the Cayley table 1.1. (the
basis with these multiplication rules will be called isotropic).
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Table 1.1.

× E1 E2 E3 E4

E1 E4 0 0 0

E2 0 E2 0 0

E3 0 0 E3 0

E4 0 0 0 E4

The multiplicative identity element (algebra unit) in this basis is the element
I = E1 + E2 + E3 + E4, and the field R is canonically embedded into the algebra
R⊕R⊕R⊕R via the map:

R → R⊕R⊕R⊕R ∼= H4, x 7→ xI, x ∈ R.

Theorem. The algebra R ⊕ R ⊕ R ⊕ R is the algebra of the degree four over
R, i.e. any element w ∈ R ⊕ R ⊕ R ⊕ R satisfies an algebraic equation of degree
not greater than 4 with real coefficients.

In fact, let w = aE1 + bE2 + cE3 + dE4 ↔ (a, b, c, d). Consider four map-
pings of the algebra R ⊕ R ⊕ R ⊕ R into itself (quite obviously these maps are
automorphisms):

τ0 : w = aE1 + bE2 + cE3 + dE4 7→ aE1 + bE2 + cE3 + dE4,

τ1 : w = aE1 + bE2 + cE3 + dE4 7→ bE1 + cE2 + dE3 + aE4,

τ2 : w = aE1 + bE2 + cE3 + dE4 7→ cE1 + dE2 + aE3 + bE4,

τ3 : w = aE1 + bE2 + cE3 + dE4 7→ dE1 + aE2 + bE3 + cE4.

(1.2)

Clearly, the mappings (1.2) perform cyclic permutation of the components (a, b, c, d)
of the expansion of the algebra element w in the isotropic basis. One may easily
note, that the element w is a root of the polynomial

Φ (ξ; w) = (ξ − τ0 (w)) (ξ − τ1 (w)) (ξ − τ2 (w)) (ξ − τ3 (w)) , (1.3)

and the coefficients of the polynomial Φ (ξ; w) are real. In fact, via direct calcula-
tions we obtain:

Φ (ξ; w) = ξ4 − s1 (w) Iξ3 + s2 (w) Iξ2 − s3 (w) Iξ1 + s4 (w) I, (1.4)

where the real coefficients sν (w) are homogeneous symmetric forms of the compo-
nents (a, b, c, d) of the element w from the algebra:

s1 (w) = s14 (w) = a + b + c + d,

s2 (w) = s24 (w) = ab + ac + ad + bc + bd + cd,

s3 (w) = s34 (w) = bcd + acd + abd + abc,

s4 (w) = s44 (w) = abcd.

(1.5)
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The polynomial Φ (ξ; w) of the minimal degree with the real coefficients and
with the coefficients at the highest power of ξ equal to 1, such that Φ (ξ; w)|ξ=w = 0,
will be called a defining polynomial of the element w, and its coefficients will be
called defining forms.

Remark 1.1. The forms (1.5) are invariant with respect to any permutation
σ ∈ S4 of four components (a, b, c, d) of the algebra element w. Thus, as σ ∈ S4 is
an automorphism of the algebra R⊕R⊕R⊕R over the field R, then the polynomial
Φ (ξ; w) of degree four, in addition to the root w will have at least 23 more roots.
These roots are of the form σ (w) , σ ∈ S4, i.e. all the automorphic images of the
root w with respect to the automorphism group σ ∈ S4 will be also the roots of
Φ (ξ; w).

Remark 1.2. Consider the basis {E, I, J,K} of the algebra H4
∼= R⊕R⊕R⊕R

with the multiplication rule for the basis elements given by the following Cayley
table:

Table 1.2.

× E I J K

E E I J K

I I E K J

J J K E I

K K J I E

In this basis, an element ω ∈ H4 may be represented in the form ω = tE +
xI + yJ + zK (t, x, y, z ∈ R), E is a multiplicative identity element (unit) of the
algebra. Transformation between the isotropic basis {E1, E2, E3, E4} and the basis
{E, I, J,K} is a linear transformation with the orthogonal Hadamard matrix

had4 =
1

4




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




.

Obviously, for every automorphism associated with a certain element of the permu-
tation group S4, i.e. permuting the components of the element ω ∈ H4 in the basis
{E1, E2, E3, E4}, there exist a linear transform of the components t, x, y, z of the
element ω = tE + xI + yJ + zK, which also implements a certain automorphism
of the algebra H4. In particular, these automorphisms may be:

µ0 : ω 7→ µ0 (ω) = tE + xI + yJ + zK,

µ1 : ω 7→ µ1 (ω) = tE + xI − yJ − zK,

µ2 : ω 7→ µ2 (ω) = tE − xI + yJ − zK,

µ3 : ω 7→ µ3 (ω) = tE − xI − yJ + zK.

(1.6)
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If the expansion of the element ω ∈ H4 in the basis {E1, E2, E3, E4} is consid-
ered, this quadruple of transforms correspond to action on the components of the
element expansion of a certain element of the subgroup (of order 4, isomorphic to
the direct product C2 × C2 of two cyclic groups of order 2) of the group S4.

For the defining polynomial (in this particular case), via direct computations,
we obtain:

Φ(ξ; ω) = (ξ − µ0 (ω)) (ξ − µ1 (ω)) (ξ − µ2 (ω)) (ξ − µ3 (ω)) =

=
(
ξ4 − S1 (ω) ξ3 + S2 (ω) ξ2 − S3 (ω) ξ1 + S4 (ω)

)
E , where

S14 (ω) = 4t,

S24 (ω) = 6t2 − 2x2 − 2y2 − 2z2,

S34 (ω) = −4tx2 − 4y2t− 4z2t + 4t3 + 8yzx = 4t(t2 − x2 − y2 − z2) + 8yzx,

S44 (ω) = x4 + y4 + z4 − 2t2x2 − 2t2y2 − 2t2z2 + t4 + 8txyz − 2x2y2 − 2x2z2 − 2y2z2,
(1.7)

and S24 (ω) up to the norming factors is the same as the (pseudo)metric Minkowski
form, and S44 (ω) has a ’standard Berwald-Moor’ form.

1.2 Main ideas and definitions

This may seem paradoxical, but the idea to use additional (or redefined) op-
erations (associated with the automorphisms of order higher than 2) in certain
finite-dimensional algebra so to employ the power ’algebraic methods’ for solving
geometric problems has a long history. For example, there was proposed an exotic
(and not very well-known) algebraic structure – the ’Zassenhaus finite quasifield’,
[5] (also [6], Chapter 20). Namely in the field Fq, q = pm, (where p is prime) an op-
eration is defined x∗y (x, y ∈ Fq), which can be expressed in terms of multiplication
in the field Fq in the form x ∗ y = y · η (x), where η is a Frobenius automorphism
of a specific form. This operation is non-commutative and non-associative (by
Wedderburn’s theorem, [6], [7]). Naturally, the fact that the fields Fq are finite
(and, consequently, the Zassenhaus quasi-fields are also finite) limits the range of
problems which may be solved applying this technique to configuration problems
of the finite geometry [6].

The idea to consider ’multilinear’ (in contrast to classical ’bilinear’) scalar prod-
ucts in associative-commutative algebras in order to create adequate geometric-
physical models was most likely first introduced by D.G. Pavlov [8].

For example, consider the algebra R⊕R with the basis {E1, E2}. Let multiplica-
tion rules for basis elements be given by the Cayley table 1.3 and the multiplicative
identity element be I = E1 + E2 = (1, 1).

Table 1.3.

× E1 E2

E1 E4 0

E2 0 E2
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A typical element x = x1E1 + x2E2 will be denoted (for brevity) by x = (x1, x2).

Example 1.1. Consider two permutations

σ1 ↔ σ1 =

(
1 2

1 2

)
, σ2 ↔ σ2 =

(
1 2

2 1

)
. (1.8)

Let define action of operators σ1, σ2 (associated with the permutations σ1, σ2) on
the elements x = (x1, x2) of the algebra R⊕R by:

σ1 (x) = (x1, x2) , σ2 (x) = (x2, x1) ,

That is the operators σ1, σ2 permute the components of the element x = (x1, x2)
in accordance with the lower rows of the permutations σ1, σ2.

Let introduce in R⊕R a new binary operation [x, y] (’Zassenhaus multiplica-
tion’):

[x, y] = σ1 (x) • σ2 (y) ,

where the symbol (•) denotes conventional ’component-wise’ multiplication of ele-
ments in R⊕R.

The following relations may be verified via direct calculations.

[x, y] = (x1, x2) • (y2, y1) = (x1y2, x2y1)
.
= (ξ2, ξ1) , (1.9)

[x, x] = (x1, x2) • (x2, x1) = (x1x2, x2x1) = x1x2I
.
= N(x)I. (1.10)

Note, that the function N(x) given by (1.10) coincides with the conventional
norm of the element from the algebra R⊕R, represented in terms of the isotropic
coordinates (components).

Further, the following relations hold:

N ([x, y]) = [[x, y] , [x, y]] = σ1 ([x, y]) • σ2 ([x, y]) =

= (x1y2, x2y1) • (x2y1, x1y2) = (x1y2x2y1, x1y2x2y1) =

= (x1y2, x1y2) • (x2y1, x2y1) = (x1y2) I • (x2y1) I = ξ1ξ2I =

= (x1x2) I • (y1y2) I = N(x)N (y) .

(1.11)

Example 1.2. Let consider one more illustration of the ’Zassenhaus multiplica-
tion’. Consider the set of 2D indexed (n× n) arrays with the component-wise mul-
tiplication. Let define a new ’multiplication’ operation ∗, different from the ’con-
ventional’ matrix multiplication. Let A = {aij} , B = {bij} , D = {dij} = A ∗ B.
Then, by definition:

dij =
n∑

k=1

aikbjk,

or, informally, ¡¡(i, j)-th element of ’∗-product’ is equal to the scalar product of the
i-th row by the j-th column of the multiplicands¿¿. Transformation of the arrays
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τ : A → τ(A) given by τ : aij 7→ aji, represents a ’conventional’ matrix transpose,
but this transformation is an automorphism of the second order with respect to the
operation ∗: τ (A ∗B) = τ (A) ∗ τ (B), although with respect to the conventional
matrix multiplication rules, taking the transpose represents an anti-automorphism:
(AB)t = BtAt. In terms of the operation ∗ conventional matrix multiplication is
simply ’Zassenhaus multiplication’ with respect to the operation ∗: AB = A∗τ (B).
If we consider, for example, 3D arrays A = {aijk} , B = {bijk} , C = {cijk} and
the automorphism of the order three τ : aijk 7→ ajki, similarly we can obtain
’Zassenhaus multiplication’ of 3D arrays X = [A,B,C], where

xpqr =
n∑

i,j=1

apijbiqjcijr

and so on.

Thus, from the relation (1.11) it follows that:

• the equality N ([x, y]) = N(x)N (y) holds, i.e. the norm N(x) with respect to
the newly defined operation [x, y] is ’multiplicative’, and this norm is equal to
the conventional norm of the element from the algebra R ⊕ R, represented in
terms of isotropic coordinates (components);

• the following equality holds

σ1 ([x, y]) • σ2 ([x, y]) = ξ1ξ2I, (1.12)

where (ξ1, ξ2) are components of the ’Zassenhaus product’ [x, y], and the or-
dered pair of the upper indices of the operators σ1 , σ2 coincides with the ordered
pair of the lower indexes of the components (ξ1, ξ2).

The latter idea justifies generalization of composition laws for algebras with n-
ary operations, and the former one (multiplicative property of the norm) motivates
selection of this particular principle of generalization.

Let introduce necessary definitions and notation.
Let σ∗ ∈ Sn be a permutation:

σ∗ =

(
1 2 ... n

σ∗ (1) σ∗ (2) ... σ∗ (n)

)
.

Let call by operator σ∗ : Hn → Hn associated with the permutation σ∗ ∈ Sn, the
operator, permuting the isotropic coordinates of the algebra Hn:

σ∗ : x = (x1, x2, ..., xn) 7→ σ∗ (x) =
(
xσ∗ (1), xσ∗ (2), ..., xσ∗ (n)

)
.

Let (σ1, σ2, ..., σm) be an ordered set of associated operators (m ≤ n). Let
the action of the m-family (σ1, σ2, ..., σm) on the m-family of the elements
(x1, x2, ..., xm) ⊂ Hn be defined in the ’tensor sense’:

(
σ1 ⊗ σ2 ⊗ ...⊗ σm

)
(x1, x2, ..., xm) = σ1 (x1) • σ2 (x2) • ... • σm (xm) .
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Let A ⊂ Zm be a set of indices, S̃m
n = {(σa1 , σa2 , ..., σam) ; (a1, ..., am) ∈ A} be

a certain set of m-families of associated operators ’marked’ with the index set
A ⊂ Zm.

Definition 1.1. Let denote by an m-ary operation in the algebra Hn (m ≤ n),
induced by the family S̃m

n = {(σa1 , σa2 , ..., σam) ; (a1,...,am) ∈ A}, an operation,
given by the relation (here and in the following λm ∈ R)

[x1, x2, ..., xm] =

= λm

∑
(σa1 ,σa2 ,...,σam )∈S̃m

n

(σa1 ⊗ σa2 ⊗ ...⊗ σam) (x1, x2, ..., xm) =

= λm

∑
(σa1 ,σa2 ,...,σam )∈S̃m

n

σa1 (x1) • σa2 (x2) • ... • σam (xm)

.

Definition 1.2. An m-ary operation on the algebra Hn (m ≤ n), induced by
the family S̃m

n = {(σa1 , σa2 , ..., σam) ; (a1,...,am) ∈ A}, will be called normable, if

N(x) = λm

∑

(σa1 ,σa2 ,...,σam )∈S̃m
n

(σa1 ⊗ σa2 ⊗ ...⊗ σam) (x, x, ..., x) ∈ R. (1.13)

The family of the associated operators S̃m
n in this case will be called norming family,

and the function N(x) ∈ R will be called S̃m
n - norm (or simply norm, if this doesn’t

introduce any confusion on which family S̃m
n is implied).

Definition 1.3. Let Sm
n = {(σa1 , σa2 , ..., σam ) ; (a1,...,am) ∈ A} be

a set of the permutations, associated with the norming operator family
S̃m

n = {(σa1 , σa2 , ..., σam) ; (a1,...,am) ∈ A}, [x1, x2, ..., xm] is an m-ary operation, in-
duced by the family S̃m

n . In the isotropic coordinates let the element [x1, x2, ..., xm]
have coordinates (ξ1, ξ2, ..., ξm):

[x1, x2, ..., xm] = (ξ1, ξ2, ..., ξm) .

Let say that the family S̃m
n induces a generalized m-ary composition law, if the

following equality holds

N ([x1, x2, ..., xm]) = [[x1, x2, ..., xm] , ..., [x1, x2, ..., xm]]︸ ︷︷ ︸
m times

=

= λm

∑
(σa1 ,σa2 ,...,σam )∈S̃m

n

(σa1 ⊗ σa2 ⊗ ...⊗ σam)

(
[x1, x2, ..., xm] , ..., [x1, x2, ..., xm]︸ ︷︷ ︸

m times

)
=

= λm

∑
(σa1 ,σa2 ,...,σam )∈Sm

n

ξσa1 (1)ξσa2 (2)...ξσam (m)I .

Example 1.3. Using the notation of the Example 1.1, consider a one-element
set S2

2 , consisting of one pair of permutations {(σ1 , σ2 )}, defined by (1.8).
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The equality (1.12) means that, the binary operation induced by the family S̃2
2

of the associated operators S̃2
2 = {(σ1 , σ2)}, yields a binary composition law

σ1 ([x, y]) • σ2 ([x, y]) = ξ1ξ2I which is the same (up to notation) as the multi-
plicative composition law.

N ([x, y]) = [[x, y] , [x, y]] = N(x)N (y) and λ2 = 1.

Example 1.4. Not all the sets S̃m
n are norming sets of operators. One may eas-

ily note that using notation of the example 1.1, a one-element set S̃2
2 = {(σ1 , σ1)} is

not a norming set of operators, as N(x) = [x, x] /∈ R. In this context, a Question 1
arises: what are necessary and sufficient conditions (formulated in number theoretic
terms) for the set of operators, associated with Sm

n = {(σa1 , σa2 , ..., σam )}, to be
norming?

Remark 1.5. Naturally, the norming sets S̃m
4 of associated operators from

the set Sm
4 , for which N (w) for all w = (a, b, c, d) ∈ H4 coincides with one of the

forms (1.5). In this context, a Question 2 arises: what are necessary and sufficient
conditions (formulated in number-theoretic terms) for the norm, induced by the
set of operators S̃m

n to coincide with one of the forms (1.5) for H4?
This paper is intended to answer the Question 2 in the part of sufficient condi-

tions; i.e. to determine binary, ternary or quaternary operation in the algebra H4,
which the following relation holds for

N(x) = [x, x, ..., x]︸ ︷︷ ︸
m times

∈ {s24 (w) , s34 (w) , s44 (w)} .

Remark 1.6. The proofs of the proposition in the next two sections of this
paper may be reduced to the routinous and laborious verification of the identities,
in the way similar to the Example 1.1. Thus, in this paper, the considered theorems
are only formulated.

2 Generalized n-ary composition laws in the algebra R⊕R⊕R⊕R

2.1 Generalized quaternary composition law in the algebra R⊕R⊕R⊕R

Let the quaternary operation in the algebra R⊕R⊕R⊕R be given by

[x1, x2, x3, x4] = λ4

(
σ1 ⊗ σ2 ⊗ σ3 ⊗ σ4

)
(x1, x2, x3, x4) = λ4σ

1 (x1)•σ2 (x2)•σ3 (x3)•σ4 (x4)
(2.1)

where λ4 = 1 and

σ1 =

(
1 2 3 4

1 2 3 4

)
, σ2 =

(
1 2 3 4

2 3 4 1

)
, σ3 =

(
1 2 3 4

3 4 1 2

)
, σ4 =

(
1 2 3 4

4 1 2 3

)
. (2.2)

Theorem 2.1. A one-element family of the quadruple of operators S̃4
4 =

{(σ1, σ2, σ3, σ4)}, associated with the one-element set S4
4 , consisting of four (cyclic)



V. M. Chernov Generalized n-ary composition laws in H4 and their relation... 219

permutations {(σ1, σ2, σ3, σ4)} is a norming set, inducing the generalized quater-
nary composition law in the algebra R⊕R⊕R⊕R in the (multiplicative) form

N4 ([x1, x2, x3, x4]) = [[x1, x2, x3, x4] , [x1, x2, x3, x4] , [x1, x2, x3, x4] , [x1, x2, x3, x4]] =

= (σ1 ⊗ σ2 ⊗ σ3 ⊗ σ4) ([x1, x2, x3, x4] , [x1, x2, x3, x4] , [x1, x2, x3, x4] , [x1, x2, x3, x4]) =

= ξσ1 (1)ξσ2(2)ξσ3(3)ξσ4(4)I =

= (x11x12x13x14) (x21x22x23x24) (x31x32x33x34) (x41x42x43x44) I =

= N4 (x1) I ·N4 (x2) I ·N4 (x3) I ·N4 (x4) I,
(2.3)

where (ξ1, ξ2, ξ3, ξ4) is a quadruple of coordinates of the value of the
quaternary operation [x1, x2, x3, x3] defined above in the isotropic basis:
(ξ1, ξ2, ξ3, ξ4) = [x1, x2, x3, x4] .

Moreover, the following equality holds:

N4 (x) = [x, x, x, x] = (σ1 ⊗ σ2 ⊗ σ3 ⊗ σ4) (x, x, x, x) =

= ξσ1 (1)ξσ2(2)ξσ3(3)ξσ4(4)I = (x1x2x3x4) I = s44 (x) • I,
(2.4)

Remark 2.1. From the Theorem 2.1 it follows, in particular, that the concept
of the norm, given in the Definition 1.2 by relation (1.14) is in fact a multiplicative
Berwald-Moor (pseudo) norm (1.5) s44 (x), expressed in terms of the isotropic basis
expansions.

2.2 Generalized ternary composition law in the algebra R⊕R⊕R⊕R

Let the ternary operation in the algebra R⊕R⊕R⊕R be defined by

[x1, x2, x3] =
(
σ2 ⊗ σ3 ⊗ σ4 + σ4 ⊗ σ1 ⊗ σ3 + σ2 ⊗ σ4 ⊗ σ1 + σ3 ⊗ σ1 ⊗ σ2

)
(x1, x2, x3) ,

(2.5)
where λ3 = 1 and

σ1 =

(
1 2 3 4

1 3 4 2

)
, σ2 =

(
1 2 3 4

4 2 1 3

)
, σ3 =

(
1 2 3 4

2 4 3 1

)
, σ4 =

(
1 2 3 4

3 1 2 4

)
. (2.6)

Theorem 2.2. A 4-element family of the triads of the operators

S̃3
4 =

{(
σ2, σ3, σ4

)
,
(
σ4, σ1, σ3

)
,
(

σ2, σ4, σ1
)
,
(
σ3, σ1, σ2

)}
,

associated with the family S4
4 of the triads of permutations

σ1 =

(
1 2 3 4

1 3 4 2

)
, σ2 =

(
1 2 3 4

4 2 1 3

)
, σ3 =

(
1 2 3 4

2 4 3 1

)
, σ4 =

(
1 2 3 4

3 1 2 4

)
, (2.7)

is a norming set, inducing a generalized ternary composition law in the algebra
R⊕R⊕R⊕R in the form
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N3 ([x1, x2, x3]) = [[x1, x2, x3] , [x1, x2, x3] , [x1, x2, x3]] =

=
(
σ2 ⊗ σ3 ⊗ σ4 + σ4 ⊗ σ1 ⊗ σ3 + σ2 ⊗ σ4 ⊗ σ1 + σ3 ⊗ σ1 ⊗ σ2

)
([x1, x2, x3] , ..., [x1, x2, x3]) =

=
(
ξσ2(1)ξσ3(2)ξσ4(3) + ξσ4(1)ξσ1(2)ξσ3(3) + ξσ2(1)ξσ4(2)ξσ1(3) + ξσ3(1)ξσ1(2)ξσ2(3)

)
I,

(2.8)
where (ξ1, ξ2, ξ3, ξ4) is a quadruple of the coordinates of the element [x1, x2, x3], the
result element of the ternary operation defined above (in the isotropic basis):

(ξ1, ξ2, ξ3, ξ4) = [x1, x2, x3] ,

and, moreover, the following relations hold

N3 (x) = [x, x, x] =

= (σ2 ⊗ σ3 ⊗ σ4 + σ4 ⊗ σ1 ⊗ σ3 + σ2 ⊗ σ4 ⊗ σ1 + σ3 ⊗ σ1 ⊗ σ2) (x, x, x) ,
(2.9)

N3 (x) = s34 (x) I. (2.10)

2.3 Generalized binary composition law in the algebra R⊕R⊕R⊕R

Let the binary operation in the algebra R⊕R⊕R⊕R be defined by

[x1, x2] = λ2

(
σ1 ⊗ σ2 + σ1 ⊗ σ3 + σ1 ⊗ σ4 + σ2 ⊗ σ3 + σ2 ⊗ σ4 + σ3 ⊗ σ4

)
(x1, x2) ,

(2.11)
where λ2 = 1/2 and

σ1 =

(
1 2 3 4

1 2 3 4

)
, σ2 =

(
1 2 3 4

2 3 4 1

)
, σ3 =

(
1 2 3 4

3 4 1 2

)
, σ4 =

(
1 2 3 4

4 1 2 3

)
. (2.12)

Theorem 2.3. A six-element family of the pair of operators

S̃2
4 =

{(
σ1, σ2

)
,
(
σ1, σ3

)
,
(

σ1, σ4
)
,
(
σ2, σ3

)
,
(

σ2, σ4
)
,
(

σ3, σ4
)}

,

associated with the family S2
4 of pairs of permutations

S2
4 = {( σ1, σ2) , (σ1, σ3) , ( σ1, σ4) , (σ2, σ3) , ( σ2, σ4) , ( σ3, σ4)} (2.13)

is a norming set, inducing a generalized binary composition law in the algebra
R⊕R⊕R⊕R in the form

N2 ([x1, x2]) = [[x1, x2] , [x1, x2]] =

= 1
2
(σ1 ⊗ σ2 + σ1 ⊗ σ3 + σ1 ⊗ σ4 + σ2 ⊗ σ3 + σ2 ⊗ σ4 + σ3 ⊗ σ4) ([x1, x2] , [x1, x2]) =

= 1
2

(
ξσ1(1)ξσ2(2) + ξσ1(1)ξσ3(2) + ξσ1(1)ξσ4(2) + ξσ2(1)ξσ3(2) + ξσ2(1)ξσ4(2) + ξσ3(1)ξσ4(2)

)
I,

(2.14)
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where (ξ1, ξ2, ξ3, ξ4) is a quadruple of coordinates of the element [x1, x2], the
result element of the binary operation defined above (in the isotropic basis):
(ξ1, ξ2, ξ3, ξ4) = [x1, x2].

Moreover, the following equalities hold

N2 (x) = [x, x] =

= 1/2
(
σ1 ⊗ σ2 + σ1 ⊗ σ3 + σ1 ⊗ σ4 + σ2 ⊗ σ3 + σ2 ⊗ σ4 + σ3 ⊗ σ4

)
(x, x) ,

(2.15)

N2 (x) = s24 (x) . (2.16)

Remark 2.3. From the Theorem 2.3 it follows (in particular) that the concept
of the norm, introduced in the Definition 1.2 by the relation (1.14) in fact repre-
sents a (pseudo)norm, corresponding to the Minkowski metrics in the form s44 (x)
’represented’ in the isotropic basis.

Remark 2.4. In contrast to the set (2.4) of permutations in the Theorem 2.2
(this set is not a group), the set (2.8) of permutations in the Theorem 2.3 is a
four-element non-cyclic group, and in the Theorem 2.1, the set of permutations is
a cyclic group.

3 Generalizations and open problems

1. In context of Questions 1 and 2 of the Section 1 the following problem arises:
how should generalized composition laws for the space Hn of arbitrary number of
dimensions be classified?

Problem 1. What are necessary and sufficient conditions (in number-theoretic
or combinatorial terms) for the set of operators, associated with the set of permuta-
tions Sm

n = {(σa1 , σa2 , ..., σam)}, to be norming; how does the induced norm depend
on the coefficients of the defining equation of the element from the algebra Hn?

Note that group structure of the set of permutations Sm
n is likely to be a suffi-

cient condition for the associated set of operators to be norming (Theorems 2.1 and
2.3). However, this condition may be not necessary, as results from the Theorem
2.2. This appears possible, that the problem of classification of the sets Sm

n in the
Problem 1 is a combinatorial problem and not just a group-theoretic one.

2. The thorough classification of the associate-commutative algebras with-
out nilpotent elements is given in the Weierstrass theorem [2]: any associative-
commutative algebra without nilpotent elements is isomorphic to the direct sum of
algebras R and C.

From this theorem, it follows easily that there exist at most 3 non-isomorphic
4D algebras from this class, namely: H4, H2⊕C, C⊕C. In this context, a problem
to extrapolate the Theorems 2.1 – 2.3 to the above-mentioned 4D algebras and to
an arbitrary associative-commutative finite-dimensional algebra An arises:

Problem 2. What are necessary and sufficient conditions for the set of opera-
tors associated with the family of automorphisms of the algebra An to be norming;
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how is the induced norm related to the coefficients of the defining equation of the
algebra An?

3. From the relation (2.3) and Remark 2.1 the following (purely algebraic)
fact follows: the Berwald-Moor metrics in isotropic basis is multiplicative. Cer-
tainly, the corresponding (induced) relations on the invariance of the form S44 (x)
hold in the ’physical’ basis {E, I, J,K} with the Cayley table 2.1 for multi-
plication of the basis elements. But the multiplicative property of the form
s44 (x), s44 (x1 • x2 • x3 • x) = s44 (x1) s44 (x2) s44 (x3) s44 (x4) may be likely in-
terpreted as the ’scaling invariance’ of the properties of the 4D space-time with
the Berwald-Moor metrics and/or as its ’space-time isotropy’. In contrast to the
Berwald-Moor metrization of the 4D space time, a 4D space with the Minkowski
metrics, which is the same (up to scaling) as H4, equipped with the metric
form S24 (x), has only the property of the ’spatial’, but not ’space-time’ isotropy.
The group of (linear) isometries of the space H4 with the Minkowski metrics is
well-known without any particular relation to the Theorem 2.3.

Problem 3. May Lorenz transforms be obtained from the relations (2.9) and
(2.10), i.e. as direct consequences of the Theorem 2.3 explicit relations?

4. Let {e1, e2, e3, e4} be an ’arbitrary ’ basis in H4, e.g. an isotropic one. Let
further B be an operator (may be linear) acting from H4 into H4, so that

Bx = y = y1e1 + y2e2 + y3e3 + y4e4 ∈ H4.

The constraint on B to preserve the form of s24 (x), i.e. the norm N2 (x), may be
written in the form

N2 (x) = [x, x] = [Bx, Bx] = [y, y] = N2 (y) = N2 (Bx) . (3.1)

But, due to linearity of the operation [w1, w2], the relation (3.1) maybe rewritten
in the form

[x, x] =
4∑

i,j=1

xixj [ei, ej] = [y, y] =
4∑

i,j=1

yiyj [ei, ej] .

If the operator B is linear, then the array {bij = [ei, ej] ; i, j = 1, 2, 3, 4} will (this
is well-known) define completely the action of the operator B in the whole space
H4. Moreover, for linear isometric operations the conditions on the numbers bij

may be obtained from the Theorem 2.3. If we require the operator B to preserve
the form s34 (x), i.e. the norm N3 (x), then, due to linearity of the operation
[w1, w2, w3], we obtain the conditions for the (non-linear) operator B to be iso-
metric, these conditions will be expressed in terms of the three-dimensional array
{bijk = [ei, ej, ek] ; i, j, k = 1, 2, 3, 4} and explicit relations of the Theorem 2.2.

Problem 4. Applying the Theorem 2.2, describe operators B, preserving the
form s34 (x), i.e. the norm N3 (x).

This paper was financially supported by the non-commercial foundation for
research and development in Finsler geometry.
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An old problem in differential geometry is that of prolongation of a Riemannian
structure g (x) on a real n-dimensional C∞-manifold M, x ∈ M, to the bundle of k-jets(
Jk

0 M,πk,M
)

or, equivalently the tangent bundle
(
T kM, πk,M

)
of the higher order

accelerations. The problem belongs to so-called geometry of higher order. It was solved
in [18] for k = 1 and partially in [19] for k = 2. The same problem of prolongation can be
considered for a Finslerian structure F

(
x, y(1)

)
. In the paper [15] are given these solutions

in the general cases, using the Sasaki-Matsumoto N -lift (for k = 2, see [3] and [6]).
But, the terms of Sasaki-Matsumoto prolongation of a Riemannian metric (or Fins-

lerian metric) to T kM have not the same physical dimensions because these prolongations
is not homogeneous on the fibres of the tangent bundle of order k. This is a disavantage
in the study of the geometry of T kM using the Riemannian metrics determined by these
prolongations.

In this paper, only for a Finsler space Fn =
(
M, F

(
x, y(1)

))
, we correct

this disavantage introducing a new kind of prolongation
◦
G of the Finsler metric

gab

(
x, y(1)

)
= ∂2F/∂y(1)a∂y(1)b given by (2.1), which is 0−homogeneous. Some properties

of the Riemannian space
(
T̃ kM,

◦
G

)
are studied. The almost (k − 1) n−contact structure

◦
F from (2.13) is introduced. It has the property of homogeneity and

( ◦
G,

◦
F

)
is a metrical

almost (k − 1)n−contact structure on T kM. It depend only on the fundamental function

F
(
x, y(1)

)
of the Finsler space Fn. The space

(
T̃ kM,

◦
G,

◦
F

)
is the geometrical model

of the Finsler space Fn =
(
M, F

(
x, y(1)

))
.

Mathematical Subject Classification: 53B05, 53B15, 53B40.

The Sasaki-Matsumoto N-lift of a Finsler metric

Let M be a real n-dimensional C∞-manifold and
(
T kM, πk,M

)
its tangent

bundle of order k (or k-jet bundle, or tangent bundle of the higher order accelera-
tions).

Let us consider the Finsler space F n = (M,F ) with the fundamental function
F (x, y(1)), F : T 1M → R, and the fundamental tensor gab(x, y(1)) on T 1M given by

gab

(
x, y(1)

)
=

1

2

∂2F

∂y(1)a∂y(1)b
, (1.1)
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where gab

(
x, y(1)

)
is positively defined on T 1M.

The indices a, b, ... run over set {1, 2, ..., n} and Einstein convention of summar-
ing is adopted all over this work.

Let γa
bc

(
x, y(1)

)
be the formal Christoffel symbols of the gab

(
x, y(1)

)
, i.e. :

γa
bc

(
x, y(1)

)
=

1

2
gad

(
∂gbd

∂xc
+

∂gdc

∂xb
− ∂gbc

∂xd

)
. (1.2)

Then, the canonical semispray of F n is given by

d2xa

dt2
+ 2G

(1)

a

(
x,

dx

dt

)
= 0, (1.3)

where

G
(1)

a =
1

2
γa

bc

(
x, y(1)

)
y(1)by(1)c. (1.3’)

The canonical nonlinear connection (determined only by the function F of the
Finsler space F n) is the Cartan nonlinear connection with the coefficients

Ga
b

(
x, y(1)

)
=

∂G
(1)

a

∂y(1)b
. (1.4)

Then, on the domain of chart
(
πk

)−1
(U) ⊂ T kM,U ⊂ M, we can consider the

functions

F ∗ (
x, y(1), ..., y(k)

)
=

(
F ◦ πk

1

) (
x, y(1), ..., y(k)

)
,

g∗ab

(
x, y(1), ..., y(k)

)
=

(
gab ◦ πk

1

) (
x, y(1), ..., y(k)

)
,

∀ (
x, y(1), ..., y(k)

)
(U) ,

where πk
1 : T kM → TM, πk

1

(
x, y(1), ..., y(k)

)
=

(
x, y(1)

)
is the natural projection.

For simplicity, F ∗ and g∗ab will be denote by the same letters F and gab.

We have

10. The canonical nonlinear connection N on T̃ kM = T kM \ {0} has the dual
coefficients

M
1

a
b = Ga

b,

M
2

a
b = 1

2

(
CM

1

a
b + M

1

a
cM

1

c
b

)
,

..................................

M
k

a
b = 1

k

(
C M

k−1

a
b + M

1

a
c M
k−1

c
b

)
,

(1.5)

where C is the operator

C = y(1)a ∂

∂xa
+ 2y(2)a ∂

∂y(1)a
+ ... + ky(k)a ∂

∂y(k−1)a
(1.6)
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20. The Liouville d-vector field z(k) corresponding to the canonical nonlinear
connection N is given by

kz(k)a = ky(k)a + (k − 1) y(k−1)bM
1

a
b + ... + y(1)b M

k−1

a
b. (1.7)

30. The following Lagrangian

L
(
x, y(1), ..., y(k)

)
= gab

(
x, y(1)

)
z(k)az(k)b, (1.8)

is a regular Lagrangian on T̃ kM, determined only by F
(
x, y(1)

)
because gab and

z(k) have this property.
40. Its fundamental tensor field coincide with the fundamental tensor field on

Finsler space F n, namely on T̃ kM we have

1

2

∂2L

∂z(k)a∂z(k)b
= gab

(
x, y(1)

)
. (1.9)

50. N determines the direct decomposition

TuT
kM = N0(u)⊕N1(u)⊕ ...⊕Nk−1(u)⊕ Vk(u), ∀u ∈ T kM. (1.10)

60. The adapted cobasis
{
dxa, δy(1)a, ..., δy(k)a

}
and the adapted basis{

δ

δxa
,

δ

δy(1)a
, ...,

δ

δy(k−1)a
,

δ

δy(k)a

}
to N are depending only on fundamental function

F
(
x, y(1)

)
of Finsler space F n, where

δy(1)a = dy(1)a + M
1

a
cdxc,

δy(2)a = dy(2)a + M
1

a
cdy(1)c + M

2

a
cdxc,

.........................................

δy(k)a = dy(k)a + M
1

a
cdy(k−1)c + ... + M

k−1

a
cdy(1)c + M

k

a
cdxc,

(1.11)

and
δ

δxa
=

∂

∂xa
−N

1

c
a

∂

∂y(1)c
−N

2

c
a

∂

∂y(2)c
− ...−N

k

c
a

∂

∂y(k)c
,

δ

δy(1)a
=

∂

∂y(1)a
−N

1

c
a

∂

∂y(2)c
− ...− N

k−1

c
a

∂

∂y(k)c
,

.........................................
δ

δy(k−1)a
=

∂

∂y(k−1)c
−N

1

c
a

∂

∂y(k)c
.

(1.11’)

We know that

N
1

a
b = M

1

a
b, N

2

a
b = M

2

a
b −M

1

c
bM

1

a
c, ...,

N
k

a
b = M

k

a
b −M

1

c
b N
k−1

a
c − ...− M

k−2

c
bN

2

a
c − M

k−1

c
bN

1

a
c,

(1.12)
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and conversely

M
1

a
b = N

1

a
b,M

2

a
b = N

2

a
b + N

1

a
cM

1

c
b, ...,

M
k

a
b = N

k

a
b + N

k−1

a
cM

1

c
b + ... + N

2

a
c M
k−2

c
b + N

1

a
c M
k−1

c
b.

(1.12’)

Then, the Sasaki-Matsumoto N−lift of gab

(
x, y(1)

)
to T kM is defined by

G (u) = gab

(
x, y(1)

)
dxa ⊗ dxb +

k∑

β=1

gab

(
x, y(1)

)
δy(β)a ⊗ δy(β)b, ∀u ∈ T̃ kM. (1.13)

The following properties hold:

70. G is globally defined on T kM.
80. G is a Riemannian structure on T kM determined only by the Finsler

spaceF n.
90. G is not homogeneous on the fibres of T kM.
Namely, for the homothety ht :

(
x, y(1), ..., y(k)

) → (
x, ty(1), ..., tky(k)

)
, ∀t ∈ R+

∗ ,
we get

(G ◦ ht) (u) = gab

(
x, y(1)

)
dxa ⊗ dxb +

k∑

β=1

t2βgab

(
x, y(1)

)
δy(β)a ⊗ δy(β)b 6= G (u) .

Let us consider the F (
T kM

)− linear mapping F : χ
(
T kM

) → χ
(
T kM

)
given

in the adapted basis (1.11’) by

F

(
δ

δxa

)
= − ∂

∂y(k)a
, (1.14)

F

(
δ

δy(1)a

)
= ... = F

(
δ

δy(k−1)a

)
= 0,

F
∂

∂y(k)a
=

δ

δxa
.

It follows that:

100. F is globally defined on T kM and it is a d− tensor field of type (1, 1) .
110. F is an (k − 1) n−contact structure : F3 + F = 0.
120. F depend only on the fundamental function F

(
x, y(1)

)
of Finsler spaceF n.

130. The pair (G,F) is a Riemannian almost (k−1) n-contact structure on
T kM :

G (FX, Y ) = −G (X,FY ) ,∀X, Y ∈ χ
(
T kM

)
.

Consequently, we get

Theorem 1.1 The space
(
T kM,G,F

)
is a Riemannian almost (k−1) n- con-

tact space depending only on the fundamental function F
(
x, y(1)

)
of the Finsler

space F n = (M,F ) .
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The previous space, called ”the geometrical model on T kM of the Finsler
space” (M,F ) is important in the study of the geometry of the initial Finsler space
F n = (M,F ) .

The homogeneous prolongation to T kM of a Finsler metric

We define a new prolongation
◦
G on T kM of the fundamental tensor field

gab

(
x, y(1)

)
of a Finsler space F n = (M, F ) , which satisfies the following conditions:

10.
◦
G is 0− homogeneous with respect to y(1)a, y(2)a, ...,and y(k)a.

20. It depends only on the fundamental function F
(
x, y(1)

)
.

30. In the mechanical meaning the terms of
◦
G have the same physical dimen-

sions.

Definition 2.1. We call the homogeneous prolongation to T kM of the funda-
mental tensor field gab

(
x, y(1)

)
of a Finsler space F n = (M, F ) ,the following tensor

field on T kM :

◦
G (u) = gab

(
x, y(1)

)
dxa ⊗ dyb +

k∑

β=1

a2β

‖y(1)‖2β
gab

(
x, y(1)

)
δy(β)a ⊗ δy(β)b, ∀u ∈ T̃ kM,

(2.1)
where a > 0 is a constant imposed by application in order to preserve the physical

dimension of the components of
◦
G, and

∥∥y(1)
∥∥2

is the square of the norm of the
first Liouvill vector field

∥∥y(1)
∥∥2

= gab

(
x, y(1)

)
y(1)ay(1)b. (2.2)

We get, without difficulties:

Theorem 2.1. 1.The pair
(
T̃ kM,

◦
G

)
is a Riemann space.

2.
◦
G is a 0-homogeneous tensor field with respect to y(β)a, (β = 1, ..., k) .

3.
◦
G depends only on the fundamental function F

(
x, y(1)

)
of Finsler space F n.

4. The distributions N0, N1, ..., Nk−1 and Vk are orthogonal, in pairs, with

respect to
◦
G.

We can write
◦
G in the form

◦
G =

◦
GH +

◦
GV1 + ... +

◦
GVk , (2.3)

where
◦
GH = gab

(
x, y(1)

)
dxa ⊗ dxb,

◦
GVβ = gab

(
x, y(1)

)
dy(β)a ⊗ dy(β)b (2.4)

and

g
(β)

ab

(
x, y(1)

)
=

a2β

‖y(1)‖2β
gab

(
x, y(1)

)
, (β = 1, ..., k) . (2.5)
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As usually, let us denote

∂a =
∂

∂xa
,
·
∂1a =

∂

∂y(1)a
, ...,

·
∂ka =

∂

∂y(k)a
,

and from now on we denote the adapted basis (1.11’) by

{
δa, δ1a, ..., δ(k−1)a, δka

}
.

In order to study the geometry of Riemann space
(
T̃ kM,

◦
G

)
, we can apply the

theory of the (h, v1, ..., vk)− Riemannian metric given by author in [5] (for k = 2,
see [2], [4]).

A linear connection D on T kM is called a metrical N -linear connection with

respect to
◦
G if DX

◦
G = 0, ∀X ∈ χ

(
T kM

)
and it preserves by paralelism the

horizontal and vertical distributions N0, N1, ..., Nk−1, Vk.
We can easily prove the existence of the metrical N -linear connections in the

adapted basis. To this aim we represent a linear connection D in the adapted basis
in the following form:

Dδcδb =
0

L
(00)

a
bcδa +

k∑
β=1

β

L
(00)

a
bcδβa,

Dδcδγb =
0

L
(γ0)

a
bcδa +

k∑
β=1

β

L
(γ0)

a
bcδβa,

(
γ = 1, ..., k; δka =

·
∂ka

)
,

Dδ1cδb =
0

C
(01)

a
bcδa +

k∑
β=1

β

C
(01)

a
bcδβa,

Dδ1cδγb =
0

C
(γ1)

a
bcδa +

k∑
β=1

β

C
(γ1)

a
bcδβa,

(
γ = 1, ..., k; δka =

·
∂ka

)
,

..............................................................................

Dδkc
δb =

0

C
(0k)

a
bcδa +

k∑
β=1

β

C
(0k)

a
bcδβa,

Dδkc
δγb =

0

C
(γk)

a
bcδa +

k∑
β=1

β

C
(γk)

a
bcδβa,

(
γ = 1, ..., k; δka =

·
∂ka

)
.

(2.6)

The system of functions
(

α

L
(00)

a
bc,

α

L
(β0)

a
bc,

α

C
(01)

a
bc,

α

C
(β1)

a
bc, ...,

α

C
(0k)

a
bc,

α

C
(βk)

a
bc

)
, (α = 0, 1, ..., k; β = 1, ..., k) ,

are the coefficients of D and
(

0

L
(00)

a
bc,

β

L
(β0)

a
bc,

0

C
(01)

a
bc,

β

C
(β1)

a
bc, ...,

0

C
(0k)

a
bc,

β

C
(βk)

a
bc

)
, (β = 1, ..., k) ,

are the coefficients of an N -linear connection DΓ (N) on T kM.
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Also, we will denote the coefficients of DΓ (N) with

(
H

L
(00)

a
bc,

Vβ

L
(β0)

a
bc,

H

C
(01)

a
bc,

Vβ

C
(β1)

a
bc, ...,

H

C
(0k)

a
bc,

Vβ

C
(βk)

a
bc

)
, (β = 1, ..., k) .

It is not difficult to prove

Theorem 2.2. There exist metrical N -linear connection DΓ (N) on T kM with

respect to the homogeneous prolongation
◦
G, which depend only of the fundamental

function F
(
x, y(1)

)
of the Finsler space F n. One of them has the ”horizontal”

coefficients:

H

L
(00)

a
bc =

1

2
gad (δbgdc + δcgbd − δdgbc) ,

Vβ

L
(β0)

a
bc =

1

2
g

(β)

ad

(
δb g

(β)
dc + δc g

(β)
bd − δd g

(β)
bc

)
, (β = 1, ..., k) ,

(2.7)

the ”v1-vertical” coefficients:

Vβ

C
(β1)

a
bc =

1

2
gad (δ1bgdc + δ1cgbd − δ1dgbc) , (3.2)

Vβ

C
(β1)

a
bc =

1

2
g

(β)

ad

(
δ1b g

(β)
dc + δ1c g

(β)
bd − δ1d g

(β)
bc

)
, (β = 1, ..., k) ,

and the ”vγ-vertical” coefficients vanish:

H

C
(0γ)

a
bc =

V1

C
(1γ)

a
bc = ... =

Vk

C
(kγ)

a
bc = 0, (γ = 2, ..., k) . (2.9)

Let us remark the particular form of the metrical N -linear connection DΓ (N)
in (2.7), (2.8) and (2.9). Because it depends only on the fundamental function
F

(
x, y(1)

)
of the Finsler space F n, DΓ (N) from the Theorem 2.2 will be called

the canonical metrical N -linear connection of the space

(
T̃ kM,

◦
G

)
.

Let us denote

σc = −1

2

1

F 2
δcF

2, τc = −1

2

1

F 2
δ1cF

2. (2.10)

We obtain

Theorem 2.3. The coeffients of the metrical N -linear connection DΓ (N) with

respect to
◦
G given by (2.1), satisfy the following equations:

Vβ

C
(β0)

a
bc =

H

L
(00)

a
bc + β

(
δa
b σc + δa

c σb − gbcg
adσα

)
,

Vβ

C
(β1)

a
bc =

Vβ

C
(01)

a
bc + β

(
δa
b σc + δa

c σb − gbcg
adσα

)
, (β = 1, ..., k) .

(2.11)
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Indeed, substituting the tensors g
(1)

ab, g
(2)

ab, ..., g
(k)

ab given by (2.5) in (2.7) and

(2.8) and using (2.10), one obtains (2.11).

It is not difficult to prove

Theorem 2.4. The coefficients of the canonical metrical N -linear connection

DΓ (N) =

(
H

L
(00)

a
bc,

Vβ

L
(β0)

a
bc,

H

C
(01)

a
bc,

Vβ

C
(β1)

a
bc, ...,

H

C
(0k)

a
bc,

Vβ

C
(βk)

a
bc

)
, (β = 1, ..., k) satisfy the

equations
V1

L
(10)

a
bc =

H

L
(00)

a
bc + δa

b σc + δa
c σb − gbcg

adσα,

V2

L
(20)

a
bc =

V2

L
(10)

a
bc + δa

b σc + δa
c σb − gbcg

adσα,

.................................................
Vk

L
(k0)

a
bc =

Vk−1

L
(k−10)

a
bc + δa

b σc + δa
c σb − gbcg

adσα,

V1

C
(11)

a
bc =

H

C
(01)

a
bc + δa

b σc + δa
c σb − gbcg

adσα,

V2

C
(21)

a
bc =

V1

C
(11)

a
bc + δa

b σc + δa
c σb − gbcg

adσα,

.................................................
Vk

C
(k1)

a
bc =

Vk−1

C
(k−11)

a
bc + δa

b σc + δa
c σb − gbcg

adσα,

H

C
(0γ)

a
bc =

V1

C
(1γ)

a
bc = ... =

Vk

C
(kγ)

a
bc = 0, (γ = 2, ..., k) .

(2.12)

The particular form (2.12) of the canonical metrical N -linear connection

shows that the curvature of the vk-connection

(
Vk

L
(k0)

a
bc,

Vk

C
(k1)

a
bc, ...,

Vk

C
(kk)

a
bc

)
lead

to the Weyl’s conformal curvature tensor with respect to the curvature of

the vk−1-connection

(
Vk−1

L
(k−10)

a
bc,

V k−1

C
(k−11)

a
bc, ...,

V k−1

C
(k−1k)

a
bc

)
, ...,and the curvature of the

v1-connection

(
V1

L
(10)

a
bc,

V1

C
(11)

a
bc, ...,

V2

C
(1k)

a
bc

)
lead to the Weyl’s conformal curvature of

the h-connection

(
H

L
(00)

a
bc,

H

C
(01)

a
bc, ...,

H

C
(0k)

a
bc

)
.

This property shows the necessity to construct a gauge theory in the Asanov

sense, [1], for the Riemannian metric given on T̃ kM by the prolongation
◦
G, from

(4.1).

Now, we remark that the almost (k−1) n-contact structure F defined in

(1.14) has not the property of homogeneity. The F
(
T̃ kM

)
-linear mapping
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F : χ
(
T̃ kM

)
→ χ

(
T̃ kM

)
, applies the 1-homogeneous vector field δa into the

(1−k)-homogeneous vector field δka =
·
∂ka, (a = 1, ..., n) .

Therefore, we consider the F
(
T̃ kM

)
-linear mapping

◦
F : χ

(
T̃ kM

)
→

χ
(
T̃ kM

)
, given in the adapted basis by

◦
F (δa) = −

∥∥y(1)
∥∥k

ak

·
∂ka, (2.13)

◦
F (δ1a) = ... =

◦
F (δk−1a) = 0,

◦
F

( ·
∂ka

)
=

ak

‖y(1)‖k
δa.

By direct calculus, we can prove:

Theorem 2.5.
◦
F has the following properties:

1.
◦
F is a tensor field of type (1.1) on

(
T̃ kM

)
.

2.
◦
F is an almost (k−1) n-contact structure on T̃ kM : F3 + F = 0.

3.
◦
F depends only the fundamental function F

(
x, y(1)

)
of the Finsler space F n.

4.
◦
F is homogeneous on the fibres on T̃ kM.

5. The pair
( ◦
G,

◦
F

)
is a metrical (k−1) n-contact structure on T̃ kM :

◦
G

( ◦
FX,Y

)
= −

◦
G

(
X,

◦
FY

)
, ∀X, Y ∈ χ

(
T̃ kM

)
.

The space
(
T̃ kM,

◦
G,

◦
F

)
is the geometrical model of the Finsler space F n =

(M,F ) , with respect to the homogeneous lift
◦
G given by (2.1). It can be used for

studying the Finslerian higher order gauge theory and, in general, the geometry of
the Finsler space F n = (M, F ) .
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[7] I. Čomić, The Curvature Theory of Generalized Connection in Osc2M, Balkan J.
Geom. and Its Appl., Vol. 1, No. 1, 1996, 21–29.
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The Berwald-Moor Metric in the Tangent Bundle

of the Second Order
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As an application of the results of the first author obtained in the papers [1] and [2],
the geometry of the second order tangent bundle T 2M (or second order jet bundle J2

0M)
endowed with two special types of metrics compatible with the 2-contact structures is
studied. The particularity of these two models is that the horizontal and the v(1)-part
of the metric are both given by the same Riemannian metric (respectively, its horizontal
part is Riemannian), while its v(2)-part is given by the flag-Finsler Berwald-Moor metric
(respectively, v(1) and v(2)-parts are given by the flag-Finsler Berwald-Moor metric [5]).

MSC 2000: 53C60, 58B20, 70G45.

1 The 2-Tangent Bundle T 2M

Let M be a real 4-dimensional manifold of class C∞, (T 2M, π2,M) its second

order tangent bundle, [1], and let T̃ 2M be the space T 2M without its null section.
For a point u ∈ T 2M , let (xi, y(1)i, y(2)i) be its coordinates in a local chart.

Let N be a nonlinear connection, [3], [8]-[13], and denote its coefficients by(
N
1

i
j, N

2

i
j

)
, i, j = 1, ..., 4. Then, N determines the direct decomposition

TuT
2M = N0(u)⊕N1(u)⊕ V2(u), ∀u ∈ T 2M. (1)

The adapted basis to (1) is (δi, δ1i, δ2i) and its dual basis is (dxi, δy(1)i, δy(2)i),
where 




δi =
δ

δxi
=

∂

∂xi
−N

1

k
i

∂

∂y(1)k
−N

2

k
i

∂

∂y(2)k

δ1i =
δ

δy(1)i
=

∂

∂y(1)i
−N

1

k
i

∂

∂y(2)k

δ2i =
∂

∂y(2)i
= ∂̇2i,

(2)

respectively, 



δy(1)i = dy(1)i + M
1

i
kdxk

δy(2)i = dy(2)i + M
1

i
kdy(1)k + M

2

i
kdxk,

(3)

where M
1

i
k,M

2

i
k are the dual coefficients of the nonlinear connection N .



Gh. Atanasiu, N. Brinzei Berwald-Moor metric in tangent bundle of second order 235

Then, a vector field X ∈ X (T 2M) is represented in the local adapted basis as

X = X(0)iδi + X(1)iδ1i + X(2)iδ2i, (4)

with the three right terms (called d-vector fields) belonging to the distributions N,
N1 and V2 respectively.

A 1-form ω ∈ X ∗ (T 2M) will be decomposed as

ω = ω
(0)
i dxi + ω

(1)
i δy(1)i + ω

(2)
i δy(2)i.

Similarly, a tensor field T ∈ T r
s (T 2M) can be split with respect to (1) into com-

ponents, which will be called d-tensor fields.

2 N-linear connections. d-tensors of curvature

An N-linear connection D, [1], [2], is a linear connection on T 2M, which pre-
serves by parallelism the distributions N,N1 and V2.

An N -linear connection is locally given by its coefficients

DΓ (N) =

(
L

(00)

i
jk, L

(10)

i
jk, L

(20)

i
jk, C

(01)

i
jk, C

(11)

i
jk, C

(21)

i
jk, C

(02)

i
jk, C

(12)

i
jk, C

(22)

i
jk

)
, (5)

where 



Dδk
δj = L

(00)

i
jkδi, Dδk

δ1j = L
(10)

i
jkδ1i, Dδk

δ2j = L
(20)

i
jkδ2i

Dδ1k
δj = C

(01)

i
jkδi, Dδ1k

δ1j = C
(11)

i
jkδ1i, Dδ1k

δ2j = C
(21)

i
jkδ2i

Dδ2k
δj = C

(02)

i
jkδi, Dδ2k

δ1j = C
(12)

i
jkδ1i, Dδ2k

δ2j = C
(22)

i
jkδ2i

. (6)

The curvature of the N -linear connection D,

R (X, Y ) Z = DXDY Z −DY DXZ −D[X,Y ]Z,

is completely determined by its components (which are d-tensors) R (δγl, δβk) δαj.
Namely, the 2-forms of curvature of an N - linear connection are, [1], [2],

Ω
(α)

i
j =

1

2
R

(0α)

i
j kldxk ∧ dxl + P

(1α)

i
j kldxk ∧ δy(1)l +

+ P
(2α)

i
j kldxk ∧ δy(2)l +

1

2
S

(1α)

i
j klδy

(1)k ∧ δy(1)l + (7)

+ Q
(2α)

i
j klδy

(1)k ∧ δy(2)l +
1

2
S

(2α)

i
j klδy

(2)k ∧ δy(2)l,

α = 0, 1, 2, where the coefficients R
(0α)

i
j kl, P

(βα)

i
j kl, Q

(2α)

i
j kl, S

(βα)

i
j kl are d-tensors, named

the d-tensors of curvature of the N -linear connection D.
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3 Metric structures on T 2M

A Riemannian metric on T 2M is a tensor field G of type (0, 2), which is non-
degenerate in each u ∈ T 2M and positively defined on T 2M.

In this paper, we shall consider only metrics in the form

G = g
(0)

ijdxi ⊗ dxj + g
(1)

ijδy
(1)i ⊗ δy(1)j + g

(2)
ijδy

(2)i ⊗ δy(2)j, (8)

where g
(α)

ij = g
(α)

ij(x, y(1), y(2)); this is, such that the distributions N, N1 and V2

generated by the nonlinear connection N be orthogonal in pairs with respect to G.
Let also

F = 4
√

y(1)1y(1)2y(1)3y(1)4

be the Berwald-Moor Finsler function, [14]–[14], and the generalized Lagrange
metrics on M, given by

hij =
1

12F 4

∂2F 4

∂yi∂yj
, h̃ij =

1

12F 6

∂2F 4

∂yi∂yj
. (9)

(h defined above is the same as the one in [5], with the only difference that here
we have divided by F 4 or F 6 instead of F 2, in order that the obtained tensors be
homogeneous of degree 2, respectively, 4).

In the following, we shall use two particular kinds of metrics on T̃ 2M , namely:

1. g
(0)

ij = g
(1)

ij = gij(x), g
(2)

ij = h̃ij(y
(1)),

2. g
(0)

ij = gij(x), g
(1)

ij = g
(2)

ij = hij(y
(1)),

gij(x) being a Riemannian metric on M, and hij, h̃ij as above.
These two examples have an important property, namely, they are compatible

to the almost contact structures F introduced in [1].
An N -linear connection D is called metrical if DXG = 0, ∀X ∈ X (T 2M). The

local expression of this equality is given in [1].

4 The Ricci tensor Ric (D)

If we consider the Ricci tensor Ric (D) , as the trace of the linear operator

V 7→ R (V, X) Y, ∀V = V (0)iδi + V (1)iδ1i + V (2)iδ2i ∈ X
(
T 2M

)
, (10)

then, [3], the Ricci tensor Ric (D) has the following components:

Ric (D)

(
δ

δxj
,

δ

δxi

)
= R

(00)

l
i jl =: Rij;
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Ric (D)

(
δ

δy(1)j
,

δ

δxi

)
= − P

(10)

l
i lj =: −

2

P
(10)

ij;

Ric (D)

(
δ

δy(2)j
,

δ

δxi

)
= − P

(20)

l
i lj =: −

2

P
(20)

ij;

Ric (D)

(
δ

δxj
,

δ

δy(1)i

)
= P

(11)

l
i jl =:

1

P
(11)

ij;

Ric (D)

(
δ

δy(1)j
,

δ

δy(1)i

)
= S

(11)

l
i jl =: S

(1)
ij;

Ric (D)

(
δ

δy(2)j
,

δ

δy(1)i

)
= − Q

(21)

l
i lj =: −

2

Q
(21)

ij;

Ric (D)

(
δ

δxj
,

δ

δy(2)i

)
= P

(22)

l
i jl =:

1

P
(22)

ij;

Ric (D)

(
δ

δy(1)j
,

δ

δy(2)i

)
= Q

(22)

l
i jl =:

1

Q
(22)

ij;

Ric (D)

(
δ

δy(2)j
,

δ

δy(2)i

)
= S

(22)

l
i jl =: S

(2)
ij.

5 Canonical structures

Let (M, g) be a Riemannian manifold and T 2M , its second order tangent
bundle. The canonical nonlinear connection N is defined (cf. with R. Miron
and Gh. Atanasiu, [13]) by its dual coefficients

M
(1)

i
j = γi

jky
(1)k, M

(2)

i
j =

1

2

{
C

(
γi

jky
(1)k

)
+ M

(1)

i
kM

(1)

k
j

}
, (11)

γi
jk = γi

jk (x) being the Christoffel symbols of g and C = y(1)i ∂

∂xi
+ 2y(2)i ∂

∂y(1)i
.

Let
N
(1)

i
j = M

(1)

i
j, N

(2)

i
j = M

(2)

i
j + M

(1)

i
kM

(1)

k
j

be its (direct) coefficients. Then, the coefficients of the Lie brackets, [1],

[δ0j, δ0k] = R
(01)

i
jkδ1i + R

(02)

i
jkδ2i, [δ0j, δ1k] = B

(11)

i
jkδ1i + B

(12)

i
jkδ2i

[δ0j, δ2k] = B
(21)

i
jkδ1i + B

(22)

i
jkδ2i, [δ1j, δ1k] = R

(12)

i
jkδ2i (12)

[δ1j, δ2k] = B
(21)

i
jkδ2i, [δ2j, δ2k] = 0

have the property that

B
(11)

i
jk = B

(22)

i
jk = γi

jk, B
(21)

i
jk = R

(12)

i
jk = R

(22)

i
jk = 0. (13)
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In this paper, we shall use the metrical N -linear connection introduced by the
first author, [1], given by the coefficients:

L
(00)

i
jk =

1

2
g
(0)

il(δk g
(0)

jl + δj g
(0)

lk − δl g
(0)

jk)

L
(β0)

i
jk = B

(ββ)

i
kj +

1

2
g

(β)

il(δk g
(β)

jl − B
(ββ)

m
kj g

(β)
ml − B

(ββ)

m
kl g

(β)
jm)

C
(δ1)

i
jk =

1

2
g
(δ)

ilδ1k g
(δ)

jl, (δ = 0, 2), (14)

C
(ε2)

i
jk =

1

2
g
(ε)

il∂̇2k g
(ε)

jl, (ε = 0, 1),

C
(ββ)

i
jk =

1

2
g

(β)

il(δβk g
(β)

jl + δβj g
(β)

lk − δβl g
(β)

jk), δ2i = ∂2i,

where β = 1, 2.

Then, we have to remark that, taking into account the relations (13), two of
the coefficients of the torsion tensor vanish, namely

P
(21)

i
jk = S

(12)

i
jk = 0, (15)

where P
(21)

i
jkδ1i = v1T (δ2k, δj), S

(12)

i
jk∂̇2i = v2T (δ1k, δ1j).

6 The case of the g − h− h−metric

Let the metric structure of T̃ 2M be given by

G = gij(x)dxi ⊗ dxj + hij(y
(1)) δy(1)i ⊗ δy(1)j + hij(y

(1))δy(2)i ⊗ δy(2)j,

where g is a Riemannian metric on M and h is as in (9). Then, G is h-Riemannian
and v1-, v2-locally Minkovski. In this case, the detailed expressions of the co-
efficients DΓ(N) of the canonical N -linear connection and of its curvatures and
torsions are given in [1].

By applying the results in the cited paper and the relation (15), we obtain by
a direct computation the following result:

Proposition 1. The only nonvanishing components of the Ricci tensor Ric(D) of
the canonical-linear conenction are

Ric (D)

(
δ

δxj
,

δ

δxi

)
= R

(00)

k
i jk =: rij;

Ric (D)

(
δ

δxj
,

δ

δy(1)i

)
= P

(11)

k
i jk =:

1

P
(11)

ij;

Ric (D)

(
δ

δy(1)j
,

δ

δy(1)i

)
= S

(11)

k
i jk =: S

(1)
ij,



Gh. Atanasiu, N. Brinzei Berwald-Moor metric in tangent bundle of second order 239

where rij = rk
i jk denotes the Ricci tensor of Levi-Civita connection attached to g.

By applying the results in [3], we can state:

Proposition 2. The Einstein equations associated to the metrical N-linear con-
nection D are

Rij − 1
2
(r + S

(1)
)gij = κ T

(00)ij

;

1

P
(11)

ij = κ T
(10)

ij;

S
(1)

ij − 1
2
(r + S

(1)
)hij = κ T

(11)
ij, α = 1, 2;

T
(20)

ij = T
(01)

ij= T
(21)

ij = T
(02)

ij = T
(12)

ij = T
(22)

ij = 0.

7 The case of the g − g − h̃−metric

Proposition 3. Now, let the metric structure of T̃ 2M be given by

G = gij(x)dxi ⊗ dxj + gij(x) δy(1)i ⊗ δy(1)j + h̃ij(y
(1))δy(2)i ⊗ δy(2)j,

where g is a Riemannian metric on M and h̃ is as in (9). Then, G is h-, v1-
Riemannian and v2-locally Minkowski.

In order to determine the components of the Ricci tensor, we first have to
compute coefficients of the canonical N -linear connection in our case. We have:

L
(00)

i
jk = γi

jk, L
(10)

i
jk = L

(10)

i
jk(x), L

(20)

i
jk = L

(20)

i
jk(x, y(1))

C
(01)

i
jk = C

(11)

i
jk = 0, C

(21)

i
jk =

1

2
h̃ilδ1kh̃jl

C
(02)

i
jk = C

(12)

i
jk = C

(22)

i
jk = 0.

Using the expressions above, we obtain

Proposition 4. All the components of the Ricci tensor of the N-linear connection
D vanish, except

Ric (D)

(
δ

δxj
,

δ

δxi

)
= R

(00)

l
i jl =: rij,

where rij denotes the Ricci tensor of the Levi-Civita connection of metric g on M.

As a consequence, the Einstein equations can be written in this case as:

rij − 1

2
rgij = κ T

(00)
ij,

the other components of the energy-momentum tensor being identically 0. The
equations above are exactly the Einstein equations of the Levi-Civita connection
∇ of g = g(x). Obviously, the energy conservation law is satisfied.
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[2] Gh. Atanasiu, Linear connections in the higher-order geometry, Proc. of the Int.
Meeting ”Physical Interpretations of Relativity Theory”, 4–7 July 2005, Bauman
Moscow State Tech. University, Moscow.

[3] Gh. Atanasiu, N. Brinzei-Voicu, Einstein equations in the geometry of second order,
Studia Mathematica, Cluj-Napoca, 3 (2005), 21–29.

[4] Gh. Atanasiu, N. Brinzei, Einstein equations in the higher order differential geom-
etry, Proc. of the Int. Meeting ”Physical Interpretations of Relativity Theory”, 4–7
July 2005, Bauman Moscow State Tech. University, Moscow.

[5] V. Balan, N., Brinzei, Einstein equations for the Berwald-Moor type Euclidean-
locally Minkowski relativistic model, to appear.

[6] R. Miron, The Geometry of Higher Order Lagrange Spaces. Applications to Mechan-
ics and Physics, Kluwer Acad. Publ. FTPM no. 82, 1997.

[7] R. Miron, Gh Atanasiu, Geometrical theory of gravitational and electromagnetic
fields in Higher Order Lagrange Spaces, Tsukuba J. of Math. 20, 1 (1996), 137–149.

[8] R. Miron, Gh. Atanasiu, Compendium on the higher-order Lagrange spaces: The
geometry of k-osculator bundles. Prolongation of the Riemannian, Finslerian and
Lagrangian structures. Lagrange spaces, Tensor N. S. 53 (1993), 39–57.

[9] R. Miron, Gh. Atanasiu, Compendium sur les espaces Lagrange d’ordre superieur:
La geometrie du fibre k-osculateur. Le prolongement des structures Riemanniennes,
Finsleriennes et Lagrangiennes. Les espaces L(k)n, Univ. Timişoara, Seminarul de
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1 The dual bundle (T ∗2M, π∗2,M) of the 2-tangent bundle
(T 2M, π2,M)

Let M be a real differentiable manifold of dimension n. A point of M will
be denoted by x and its local coordinates in a chart (U,ϕ), as ϕ(x) = (xa). The
indices a, b, ... will further run over the set {1, ..., n} and the Einstein convention
of transvection will be adapted all over this work. Let (TM, π, M) be the tangent
bundle of the manifold M and let (T ∗M, π∗,M) be its cotangent bundle ([7],[9]).

Definition 1.1. We call the dual bundle of the 2−tangent bundle
(T 2M, π2,M), the differentiable bundle (T ∗2M,π∗2,M) whose total space is

T ∗2M = TM ×M T ∗M (1.1)

Sometimes we shall denote (T ∗2M, π∗2,M) briefly by T ∗2M . A point u ∈ T ∗2M
will be denoted by u = (x, y, p), having the local coordinates (xa, ya, pa). The
projection is given by π∗2(u) = π∗2(x, y, p) = x. Evidently, we take the projections
on the factors of the fibered product of (1.1): π∗21 : T ∗2M → TM, π : TM → M
as being π∗21 (x, y, p) = (x, y) and π∗(x, y) = x; also, π∗ : T ∗2M −→ T ∗M is given
by π∗(u) = π∗(x, y, p) = (x, p).
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The change of local coordinates on the manifold T ∗2M is:





x̃a = x̃a(x1, ..., xn), det
(∂x̃a

∂xb

) 6= 0,

ỹa =
∂x̃a

∂xb
yb,

p̃a =
∂xb

∂x̃a
pb.

(1.2)

The dimension of the manifold T ∗2M is 3n.
The null section O : M → T ∗2M of the projection π∗2 is defined by O : (x) ∈

M → (x, 0, 0) ∈ T ∗2M , where we denote T̃ ∗2M = T ∗2M \ {0} .
Let us consider the tangent bundle of the differentiable manifold T ∗2M ,

(TT ∗2M, τ ∗2, T ∗2M), where τ ∗2 is the canonical projection and the vertical dis-
tribution V : u ∈ T ∗2M −→ V (u) ⊂ TuT

∗2M generated by the vector fields{
∂

∂ya
|u,

∂

∂pa

|u
}

, ∀u ∈ T ∗2M. We shall denote the natural basis as

∂a =
∂

∂xa
,

·
∂a =

∂

∂ya
,

·
∂a =

∂

∂pa

.

By means of (1.2), we can consider the following subdistributions of V :

V1 : u ∈ T ∗2M −→ V1(u) ⊂ TuT
∗2M,

and

W2 : u ∈ T ∗2M −→ W2(u) ⊂ TuT
∗2M,

locally generated by the vector fields

{ ·
∂a |u, u ∈ T ∗2M

}
and

{ ·
∂a |u, u ∈ T ∗2M

}

respectively. Clearly,we have

V (u) = V1(u)⊕W2(u), ∀u ∈ T ∗2M. (1.3)

Let us consider the following forms

ω = padxa (Liouville 1-form), and θ = dω = dpa ∧ dxa.

Theorem 1.1 1◦. The differential forms ω and θ are globally defined on the
manifold T ∗2M.
2◦. The 2-form θ is closed and the rank of the form θ is 2n.
3◦. The form θ provides a is a presymplectic structure on T ∗2M.

We note that the following F(T ∗2M)-linear mapping

J : X (T ∗2M) → X (T ∗2M),
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defined by

J(∂a) =
·
∂a, J(

·
∂a) = 0, J(

·
∂a) = 0, ∀u ∈ T̃ ∗2M,

has geometrical meaning. It is not difficult to prove the following result:

Theorem 1.2 1◦. J is a tensor field of type (1, 1) on the manifold T ∗2M.
2◦. J is a tangent structure on T ∗2M , i.e., J0J = 0.
3◦. J is an integrable structure.
4◦. J0J = J2 = 0.
5◦. Ker J = V1 ⊕W2, Im J = V1.

With these object fields we can construct the geometry of the manifold T ∗2M .

2 Nonlinear connections on T ∗2M

We extend the classical definition of the nonlinear connection ([11]) to the total
space of the dual bundle (T ∗2M, π∗2,M).

Definition 2.1 A nonlinear connection of the manifold T ∗2M is a regular
distribution N on T ∗2M , supplimentary to the vertical distribution V , i.e.,

TuT
∗2M = N(u)⊕ V (u),∀u ∈ T ∗2M. (2.1)

Taking into account (1.3), it follows that the distribution N has the property

TuT
∗2M = N(u)⊕ V1(u)⊕W2(u),∀u ∈ T ∗2M. (2.2)

Therefore, the main geometrical objects on T ∗2M will be reported to the direct
sum (1.6) of vector spaces.

We denote by {
δ

δxa
,

∂

∂ya
,

∂

∂pa

}
, (a = 1, ..., n), (2.3)

a local basis adapted to N, V1,W2. Clearly, we have

δ

δxa
=

∂

∂xa
−N b

a

∂

∂yb
+ Nab

∂

∂pb

. (2.4)

The system of functions (N b
a(x, y, p), Nab(x, y, p)) form the coefficients of the non-

linear connection N.

With respect to the coordinate transformations (1.2), we have the rule of
change:

δ

δxa
=

∂x̃b

∂xa

δ

δx̃b
,

∂

∂ya
=

∂x̃b

∂xa

∂

∂ỹb
,

∂

∂pa

=
∂xa

∂x̃b

∂

∂p̃b

(2.5)
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Theorem 2.1 With respect to (1.2), the coefficients (Na
b, Nab) of a nonlinear con-

nection N on T ∗2M obey the rule

Ña
c

∂x̃c

∂xb
= N c

b

∂x̃a

∂xc
− ∂ỹa

∂xb
,

Ñab = ∂xc

∂x̃a

∂xd

∂x̃b
Ncd + pc

∂2xc

∂x̃a∂x̃b
.

(2.6)

Conversely, if the system of functions (Na
b, Nab) are given on the every domain of

local chart of the manifold T ∗2M , such that the equations (2.6 hold, then (Na
b, Nab)

are the coefficients of a nonlinear connection on T ∗2M.

Assuming that the manifold M is paracompact it follows that the manifold
T ∗2M is paracompact, too. Let γab(x), x ∈ M be a Riemannian metric on M and
γa

bc(x) be its Christoffel symbols. Setting

fb = γa
bc(x)pay

c.

Then, the system of functions

Na
b =

·
∂afb, Nab =

·
∂bfa, (2.7)

are geometrical object fields on T ∗2M, having the rules of transformations (2.6),
with respect to the change of local coordinates (1.2). Hence we get the following

Theorem 2.2 If the base manifold M is paracompact, then there exists a non-
linear connection on the manifold T ∗2M.

We shall further denote the basis (1.7) by:

{
δa,

·
∂a,

·
∂a

}
.

The dual basis of the adapted basis (1.7) is given by

{dxa, δya, δpa} , (2.8)

where

δya = dya + Na
bdxb, δpa = dpa −Nbadxb.

With respect to (1.2), the covector fields (2.8) are transformed by the rules:

dx̃a =
∂x̃a

∂xb
dxb, δỹa =

∂x̃a

∂xb
δyb, δp̃a =

∂xb

∂x̃a
δpb.
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3 Distinguished vector and covector fields.
The Algebra of distinguished tensor fields.

Let N be a nonlinear connection on T ∗2M. Let h, v1, w2 be the projectors defined
by the distributions N, V1,W2 of the direct decomposition (1.6). We have

h + v1 + w2 = I, h2 = h, v2
1 = v1, w2

2 = w2, (3.1)

h ◦ v1 = v1 ◦ h = 0, h ◦ w2 = w2 ◦ h = 0, v1 ◦ w2 = w2 ◦ v1 = 0.

If X ∈ χ(T̃ ∗2M), then we denote

XH = hX, XV1 = v1X, XW2 = w2X.

Therefore we have the unique decomposition

X = XH + XV1 + XW2 . (3.2)

Each of the components XH , XV1 , XW2 are called d-vector fields on T̃ ∗2M.

In the adapted basis (1.7) we get

XH = X(0)aδa, XV1 = X(1)a
·
∂a, XW2 = X

(2)
a

·
∂a.

By means of (2.5) we have

X̃(0)a =
∂x̃a

∂xb
X(0)b, X̃(1)a =

∂x̃a

∂xb
X(1)b, X̃

(2)
a =

∂xb

∂x̃a
X
(2)

b,

i.e., the classical rules of the transformations of the local coordinates of vector and
covector fields on M. Therefore, X(0)a, X(1)a are called d-vector fields and X

(2)
a is

called a d-covector field on the manifold T ∗2M.

A similar theory can be done for distinguished 1-forms.

With respect to the direct decomposition (1.6) a 1-form ω ∈ χ∗(T ∗2M) can be
uniquely written in the form:

ω = ωH + ωV1 + ωW2 ,

where

ωH = ω ◦ h, ωV1 = ω ◦ v1, ωW2 = ω ◦ w2.

In the adapted cobasis (2.8), we have

ω = ω
(0)

adxa + ω
(1)

aδy
a + ω(2)aδpa.
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The quantities ωH , ωV1 , ωW2 are called d−1-forms. The coefficients ω
(0)

a, ω
(1)

a, ω
(2)a

are transformed by (1.2) as follows:

ω
(0)

a =
∂x̃b

∂xa
ω̃
(0)

a, ω
(1)

a =
∂x̃b

∂xa
ω̃
(1)

b, ω̃(2)a =
∂x̃a

∂xb
ω(2)b.

Hence ω
(0)

a and ω
(1)

a are called d-covector fields and ω(2)a is called a d-vector field.

Definition 3.1 A distinguished tensor (briefly, d−tensor field) on the manifold
T ∗2M is a d-tensor field T of type (r, s) on T ∗2M , with the property

T (
1
ω, ...,

r
ω, X

1
, ..., X

s
) = T (

1
ωH , ...,

r
ωW2 , X

1

H , ..., X
s

W2),

∀ 1
ω, ...,

r
ω ∈ χ∗(T ∗2M), ∀X

1
, ..., X

s
∈ χ(T ∗2M).

For instance, every set of components XH , XV1 , XW2 of a vector field X forms a
d-tensor field of type (1, 0), and every set of components ωH , ωV1 , ωW2 of a 1-form
ω is a d-tensor field of type (0, 1).

In the adapted basis (δa,
·
∂a,

·
∂a) and its dual basis (dxa, δya, δpa), a d-tensor

field T of type (r, s) can written in the form:

T = T a1...ar

b1...bs
(x, y, p)δa1 ⊗ ...⊗

·
∂bs ⊗ dxb1 ⊗ ...⊗ δpar ,

where

T a1...ar

b1...bs
(x, y, p) = T (dxb1 , ..., δpar , δa1 , ...,

·
∂bs).

It follows that the set
{

1, δa,
·
∂a,

·
∂a

}
generates the algebra of the d-tensor fields

over the ring of functions F(T ∗2M).
With respect to the transformation of the coordinates on T ∗2M, the local co-

efficients T a1...ar

b1...bs
of T are transformed by the classical rule

T̃ c1...cr

d1...ds
=

∂x̃c1

∂xa1
...

∂x̃cr

∂xar

∂xb1

∂x̃d1
...

∂xbs

∂x̃ds
T a1...ar

b1...bs
.

4 Lie brackets

In applications, the Lie brackets of the vector fields (δa,
·
∂a,

·
∂a) of the basis

adapted to the direct decomposition (1.6), are important. By a direct calculus, we
have:

Proposition 4.1 The Lie brackets of the vector fields of the adapted basis are
given by
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[δb, δc] = R
(01)

a
bc

·
∂a + R

(02)
abc

·
∂a,

[
δb,

·
∂c

]
= B

(11)

a
bc

·
∂a + B

(12)
abc

·
∂a,

[
δb,

·
∂c

]
= B

(21)

a
b
c
·
∂a + B

(22)
ab

c
·
∂a,

[ ·
∂b,

·
∂c

]
= 0,

[ ·
∂b,

·
∂c

]
= 0,

[ ·
∂b,

·
∂c

]
= 0,

(4.1)

where

R
(01)

a
bc = δcN

a
b − δbN

a
c, R

(02)
abc = δbNca − δcNba,

B
(11)

a
bc =

·
∂cN

a
b, B

(12)
abc = −

·
∂cNba,

B
(21)

a
b
c =

·
∂cNa

b, B
(22)

ab
c = −

·
∂cNba.

(4.2)

Let us consider the followings coefficients from (4.1):

B
(11)

a
bc =

·
∂cN

a
b, − B

(22)
ab

c =
·
∂cNba

(
= − B

(22)

c
ab

)
.

By means of (2.6) it follows

Proposition 4.2 The coefficients B
(11)

a
cb = U

(11)

a
bc , − B

(22)

a
bc = U

(22)

a
bc have the

same rule of transformation with respect to the local change of coordinates (1.2) on
T ∗2M. This is

Ũ
(ββ)

a

df
∂xd

∂xb

∂xf

∂xc
=

∂x̃a

∂xd
U

(ββ)

d
bc − ∂2x̃a

∂xb∂xc
, (β = 1, 2). (4.3)

We will see that these coefficients are the horizontal coefficients of an N -linear
connection on T ∗2M. By straightforward direct computation, we obtain

Proposition 4.3 The coefficients R
(01)

a
bc, R

(02)
abc and

B
(21)

a
b
c =

·
∂cNa

b, B
(12)

abc = −
·
∂cNba,

are d-tensor fields on T ∗2M, of type (1, 2), (0, 3), (2, 1) and, respectively, (0, 3), i.e.,

R̃
(01)

d
cf =

∂x̃d

∂xa

∂xb

∂x̃c

∂xc

∂x̃f
R

(01)

a
bc, etc.
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We will see that (4.4) can be the vertical coefficients of N -linear connection on
T ∗2M.

Also, we have

Proposition 4.4 For the nonlinear connection N(Na
b, Nab) given by (2.7):

Na
b = γa

bc(x)yb, Nab = γc
ab(x)pc, (4.4)

the coefficients (4.2) of Lie brackets have the following expressions:

R
(01)

a
bc = rb

a
cd(x)yd, R

(02)
abc = ra

d
bc(x)pd,

B
(11)

a
bc = γa

bc(x), B
(12)

abc = 0,

B
(21)

a
b
c = 0, B

(22)
ab

c = −γc
ab(x).

(4.5)

5 The almost contact structure F.

The nonlinear connection N being fixed, we have the direct decomposition
(1.5), (1.6) and the corresponding adapted basis (1.7).

Let us consider the F(T ∗2M)-linear mapping:

F : χ(T ∗2M) −→ χ(T ∗2M),

determined by

F(δa) = −
·
∂a, F(

·
∂a) = δa, F(

·
∂a) = 0. (5.1)

Then, we obtain

Theorem 5.1 The mapping F has the following properties:

1◦. It is globally defined on T̃ ∗2M.
2◦. F is a tensor field of type (1, 1).
3◦. Ker F = W2, ImF = N ⊕ V1.
4◦. rank F = 2n.
5◦. F3 + F = 0.

Proof. For 1◦ − 5◦ see [7, p. 259].
We say that F is a natural almost contact structure determined by the nonlinear

connection N.

6 The Riemann structures on T̃ ∗2M.

Let us consider a Riemannian structure G on the manifold T̃ ∗2M.
In the natural basis, G is given locally by

G = ḡ
(00)

abdxa ⊗ dxb + ḡ
(01)

abdxa ⊗ dyb + ḡ
(02)

a
bdxa ⊗ dpb + ... + ḡ

(22)

abdpa ⊗ dpb,
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where the matrix ‖ ḡ
(αβ)

‖ is positively defined.

Let {δa} , (a = 1, ..., n), be the basis adapted to N :

δa = ∂a −N b
a

·
∂b + Nab

·
∂b.

and let {dxa, δya, δpa} be the cobasis adapted to N

δya = dya + Na
bdxb, δpa = dpa −Nbadxb.

Then, after a direct calculation, the Riemann structure G can be written in the
adapted cobasis, in the form

G = g
(00)

abdxa ⊗ dxb + g
(01)

abdxa ⊗ δyb + g
(02)

a
bdxa ⊗ δpb + ... + g

(22)

abdpa ⊗ δpb, (6.1)

where g
(00)

ab, g
(01)

ab, g
(02)

a
b, etc., are expressed by ḡ

(00)
ab, ḡ

(01)
ab, ḡ

(02)
a
b, etc. and with the

coefficients Na
b and Nab of N given by (4.4).

Let F be the natural contact structure determined by the nonlinear connection
N given by (4.4).

The following problem arises: when is the pair (G,F) a Riemannian almost
contact structure?

For this, it is obviously necessary to have:

G(FX, Y ) = −G(X,FY ), ∀X,Y ∈ χ(T̃ ∗2M).

Consequently, we get

Theorem 6.1 The pair (G,F) is a Riemannian almost contact structure if and
only if in the adapted basis determined by N and V the tensor G has the form

G = gabdxa ⊗ dxb + gabδy
a ⊗ δyb + habδpa ⊗ δpb. (6.2)

Corollary 6.1 With respect to the Riemannian structure (2.3), the distribu-
tions N, V1,W2 are orthogonal in pairs respectively.

7 N-linear connections on T ∗2M

A linear connection on T ∗2M is an mapping

D : χ(T ∗2M)× χ(T ∗2M) → χ(T ∗2M), (X, Y ) 7−→ DXY,

with the properties:

1. DX1+X2Y = DX1Y + DX2Y,
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DfXY = fDXY, ∀f ∈ F(T ∗2M), ∀X, X1, X2, Y ∈ χ(T ∗2M).

2. DX(Y1 + Y2) = DXY1 + DXY2, ∀X, Y1, Y2 ∈ χ(T ∗2M).

3. DX(fY ) = (Xf)Y + fDXY, ∀X, Y ∈ χ(T ∗2M), ∀f ∈ F(T ∗2M).

We consider X,Y ∈ χ(T ∗2M). With respect to the decomposition of type (3.2),
we have

DXY =
2∑

α=0

(DXHY Vα + DXV1Y
Vα + DXW2Y

Vα),

where V0 = H and V2 = W2.

The components DXHY Vα , DXV1Y
Vα , DXW2Y

Vα , (V0 = H, V2 = W2), are (not
necessarily distinguished) vector fields.

The linear connection D on T ∗2M is uniquely determined by its 27 sets of
coefficients, written in the adapted basis. To work with these 27 sets of coefficients
is not impossible, but is laborious. We shall further use N -linear connections whose
coefficients are much easier to determine and operate with.

Let N be a nonlinear connection on T ∗2M.

Definition 7.1 A linear connection D on T ∗2M is called an N-linear connection
if it preserves by parallelism the horizontal and the vertical distributions N, V1 and
W2 on T ∗2M.

By the general theory of connections on manifolds, the horizontal and vertical
distributions are preserved by parallelism if for any X ∈ χ(T ∗2M), DX carries the
horizontal vector fields to horizontal vector fields and the vertical vector fields to
vertical vector fields. Thus DXY H is always an horizontal vector field, and DXY Vβ

are vertical ones, (β = 1, 2; V2 = W2).

Obviously, the local description of an N -linear connection DΓ(N) on T ∗2M is
given by nine unique sets of adapted coefficients:

DΓ(N) := ( H
(00)

a
bc, H

(10)

a
bc, H

(20)
a
b
c, C

(01)

a
bc, C

(11)

a
bc, C

(21)
a
b
c, C

(02)

a
b
c, C

(12)

a
b
c, C

(22)
a
bc),

We have

Theorem 7.1 1◦. An N-linear connection D on T ∗2M can be uniquely repre-

sented in the adapted basis (δa,
·
∂a,

·
∂a) in the form





Dδcδb = H
(00)

a
bcδa, Dδc

·
∂b = H

(10)

a
bc

·
∂a, Dδc

·
∂b = −H

(00)
a
b
c

·
∂a,

D ·
∂c

δb = C
(01)

a
bcδa, D ·

∂c

·
∂b = C

(11)

a
bc

·
∂a, D ·

∂c

·
∂b = − C

(21)
a
b
c

·
∂a,

D ·
∂c

δb = C
(02)

a
b
cδa, D ·

∂c

·
∂b = C

(12)

a
b
c
·
∂a, D ·

∂c

·
∂b = − C

(22)
a
bc
·
∂a.

(7.1)
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2◦. With respect to the coordinate transformation (1.2), the coefficients H
(α0)

a
bc, (α =

0, 1, 2; H
(20)

a
bc := H

(20)
b
a
c) obey the rule of transformation:

H̃
(α0)

a
de

∂x̃d

∂xb

∂x̃e

∂xc
=

∂x̃a

∂xe
H
(α0)

e
bc − ∂2x̃a

∂xb∂xc
.

3◦. The system of functions C
(α1)

a
bc, C

(α2)

a
b
c, (α = 0, 1, 2; C

(21)

a
bc := C

(21)
b
a
c; C

(22)

a
b
c :=

C
(22)

b
ac are d-tensor fields of type (1, 2) and (2, 1), respectively.

We have the following theorem of existence of N -linear connections on T ∗2M.

Theorem 7.2 If the manifold M is paracompact and N is a nonlinear connec-
tion on T ∗2M with coefficients Na

b, Nab, then there exists an N-linear connection
on T ∗2M.

Proof. Since M is paracompact, then there exists a linear con-
nection on M of local coefficients, say Γa

bc(x). Let Na
b(x, y, p) and

Nab(x, y, p) be the local coefficients of the nonlinear connection N. We set

H
(00)

a
bc = Γa

bc(x), H
(10)

a
bc =

·
∂bN

a
c, H

(20)

a
bc =

·
∂aNbc. Thus, taking into account the

previous results, we obtain three sets of functions which transform, with respect to
(1.2), by (7.1). It results that DΓ(N) given by

DΓ(N) = (Γa
bc(x), B

(11)

a
cb,− B

(22)

a
bc, 0, 0, 0, 0, 0, 0),

defines an N -linear connection on T ∗2M.

In applications, we use the N -linear connection of the form

BΓ(N) = ( L
(00)

a
bc, B

(11)

a
cb,− B

(22)

a
bc, 0, C

(11)

a
bc, 0, 0, 0, C

(22)
b
ac)

called N-linear connection of Berwald type on T ∗2M.

8 The hα-, v1α- and w2α-covariant derivatives in the local adapted
basis, (α = 0, 1, 2)

The N -linear connection DΓ(N) induces a linear connection on the d-tensors
set of the 2-cotangent bundle (T ∗2M,π∗2, M), in a natural way. Thus, starting
with a d-vector field X and a d-tensor field T, locally expressed by

X = X(0)aδa + X(1)a
·
∂a + X

(2)
a

·
∂a,

T = T a1...ar

b1...bs
(x, y, p)δa1 ⊗ ...⊗

·
∂bs ⊗ dxb1 ⊗ ...⊗ δpar ,
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we can define the covariant derivative

DXT =
{
X(0)dT a1...ar

b1...bspαd+

+X(1)dT a1...ar

b1...bs
|αd +X

(2)
dT

a1...ar

b1...bs
|αd

}
δa1 ⊗ ...⊗ δpar ,

where

T a1...ar

b1...bspαd = δdT
a1...ar

b1...bs
+ H

(α0)

a1
cdT

ca2...ar

b1...bs
+ ... + H

(α0)

ar
cdT

a1...c
b1...bs

−

−H
(α0)

c
b1dT

a1...ar

cb2...bs
− ...− H

(α0)

c
bsdT

a1...ar

b1...c ,

T a1...ar

b1...bs
|αd=

·
∂dT

a1...ar

b1...bs
+ C

(α1)

a1
cdT

ca2...ar

b1...bs
+ ... + C

(α1)

ar
cdT

a1...c
b1...bs

−

− C
(α1)

c
b1dT

a1...ar

cb2...bs
− ...− C

(α1)

c
bsdT

a1...ar

b1...c ,

T a1...ar

b1...bs
|αd=

·
∂dT a1...ar

b1...br
+ C

(α2)
c
a1dT ca2...ar

b1...bs
+ ... + C

(α2)
c
ardT a1...c

b1...bs
−

− C
(α2)

b1
cdT a1...ar

cb2...bs
− ...− C

(α2)
bs

cdT a1...ar

b1...c .

Definition 8.1 The local derivative operators ”pαd”, ” |αd ” and ” |αd ” are
called the hα−,v1α− and w2α−covariant derivatives of DΓ(N), (α = 0, 1, 2).

Remark 8.1 (i) In the particular case when T is a function f(x, y, p) on T ∗2M,
the preceding covariant derivatives reduce to

fpαd = δdf = ∂df −N c
d

·
∂c,

f |αd=
·
∂df, f |αd=

·
∂df, ∀f ∈ F(T ∗2M).

(ii) Considering the d-tensor T = Y as a d-tensor on T ∗2M, locally expressed by

Y = Y (0)aδa + Y (1)a
·
∂a + Y

(2)
a

·
∂a,

the following expressions of local covariant derivatives of DΓ(N) hold good:

Y (0)a
pαc = δcY

(0)a + Y (0)b H
(α0)

a
bc, Y

(1)a
pαc = δcY

(1)a + Y (1)b H
(α0)

a
bc,

Y
(2)

bpαc = δcY
(2)

b − Y
(2)

a H
(α0)

a
bc,

Y (0)a |αc= ∂̇c Y (0)a + Y (0)b C
(α1)

a
bc, Y

(1)a |αc= ∂̇c Y (1)a + Y (1)b C
(α1)

a
bc,

Y
(2)

b |αc= ∂̇cY
(2)

b − Y
(2)

a C
(α1)

a
bc,

Y (0)a |αb= ∂̇b Y (0)a + Y (0)c C
(α2)

c
ab, Y (1)a |αb= ∂̇b Y (1)a + Y (1)c C

(α2)
c
ab,

Y
(2)

b |αb= ∂̇bY
(2)

c − Y
(2)

a C
(α2)

c
ab.
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Proposition 8.1 The quantities T a1...ar

b1...bspαd, T a1...ar

b1...bs
|αd, T a1...ar

b1...bs
|αd, (α = 0, 1, 2)

are d-tensor fields on T ∗2M. The first six are of type (r, s + 1), the last three are of
type (r + 1, s).

9 Ricci identities. Local expressions of d-tensors of torsion and
curvature

Let DΓ(N) be an N -linear connection with the coefficients

DΓ(N) = ( H
(00)

a
bc, H

(10)

a
bc, H

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)
a

bc, C
(12)

a
bc, C

(22)
a

bc), (9.1)

By a straightforward calculation we obtain:

Theorem 9.1 For any N-linear connection D and any d-vector field X ∈
χ(T ∗2M), the following Ricci formulae hold:

Xa
pαbpαc −Xa

pαcpαb = Xf R
(α00)

f
a
bc −

0

T
(α0)

f
bcX

a
pαf− R

(01)

f
bcX

a |αf − R
(02)

fbcX
a |αf ,

Xa
pαb |αc −Xa |αcpαb= Xf R

(α01)
f

a
bc − C

(α1)

f
bcX

a
pαf− P

(α1)

f
bcX

a |αf − B
(12)

fbcX
a |αf ,

Xa
pαb |αc −Xa |αc

pαb = Xf R
(α02)

f
a
b
c − C

(α2)
b
fcXa

pαf− B
(21)

f
b
cXa |αf − P

(α2)
fb

cXa |αf ,

Xa |αb|αc −Xa |αc|αb= Xf R
(α11)

f
a
bc − S

(α1)

f
bcX

a |αf ,

Xa |αb|αc −Xa |αc|αb= Xf R
(α12)

f
a
b
c − C

(α2)
b
fcXa |αf − C

(α1)

c
fbX

a |αf ,

Xa |αb|αc −Xa |αc|αb= Xf R
(α22)

f
abc − S

(α2)
f

bcXa |αf , (α = 0, 1, 2).

where all the terms in R
(01)

a
bc, R

(02)
abc, B

(12)
abc, B

(21)

a
b
c are known from the Lie brackets

(4.1), and the coefficients DΓ(N) are given in (9.1).

We further denote
0

T
(α0)

a
bc = H

(α0)

a
bc − H

(α0)

a
cb, P

(α1)

a
bc = B

(11)

a
bc − H

(α0)

a
cb, P

(α2)
ab

c = B
(22)

ab
c + H

(α0)

c
ab,

S
(α1)

a
bc = C

(α1)

a
bc − C

(α1)

a
cb, S

(α2)
a
bc = −( S

(α2)
a
bc − C

(α2)
a
cb),

and
0

T
(00)

a
bc,

1

T
(00)

a
bc,

2

T
(00)

a
bc,

0

P
(01)

a
bc,

1

P
(01)

a
bc,

2

P
(01)

a
bc,

0

P
(02)

a
bc,

1

P
(02)

a
bc,

2

P
(02)

a
bc,

1

S
(11)

a
bc,

1

Q
(12)

a
bc,

2

Q
(12)

ab
c,

2

S
(22)

a
bc are called d−tensors of torsion of D. These are given by:





0

T
(00)

a
bc = H

(00)

a
bc − H

(00)

a
cb,

1

T
(00)

a
bc = R

(01)

a
bc,

2

T
(00)

abc = R
(02)

abc,

0

P
(01)

a
bc = C

(01)

a
bc,

1

P
(01)

a
bc = B

(11)

a
bc − H

(10)

a
cb,

2

P
(01)

abc = B
(12)

abc,

0

P
(02)

a
b
c = C

(02)

a
b
c,

1

P
(02)

a
b
c = B

(21)

a
b
c,

2

P
(02)

ab
c = B

(22)
ab

c + H
(20)

c
ab,



254 Space-Time Structure. Algebra and Geometry





1

S
(11)

a
bc = C

(11)

a
bc − C

(11)

a
cb,

2

S
(22)

a
bc = −( C

(22)
a
bc − C

(22)
a
cb)

1

Q
(12)

a
b
c = C

(12)

a
b
c =: C

(12)

ac
b,

2

Q
(12)

ab
c = C

(21)
a
c
b =: C

(21)

c
ab.

We remark that P
(11)

a
bc =

1

P
(01)

a
bc, P

(22)
ab

c =
2

P
(02)

ab
c, etc. Also, R

(α00)
, ..., are called d-

tensors of curvature of D, and they are given by:




R
(α00)

b
a
cd = δd H

(α0)

a
bc − δc H

(α0)

a
bd + H

(α0)

f
bc H

(α0)

a
fd − H

(α0)

f
bd H

(α0)

a
fc+

+C
(α1)

a
bf R

(01)

f
cd + C

(α2)
b
af R

(02)
fcd,

R
(α01)

b
a
cd =

·
∂d H

(α0)

a
bc − C

(α1)

a
bdpαc + C

(α1)

a
bf P

(α1)

f
bc + C

(α2)
b
af B

(12)
fcd,

R
(α02)

b
a
c
d =

·
∂d H

(α0)

a
bc − C

(α2)
b
ad
pαc + C

(α1)

a
bf B

(21)

f
c
d + C

(α2)
b
af P

(α2)
fc

d, (α = 0, 1, 2),





R
(α11)

b
a
cd =

·
∂d C

(α1)

a
bc −

·
∂c C

(α1)

a
bd + C

(α1)

f
bc C

(α1)

a
fd − C

(α1)

f
bd C

(α1)

a
fc,

R
(α12)

b
a
c
d =

·
∂d C

(α1)

a
bc −

·
∂c C

(α2)
b
ad + C

(α1)

f
bc C

(α2)
f

ad − C
(α2)

b
fd C

(α1)

a
fc,

R
(α22)

b
acd =

·
∂d C

(α2)
b
ac −

·
∂c C

(α2)
b
ad + C

(α2)
b
fc C

(α2)
f

ad − C
(α2)

b
fd C

(α2)
f

ac, (α = 0, 1, 2).

10 Metric structures on the manifold T ∗2M .
Metric N-linear connections

Definition 10.1 A metric structure on the manifold T ∗2M is a symmetric
covariant tensor field G of type (0,2) which is non-degenerate at each point u ∈
T ∗2M and of constant signature on T ∗2M. If G is positive definite we say that it
defines a Riemann structure on T ∗2M.

Let us consider a metric structure G on T ∗2M for which the distributions
N, V1,W2 are more general then (6.2), namely we have the decomposition:

G(X,Y ) = G(XH , Y H) +G(XV1 , Y V1) +G(XW2 , Y W2), ∀X, Y ∈ T ∗2M. (10.1)

In other words, G decomposes as a sum of three d-tensor fields,

(0) GH of type (0, 2) defined by GH(X, Y ) = G(XH , Y H),

(1) GV1 of type (0, 2) defined by GV1(X,Y ) = G(XV1 , Y V1),

(2) GW2 of type (0, 2) defined by GW2(X, Y ) = G(XW2 , Y W2).

Locally, these d-tensor fields can be written as

GH = g
(0)

abdxa ⊗ dxb, GV1 = g
(1)

abδy
a ⊗ δyb, GW2 = g

(2)

abδpa ⊗ δpb,
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where g
(0)

ab = G(δa, δb), g
(1)

ab = G(∂̇a, ∂̇b), g
(2)

ab = G(∂̇a, ∂̇b), and

rank ‖ g
(α)

ab ‖= n, (α = 0, 1, 2), ‖ g
(2)

ab ‖=‖ g
(2)

ab ‖−1 .

Thus the decomposition (10.1) looks locally as

G = g
(0)

abdxa ⊗ dxb + g
(1)

abδy
a ⊗ δyb + g

(2)

abδpa ⊗ δpb. (10.2)

Definition 10.2 An N -linear connection D on T ∗2M endowed with a metric
structure G is said to be a metric N-linear connection if DXG = 0 for every
X ∈ T ∗2M.

Let G be a metric structure on T ∗2M given by (10.2). We have

Proposition 10.2 An N-linear connection on T ∗2M is a metric N-linear con-
nection with respect to G given by (10.2) if and only if

g
(α)

abpαc = 0, g
(α)

ab |αc= 0, g
(α)

ab |αc= 0, (10.3)

where ‖ g
(α)

ab ‖=‖ g
(α)

ab ‖−1, (α = 0, 1, 2).

Remark 10.1 The conditions (10.3) are equivalent with the conditions

g
(α)

ab
pαc = 0, g

(α)

ab |αc= 0, g
(α)

ab |αc= 0, (α = 0, 1, 2).

We shall now discuss the existence of metric N -linear connection on T ∗2M. By
straightforward calculation we get

Theorem 10.1 If the manifold T ∗M is endowed with the metric structure
G given by (10.2), then there exists on T ∗2M a metric N-linear connection, de-
pending only on G, whose h(hh)−, v1(v1v1)−and w2(w2w2)−tensors of torsion,
0

T
(00)

a
bc,

1

S
(11)

a
bc,

2

S
(22)

a
bc vanish. Its local coefficients defined by

DΓ(N) := ( H
(00)

a
bc, H

(10)

a
bc, H

(20)
a
b
c, C

(01)

a
bc, C

(11)

a
bc, C

(21)
a
b
c, C

(02)

a
b
c, C

(12)

a
b
c, C

(22)
a
bc),
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are as follows

c

H
(00)

a
bc =

1

2
g
(0)

ad(δc g
(0)

bd + δb g
(0)

dc − δd g
(0)

bc),

c

H
(10)

a
bc = B

(11)

a
cb +

1

2
g
(1)

ad(δc g
(1)

bd − B
(11)

f
cb g

(1)
fd − B

(11)

f
cd g

(1)
bf ),

c

H
(20)

a
bc = − B

(22)

a
bc +

1

2
g
(2)

ad(δc g
(2)

bd + B
(22)

f
bc g

(2)
fd + B

(22)

f
dc g

(2)
bf ),

c

C
(01)

a
bc =

1

2
g
(0)

ad∂̇c g
(0)

bd,
c

C
(02)

a
bc = −1

2
g
(0)

ad∂̇c g
(0)

bd,

c

C
(11)

a
bc =

1

2
g
(1)

ad(∂̇c g
(1)

bd + ∂̇b g
(1)

dc − ∂̇d g
(1)

bc),

c

C
(21)

a
bc =

1

2
g
(2)

ad∂̇c g
(2)

bd,
c

C
(12)

a
bc = −1

2
g
(1)

ad∂̇
c g
(1)

bd,

c

C
(22)

a
bc = −1

2
g
(2)

ad(∂̇
c g
(2)

bd + ∂̇b g
(2)

dc − ∂̇d g
(2)

bc).

(10.4)

Definition 10.3 The metric N -linear connection given by (10.4) will be called
the canonical N-linear connection associated with G.

11 Berwald-Moor metrics on the manifold T ∗2M

We further specialize the obtained results to the case when the base manifold is
a Space-Time. Then dim M = 4, dim T ∗M = 8 and dim T ∗2M = 12. The nonlinear
connection N = (Na

b, Nab) given by (4.4), has the coefficients of the Lie brackets

of the adapted basis satisfying the relations (4.5). We consider the Riemannian
metric on T ∗2M :

G = gab(x)dxa ⊗ dxb + gab(x)δya ⊗ δyb + hab(y)δpa ⊗ δpb

where gab is a Riemannian metric on M and hab is the dual of the Berwald-Moor
type metric

hab =
1

2

∂2F 2

∂ya∂yb
, a, b = 1, 4, (11.1)

where F (y) = 4
√
|y1y2y3y4|. Then the structure F given in (5.1) satisfies the relation

G(FX, Y ) = −G(X,FY ). (11.2)

As well, the following results regarding the canonic d-linear connection hold true:

Theorem 11.1 1◦ The canonic metrical linear d−connection D
c

Γ(N) has the
components





c

H
(00)

a
bc = γa

bc(x),
c

H
(10)

a
bc = γa

bc(x),

c

H
(20)

a
bc =

1

2

{
γa

bc(x)− γf
cd(x)ham

[
yd(∂̇fhbm) + δd

mhbf

]}
,
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and

c

C
(01)

a
bc = 0,

c

C
(11)

a
bc = 0,

c

C
(21)

a
bc =

1

2
had∂̇chbd,

c

C
(02)

a
bc = 0,

c

C
(12)

a
bc = 0,

c

C
(22)

a
bc = 0.

2◦. The d-tensors of torsion are given by

0

T
(00)

a
bc = 0, R

(01)

a
bc = rb

a
cd(x)yd, R

(02)
abc = ra

d
bc(x)pd,

0

P
(01)

a
bc = 0,

1

P
(01)

a
bc = 0,

2

P
(01)

abc = 0,

0

P
(02)

a
b
c = 0,

1

P
(02)

a
b
c = 0,

2

P
(02)

bc
a = −γa

bc(x) +
c

H
(20)

a
bc,

and
1

S
(11)

a
bc = 0,

2

S
(22)

a
bc = 0

1

Q
(12)

a
b
c = 0,

2

Q
(12)

bc
a =

1

2
had∂̇chbd.

3◦ The d-tensors of curvature are given in the adapted basis by





R
(000)

b
a
cd = rb

a
cd(x), R

(100)
b
a
cd = rb

a
cd(x)

R
(200)

b
a
cd = δ̄d

c

H
(20)

a
bc − δ̄c

c

H
(20)

a
bd +

c

H
(20)

f
bc

c

H
(20)

a
fd −

c

H
(20)

f
bd

c

H
(20)

a
fc+

+
1

2
ham(∂̇fhbm)rc

f
dmym,

where δ̄d = ∂d −Nm
d∂̇m and





R
(001)

b
a
cd = 0, R

(101)
b
a
cd = 0

R
(201)

b
a
cd = ∂̇d

c

H
(20)

a
bc −

c

C
(21)

a
bd|2c + C

(21)

a
bf (γ

f
cd(x)−

c

H
(20)

f
dc),

R
(002)

b
a
c
d = 0, R

(102)
b
a
c
d = 0, R

(202)
b
a
c
d = 0,





R
(011)

b
a
cd = 0, R

(111)
b
a
cd = 0,

R
(211)

b
a
cd = ∂̇d

c

C
(21)

a
bc − ∂̇c

c

C
(21)

a
bc +

c

C
(21)

f
bc

c

C
(21)

a
fd − C

(21)

f
bc C

(21)

a
fc = cb

a
cd(y),

R
(012)

b
a
c
d = 0, R

(112)
b
a
c
d = 0, R

(212)
b
a
c
d = 0,

R
(022)

b
acd = 0, R

(122)
b
acd = 0, R

(222)
b
acd = 0

If we endow the space T ∗M with the metric

G = gab(x)dxa ⊗ dxb + gab(x)δya ⊗ δyb + hab(p)δpa ⊗ δpb,
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where gab is a Riemannian metric on M and hab is the Berwald-Moor type metric

hab =
1

2

∂2F 2

∂pa∂pb

, a, b = 1, 4, (11.3)

where F (y) = 4
√
|p1p2p3p4|, then the structure F given in (5.1) satisfies the relation

(11.2). As well, we can state the following

Theorem 11.2 1◦ The canonic metrical d−connection D
c

Γ(N) has the com-
ponents:





c

H
(00)

a
bc = γa

bc(x),
c

H
(10)

a
bc = γa

bc(x)

c

H
(20)

a
bc = γa

bc(x) +
1

2
had(Ncf ∂̇

fhbd − γf
bchfd − γf

dchbf ),

c

C
(01)

a
bc = 0,

c

C
(11)

a
bc = 0,

c

C
(21)

a
bc = 0,

c

C
(02)

a
bc = 0,

c

C
(12)

a
bc = 0,

C
(22)

a
bc = −1

2
had(∂̇

chbd + ∂̇bhdc − ∂̇dhbc) = Γbc
a (p).

2◦ The following sets of components of the d-tensors of torsion are nontrivial:

R
(01)

a
bc = rb

a
cd(x)yd, R

(02)
abc = ra

d
bc(x)pd,

2

P
(02)

ab
c = −γc

ab +
c

H
(20)

c
ab.

3◦ The following sets of components of the d-tensors of curvature are nontrivial:

R
(000)

b
a
cd = rb

a
cd(x), R

(100)
b
a
cd = rb

a
cd(x)

R
(200)

b
a
cd = δ̃d

c

H
(20)

a
bc − δ̃c

c

H
(20)

a
bd +

c

H
(20)

f
bc

c

H
(20)

a
fd − H

(20)

f
bd H

(20)

a
fc+

+ C
(22)

b
af R

(02)
fcd ,

where δ̃d = ∂d −Ndf ∂̇
f and R

(222)
b
acd = sb

acd(p),

R
(202)

b
a
c
d = ∂̇d H

(20)

a
bc − C

(22)
b
ad
|2c + C

(22)
b
af (−γd

fc + H
(20)

d
fc).
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In the framework of vector bundles endowed with (h, v)-metrics several physical mod-
els for relativity are presented. A characteristic of these models is that the vertical part
is provided by the flag-Finsler Berwald-Moor (fFBM) metric, while the horizontal part
is specialized to the conformal and to Synge-relativistic optics metrics. As well, the par-
ticular case of h-Riemannian v-fFBM metric of Riemann-Minkowski type is examined,
considering as nonlinear connection both the trivial canonical connection, and the one
induced by the Lagrangian of electrodynamics. For all these models, basic properties are
described and the extended Einstein and Maxwell equations are determined.

MSC: 53B40, 53C60, 53C07.

1 Introduction

The recent attempts of modeling relativity based on metrical structures in-
clude two notable trends: one originates in the theory of bundles endowed with
Ehresmann connection (e.g. via osculating structures and their duals, R. Miron
[7, 10, 8, 9]) and one based on a palette of physical models relying on the
Berwald-Moor metric (D. G. Pavlov, G. S. Asanov [13, 12, 1]). The present work
proposes several relativistic models of Miron type which emerge naturally from this
metric. The basic geometric structure is an (h, v)-metric on a vector bundle (in
particular the tangent bundle of a Space-Time), where the horizontal part is of
Generalized Lagrange type ([8]) and the vertical one is of Finslerian Berwald-Moor
type. For these models (h-conformal, h-relativistic optic, h-electromagnetic and
h-classical Riemannian) the GR formalism is developed, and the Einstein and rel-
ativistic Maxwell equations are described.

2 The flag-Finsler Berwald-Moor metric

Let M be a 4-dimensional differential manifold of class C∞, TM its tangent
bundle and (xi, ya) the coordinates in a local chart on TM . If F : TM → R,
F = F (y) is a Finsler function, we denote by

h∗ab =
1

2

∂2F 2

∂ya∂yb
, a, b = 1, 4,
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the associated metric tensor. For F (y) = 4
√
|y1y2y3y4|, Pavlov has studied the

”4-pseudoscalar product” related to the Berwald-Moor metric ([13])

(X, Y, Z, T ) = GabcdX
aY bZcT d, (2.1)

where

Gabcd =
1

4!

∂4L
∂ya∂yb∂yc∂yd

, (2.2)

and L = F 4. We denote

〈X,Y 〉 =
1

F 2
(X,Y, y, y, ), X, Y ∈ X (M), (2.3)

where y = ya ∂

∂ya
is the Liouville vector field ([9]), the vector fields X, Y being

considered at some x ∈ M . Then 〈 , 〉 is a pseudo-scalar product; locally we have

〈X,Y 〉 =
1

F 2
GabcdX

aY bycyd =
Gab00

F 2
XaY b, (2.4)

where the null index represents transvection with y. The coefficients of the scalar
product (2.4) are hence

hab =
Gab00

F 2
=

1

12F 2

∂2F 4

∂ya∂yb
, (2.5)

providing a tensor which coincides with the one ỹ
(4)
ij proposed by Lebedev ([6]).

Then, hab is a 2-covariant tensor field, and (M,h) thus becomes a generalized
Lagrange space. Its absolute energy, E = haby

ayb, is

E =
Gab00

F 2
yayb =

1

4F 2

∂F 4

∂yb
yb =

F 4

F 2
= F 2,

this is, E = F 2. The Lagrange metric associated to h is exactly

1

2

∂2E
∂ya∂yb

=
1

2

∂2F 2

∂ya∂yb
= h∗ab,

and taking into account that F is a Finsler function, h∗ is nondegenerate and of
constant signature, which shows that (M, E = F 2) is a Lagrange space. From the
homogeneity of F it also follows that

1

2

∂E
∂ya

= haby
b. (2.6)

Consequently, we can state

Theorem 1. The space (M,h) with h given by (2.5) is a generalized Lagrange
space with regular metric. The associated Lagrange metric h∗ab coincides with the
Finsler metric generated by F and the two metrics provide the same energy,

E = F 2 = haby
ayb = h∗aby

ayb.

Remark. The considerations above hold true for an arbitrary Finsler space
whose fundamental function is of locally Minkowski type.
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3 A Riemann-locally Minkovski model

Let TM be endowed with a nonlinear connection N with coefficients Na
i =

Na
i(x, y) and let {

δi =
δ

δxi
, ∂̇a =

∂

∂ya

∣∣∣∣ i, a = 1, 4

}

denote the corresponding adapted basis, where

δ

δxi
=

∂

∂xi
−N b

i

∂

∂yb
, i = 1, 4.

We also denote the dual basis by {dxi, δya | i, a = 1, 4}, with δya = dya + Na
jdxj.

If D is a linear d-connection on TM ([9]), then it is described by its adapted
coefficients DΓ(N) = {Li

jk, L
a
bk, C

i
jc, C

a
bc}, where:

Dδk
δj = Li

jkδi, Dδk
∂̇b = La

bk∂̇a,

D∂̇c
δj = Ci

jcδi, D∂̇c
∂̇b = Ca

bc∂̇a.

We shall further denote by | and | the h- and v- covariant derivatives induced by
D respectively.

As well, the torsion T of the linear connection D has the adapted components

hT (δk, δj) = T i
jkδi, vT (δk, δj) = Ra

jk∂̇a,

hT (∂̇c, δj) = C i
jcδi, vT (∂̇c, δj) = P a

jc∂̇a,

hT (∂̇c, ∂̇b) = 0, vT (∂̇c, ∂̇b) = Sa
bc∂̇a,

while the adapted components of the curvature R are

R(δl, δk)δj = Ri
jklδi, R(δl, δk)∂̇b = Ra

bkl∂̇a,

R(∂̇c, δk)δj = P i
jkcδi, R(∂̇c, δk)∂̇b = P a

bkc∂̇a,

R(∂̇c, ∂̇b)δj = Si
jbcδi, R(∂̇d, ∂̇c)∂̇b = Sa

bcd∂̇a.

Now, let us consider on TM the following Riemann-locally Minkovski
(h, v)−metric:

G = gij(x)dxi ⊗ dxj + hab(y)δya ⊗ δyb, (3.1)

which we shall use in our further considerations. Together with N , this metric
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produces the canonical metrical d−connection CΓ(N) ([9]),





Li
jk =

1

2
gih

(
δghj

δxk
+

δghk

δxj
− δgjk

δxh

)
,

La
bk =

∂Na
k

∂yb
+

1

2
hac

(
δhbc

δxk
− ∂Nd

k

∂yb
hdc − ∂Nd

k

∂yc
hbd

)
,

Ci
jc =

1

2
gih ∂gjh

∂yc
,

Ca
bc =

1

2
had

(
∂hdb

∂yc
+

∂hdc

∂yb
− ∂hbc

∂yd

)
.

(3.2)

For h given in (2.5), the (h, v)−metric G given in (3.1) is v-regular, which implies
that the coefficients of the canonical (Kern [8, 9]) nonlinear connection Ñ vanish,

N i
a(x, y) = 0, i, a = 1, 4. (3.3)

The canonical metrical linear d-connection CΓ(Ñ) associated to G, is given by ([9])

Li
jk = γi

jk, La
bk = 0, C i

jc = 0, Ca
bc =

1

2
had

(
∂hdb

∂yc
+

∂hdc

∂yb
− ∂hbc

∂yd

)
,

where γi
jk denote the Christoffel symbols of g. It is worth mentioning that, for the

canonic d-linear connection in the Kern case (3.3), the torsion vanishes,

T i
jk = 0, Ra

jk = 0, C i
jc = 0, P a

jb = 0, Sa
bc = 0.

4 Locally v-Minkovskian metrics

In general, an (h, v)−metric

G = gij(x, y)dxi ⊗ dxj + hab(x, y)δya ⊗ δyb (4.1)

which has the property that in the neghborhood of any point (x, y) ∈ TM there
exists a local map in which h(x, y) = h(y), is called v-locally Minkovski. A known
result provides consequences specific to this case, as follows

Theorem 2. ([9]) If G is a v-locally Minkovski metric and h = h(y) is weakly
regular, then the Kern nonlinear connection Ñ and the canonic linear d-connection
D (3.2) given by CΓ(Ñ) = {Li

jk, L
a
bk, C

i
jc, C

a
bc} obey the properties

1. Na
j = 0, Li

jk = {i
jk}, La

bk = 0;
2. T i

jk = 0, Sa
bc = 0, Ra

jk = 0, P a
jb = 0.

3. Ra
b jk = 0, P a

b kc = 0,

where {i
jk} are the Christoffel symbols corresponding to g = g(x, y).

Remark 1. In our case, the following consequences hold true:
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1. The equality Na
j = 0 yields

δ

δxi
=

∂

∂xi
.

2. The torsion of the canonic linear d-connection has a single non-vanishing com-
ponent, namely the coefficient P i

jc = Ci
jc of hT (∂̇c, δj).

3. Ca
bc are the Christoffel symbols of second kind associated to hab = hab(y) and

they depend on y only.

We shall assume further that h = h(y) is the metric (2.5) from [5]; this satisfies

hab =
1

12E
∂2E2

∂ya∂yb
.

In this case, the deflection tensor fields attached to the nonlinear connection above
are

Da
j = ya

|j =
∂ya

∂xj
+ ybLa

bj = 0, da
b = ya|b = δa

b + ycCa
cb.

From the definition of Ca
cb, (since h is 0−homogeneous in y), it follows that

ycCa
cb =

1

2
had

(
∂hbd

∂yc
+

∂hdc

∂yb
− ∂hbc

∂yd

)
yc =

1

2
had

(
∂hdc

∂yb
− ∂hbc

∂yd

)
yc.

Taking into account the particular form (2.5) of h, and taking into account the
homogeneity of E , we get by deriving the product w.r.t. yb that

∂hdc

∂yb
yc =

1

12
yc ∂

∂yb

(
1

E
∂2E2

∂yc∂yd

)
= − 1

2E
∂E
∂yb

∂E
∂yd

+ 2hbd,

is a geometric object symmetrical in the indices b and d, whence

ycCa
cb = 0 ⇒ da

b = δa
b.

Hence, the canonic linear d-connection is of Cartan type ([9]) and the deflection
tensors are

Dij = 0, dab = hab,

where the indices were raised/lowered using the corresponding parts of the
(h, v)−metric. We obtain subsequently that the electromagnetic tensors identically
vanish, 




Fij =
1

2
(Dij −Dji) = 0,

fab =
1

2
(dab − dba) = 0.

and, since D is of Cartan type, we have ([9])

Sa
d bcy

d = Sa
bc = 0, ydRa

d jk = Ra
jk = 0, ydP a

d kc = P a
kc = 0.
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5 Einstein equations for the Riemann-locally Minkovski model

The curvatures of the canonical metrical linear d-connection associated to G in
(3.1) with (2.5) are, according to [9],





R i
j kh = r i

j kh, R
a

b kh = 0, P i
j kc = 0, P a

b kc = 0, S i
j bc = 0,

Sa
b cd =

∂Ca
bc

∂yd
− ∂Ca

bd

∂yc
+ Cf

bcC
a
fd − Cf

bdC
a
fc,

(5.1)

where ri
j kh are the components of the curvature tensor of the horizontal metric.

Taking into account the relations (5.1), it follows, as in [9], that the Einstein
equations of the canonical metrical linear d-connection CΓ(Ñ) (3.2)-(3.3) can be
written as 




rij − 1

2
(r + S)gij = TH

ij ,

TM1
bj = 0, TM2

jb = 0,

Sab − 1

2
(r + S)hab = T V

ab,

(5.2)

where rij denotes the Ricci tensor rij = r h
i jh attached to the Riemannian metric g,

Sab is the Ricci tensor attached to the vertical metric hab, r is the scalar curvature
of ri

jkl and Tαβ are the components of the energy-momentum tensor field. If it is to
compare (5.2) with the (classical) Einstein equations of the Riemannian manifold
(M, g), we have to notice in the h-part of the above equations the ”perturbation”

introduced by the term −1

2
Sgij. According to [9], the energy conservation law is

identically satisfied by CΓ(Ñ).

6 The electrodynamic case

If we consider the Lagrangian of electrodynamics ([10]),

L0(x, y) = mcγij(x)yiyj +
2e

m
Ai(x)yi, (6.1)

where γij is a Lorentz metric tensor, Ai(x) is a covector field and m, c, e are physical
constants, then, the attached Lagrange metric tensor is

gij =
1

2

∂2L

∂yi∂yj
= mcγij.

On the other hand, from the variational problem associated to 6.1, there arises a
nonlinear connection N̂ , whose coefficients are given by ([10])

Na
j = γa

jb(x)yb − ◦
F

a
j, (6.2)
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where F is the electromagnetic field

◦
F

i
j =

e

2m
gik(Aj;k − Ak;j),

the symbol ”; ” denotes the covariant derivative defined by means of the Christoffel
symbols γi

jk(x) of the Lorentz metric tensor γij, and we denoted for simplicity,

γa
jb = δa

i δ
k
b γ

i
jk.

If we consider now TM endowed with the (h, v)-metric

G = gij(x)dxi ⊗ dxj + hab(y)δya ⊗ δyb,

then the canonical metrical linear d−connection CΓ(N̂) associated to G is given
by 




L̂i
jk = γi

jk,

L̂a
bk = γa

bk −
1

2
hac(Nd

k

∂hbc

∂yd
+ γd

kbhdc + γd
kchbd),

Ĉi
jc = 0, Ca

bc =
1

2
had

(
∂hdb

∂yc
+

∂hdc

∂yb
− ∂hbc

∂yd

)
.

By direct computation, one obtains that this time, the torsions of CΓ(N̂) are

T i
jk = 0, Ci

jc = 0, Sa
bc = 0,

while P a
jb and Ra

jk do not vanish. Its curvatures are

R i
j kh = r i

j kh, R a
b kh, P i

j kc = 0, P a
b kc, S i

j bc = 0, Sa
b cd,

where the expression of Sa
b cd is similar to that one in the previous section. The

Ricci tensor has the properties

Rij = rij,
2

P jb = P h
j hb = 0.

The Einstein equations take the particular form




rij − 1

2
(r + S)gij =

h

T ij,

1

T bj =
1

P bj,
2

T jb = 0,

Sab − 1

2
(r + S)hab =

v

T ab,

while the energy conservation law writes as:




(
ri

j −
1

2
rδi

j

)

|i
+

1

P a
j|a = 0,

(
Sa

b −
1

2
Sδa

b

)
|a = 0,
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where ri
j = gihrhj, Sa

b = hacScb,
1

P a
j = hac

2

P cj.

We shall study further two particular cases of v-locally Minkowski metrics, by
preserving h = h(y) from (2.5) and particularizing g = g(x, y). In these cases the
results in Section 4 still hold true, and the nonlinear connection used throughover
is according to Theorem 2, the trivial one.

7 The relativistic Miron-Kawaguchi optic h-metric case

Let γij = γij(x) be a Riemannian metric on M . We denote

yi = γijy
j, ‖y‖2 = γijy

iyj.

We consider now the metric G from (4.1), in which the h−metric is given by

gij = γij + c−2yiyj,

where c is a nonzero real constant. The coefficients Ci
jd of the linear d−connection

are

Ci
jd =

1

2
gih ∂gjh

∂yd
=

gih

2c2
(γjdyh + γhdyj),

and Ca
bc = Ca

bc(y) are determined in [5].

From the theorem above, it results that the Ricci tensor field has the compo-
nents

Rij = Rh
i jh,

1

P bj = P a
b ka = 0,

2

P jb = P h
j hb, Sbc = Sa

b ca.

The Einstein equations write then





Rij − 1

2
(R + S)gij =

h

T ij,

1

T bj = 0,
2

T jb = − 2

P jb,

Sab − 1

2
(R + S)hab =

v

T ab,

and the energy conservation law is described by the system of PDEs





(
Ri

j −
1

2
Rδi

j

)

|i
= 0,

(
Sa

b −
1

2
(R + S)δa

b

)
|a −

2

P i
b|i = 0,
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where Ri
j = gihRhj, Sa

b = hacScb,
2

P i
b = gij

2

P jb.

The first equality from above is identically satisfied (see [8]), since it coincides
with the horizontal part of the energy conservation law for the canonical linear
d−connection of the generalized Lagrange space (M, g) (which is infered straight-
forward by the Bianchi identity).

8 The h-conformal metric case

In the h−conformal metric case, i.e. for the horizontal metric given by

gij(x, y) = e2σ(x,y)γij(x),

the coefficients Li
jk are given by ([2])

Li
jk = γi

jk + δi
jσk + δi

kσj − γjkσ
i,

where σi = γilσl, γi
jk are the Christoffel symbols of γij(x) and for h given by (2.5)

we have σk =
δσ

δxk
=

∂σ

∂xk
. Obviously, La

bk and Ca
bc are as in Theorem 2 and

Remark 1. By direct computation, we get

Ci
jc =

1

2
gih ∂gjh

∂yc
= δi

jσ̇c,

where σ̇c denotes the derivative of σ w.r.t. y : σ̇c =
∂σ

∂yc
. As well, the torsion

components vanish, except P i
jc = Ci

jc and the curvature components are




Ri
j kl, Ra

b jk = 0, P i
j kc, P a

b kc = 0, Sa
b cd.

Si
j bc =

∂C i
jb

∂yc
− ∂C i

jc

∂yb
+ Ch

jbC
i
hc − Ch

jcC
i
hb = 0

P i
j kb = δi

kσjb − γjkγ
ilσlb,

where σjb =
∂2σ

∂xj∂yb
, σlb =

∂2σ

∂xl∂yb
. The Ricci tensor has the properties:

1

P bj =

P a
b ka = 0 and

2

P jb = P h
j hb = δh

hσjb − γjhγ
hlσlb = 4σjb − δl

jσlb = 3σjb.

Then the Einstein equations are




Rij − 1

2
(R + S)gij =

h

T ij,

1

T bj = 0,
2

T jb = −3σjb,

Sab − 1

2
(R + S)hab =

v

T ab.



V. Balan, N. Brinzei Berwald-Moor-type (h, v)-metric physical models 269

Taking into account that S = S(y), the conservation law is described by





(
Ri

j −
1

2
Rδi

j

)

|i
= 0,

(
Sa

b −
1

2
(R + S)δa

b

)
|a − 3σj

b|j = 0,

where the first equality is identically satisfied.
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Let E be the (m+n)-dimensional total space of a vector bundle (E, p, M), dim M =
n, a given fixed nonlinear connection N on E and a given (h, v)-metrical structure G ∈
T 0

2 (E). In the paper, we determine the Einstein equations of an h- and v-semisymmetric
metrical distinguished connection on E = TM , if n = 4, for a Riemann – local Minkowski
model.

1 Vector bundles. Distinguished linear connections ([11])

Let ξ = (E, p, M) be a vector bundle with dim E = m + n, p : E → M ,
where M is a n-dimensional smooth differentiable manifold. If N is a nonlinear
connection on E and V is a complementary vertical distribution of N then,

TuE = HuE ⊕ VuE, ∀u ∈ E. (1.1)

Definition 1.1 A linear connection D on E is called distinguished linear con-
nection or d-connection if the linear connection D preserves by parallelism the
horizontal and vertical distributions:

DZX ∈ HE, DZY ∈ V E, ∀X ∈ HE, Y ∈ V E, Z ∈ X (E) . (1.2)

For a d-connection D we have the unique decomposition

D = DH + DV . (1.3)

where DH and DV are the h- and v-covariant derivatives on X (E)
We denote by XH

(
XV

)
and ωH

(
ωV

)
, the horizontal (vertical) components of

X ∈ X (E) respectively ω ∈ X ∗ (E)
In the local coordinates (xi, ya) of point u (uα) ∈ E, α = 1,m + n, i = 1, n, a =

1,m, we have
(
δi, ∂̇a

)
, (dxi, δya) the adapted frames to N (Na

i (x, y)):

δi = ∂i −Na
i (x, y) ∂̇a, δya = dya + Na

i (x, y) dxi, (1.4)
(
δi = δ/δxi, ∂i = ∂/∂xi, ∂̇a = ∂/∂ya

)
.
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Then,
(
Li

jk (x, y) , La
bk (x, y) , C i

jc (x, y) , Ca
bc (x, y)

)
are the local compo-

nents of a d-connection DΓ (N) .

Dδk
δj = Li

jk (x, y) δi, D∂̇c
δj = Ci

jcδi, (1.5)

Dδk
∂̇b = La

bk (x, y) ∂̇a, D∂̇c
∂̇b = Ca

bc∂̇a.

Also, we denote by: T i
jk, R

a
jk, P

a
jc, C

i
jc, S

a
bc, the local components

of five d-tensor fields of torsion of d-connection DΓ(N), (1.4) and with:
Rj

i
kh, Rb

a
jk, P j

i
kd, P b

a
kd, Sj

i
cd, Sb

a
cd, the local component of six d-tensors fields of

curvature of d-connection DΓ(N), (1.4).
The Algebra of d-tensor fields on E is locally generated by

{
1, δi∂̇a

}
over the

differentiable functions F (E).

2 Metrical structures and metrical d-connections on E ([11])

We will consider a given fixed nonlinear connection N on E with the local
components Na

i (x, y) and a given (h, v)-metrical structure G ∈ τ 0
2 (E) :

G = gij (x, y) dxi ⊗ dxj + hab (x, y) δya ⊗ δyb, (2.1)

where

gij (x, y) = gji (x, y) , rank ‖gij (x, y)‖ = n, (2.2)

hab (x, y) = hba (x, y) , rank ‖hab (x, y)‖ = m

Obviously, we have

G
(
XH , Y V

)
= 0, ∀X ∈ HE, Y ∈ V E, (2.3)

in other words, the distributions H and V are orthogonal with respect to G given
by (2.1).

Remark If E = TM, there exist metrics of type (2.1) wich satisfy (2.2).
Indeed, we shall consider a Lagrange (Finsler) structure gij (x, y) on TM and by
Sasaki-Matsumoto lift:

G = gij (x, y) dxi ⊗ dxj + gij (x, y) δyi ⊗ δyj (2.4)

is obtained a metric of type (2.1) wich satisfy the relation (2.2).
Conversly, if G ∈ τ 0

2 (E) is a metric on E, then there exists a nonlinear connec-
tion N

(
Na

i (x, y)
)

given by G
(
XH , Y V

)
= 0.

Definition 2.1 A d-connexion D on E is called a metrical d-connexion with
respect to G ∈ τ 0

2 (E) given by (2.1), if DXG =0, ∀X ∈ X (E) .

Proposition 2.1 A d-connexion D on E it is metrical if and only if

DH
XGH = 0, DH

XGV = 0, DV
XGH = 0, DV

XGV = 0, ∀X ∈ X (E) , (2.5)
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where GH = gij (x, y) dxi ⊗ dxj is the horizontal part and GV = hab (x, y) δya ⊗ δyb

is the vertical part of G given by (2.1).

Proposition 2.2 There exists a metrical d−connection on E which dependes
only Na

i (x, y) , gij (x, y) and hab (x, y) . This is given by

M

L
i
jk (x, y) = 1/2gih (δjghk + δkgjh − δhgjk) , (2.6)

M

L
a
bk (x, y) = ∂̇bN

a
k + 1/2had

(
δkhbd − hbc∂̇dN

c
k − hcd∂̇bN

c
k

)
,

M

C
i
jc (x, y) = 1/2gih∂̇cgjh,

M

C
a
bc (x, y) = 1/2had

(
∂̇bhdc + ∂̇chbd − ∂̇dhbc

)
,

where ‖gij‖ = ‖gij‖−1 ,
∥∥hab

∥∥ = ‖hab‖−1.
The distinguished metrical d-connection (2.4) is said to be Miron connection

of G and it will denoted by MDΓ (N) .

Proposition 2.3 There exists an unique metrical d-connection DΓ (N) =(
Li

jk, L
a
bk, C

i
jc, C

a
bc

)
on E for which:

La
bk (x, y) =

M

L
a
bk (x, y) , C i

jc (x, y) =
M

C
i
jc (x, y) (2.7)

and the d-tensor fields T i
jk, S

a
bc are prescribed. This connection is given by (2.5)

and

Li
jk (x, y) =

M

Li
jk (x, y) + 1/2gir

(
grhT

h
jk − gjhT

h
rk + gkhT

h
jr

)
,

Ca
bc (x, y) =

M

Ca
bc (x, y) + 1/2had

(
hdfS

f
bc − hbfS

f
dc + hcfS

f
bd

)
.

(2.8)

The metrical distinguished connection given by (2.5) and (2.6) will be called
generalized Miron connection of the metric G given by (2.1) and it will denoted
by GMDΓ (N) .

We note

ε (x, y) =< y, y >= hab (x, y) yayb (2.9)

the absolut energy of vertical part GV and

h∗ab (x, y) =
1

2

∂2ε

∂ya∂yb
. (2.10)

Definition 2.2 The d-tensor field hab (x, y) δya⊗δyb is said to be weakly reg-
ular if the d-tensor field with components h∗ab (x, y) given by (2.8) is nondegenerate,
i.e. det ‖h∗ab (x, y)‖ 6= 0, where E = TM.
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Theorem 2.1 (R. Miron, [10] ; see also [11] pg. 127 and [12]) If
hab (x, y) δya ⊗ δyb is a weakly regular v-metric on E = TM then the functions

Na
i (x, y) = ∂̇bG

a (x, y) δb
i , Ga =

1

2
h∗ab

[(
∂̇b∂kε

)
δk
c y

c − (∂kε) δk
b

]
, (2.11)

are the coefficients of a nonlinear connection completely determined by hab (x, y) .

3 h- and v-semisymmetric metrical d-connections
and their transformations

Definition 3.1 Metrical d-connection on E is said to be h-semisymmetric if

T i
jk = σjδ

i
k − σkδ

i
j, (3.1)

and v-semisymmetric if
Sa

bc =τbδ
a
c − τcδ

a
b , (3.2)

where σi, τa are d-covector fields on E.

Theorem 3.1 There exists on E an unique metrical d-connection both h-and v-
semisymmetric, DΓ (N) =

(
Li

jk, L
a
bk, C

i
jc, C

a
bc

)
, with prescribed d-covector fields

σi, τa. That d-connection is given by (2.5) and

Li
jk = 1

2
gih

(
δjghk + δkgjh − δhgjk

)
+ σjδ

i
k − gjkσ

i,

Ca
bc = 1

2
had

(
∂̇bhdc + ∂̇chbd − ∂̇dhbc

)
+ τbδ

a
c − hbcτ

a,
(3.3)

where σi = gijσj and τa = habτb.
Now, we have the following interesting transformations of h- and v-

semisymmetric metrical d-connections.

Theorem 3.2 The transformations of h-and v-semisymmetric metrical d-
connections, which preserve the nonlinear connection N,DΓ (N) −→ DΓ̄ (N) , are
given by

L̄i
jk = Li

jk + pjδ
i
k − gjkp

i,

L̄a
bk = La

bk,

C̄i
jc = Ci

jc,

C̄a
bc = Ca

bc + qbδ
a
c − hbcq

a,

(3.4)

where pi = gijpj, q
a = habqb and pi, qa are arbitrary d-covector fields on E.

We shall denote these transformations by t (p, q) .

Theorem 3.3 The set of all transformations t (p, q) given by (3.4) is a transfor-
mations group GN of the set of all h- and v-semisymmetric metrical d-connections,
with respect to (2.1) , together with the mapping product

t (p′, q′) ◦ t (p, q) = t (p + p′, q + q′) .
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This group GN is an Abelian group and acts on the set of all h-and v-semisymmetric
metrical d-connections, having the same nonlinear connection, transitively.

If we investigate the influences for the torsion and curvature tensor fields, we
have

Theorem 3.4 The following d-tensor fields

Ra
jk, P a

jc, C i
jc

T i
jk − 1

n−1

(
Tjδ

i
k − Tkδ

i
j

)
, Sa

bc − 1
m−1

(Sbδ
a
c − Scδ

a
b ) ,

(
Tj = T k

jk, Sb = Sc
bc

)
,

(3.5)

are invariants with respect to transformations of the group GN .

Theorem 3.5 For n > 2, m > 2, the following d-tensor fields Hj
i
kl,M b

a
cd of

h- and v-semisymmetric metrical d-connections, are invariants of the group GN :

Hj
i
kl = Rj

i
kl + 2 A

(k,l)

{
Ω
1

si

jk

[
Rsl −Rgsl/2 (n− 1)

]}
/ (n− 2) , (3.6)

M b
a
cd = Sb

a
cd + 2 A

(c,d)

{
∧
1

cd

bc

[
Sed − Shed/2 (m− 1)

]}
/ (m− 2) , (3.7)

where we denoted the alternation operator by A, the Obata operators Ω
1

and ∧
1

of

gij and hab respectively, by:

Ω
1

ij

kl =
1

2

(
δi
kδ

j
l − gklg

ij
)
, ∧

1

ab

cd =
1

2

(
δa
c δ

b
d − hcdh

ab
)
,

and

Rjk = Rj
l
kl, Sbc = Sb

d
cd, R = gijRij, S = habSab.

Theorem 3.6 We have

Hj
i
kl =

M

Hj
i
kl, M b

a
cd =

M

M b
a
cd, (3.8)

where
M

Hj
i
kl,

M

M b
a
cd are construct by means of the Miron connection of

G, MDΓ (N) , given by (2.4) .
Proof. We consider (3.3) as a transformation of h- and v-semisymmetric met-

rical d-connections MDΓ (N) −→ DΓ (N) and we obtain (3.8) , with respect to
(3.6) , (3.7)

By straightforward calculus, we get:

Theorem 3.7 If the Miron connection, MDΓ (N) , (2.4) , has the properties
of h- and v-isotropy:

M

Rj
i
kl = h (x, y)

(
gjkδ

i
l − gjlδ

i
k

)
,

M

Sb
a
cd = v (x, y) (hbcδ

a
d − hbdδ

a
c ) (3.9)

then, we have
Hj

i
kl = 0, M b

a
cd = 0 (3.10)
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4 The Riemann-local Minkowski model of relativity
with h- and v-semisymmetric torsions

In this Section, we consider E = TM, dim M = n.
If hab (x, y) = hab (y) , the metric G given by (2.1) is called v-local Minkowski
We have

Theorem 4.1 If the metric structure G given by (2.1) is h-Riemannian, v-
locally Minkowski and hab (y) is weakly regular, then:

I) The h- and v-semisymmetric metrical d-connection, compatible with re-
spect to G, that corresponds to the 1-forms σi (x, y) = σi (x) , τa (x, y) = τa (y) has
the coefficients given by

L̂i
jk = γi

jk + σjδ
i
k − gjkσ

i, (4.1)

L̂a
bk = 0,

Ĉa
jc = 0,

Ĉa
bc = γa

bc + τbδ
a
c − hbcτ

a,

here γi
jk and γa

bc are the Levi-Civita connections corresponding to the gij (x) and
hab (y) , respectively.

II) d-tensor fields of (4.1) are

T̂ i
jk = σjδ

i
k − σkδ

i
j, (4.2)

R̂a
jk = 0, Ĉi

jc = 0, P̂ a
jc = 0,

Ŝa
bc = τbδ

a
c − τcδ

a
b .

III) d-curvature fields of (4.1) are

R̂j
i
kl = rj

i
kl + 2 A

(k,l)

{
Ω
1

si

jkσsl

}
, (4.3)

R̂b
a
kl = 0, P̂ j

i
kd = 0, P̂ b

a
kd = 0, Ŝj

i
cd = 0,

Ŝb
a
cd = sb

a
cd + 2 A

(c,d)

{
∧
1

fa

bcτfd

}
,

where we denoted A, Ω
1
, ∧

1
, as in Theorem 3.6, by rj

i
kl, sb

a
cd the tensor fields of

curvatures of γi
jk, γ

a
bc respectively, and

σij = σibp j − 2σiσj + gijα, 2α = gijσiσj, (4.4)

τab = τ
ab| b − 2τaτb + habβ, 2β = habτaτb;

( here p̂ and |̂ denote the h- and v-covariante derivatives with respect to DΓ̂, (3.4)).
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Remark 4.1 For d-connection (4.1), h (h)-torsion and h (hh)-curvature are
internal, only and v (v)-torsion and v (vv)-curvature are external, only.

Let G be a metrical h-Riemannian, v-locally Minkowski on E = TM, v-weakly
regular (Theorem 2.1) and we denote rij = ri

k
jk, r = gijrij, sab = sa

c
bc, s = habsab,

etc.
Taking into account the results of [1] and [2] (see, also [5] and [11] , pg.83), we

obtain

Theorem 4.2 The Einstein equations of d-connection DΓ̂, (4.1) of Riemann-
local Minkowski metric G, (2.1), are given by

rjk − 1
2
(r + s) gjk − (n− 2)

(
σjk − 1

2
σgjk

)
+ 1

2
(m− 1) τgjk = κ

1

T jk,

sbc − 1
2
(s + r) hbc − (m− 2)

(
τbc − 1

2
τhbc

)
+ 1

2
(n− 1) σhbc = κ

4

T bc,
(4.5)

where κ is constant,
1

T ij,
2

T ij = 0,
3

T ib = 0,
4

T ab are the components in the adapted

basis of the energy-momentum tensor field

T =
1

T ijdxi ⊗ dxj +
4

T abδy
a ⊗ δyb, (4.6)

σ = 2gijσij, τ = 2habτab. (4.7)

Theorem 4.3 The conservation law in this model is given by
[
ri
j −

1

2
rδi

j − (n− 2)

(
σi

j −
1

2
σδi

j

)]

bpi
= 0,

[
sa

b −
1

2
sδa

b − (m− 2)

(
τa
b −

1

2
τδa

b

)]

b|a
= 0

(4.8)

where
ri
j = gikrkj, σi

j = gikσkj, sa
b = hacscb, τa

b = hacτcb. (4.9)

Theorem 4.4 The divergence of energy-momentum tensor is as follows

(
Div

1

T
)

j
=

1

κ
Uj = 0,

(
Div

4

T
)

b
=

1

κ
Ub = 0, (4.10)

where (
Div

1

T
)

j
=

1

T i
jbp i,

(
Div

4

T
)

b
=

4

T a

bb| a

and

Uj =
1

2
σi

(
ri
j −

1

2
σδi

j

)
+ (n− 2)

[
σi (∂iσj − ∂jσi)− 1

2
(∂jα− 3ασj)

]
, (4.11)

Ub =
1

2
τa

(
sa

b −
1

2
τδa

b

)
+ (m− 2)

[
τa

(
∂̇aτb − ∂̇bτa

)
− 1

2

(
∂̇bβ − 3βτb

)]
.



Gh. Atanasiu, E. Stoica Horizontal and vertical semisymmetric metrical d-connections...277

Generally, the equations (4.4) are not identically satisfied. Therefore, we need
to find the conditions for 1-forms σi and τa, such that the conservation law to be
satisfied.

In this aim, if we denote by q the covariant derivative with respect to Levi-
Civita connection γi

jk of gij (x) and with ‖ the covariant derivative with respect to
Levi-Civita connection γa

bc of hab (y), we obtain

Theorem 4.5 The conservation law in the Riemann-local Minkowski model
with h- and v-semisymmetric torsions is satisfied, if and only if the fields of 1-forms
σi and τa satisfies the equations

(
ri
j − 1

2
rδi

j

)
σi + (n− 2) [σjqiσ

i + σσj + (n− 4) ∂jα− 3 (n− 3) σjα] = 0,

(
sa

b − 1
2
sδa

b

)
τa + (m− 2)

[
τb‖aτa + ττb + (m− 4) ∂̇bβ − 3 (m− 3) τbβ

]
= 0.

(4.12)

Now, we consider dim M = 4. We have, also m = 4.

Taking into account the above notations, we obtain:

Theorem 4.6 Let G be a Riemannian-locally Minkowski structure on E =
TM , dim M = 4, v-weakly regular. Then:

(i) The Einstein equations of the d-connection (4.1) are given by:

rjk − 1

2
(r + s− 2σ − 3τ) gjk − 2σjk = κ

1

T jk, (4.13)

sbc − 1

2
(r + s− 2τ − 3σ) hbc − 2τbc = κ

4

T bc.

(ii) The conservation law is given by:

[
ri
j −

1

2
(r − 2σ) δi

j − 2σi
j

]

bp i
= 0, (4.14)

[
sa

b −
1

2
(s− 2τ) δa

b − 2τa
b

]

b| a
= 0.

(iii) The conservation law is satisfied if and only if the fields of 1-forms
σi (x) and τa (y) satisfies the equations

(
ri
j −

1

2
rδi

j

)
σi + 2

[
σj q iσ

i + (σ − 3α) σj

]
= 0, (4.15)

(
sa

b −
1

2
sδa

b

)
τa + 2

[
τb ‖ aτ

a + (τ − 3β) τb

]
= 0.
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The Pavlov’s 4-polyform of momenta

K(p) = 4
√

p1p2p3p4 and its applications

in Hamilton geometry

Gh. Atanasiu1, V. Balan2 and M. Neagu3

The aim of this paper is to associate a generalized Hamilton space to a 4-pseudoscalar
product defined in a Cartan-Minkowski space. The components of the 4-pseudoscalar
product Gijkl(x, p) are given in terms of Cartan metrical fundamental d-tensor g∗ij(x, p).
In the particular case of the Pavlov function K(p) = 4

√
p1p2p3p4 the components of the

v-covariant derivation of this generalized Hamilton space are derived.

MSC: 53B40, 53C60, 53C07.

1 4-pseudoscalar product in a Cartan-Minkowski space

Let Mn be an n-dimensional differential manifold of class C∞, (T ∗M, π∗,M)
its cotangent bundle and (xi, pi) the local coordinates on T ∗M.

Let K: T ∗M → R+, K(x, p) = K(p) > 0, be a locally Cartan-Minkowski
metrical function. Note that the function K(p) is 1-positive homogeneous in the
argument p. Moreover, the Cartan-Minkowski function K(p) produces the Cartan
fundamental metrical d-tensor field

g∗ij(x, p) =
1

2

∂2K2

∂pi∂pj

.

Now, let us introduce the ”4-pseudoscalar product”, given by

(ω1, ω2, ω3, ω4) = Gijkl(x, p)ω1
i ω

2
j ω

3
kω

4
l ,

where ω1, ω2, ω3, ω4 ∈ Γ(T ∗M) and

Gijkl(x, p) =
1

4!

∂4K4

∂pi∂pj∂pk∂pl

.

Remark 1. In the particular case of a 4-dimensional manifold M4 and of the
Pavlov metrical function

K(p) = 4
√

p1p2p3p4,

1 Department of Algebra and Geometry, ”Transilvania” University, Braşov, Romania,
gh atanasiu@yahoo.com

2 Department of Mathematics I, University Politehnica of Bucharest, Bucharest, Romania,
vbalan@mathem.pub.ro

3 Brasov, Romania, mirceaneagu73@yahoo.com
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where p1p2p3p4 > 0, this 4-pseudoscalar product was studied by Pavlov [8]. In this
case, we have

Gijkl(x, p) =
1

4!
,

that is

(ω1, ω2, ω3, ω4) =
1

4!

∑
τ∈σ4

ω1
τ(1)ω

2
τ(2)ω

3
τ(3)ω

4
τ(4).

Taking into account the 1-homogeneity of the Cartan-Minkowski function K(p),
the following statements hold good:

• Gijkl(x, p) is totally symmetric with respect to the indices i, j, k, l;

• Gijk0(x, p) = Gijkl(x, p)pl =
1

4!

∂3K4

∂pi∂pj∂pk

is 1-homogeneous in p;

• Gij00(x, p) = Gijkl(x, p)pkpl =
1

12

∂2K4

∂pi∂pj

is 2-homogeneous in p;

• Gi000(x, p) = Gijkl(x, p)pjpkpl =
1

4

∂K4

∂pi

is 3-homogeneous in p;

• G0000(x, p) = Gijkl(x, p)pipjpkpl = K4 is 4-homogeneous in p.

Let us define the ”pseudo-scalar product”

< ω1, ω2 >ω=
1

K2
(ω1, ω2, ω, ω),

where ω = pidxi is the canonical Liouville 1-form of the Cartan-Minkowski space
(Mn, K(p)) and ω1, ω2 ∈ Γ(T ∗M).

Remark 2. For the Pavlov metric K(p) = 4
√

p1p2p3p4, it is obvious that the entity
<,>ω is bilinear in the two arguments and it satisfies the axioms of a pseudo-scalar
product [9].

Note that we locally have

< ω1, ω2 >ω=
1

K2
Gijkl(x, p)ω1

i ω
2
j pkpl =

Gij00(x, p)

K2
ω1

i ω
2
j

and hence

gij(x, p) =
Gij00(x, p)

K2
=

1

12K2

∂2K4

∂pi∂pj

.

Supposing that the metrical d-tensor gij(x, p) is non-degenerate, we can give the
following important result:

Proposition 3. The pair GHn = (Mn, gij(x, p)) is a generalized Hamilton space.
The absolute energy of this space is exactly E = K2.
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Proof. The absolute energy of the generalized Hamilton space GHn is

E = gij(x, p)pipj =
Gij00(x, p)

K2
pipj =

G0000(x, p)

K2
=

K4

K2
= K2.

As a conclusion, the metrical d-tensor field produced by the absolute energy
E = K2 is

1

2

∂2E
∂pi∂pj

=
1

2

∂2K2

∂pi∂pj

= g∗ij(x, p),

that is exactly the Cartan fundamental metrical d-tensor field of the Cartan-
Minkowski space (Mn, K(p)).

Remark 4. i) From the 1-homogeneity of the Cartan-Minkowski function K and
the definition of gij(x, p), it follows that

1

2

∂E
∂pi

= gij(x, p)pj = g∗ij(x, p)pj.

ii) Note that we also have E = K2 = gijpipj = g∗ijpipj.

2 The local components of the 4-pseudoscalar product

In the sequel, we establish the relation between the generalized Hamilton metric
gij(x, p) and the Cartan-Minkowski one g∗ij(x, p).

Theorem 5. The following relation is true:

3gij = g∗ij + 2
g∗i0g∗j0

g∗00
,

where g∗i0 = g∗ijpj and g∗00 = g∗ijpipj.

Proof. For a regular generalized Hamilton metric, we have the equality [5], [6]

g∗ij = gij +
∂gik

∂pj

pk. (2.1)

Taking into account that E = K2, we can write gij(x, p) in the more convenient
form

gij(x, p) =
1

12E
∂2E2

∂pi∂pj

.

Now, replacing gij(x, p) into (2.1) and using the fact that E is 2-homogeneous, a
straightforward computation leads to

g∗ij = 3gij − 1

2E
∂E
∂pi

∂E
∂pj

. (2.2)
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Because we have
1

2

∂E
∂pi

= gij(x, p)pj,

we get

g∗ij = 3gij − 2
gi0gj0

g00
,

where gi0 = gijpj and g00 = gijpipj = E .
The converse relation is immediate from (2.2), if we notice that

2g∗i0 =
∂2E

∂pi∂pj

pj =
∂E
∂pi

and

E = g∗00 = g∗ijpipj,

and the claim is proved.
Let us express now the coefficients Gijkl(x, p) in terms of the Cartan fundamen-

tal metrical d-tensor field g∗ij(x, p). By a straightforward computation, we obtain

4!Gijkl = 2SE ijkE l + 2(E ijEkl + E ikE jl + E ilE jk) + 2EE ijkl,

where the sign S means a cyclic sum and the upper indices of E mean the derivation
with the corresponding components of p = (pi). If in the above equality we replace

E = g∗00, E i = 2g∗i0, E ij = 2g∗ij, E ijk = 2g∗ij,k, E ijkl = 2g∗ij,kl,

then the required relation is

4!Gijkl = 2Sg∗ij,kg∗l0 + 2(g∗ijg∗kl + g∗ikg∗jl + g∗ilg∗jk) + 2g∗00g∗ij,kl.

Let us denote g∗ω1ω2 = g∗ijω1
i ω

2
j , where ω1, ω2 ∈ Γ(T ∗M). By a simple computation,

we obtain

Theorem 6. The components of the 4-pseudoscalar product are expressed by

(θ, θ, η, η) = 2
∑

g∗θθ,ηg
∗
η0 + 2(g∗θθg

∗
ηη + 2g∗θηg

∗
θη) + 2g∗00g∗θθ,ηη

and

(θ, θ, θ, η) + (θ, η, η, η) = 2
∑

g∗θθ,θg
∗
η0 + 6g∗θθg

∗
θη + 2g∗00g∗θθ,θη +

+2
∑

g∗θη,ηg
∗
η0 + 6g∗θηg

∗
ηη + 2g∗00g∗θη,ηη,

where θ, η ∈ Γ(T ∗M).
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The v-covariant derivation in the Pavlov case K(p) = 4
√

p1p2p3p4

Let us consider that M4 is a 4-dimensional manifold. Let

K(p) = 4
√

p1p2p3p4,

where p1p2p3p4 > 0, be the Berwald-Moor metric studied by Pavlov in [8]. The
Hamiltonian absolute energy is then

E = K2 =
√

p1p2p3p4.

In this case, denoting (a, b, c, d) = (p1, p2, p3, p4), the matrix (gij(x, p)) and its
inverse (gij(x, p)) are

[gij(x, p)] =
1

12K2




0 cd bd bc

cd 0 ad ac

bd ad 0 ab

bc ac ab 0




and

[gij(x, p)] = 12K2




− 2a

3dcb

1
3cd

1
3db

1
3cb

1
3cd

− 2b

3dca

1
3da

1
3ca

1
3db

1
3da

− 2c

3dba

1
3ba

1
3cb

1
3ca

1
3ba

− 2d

3cba




,

where det g = −3(abcd)2 6= 0 for abcd > 0.
In other words, we have

gii(x, p) = 0, ∀i = 1, 4,

gi1i2(x, p) =
pi3pi4

12E , i1 6= i2,

where E = K2 =
√

p1p2p3p4. The inverse matrix has the components

gii(x, p) = −8p2
i

E , ∀i = 1, 4,

gi1i2(x, p) =
4E
gi1i2

=
48E2

pi3pi4

= 48pi1pi2 , i1 6= i2,

where E = K2 =
√

p1p2p3p4. Moreover, we have

g∗ii(x, p) = − E
8p2

i

, g∗i1i2(x, p) =
pi3pi4

8E ,
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where g∗ij(x, p) =
1

2

∂2K2

∂pi∂pj

and E = K2. Note that we have

gi1i2(x, p) =
2

3
g∗i1i2(x, p), i1 6= i2.

Let

Chjk = ghiCjk
i = −1

2

(
∂ghk

∂pj

+
∂gjh

∂pk

− ∂gjk

∂ph

)

be the components that determine the coefficients Cjk
i of the vertical covariant

derivation [6] produced by the generalized Hamiltonian metric gij(x, p).

Remark 7. Note that the tensor field

Cjk
i = −1

2
gis

(
∂gsk

∂pj

+
∂gjs

∂pk

− ∂gjk

∂ps

)

gives the v-coefficients of a v-covariant derivation with the metrical property [6]:

gij|k =
∂gij

∂pk

+ Cik
s gsj + Cjk

s gis = 0.

In the following, we maintain the same convention: we denote by i1, i2, i3, i4
the distinct values from 1 to 4 (ij 6= ik for j 6= k). Then, for the distinct indices
i1, i2, i3, we have

Ci1i2i3 = −1

3

(
∂g∗i1i3

∂pi2

+
∂g∗i2i1

∂pi3

− ∂g∗i2i3

∂pi1

)
=

= −1

3

(
1

2
E i1i3i2 +

1

2
E i2i1i3 − 1

2
E i2i3i1

)
= −1

6
E i1i2i3 .

In the same way, it follows that

Ci1i1i2 = Ci1i2i1 = 0,

Ci2i1i1 = −1

3
E i1i1i2 ,

Ci1i1i1 = 0.

We obtain now the coefficients Cjk
i = gisC

sjk in terms of the energy E .

Theorem 8. The v-coefficients of the v-covariant derivation of the generalized
Hamilton space GH4 = (M4, gij(x, p)) are given by the formulas:

Ci2i3
i1

=
4

3

p2
i1

E E
i1i2i3 − 8pi1pi4E i2i3i4 ,

Ci1i2
i1

= −8pi1pi3E i1i2i3 − 8pi1pi4E i1i2i4 ,

Ci2i2
i1

=
8

3

p2
i1

E E
i1i2i2 − 16pi1pi3E i2i2i3 − 16pi1pi4E i2i2i4 ,

Ci1i1
i1

= −16pi1pi2E i2i1i1 − 16pi1pi3E i3i1i1 − 16pi1pi4E i4i1i1 .
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in Gauge Complex Field Theories
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An introduction in the study of gauge field theory in terms of complex Finsler geom-
etry on the total space of a G-complex vector bundle E was made by us in [Mu2]. Here
we briefly recall the obtained results and similar notions are investigated on the dual
bundle E∗ by complex Legendre transformation (the L-dual process).

The complex field equations are determined with respect to a gauge complex ver-
tical connections. The complex Hamilton equations are write for the general L-dual
Hamiltonian obtained as a sum of particle Hamiltonian, Yang-Mills and Hilbert-Einstein
Hamiltonians.

1 Introduction

Gauge theory is called to use the differential geometric methods in order to
describe the interactions of fields over a certain symmetry group G.

For initial Yang-Mills gauge theory the Lagrangians had strict local gauge sym-
metry. After introducing the spontaneously symmetry breaking and Higgs mecha-
nism usually the gauge group is of complex matrices and the gauge Lagrangians are
defined over a complexified G-bundle, for instance the Klein-Gordon Lagrangian,
Higgs particle Lagrangian or complex fermion-gravitation, etc. These Lagrangians
act on the first order jet manifold, which plays the role of a finite dimensional
configuration space of fields. By Legendre morphism, intrinsically related to a
Lagrange manifold is the multimomentum Hamiltonian ([Ar, Sa]...) which works
on the corresponding phase manifold (the dual G-bundle). Although in Quantum
Mechanics the Lagrangian and Hamiltonian formalism is a usual technique, in the
gauge field theory it remains almost unknown, especially for the complex situation.

In the present paper, our goal is to introduce a gauge complex field theory
in terms of complex Lagrange and Hamilton geometries, [Mu3], extended to an
associated fiber of one complex bundle and respectively to its dual bundle.

In the first section, we briefly introduce the geometric machinery which char-
acterize these geometries and then we study the gauge invariance of the main
geometric presented objects.

In the next section we recall from [Mu2] the basic notions concerning the com-
plex Euler-Lagrange field equations and the complex gauge invariant Lagrangian
for field particle, complex Yang-Mills and Hilbert-Einstein Lagrangians are also
written. In the final we translate by complex Legendre transformation the studied
results on the dual bundle, and thus we obtain the complex Hamilton field equations
and the L-dual Hamiltonians.
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2 The geometric background

In [Mu3], we make an exhaustive study of complex Lagrange (particularly
Finsler) and Hamilton (Cartan) spaces, which have as a base manifold the holo-
morphic tangent respectively cotangent bundles of a complex manifold M .

Part of the notions studied in this book can extend to a G-complex vector
bundle, and here we do this. By this way, since the extension is natural, we will
omit the proofs. For more details in this part see the introductory paper [Mu2].

Let M be a complex manifold, (zk)k=1,n complex coordinates in a local chart
(Uα, ϕα), π : E → M a complex vector bundle of Cm fiber, and η = ηasa a local
section on E, a = 1,m. Consider G a closed m-dimensional Lie group of complex
matrices, whose elements are holomorphic functions over M .

Definition 2.1. A structure of G-complex vector bundle of E is a fibration with
transition functions taking values in G.

This means that if z′i = z′i(z) is a local change of charts on M , then the section
η changes by the rule

z′i = z′i(z) ; η′a = Ma
b (z)ηb , (2.1)

where Ma
b (z) ∈ G and ∂Ma

b (z)/∂z̄k = 0 for any a, b = 1,m and k = 1, n.
E has a natural structure of (n+m)−complex manifold, a point of E is designed

by u = (zk, ηa).
The geometry of E manifold (the total space), endowed with a Hermitian metric

gab̄ = ∂2L/∂ηa∂η̄b derived from a homogeneous Lagrangian L : E → R+, was
intensively studied by T. Aikou ([Ai1, Ai2, Ai3, Mu3]). Let us consider the vertical
bundle V E = ker πT ⊂ T ′E. A local base for its sections is {∂̇a := ∂

∂ηa}a=1,m and

from (1.1) we have the changes ∂̇a = M b
a(z)∂̇′b. The vertical distribution VuE is

isomorphic to the sections module of E in u.
A supplementary subbundle of V E in T ′E, i.e. T ′E = V E ⊕ HE, is called

a complex nonlinear connection, in brief (c.n.c.). A local base for the horizontal
distribution HuE, called adapted for the (c.n.c.), is {δk := δ

δzk = ∂
∂zk −Na

k
∂

∂ηa}k=1,n,

where Na
k (z, η) are the coefficients of the (c.n.c.). Locally {δk} defines an iso-

morphism of πT (T ′M) with HE if and only if they are changed under the rules

δk = ∂z′j
∂zk δ′j and hence Na

k obey a certain rule of transformation.

Definition 2.2. A gauge complex transformation on G-complex vector bundle E,
is a pair Υ = (F0, F1), where locally F1 : E → E is an F0-holomorphic isomorphism
which satisfies πT ◦ F1 = F0 ◦ πT .

A gauge complex transformation Υ : u → ũ is locally given by a system of
analytic functions:

z̃i = X i(z) ; η̃a = Y a(z, η) (2.2)

with the regularity condition: det
(

∂Xi

∂zj

)
· det

(
∂Y a

∂ηb

)
6= 0.
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Let be X i
j := ∂Xi

∂zj and Y a
b := ∂Y a

∂ηb ; and denote by X ī
j̄, Y ā

b̄
their conjugates.

Obviously, from the holomorphy requirements we have X i
j̄ = ∂Xi

∂z̄j = 0 and

Y a
j̄ = ∂Y a

∂z̄j = 0, Y a
b̄

= ∂Y a

∂η̄b = 0.

A (c.n.c.) is said to be gauge, (g.c.n.c), if the adapted frames transforms into

d−complex gauge fields, i.e. in addition to δk = ∂z′j
∂zk δ′j we have

δj = X i
jδei ; ∂̇b = Y a

b ∂̇ea , (2.3)

where δei = δ
δz̃k and ∂̇ea = ∂

∂η̃a .
Let us consider now the dual G-bundle π∗ : E∗ → M of the G-bundle E.

Likewise as above, E∗ has a natural structure of complex manifold, a point is
denoted by u∗ = (zk, ζa), k = 1, n and a = 1,m, with the following change of
charts,

z′i = z′i(z) ; ζ ′a =
∗

M b
a (z)ζb (2.4)

where
∗

M b
a is the inverse of M b

a from (1.1).
By a similar way as for E manifold, we consider T ′E∗ the holomorphic tangent

bundle of E∗ and { ∂
∂zk , ∂

∂ζa
} a base for T ′

u∗E
∗. Then {∂̇a := ∂

∂ζa
}a=1,m will be a base

for the sections in the vertical bundle V E∗ = ker π∗T and theret follows the changes

∂̇a =
∗

Ma
b ∂̇′b. A (c.n.c) on E∗ is defined by a decomposition T ′E∗ = V E∗ ⊕ HE∗.

The local base for the horizontal distribution Hu∗E
∗ will be denoted by {δ∗k :=

δ∗
δzk = ∂

∂zk + Nak
∂

∂ζa
}k=1,n and will be called adapted for the (c.n.c.) if δ∗k = ∂z′j

∂zk δ∗′j .

A complex gauge transformation on E∗ is defined by a pair
∗
Υ= (

∗
F 0,

∗
F 1),

where locally
∗
F 1: E∗ → E∗ is an

∗
F 0-holomorphic isomorphism which satisfies

π∗T◦ ∗
F 1=

∗
F 0 ◦π∗T .

The local expression of a complex gauge transformation on E∗ is:

z̃i = X i(z) ; ζ̃a = Ya(z, ζ) (2.5)

with the regularity isomorphism condition assumed.
Let be X i

j := ∂Xi

∂zj and Y b
a := ∂Ya

∂ζb
; then obviously, from the holomorphy re-

quirements, we have X i
j̄ = ∂Xi

∂z̄j = 0 and Yaj̄ = ∂Ya

∂z̄j = 0; Y b̄
a = ∂Ya

∂ζ̄b
= 0.

The various d−geometric objects on E∗ are defined in complete analogy with
those defined by us on E.

A (c.n.c.) on E∗ is gauge, in brief it is (g.c.n.c.), if its adapted frames transform
by the rules

δ∗j = X i
jδ
∗
ei ; ∂̇a = Y a

b ∂̇
eb , (2.6)

where δ∗ei = δ∗
δz̃i and ∂̇ea = ∂

∂eζa
.

Now, let us consider L : E → R a complex regular Lagrangian, that is the
function L(z, η) defines a metric tensor gab̄ = ∂2L/∂ηa∂η̄b which is Hermitian,
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gab̄ = gbā and det(gab̄) 6= 0 in any point u = (z, η) of E. By gb̄a is denoted its
inverse metric tensor. The following weighty result was proved in [Mu2]

Proposition 2.1. If L(z, η) is a gauge invariant Lagrangian on E, i.e. L(z, η)
= L(z̃, η̃), then

Na
k = gb̄a ∂2L

∂zk∂η̄b
(2.7)

is a (g.c.n.c.).

A fundamental notion in our study is that of d-complex vertical connection on
E. The metric tensor gab̄ determines a metric Hermitian structure G = gab̄dηa⊗dη̄b

on the vertical bundle V E. The connection form of a d-complex vertical connection
D is written according to (7.2.4) from [Mu3] as follows

ωa
b = La

bkdzk + La
bk̄dz̄k + Ca

bcδη
c + Ca

bc̄δη̄
c , (2.8)

where (dzk, δηc = dηc + N c
kdzk) is the dual adapted base of the (c.n.c.) and

(La
bk, La

bk̄
, Ca

bc, Ca
bc̄) are the coefficients of the vertical connection D.

From the general theory of Hermitian connection it result a unique metrical Her-
mitian connection with respect to G and of (1, 0)-type, called the Chern-Lagrange
complex connection, which can be obtained by the same technique as we did for
the T ′M bundle (Corollary 5.1.1, [Mu3]):

CL

La
bk= gd̄aδkgbd̄ ;

CL

La
bk̄= 0 ;

CL

Ca
bc= gd̄a∂̇cgbd̄ ;

CL

Ca
bc̄= 0. (2.9)

A simplification presents a special partial complex connection (cf. [Ai2, Ai3]),
called the complex Bott connection, which is not metrical but has a very simple
expression

DXY = v [X,Y ] , ∀X ∈ HE , Y ∈ V E.

From the calculus of the Lie brackets, see (7.1.10) in [Mu3], it results that the
connection form of the complex Bott connection is

ωa
b =

B

La
bk dzk , where

B

La
bk=

∂Na
k

∂ηb
.

The unique nonzero component of the complex Bott connection on E is

Ωa
b = Ra

bij̄ dzi ∧ dz̄j with Ra
bij̄ = −δj̄

B

La
bi , (2.10)

while the nonzero components of complex Chern-Lagrange connection are more nu-
merous. For this reason the complex Bott connection is an appropriate connection
for our approach.
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A complex vertical connection determines the following derivative laws on V E :

h

Dδk
∂̇b = La

bk∂̇a ;
h̄

Dδk̄
∂̇b = La

bk̄∂̇a ;
v

D∂̇c
∂̇b = Ca

bc∂̇a ;
v̄

D∂̇c̄
∂̇b = Ca

bc̄∂̇a .

The covariant derivatives of a vertical field Φ = Φa ∂
∂ηa will be denoted with

Φa
p k, Φa

p k̄ and Φa
| b, Φa

| b̄ , where

Φa
p k = δkΦ

a + La
bkΦ

b ; Φa
p k̄ = δk̄Φ

a + La
bk̄Φ

b ; (2.11)

Φa
| c = ∂̇cΦ

a + Ca
bcΦ

b ; Φa
| c̄ = ∂̇c̄Φ

a + Ca
bc̄Φ

b.

If D is a gauge invariant connection, because δk, ∂̇c and δk̄, ∂̇c̄ are gauge invari-
ant, we may conclude that these covariant derivatives are gauge invariant as long
as Φ is gauge invariant.

On E∗ manifold we may introduce the similar d-complex connections with
respect to a metric tensor derived from a regular Hamiltonian.

A regular complex Hamiltonian is a real valued function H : E∗ → R such

that hb̄a = ∂2H/∂ζa∂ζ̄b defines a Hermitian metric tensor on E∗, i.e. hb̄a = hāb

and det(hb̄a) 6= 0 on E∗. Let hab̄ be its inverse. A regular complex Hamiltonian
determines a metric Hermitian structure on the vertical bundle V E∗, defined by
H = hb̄a dζa ⊗ dζ̄b. In completly analogy with the result on E we check

Proposition 2.2. Let H(z, ζ) be a complex gauge invariant Hamiltonian on E∗,
i.e. H(z, ζ) = H(z̃, ζ̃). Then,

Nak = −hab̄

∂2H

∂zk∂ζ̄b

(2.12)

is a (g.c.n.c.) on E∗.

With respect to adapted frames of (2.12) (c.n.c.) a d-vertical connection on

V E∗ is denoted by
∗
D and has the following components,

h∗
Dδ∗k ∂̇a = Ha

bk∂̇
b ;

h̄∗
Dδ∗̄

k
∂̇a = Ha

bk̄∂̇
b ;

v∗
D∂̇c ∂̇a = Cac

b ∂̇b ;
v̄∗
D∂̇c̄ ∂̇a = Cac̄

b ∂̇b

and their conjugates by DXY = DX̄ Ȳ .
It results that its connection form is

ωa
b = Ha

bkdzk + Ha
bk̄dz̄k + Cac

b δζc + Cac̄
b δζ̄c , (2.13)

with respect again to the dual adapted frame of the (2.12) (c.n.c.).
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There exists a unique metric connection with respect to the Hermitian structure
H on V E∗ which is of (1, 0)-type,

CH

Ha
bk= hd̄aδ∗khbd̄ ;

CH

Ha
bk̄= 0 ;

CH

Cac
b = −hbd̄∂̇

chd̄a ;
CH

Cac̄
b = 0, (2.14)

called the complex Chern-Hamilton vertical connection.
A partial vertical connection of Bott type on V E∗ is given by the vertical part

of the bracket,
∗B
DX Y = v [X, Y ] , ∀X ∈ HE∗, Y ∈ V E∗, and has the following

connection form

ωa
b =

B

Ha
bk dzk , ωa

b =
B

La
bk dzk , where

B

Ha
bk=

∂Nbk

∂ζa

. (2.15)

The unique nonzero component of the complex Bott connection on E∗ is

Ωa
b =

∗
Ra

bij̄ dzi ∧ dz̄j with
∗

Ra
bij̄= −δj̄

B

Ha
bi . (2.16)

If H is a gauge invariant Hamiltonian, then both complex Chern-Hamilton and
Bott connection on V E∗ are gauge invariant. The proof derives from the fact that
hb̄a and Nbk given by (2.12) are gauge invariant and δ∗k, ∂̇a are gauge adapted
frames.

The sections of V E∗ are 1−forms, Φ = Φa(z, ζ) ∂
∂ζa

= Φa∂̇
a. Then a vertical

connection
∗
D on V E∗ induces covariant derivatives which act under the section Φ

as follows

Φa p k = δ∗kΦa + Hb
akΦb ; Φa p k̄ = δ∗̄kΦa + Hb

ak̄Φb ; (2.17)

Φa | c = ∂̇cΦa − Cbc
a Φb ; Φa | c = ∂̇ c̄Φa − Cbc̄

a Φb.

Now, we recall that in [Mu3] a Lagrangian-Hamiltonian formalism was intro-
duced for the holomorphic tangent bundle T ′M by using a complex Legendre mor-
phism. We proved that by complex Legendre transformation (the L-dual process)
the image of a complex Lagrange space is (at least locally) a complex Hamil-
ton space. The complex Legendre transformation pushes-forward and its inverse
pulls-back the various described geometric objects of a complex Lagrange space
and complex Hamilton space, respectively.

Without more other details we can reproduce here, generalizing the T ′M case,
the process of L-duality for the pairs (E,L ) and (E∗, H). Let us consider L a local
Lagrangian on U ⊂ E. Then the map Λ : U ⊂ E → Ū∗ ⊂ E∗

Λ : (zk, ηa) →
(
zk, ζ̄a =

∂L

∂ηa

)
(2.18)

is a local diffeomorphism. Since the sections of V E are identified with those of E, we
can extend Λ to the open set of V E. By conjugation, the local diffeomorphism Λ×Λ
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sends the sections of the complexified bundle V E×V E into sections of V E∗×V E∗.
This (local) morphism will be called the complex Legendre transformation, briefly
(c.L.t).

Then, locally the function

H = ζaη
a + ζ̄aη̄

a − L (2.19)

defines a regular (local) Hamiltonian on E∗.
By the inverse Λ−1 : Ū∗ → U, Λ−1 : (zk, ζ̄a) → (zk, ηa = ∂H

∂ζa
), from a Hamil-

tonian structure on E∗ a Lagrangian structure on E is obtained.
The properties obtained by (c.L.t) are called L-dual one to other. Like in [Mu3],

in the following with ”∗” will be designed the image of an object by Λ and with
”o” their image by Λ−1. Some of the assertions of § 6.7 from [Mu3] can be easily
translated in our framework. For instance, in virtue of (2.19) we have

Proposition 2.3. The unique pair of (c.n.c.) on V E and respective on V E∗ which
correspond by L-duality is given by (2.7) and (2.12). Moreover, if L is gauge
invariant Lagrangian then both of these (c.n.c.) are gauge invariant.

Further, simple calculus proves that

Proposition 2.4. The following equalities hold by L-duality:

i)
(

δ
δzk

)∗
= δ∗

δzk ;
(

∂
∂ηa

)∗
= hab̄

∂
∂ζ̄b

;
(

δ∗
δzk

)o
= δ

δzk ;
(

∂
∂ζa

)o

= gab̄
∂

∂η̄b

ii)
(
dzk

)∗
= d∗zk ; (δηa)∗ = hb̄aδζ̄b ;

(
d∗zk

)o
= dzk ; (δζa)

o = gab̄δη̄
b

iii) (G)∗ = H and (H)o = G.

If D is a metrical connection, then its dual (D)∗ is metrical too, moreover their

curvatures correspond by L-duality, (R(X, Y )Z)∗ =
∗
R (X∗, Y ∗)Z∗. We note that

the image by L-duality of the complex Bott connection is not the complex Bott
connection on E∗. However, we shall use both of these connections for theirs simple
expressions and convenience in calculus.

We end this section with a remark. With respect to adapted frames of the
L-dual (2.7) and (2.12) (c.n.c.) we can consider the almost simplectic forms ω and
θ, L-dual one to other, θ = (ω)∗ ,

ω = gab̄ δηa ∧ δη̄b ; θ = hb̄a δζa ∧ δζ̄b. (2.20)

3 The Euler-Lagrange complex field equations

Let E be a G-complex vector bundle over M. From physical point of view a
section of E is treated as a field particle. The field particle dynamics assumes to
consider the variation of a Lagrangian particle Lp : E → R, which is a first order dif-
ferential operator over the sections of E. This is Lp = Lp(j1Φ), where Φ = Φasa is a
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section and j1Φ its first jet. Enlarge this is, L̂p(Φ) = Lp(Φ
a, ∂iΦ

a, ∂ı̄Φ
a, ∂̇bΦ

a, ∂̇b̄Φ
a)

where ∂i = ∂
∂zi , ∂̇b = ∂

∂ηb .
The field equations imply to find the particle Φ from the variational principle

δA = d
dt
|t=0 A(Φ + tδΦ), where A(Φ) =

∫
L̂p(Φ) is the action integral. Ac-

tually, the action integral is defined on a compact subset θ ⊂ E and, for the
independence of the integral at the changes of local charts, instead of L̂p(Φ) we

consider the Lagrangian density Lp(Φ) = L̂p(Φ) | g |2, where | g |=| det gab̄ | and
gab̄ = ∂2Lp/∂ηa∂η̄b ( since Lp depends on (z, η) by means of Φ). In the following
the regularity condition for Lp will be assumed.

The problem of solutions for the field equations is one difficult, first because
the chosen Lagrangian needs to be one gauge invariant (by means of Φ and its
derivatives). Then the derivations in field equations are with respect to the natural
frames ∂i, ∂̇b which, for a gauge invariant expression of the field equations, need
to be replaced with the adapted frames of one (g.c.n.c.), i.e. ∂i = δi + Na

i ∂̇a.
Such a way was followed in [Mu1] in order to obtain the gauge invariant field
equations on T ′M . The modern gauge field theories is based on the ”minimal
replacement” principle ([Bl, DM, Pa]...), which is nothing but a generalization of
Einstein’s covariance principle.

The minimal replacement principle consists in replacement in Lp(Φ
a, ∂iΦ

a,
∂ı̄Φ

a, ∂̇iΦ
a, ∂̇ı̄Φ

a) partial derivatives with covariant derivatives of a gauge invariant
vertical connection, possible the complex Bott connection. At the first glance this
seems to be a notational process, but it is a more subtle idea. The connection be-
comes a dynamical variable which joints mechanics with the geometry of the space.
Thus we will study the variation of the action for the Lagrangian Lp(Φ, DΦ). But
for the beginning let us introduce, as in standard theory, the (complex) currents
on E :

J(Φ, DΦ) ∧ δω :=
d

dt
|t=0 L(Φ, DΦ + tδω) (3.1)

where δω is a variation for the connection form of D connection.
Direct calculus in (2.2) yields the following complex currents:

h

J i
a=

∂L
∂Φa

p i
;

h̄

J i
a=

∂L
∂Φa

p ī
;

v

J b
a=

∂L
∂Φa

| b
;

v̄

J b
a=

∂L
∂Φa

| b̄
(3.2)

which implicitly contain the following components

h

J ib
a =

∂L
∂La

bi

;
h̄

J īb
a =

∂L
∂La

b̄i

;
v

J cb
a =

∂L
∂Ca

bc

;
v̄

J c̄b
a =

∂L
∂Ca

bc̄

.

Now, let us focus attention to the variation of the action integral, δA(Φ) =
d
dt
|t=0

∫
θ
L(Φ, DΦ + tδω) = 0. This implies

∫

θ

{
∂L
∂Φa

δΦa +
∂L

∂Φa
p i

δ(Φa
p i) +

∂L
∂Φa

p ī
δ(Φa

p ī) +
∂L

∂Φa
| b

δ(Φa
| b) +

∂L
∂Φa

| b̄
δ(Φa

| b̄)
}

= 0.
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Further, for instance the calculus of the second term involves

∂L
∂Φa

p i
δ(Φa

p i) =
∂L

∂Φa
p i

∂

∂zi
(δΦa) +

∂L
∂Φa

p i
δ(La

biΦ
b) =

=
∂

∂zi

(
∂L

∂Φa
p i

δ(Φa)

)
− ∂

∂zi

(
∂L

∂Φa
p i

)
(δΦa) +

∂L
∂Φa

p i
δ(La

biΦ
b)

and analogously for the other terms. If we assume a nul variation on the boundary
of θ, then finally for the variation of the integral action we obtain

∂L
∂Φa

=
∂

∂zi
(

∂L
∂Φa

p i
) +

∂

∂z̄i
(

∂L
∂Φa

p ı̄
) +

∂

∂ηb
(

∂L
∂Φa

| b
) +

∂

∂η̄b
(

∂L
∂Φa

| b̄
)− < J, δω > ,

where, < J, δω >=

∫

θ

{
h

J i
a δ(La

biΦ
b)+

h̄

J i
a δ(La

bı̄Φ
b)+

v

J c
a δ(Ca

bcΦ
b)+

v̄

J c̄
a δ(La

bc̄Φ
b)}.

Taking into account the (2.3) expressions of the complex currents, in adapted
frames of the (2.7) (c.n.c.) the previous field equations are written

∂L
∂Φa

= δi

h

J i
a +δı̄

h̄

J ı̄
a +∂̇b

v

J b
a +∂̇b̄

v̄

J b̄
a+ N b

i ∂̇b

h

J i
a +N b̄

ı̄ ∂̇b̄

h̄

J ı̄
a − < J, δω > . (3.3)

The (2.4) equations, for a = 1,m, will be called the complex field equations of
the particle Φ.

The gauge invariance of the Lagrangian Lp, with respect to particle Φ and
their covariant derivatives, implies the gauge invariance of the complex currents
and consequently the gauge invariance of (2.4) complex field equations. Certainly,
everywhere we take in discussion a gauge invariant vertical connection D, particu-
larly the complex Chern-Lagrange or Bott connections.

For the existence of a such gauge invariant particle Lagrangian subsequently we
propose a particle Lagrangian of Klein-Gordon type, quite generalized and adequate
for various field applications. For this purpose we consider a pair of Hermitian
metrics, one being the Lorentz metric γij̄(z) on the complex world manifold M .
The second is a mass Hermitian metric γab̄(z, η) on E, derived from the matter field
Lagrangian Lm = mab̄Φ

aΦ̄b (mab̄ the Hermitian mass matrix). In the last period one
Finsler-Minkowski metric kick up some interest in applications of Finsler geometry
in relativity, namely the Berwald-Moor metric. We can propose instead of Lm

the folowing complex version of Berwald-Moor metric LBM = {∏a(η
aη̄a)} 1

m . If we
wish to connect our field theory with other, a good choose instead of mass metric
is one derived from an external Lagrangian with physical meaning, for instance an
Antonelly-Shimada complex Lagrangian LAS = e2σ(z){∑a(η

aη̄a)m} 1
m (see [Mu3]),

with applications in biology and relativistic optics. However, each of these last
complex Lagrangians could be of interest for complex Finsler geometry.
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The Hermitian metric γab̄ determines the (2.7) (c.n.c.) and its adapted frames.
Then, a gauge invariant Lagrangian with respect to a complex vertical connection
D and a real valued potential function V (Φ) can be

Lp(Φ, DΦ) =
1

2

∑
a

{γ j̄iDδi
ΦaDδj̄

Φ̄a + γ b̄cD∂̇c
ΦaD∂̇b̄

Φ̄a}+ V (Φ). (3.4)

Note that Lp contains informations about matter field by means of γab̄ and by
covariant derivatives of the field. V (Φ) is a potetial fuctions which, for instance, can
be considered as beeing V (Φ) = ∓m2 ‖ Φ ‖2 −1

4
‖ Φ ‖4, with ‖ Φ ‖2=

∑
a ΦaΦ̄a,

for the exact symmetry or for the broken symmetry, respectively.
As we already know from the classical field theory, this particle Lagrangian

Lp(Φ, DΦ) is not able, quite so in a generalized form, to offer a solid physical
theory because it does not contain enough the geometrical aspects of the space
(curvature, etc.). For this purpose, in the generalized Maxwell equations the total
Lagrangian of electrodynamics is taken in the form:

Le(Φ, DΦ) = Lp(Φ, DΦ) + LY M(D), (3.5)

where

LY M(D) = −1

2
Ω ∧ ∗Ω (3.6)

is a connection Lagrangian, Ω being the curvature form of D and ∗Ω is its Hodge
dual.

For the complex Bott connection on E we obtain

LY M(
B

D) = −1

2

∑

a,b

γ j̄iγk̄lRa
bij̄R

a
blk̄ .

The curvature form of Chern-Lagrange connection is a bit complicate hence we
renounce to apply here.

Since, δDAe(Φ, DΦ) = δDAp(Φ, DΦ) + δDAY M(D), and δDAp(Φ, DΦ) = − <
J, δω >= − < δω,∗ J > (∗J is the dual form current), a computation like in [Pa],
yields for the complex Bott connection that δDAY M(D) =< δω,∗ D∗Ω > . Hence,
for the complex Bott connection we have that D∗Ω =∗ J, or else

δkΩ
a
b + La

ckΩ
c
b − Lc

bkΩ
a
c =

h∗Ja
kb, (3.7)

this generally being called the complex Yang-Mills equation on E.
Also we can check that D∗J = 0 (the same calculus like for formulae (6.7) from

[DM]) and therefore the complex currents are conservative. We note that in this
complex Y-M equation the curvature form of Bott connection contains implicitly
the Hermitian metric tensor gab̄ = ∂2Lp/∂ηa∂η̄b of the particle Lagrangian.
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Finally, for coupling with gravity we again consider the Lorentz Hermitian
metric γij̄(z) on M , which now we assume it derives from a gravitational potential,
and G = γij̄dzi ∧ dz̄j + gab̄δη

a ∧ δη̄b a metric structure on TCE.

By Sij̄ =
∑

Sk
kij̄ and by ρ(γ) = γ j̄iSij̄ we denote the Ricci curvature and

scalar, respectively, with respect to L-C connection of γij̄ metric lifted on TCE.

Also by Rij̄ =
∑

Ra
aij̄ and ρ(g) = γ j̄iRij̄ we have the Ricci curvature and scalar,

respectively, with respect to Bott connection of the g metric. The sum ρ = ρ(γ) +
ρ(g) generates an Hilbert-Einstein type Lagrangian LG = − 1

χ
ρ, where χ is the

universal constant.
The complex Einstein equations on E will be

Sij̄ −
1

2
ρ(γ)γij̄ = χTij̄ ; Rij̄ −

1

2
ρ(g)γij̄ = χTij̄ (3.8)

where Tij̄ is the stress-energy tensor of the potential gravity γij̄(z) on M .
The total Lagrangian for coupling gravity with electodynamics (complex inho-

mogeneus Maxwell equations) is

Lt(Φ, DΦ) = Lp(Φ, DΦ) + LY M(D) + LG. (3.9)

4 Hamiltonian gauge complex theory

In the preview section, in fact a field particle was treated as section Φ =
Φa(z, η)sa on E which induced naturally the section Φ = Φa(z, η)∂̇a on V E. The
associated particle Lagrangian is a function of Φ and the covariant derivative DΦ is
with respect to a complex vertical connection, particularly for simplicity the Bott
connection. Indeed, Lp depends implicitly by the base point u = (z, η) ∈ E. Then
by complex Legendre transformation (2.18), (2.19), the sections of V E (plus their
conjugates) will be send into sections of V E∗. We obtain hereby the field particles
on E∗:

Φa(z, ζ) = hab̄Φ
b̄(z, η :=

∂Hp

∂ζ
) =

(
∂Lp

∂Φa

)∗
. (4.1)

Consequently, by (2.19) we obtain a Hamiltonian for the L- dual particle Φ∗ =
Φa∂̇

a,
Hp(Φ

∗) = ΦaΦ
a + Φ̄aΦ̄

a − Lp(Φ). (4.2)

We note that Hp is gauge invariant with respect to the L-dual gauge trans-

formation
∗
Υ of Υ, forasmuch Lp is gauge with respect to Υ. As well, we proved

that the L-dual of a vertical connection on V E is a vertical connection V E∗, i.e.

(D)∗ =
∗
D, and moreover if one is gauge the other is gauge too. Hence, Lp(Φ

a, DΦa)

by (4.2) determines the L-dual Hamiltonian Hp(Φa,
∗
D Φa).

Now, by taking
∗
D Φa as an independent variable for the Hamiltonian, we can

write down the following variation

δH =
∂H

∂Φa

(δΦa) +
∂H

∂Φa p i
(δΦa p i) +

∂H

∂Φa | b

(δΦa | b) + conjugates
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By the same symbols ω and θ from (2.20) we denoting the L-dual symplectic
forms associated to the variations of field particle. Thus, we may write θ as being

θ = hb̄a{δΦa ∧ δΦ̄b +
∑

i

δΦa p i ∧ δΦ̄b p i +
∑

c

δΦa | c ∧ δΦ̄b | c} (4.3)

Let as associate to Φa, on the curve t → Φa(z(t), η(t)), the vector field XΦa

XΦa =
δΦa

dt

δ

δΦa
+

∑
i

δΦa
p i

dt

δ

δΦa
p i

+
∑

b

δΦa
| b

dt

δ

δΦa
| b

+ conjugates.

By L-duality on the curve t → Φa(z(t), ζ(t)) we obtain the vector field
∗

XΦa=
hb̄a (XΦ̄b)

∗,

∗
XΦa=

δΦa

dt

δ

δΦa

+
∑

i

δΦa p i
dt

δ

δΦa p i
+

∑

b

δΦa | b

dt

δ

δΦa | b

+ conjugates.

The requirement i ∗
XΦa

θ = δH of integral curve for
∗
XΦa yields

hb̄a δΦ̄b

dt
= − ∂H

∂Φa

; hb̄a δΦ̄b p i
dt

= − ∂H

∂Φa p i
; hb̄a δΦ̄b | c

dt
= − ∂H

∂Φa | c

.

Tacking variations δΦa in (2.17), we easily can check that (δΦa) p i = δ(Φa p i)
and (δΦa) | c = δ(Φa | c) and hence, from the above formulas is obtain

hb̄a δΦ̄b

dt
= − ∂H

∂Φa

;

(
∂H

∂Φa

)

p i
=

∂H

∂(Φa p i)
;

(
∂H

∂Φa

)

| c

=
∂H

∂(Φa | c)
(4.4)

called the complex Hamilton field equations.
By L-duality let us obtain now from (2.5) the Klein-Gordon type Hamiltonian.

Since γij̄(z) is a Hermitian metric on the base manifold M, we identify it with(
γij̄(z)

)∗
on E∗. For the Hermitian mass metric γab̄(z, η), (or eventually for one

which comes from an external Lagrangian of Antonelli-Shimada type, for instance),
we recall from [Mu3] that the L−dual of a complex Lagrange (Finsler) space is
a complex Hamilton (Cartan) space and their metrics correspond by L−duality.
So, let us setting τab̄ := (γab̄)

∗ and then τ b̄a its inverse. Then the associated
Klein-Gordon Hamiltonian to Φa particle is

Hp(Φ
∗,

∗
D Φ∗) = −1

2

∑
a

{γ j̄i
∗
Dδ∗i Φa

∗
Dδ∗̄

j
Φ̄a + τ b̄c

∗
D∂̇c ΦaD∂̇bΦ̄a}− (V (Φ))∗ . (4.5)

Because its metric tensor is the L-dual of the Lagrangian particle metric tensor,
hab̄ = (gab̄)

∗ , the corresponding Hamiltonian density to the Lagrangian density
Lp = Lp | g |2 will be Hp = Hp | g |−2 .
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For the Yang-Mills Hamiltonian we take into account the Proposition 2.6 and
Proposition 2.7 and therefore we obtain a complex Hamilonian which contains
only the curvature of a vertical connection on E∗. Although the Bott complex
connections don’t correspond by L-duality, for applications is useful the following
Y-M Hamiltonian,

HY M(
∗B
D) =

1

2

∑

a,b

γ j̄iγk̄l
∗

Ra
bij̄

∗
Ra

blk̄ . (4.6)

Finally, if we consider for (4.5) its metric tensor hab̄ = (gab̄)
∗, we may construct

the Ricci curvatures for γ and h on V E∗ and thereafter the Ricci scalars,
∗
ρ (γ)

and
∗
ρ (h). We observe that

∗
ρ (γ) is identified with ρ(γ). Thus, the Hilbert-Einstein

gravitational Hamiltonian is HHE = 1
χ

∗
ρ, where

∗
ρ= ρ(γ)+

∗
ρ (h).

References

[Ai1] T. Aikou, A partial connection on complex Finsler bundle and its appl., Illinois J.
of Math., 42 (1998), 481–492.

[Ai2] T. Aikou, Applications of Bott connection in Finsler Geom., Steps in Diff. Geom-
etry, Debrecen 2000, 3–13.

[Ai3] T. Aikou, Finsler geometry on complex vector bundles, Riemann Finsler Geometry,
MSRI Publications, 50 (2004), 85–107.

[Ar] V. I. Arnold: Mathemathical methods of classical Mechanics, Springer-Verlag, 1978.
[As] G. S. Asanov, Finsler geometry, Relativity and gauge theories, D.Reidel Publ. Co.,

Dordrecht, 1985.
[As1] G. S. Asanov, Finsleroid-relativistic time-asymmetric space and quantized fields,

Reports of Math. Physics, 57 (2006), 199–231.
[Be] A. Bejancu, Finsler Geometry and Appl., Ellis Harwood, 1990.
[Bl] D. Bleeker, Gauge theory and variational principles, Addison-Wesley Publ. Co.

Inc., 1984.
[CN] M. Chaichian, N.F. Nelipa, Introduction to gauge field theories, Springer-Verlag,

1984.
[CR] F. Cooperstock, N. Rosen, A nonlinear gauge-invariant field theory of leptons, Int.

J. Theor. Physics, 28 (1989) 423–440.
[DM] W. Drechsler, M. E. Mayer, Fiber bundle techniques in gauge theories, Springer-

Verlag, Lecture Note in Physics, 67 (1977).
[FM] R. Friedman, J. Morgan, Gauge theory and topology of four-manifolds, ed. IAS/

PARK CITY, Math. Series, AMS, 4 (1998).
[Ma] Y. I. Manin, Gauge field theory and complex geometry, Springer-Verlag, 1997.
[MA] R. Miron, M. Anastasiei, The geometry of Lagrange spaces. Theory and appl.,

Kluwer Acad. Publ. FTPH 59 (1994).
[MS] R. Miron, D. Hrimiuc, H. Shimada, S. Sabau, The Geomery of Hamilton and

Lagrange Spaces, Kluwer Acad. Publ., 118 (2001).



Gh. Munteanu Lagrangian-Hamiltonian formalism in gauge complex field theories 299

[Mu1] G. Munteanu, Gauge transformations on holomorphic bundles, Balkan J. of Geom
and Appl. 6 (2001), nr. 2, 71-80.

[Mu2] G. Munteanu, B. Iordachiescu, Gauge complex field theory, Balkan J. of Geom and
Appl. 12 (2005), nr.2, 55–64.

[Mu3] G. Munteanu, Complex spaces in Finsler, Lagrange and Hamilton geometries,
Kluwer Acad. Publ., FTPH 141 (2004).

[Pa] R. Palais, The geometrization of physics, Lecture Notes in Math., Hsinchu, Taiwan,
1981.

[Sa] G. Sardanashvily, Gravidity as Higgs field. II. Fermion-gravitation complex, arXiv:
gr-qc/9407032, 1994.

[Wu] N. Wu, General gauge field theory, arXiv: hep-ph/9805453, 1998.



300 Space-Time Structure. Algebra and Geometry

Geodesics, Connections and Jacobi Fields

for Berwald-Moor Quartic Metrics

V. Balan1, N. Br̂ınzei2 and S. Lebedev3

For Finsler spaces (M, F ) with quartic metrics F = 4
√

Gijkl(x, y)yiyjykyl, we de-
termine the equations of geodesics and the corresponding arising geometrical objects-
canonical spray, nonlinear Cartan connection, Berwald linear connection – in terms of
the non-homogenized flag Lagrange metric hij = Gij00. Further, are studied the geodesics
and Jacobi fields of the tangent space TM for hv-metric models.

MSC2000: 53B40, 53C60, 53C22.

1 The equations of geodesics in quartic Berwald-Moor spaces

Let (M, F ) be an n-dimensional Finsler space. We shall denote by (x, y) the local
coordinates on TM and by the signs ”, ” and ”; ” preceding an index, the partial derivative
relative to the corresponding component of x and of the direction y, respectively. Let
Gijkl be the local components of the 0-homogeneous 4-metric

Gijkl(x, y) =
1
4!

(F 4);ijkl. (1.1)

We denote by hij the flag non-homogenized metric

hij =
1
12

(F 4);ij (1.2)

which coincides with the tensor field y
(4)
ij from ([9]). We shall further prove that hij is

nondegenerate. The link between the two tensors (1.1) and (1.2) is

hij = Gij00, Gijkl =
1
2
hij;kl

where the index 0 means transvection by y. We consider the Euler-Lagrange equation

d

dt

(
∂F

∂yi

)
− ∂F

∂xi
= 0 (1.3)

and we look for the solutions c : t ∈ [0, 1] → x(t) ∈ M , parametrized by arclength, this
is, v(t) = 1, ∀t ∈ [0, 1], where

v(t) = F (x(t), y(t)), y(t) =
dx

dt
(t), ∀t ∈ [0, 1].
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vbalan@mathem.pub.ro.

2 ”Transilvania” University, Brasov, Romania, nico.brinzei@rdslink.ro.
3 Institute of Appl. Mathematics and Mechanics of Baumann Moscow State Technical Uni-

versity, Moscow, Russia, serlebedev@yahoo.com.
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Then we have the following

Proposition 1. The system (1) is equivalent with

d

dt

(
∂Fα

∂yi

)
− ∂Fα

∂xi
= 0, α 6= 0. (1.4)

Proof. We have ∂F α

∂xi = αFα−1 ∂F
∂xi , ∂F α

∂yi = αFα−1 ∂F
∂yi , and since c is a unit-speed curve,

it follows that dv
dt = 0 ⇒ d

dt

(
∂F α

∂yi

)
= αFα−1 d

dt(
∂F
∂yi ), which lead to the claim. ut

Remark. In particular, for α = 4, (1.4) leads to

d

dt

(
∂F 4

∂yi

)
− ∂F 4

∂xi
= 0. (1.5)

Using F 4 = Gmjkly
myjykyl, it follows ([5]) (F 4);i = 4Gi000, and further,

d
dt

(
∂F 4

∂yi

)
= 4dGijkl

dt yjykyl + 12Gijkl
dyj

dt ykyl =

= 12Gijkl
dyj

dt ykyl + 4
(

∂Gijkl

∂xm ymyjykyl + Gijkl;m
dym

dt yjykyl
)

.

Since Gijkl is 0-homogeneous, using Euler’s relation we infer

Gijkl;m
dym

dt
yjykyl = (Gimkl;jy

j)
dym

dt
ykyl = 0 (1.6)

and hence
d

dt

(
∂F 4

∂yi

)
= 12Gijkl

dyj

dt
ykyl + 4

∂Gijkl

∂xm
ymyjykyl.

Replacing (1.6) and the xi-derivative (F 4),i = Gmjkl,iy
myjykyl in the Euler-Lagrange

equation (1.5), this rewrites

12Gijkly
kyl dyj

dt
+ (4Gijkl,m −Gmjkl,i)ymyjykyl = 0, (1.7)

where yi = dxi

dt . Using the notation hij = y
(4)
ij = Gijkly

kyl ([9]), (1.7) becomes

hij
dyj

dt
+

1
12

(4Gijkl,m −Gjklm,i)ymyjykyl = 0. (1.8)

Denoting

γi
jklm =

1
12

hipγp jklm, γp jklm = (4Gpjkl,m −Gjklm,p), (1.9)

we note that γi
jklm is symmetric w.r.t. the first three lower indices and the equations of

geodesics can be written as

dyi

dt
+ γi

jklmyjykylym = 0. (1.10)
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As well, denoting γ̃i
jklm = hipγ̃p jklm/12, where

γ̃p jklm = Gpjkl,m + Gpmjk,l + Gplmj,k + Gpklm,j −Gmjkl,p,

we can easily see that (4) can be rewritten as

dyi

dt
+ γ̃i

jklmyjykylym = 0. (1.11)

Remarks. 1. The tensor with which we have raised the indices is hij = y
(4)
ij , not

ỹ
(4)
ij = F;iF;j −hij (cf. [9]), which is degenerate, as we shall further prove. The equations

of geodesics (4) can be expressed only in terms of the non-homogenized flag 2-metric
hij = Gij00. Having in view that Gijkl,mykyl = hij,m, we rewrite (2) as

his
dys

dt
+

1
12

(4hij,k − hjk,i)yjyk = 0, (1.12)

or, still
dyi

dt
+

his

12
(4hij,k − hjk,i)yjyk = 0. (1.13)

Applying the variational principle to F 4 = hijy
iyj one gets the same equations of geo-

desics (3), which are the equations of geodesics of the Lagrange space (M, L) with the
Lagrangian L = F 4 = hijy

iyj = Gijkly
iyjykyl.

Unfortunately, the coefficients γi
jm00 = hij(4hij,m − hmj,i)/12 can not stand for the

coefficients of a linear connection on TM .
Last but not least, we point out several considerations regarding the used (0,2) tensor

fields. We shall further skip for brevity the symbol ”;” in the partials of F w.r.t. y (e.g.,
Fi = F;i, Fij = F;ij , etc). Let li = F−1yi = Fi, where yi = gijy

j and gij = (F 2);ij/2 is
the fundamental Finsler metric tensor field. Then we have:

Proposition 2. Consider the following family of (0, 2)-tensor fields

Θij = λgij + µlilj , λ, µ ∈ F(M), (1.14)

Denote by gij the dual and by δ the determinant of gij. Then

a) Θij is non-degenerate for λ(λ + µ) 6= 0 on TM .
b) The dual of Θij is

Θij =
1
λ

gij +
−µ

λ(λ + µ)F 2
yiyj .

c) The determinant of Θij is
∆ = λn−1(λ + µ) · δ.

Proof. From the 1-homogeneity of F follow Fiy
i = F , Fijy

j = 0, yi = FFi. The
claim follows using these relations and from straightforward calculation using properties
of determinants.

Lemma. Consider the matrix Γ̃ = (γ̃ij)i,j∈1,n, γ̃ij = γij + uiuj, with Γ = (γij)i,j∈1,n

non-degenerate. Then:
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a) The inverse of Γ̃ has the coefficients γ̃ij = γij − (1 + usu
s)−1uiuj, where ui = γisus.

b) We have det(Γ̃) = det(Γ) · (1 + usu
s).

Particular cases.
1. Obviously, gij is part of the pencil (1.14), obtained for λ = 1, µ = 0.
2. We note that gij = FFij + FiFj which infers that

Θij = λFFij + (λ + µ)FiFj , λ, µ ∈ F(M), (1.15)

where both tensor fields Fij and Fi · Fj are degenerate.
3. For λ = 1, µ = −1 (1.14) provides the angular metric

ĝij = gij − lilj . (1.16)

Its halved version-denoted by ỹij , is employed in [9, (10)].
4. From (1.15) we respectively obtain the tensor fields used in [9, (13), (20’)], as

particular cases:

hij = y
(4)
ij = 1

12(F 4);ij , for λ = F 2/3, µ = 2F 2/3

ỹ
(4)
ij = yiyj − y

(4)
ij , for λ = −µ = −F 2/3.

(1.17)

We emphasize that the (0, 2)-tensor field ỹ
(4)
ij satisfies the following equalities

ỹ
(4)
ij = −F 3Fij/3 = −F 2ĝij/3,

and hence has the property of ĝij of being degenerate.

We note that the proposition above provides for λ = 1+α, µ = −α ∈ R the following

Corollary ([1]). The following (0, 2) Finsler tensor fields are 0-homogeneous and
non-degenerate:

gij + αĝij , α ∈ R . (1.18)

Regarding hij , this can be homogenized by dividing to F 2. According to the Corollary,
the resulting (Generalized Lagrange) homogeneous metric is included in the family of
metrics (1.18). More exactly, we have

hij

F 2
=

1
12F 2

[
2F 2(F 2);i

]
;j

=
1
6

[
(F 2);ij + 4F−2yiyj

]
= gij + αĝij , α = −2/3.

Definition 1. We call generalized 4-index angular metric tensor, the tensor field

ωijkl ≡ Gijkl − liljlkll. (1.19)

This definition may be easily extended to any number of indices. In analogy with [1] we
have the following

Proposition 3. The tensors of form G̃ijkl = Gijkl + αωijkl, α ∈ R are generalized
metric tensors which share the same energy F 4.

Proof. Using that liy
i = F−1yiy

i = F , we get G̃0000 = G0000 + α(G0000 − (lsys)4) =
F 4, whence the claim follows.

We should note as well the relation

ωij00 = Gij00 − F 2lilj = hij − F 2FiFj = F 2(FiFj + FFij/3)− F 2FiFj = −ỹ
(4)
ij .
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2 The nonlinear connection

Consider the semispray given by the second term in the equations of geodesics (1.13)

2Gi =
hip

12
(4Gpjkl,m −Gmjkl,p)ymyjykyl.

By taking into account (1.1) and the 1-homogeneity of F , we get Gmjkly
myjykyl = F 4,

Gpjkly
jykyl = Gp000 = 1

4(F 4);p, and hence Gi can be written as

2Gi =
hip

12

(
∂2F 4

∂xm∂yp
ym − ∂F 4

∂xj

)
. (2.1)

Within the Lagrange structure (M, L = F 4/6), where the classical Lagrange metric
induced by L is hij = 1

2
∂2L

∂yi∂yj , (2.1) is exactly the Kern canonical semi-spray of L ([8],
[11, Theorem 7.4.1, p. 113]),

Gi =
hip

4

(
∂2L

∂xm∂yp
ym − ∂L

∂xj

)
. (2.2)

and N i
j = ∂Gi

∂yj are the Kern coefficients of the canonical nonlinear connection attached to
L on TM . Its autoparallel curves described by (1.13) are exactly the geodesics determined
by L. Then the equations (4) can be written as

d2xi

dt2
+ 2Gi = 0 ⇔ d2xi

dt2
+ N i

jy
j = 0,

or, denoting δyi = dyi + N i
sdxs,

δyi

dt
= 0.

Aiming to obtain a normal linear connection (Li
jk, C

i
jk) on TM , one possible choice is,

for example, Li
jk =

∂N i
j

∂yk and Ci
jk = 0. Then the equations of geodesics rewrite

d2xi

dt2
+ Li

jky
jyk = 0.

Remark. The candidates for a nonlinear connection

Ñ i
l =

hip

12

(
4
∂Gpjkl

∂xm
− ∂Gmjkl

∂xp

)
ymyjyk = γi

j000,

i.e., the coefficients of yl from the equations of geodesics from (4), do not obey the specific
component changes; hence they do not define a nonlinear connection.

3 Geodesics in the (h, v)-metric context

Let TM be endowed with: a nonlinear connection N , a metric structure

G = g
(0)

ijdxi ⊗ dxj + g
(1)

ijδy
(1)i ⊗ δy(1)j ,
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where the metrics g
(0)

and g
(1)

can be specified as in the previous sections. Consider as well

a metrical normal linear d-connection D, DΓ(N) = (Li
jk, C

i
jk) ([11]). Then N induces

a local adapted basis
{

δ
δxi ,

∂
∂yi

}
, and the dual adapted basis, {dxi, δyi}. We denote by

〈 , 〉 the scalar product defined on TM by G, by
(γ)

T
(βα)

i
jk the components of the torsion

tensor T (δαk, δβj) =
(γ)

T
(βα)

i
jkδγi, and by

(α)

R
(αβγ)

i
jkl the components of the curvature tensor

R(δγl, δβk)δαj =
(α)

R
(αβγ)

i
jklδαi, where δ0i = δ

δxi , δ1i = ∂
∂yi .

For a curve c : [0, 1] → TM, t 7→ c(t) = (xi(t), y(1)i(t)), we consider its velocity
V := V (t) = ċ = V (α)iδαi, where

V (0)i =
dxi

dt
, V (1)i =

δy(1)i

dt
.

The energy of c is

E(c) =
∫ 1

0
〈ċ, ċ〉dt =

∫ 1

0
〈V, V 〉dt =

∫ 1

0

g
(0)

ijV
(0)iV (0)j + g

(1)
ijV

(1)iV (1)jdt.

Theorem 1 (The first variation of energy). If c : [0, 1] → TM , α : (−ε, ε) ×
[0, 1] → TM is a variation of c by piecewise smooth curves with fixed ends, and W =
∂α
∂u (0, t) is the associated deviation vector field, then the first variation of energy is given
by

1
2

dE(ᾱ(u))
du

∣∣∣∣
u=0

= −
k−1∑

i=0

〈W,∆tiV 〉+
∫ 1

0
〈T (W,V ), V 〉 − 〈W,A〉dt,

where A is the acceleration vector field

A = DċV =
DV

dt
= A(0)iδ0i + A(1)iδ1i

and ∆tX is the jump

∆tX = X (t+)−X (t−) , t ∈ [0, 1], X ∈ X (TM).

We note that 〈T ( · , V ), V 〉 defines a 1-form. Hence there exists a vector field F on TM
such that 〈T (W,V ), V 〉 = 〈F, W 〉. Then, denoting

V = V (α)iδαi, W = W (β)jδβj , F =
1∑

α=0

F (α)iδαi

we have 〈T (W,V ), V 〉 =
1∑

β=0

g
(β)

jhF (β)hW (β)j , and the components of the field F are given

by

F (α)i =

1∑
β,γ=0

g
(α)

il g
(γ)

kh

(γ)

T
(βα)

k
jlV

(β)jV (γ)h, α = 0, 1.
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Remark. The vector field F does not depend on the chosen variation with fixed
endpoints of c.

By replacing F into the expression of the first variation of energy, we get

1
2

dE (ᾱ(u))
du

∣∣∣∣
u=0

= −
k−1∑
i=0

〈W,∆tiV 〉+
∫ 1

0
〈W,F −A〉dt.

For a smooth curve c on the whole [0, 1] the jumps in the sum cancel and we have

1
2

dE (ᾱ(u))
du

∣∣∣∣
u=0

=
∫ 1

0
〈W,F −A〉dt,

which means that u = 0 is a critical point of E if and only if, along c = ā(0), we have
F = A. Consequently we state the following

Theorem 2. Any geodesic c : [0, 1] → TM , t → (xi(t), y(1)i(t)) of (TM, G) satisfies

D

dt

dc

dt
= F.

Then, the smooth curve c : [0, 1] → TM , t → (xi(t), y(1)i(t)) is a geodesic of TM iff

DV (0)i

dt
= F (0)i,

DV (1)i

dt
= F (1)i, (3.1)

which rewrites explicitly as

dV (0)i

dt + Li
jkV

(0)kV (0)j + Ci
jkV

(1)kV (0)j =
1∑

β,γ=0

g
(0)

il g
(γ)

kh

(γ)

T

(β0)

k
jlV

(β)jV (γ)h

dV (1)i

dt + Li
jkV

(0)kV (1)j + Ci
jkV

(1)kV (1)j =
1∑

β,γ=0

g
(1)

il g
(γ)

kh

(γ)

T

(β1)

k
jlV

(β)jV (γ)h.

(3.2)

Example. In particular, in a Finsler space (M, F ), for gij = g
(0)

ij = g
(1)

ij = 1
2F 2

,yiyj

considering the Cartan connection ([11]), we infer that (3.2) rewrite




d2xi

dt
+ Li

jkV (0)kV (0)j + Ci
jkV (1)kV (0)j = gilgkh

(
Rk

jlV
(0)jV (1)h − P k

ljV
(1)hV (1)j − Ck

ljV
(0)hV (1)j

)

dV (1)i

dt
+ Li

jkV (0)kV (1)j + Ci
jkV (1)kV (1)j = gilgkh

(
P k

jlV
(0)jV (1)h + Ck

jlV
(0)jV (0)h

)

Remark. If we consider, instead of a normal linear d-connection (Li
jk, C

i
jk),

a (simple) d-connection (Li
jk, La

bk, Ci
jc ,Ca

bc), then the above equations become





dV (0)i

dt
+ Li

jkV
(0)kV (0)j + Ci

jcV
(1)cV (0)j = F (0)i

dV (1)a

dt
+ La

bkV
(0)kV (1)b + Ca

bcV
(1)cV (1)b = F (1)a.
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4 The second variation of energy. Deviations of geodesics on TM

Consider as well TM endowed with a nonlinear connection N , a metric struc-
ture

G = g
(0)

ijdxi ⊗ dxj + g
(1)

ijδy
(1)i ⊗ δy(1)j

and a normal metrical linear d-connection D, DΓ(N) = (Li
jk, C

i
jk).

Let c : [0, 1] → TM , t 7→ (xi(t), yi(t)) be a geodesic, i.e., c is C∞ on the whole
[0, 1] and c is a critical point of the energy

E =

∫ 1

0

〈ċ, ċ〉dt. (4.1)

Let α : U × [0, 1] → TM be a 2-parameter variation with fixed endpoints of c
by smooth curves on [0, 1], U being a neightbourhood of (0, 0) ∈ R2. We have
α(0, 0, t) = c(t), ∀t ∈ [0, 1]. Let W1, W2 be the induced deviation vector fields

W1(t) =
∂α

∂u1

(0, 0, t), W2(t) =
∂α

∂u2

(0, 0, t),

and let ᾱ be the mapping defined on Ū by

ᾱ(u1,, u1)(t) = α(u1, u2, t), (u1, u2, t) ∈ U × [0, 1].

The Hessian E∗∗ of the energy (4.1) is

E∗∗(W1,W2) =
∂2E(ᾱ(u1,, u2))

∂u1∂u2

∣∣∣∣
(0,0)

.

Let F = F (α)iδαi be the vector field defined by

〈
T

(
∂α

∂u2

,
∂α

∂t

)
,
∂α

∂t

〉
=

〈
F ,

∂α

∂u2

〉
,

having the local coefficients

F (α)i =

1∑
β,γ=0

g
(α)

il g
(γ)

kh

(γ)

T

(βα)

k
jl

∂α(β)j

∂t

∂α(γ)h

∂t
c(u1,u2,t), α = 0, 1. (4.2)

Extending the results obtained in the Finslerian framework ([6], [7]) to the case of
(h, v)-metrics (e.g., as in [8], [6]), we further state the following

Theorem 3 (The second variation of energy). If c : [0, 1] → TM is a
geodesic and α : U × [0, 1] → TM (where ε > 0) is a variation with fixed endpoints
of c by piecewise smooth curves, then the Hessian E∗∗ is given by:
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E∗∗(W1,W2) = −
k−1∑
i=1

〈
W2, ∆ti

(
T (W1, V ) + DW1

dt

)〉
+

+

∫ 1

0

〈
W2,

DF
∂u1

∣∣∣∣
u1=u2=0

+ R (V, W1) V − D

dt
T (W1, V )− D2W1

dt2

〉
dt,

where 0 = t0 < t1 < ... < tk = 1 is a division of [0, 1] such that α be smooth on
each U × (ti−1, ti), i = 1, k.

As consequence, if c : [0, 1] → TM is a smooth geodesic and α : (−ε, ε)×[0, 1] →
TM (ε > 0) is a variation of c through smooth geodesics, then the deviation vector
fields - called also generalized Jacobi fields, W = W (α)iδαi are given by

D2W (α)i

dt2
+

D
(α)

T i

dt
=

DF (α)i

du

∣∣∣∣
u=0

+
(α)

R
i, α = 0, 1, i = 1, n,

where F (α)i are given by (4.2) and we denoted





(α)

T i =
1∑

β,γ=0

V (β)jW (γ)k
(α)

T
(βγ)

i
jk

(α)

R i := −
1∑

β,γ=0

V (α)hV (β)jW (γ)k
(α)

R
(αβγ)

i
hjk .

5 Projectability of horizontal geodesics of TM

Let N be an arbitrary nonlinear connection and let (Li
jk, C

i
jk) be the coeffi-

cients of an arbitrary metrical normal linear d-connection. A curve c : [0, 1] → TM,
t → (xi(t), yi(t)) is a horizontal geodesic of TM iff





V (1)i ≡ dyi

dt
+ N i

jy
j = 0

dV (0)i

dt
+ Li

jkV
(0)jV (0)k = g

(0)

il g
(0)

mh

(
Lm

jl − Lm
lj

)
V (0)jV (0)h

g
(1)

il g
(0)

mhC
m
jlV

(0)jV (0)h = 0.

(5.1)

The last two equations in (5.1) are obtained from (3.2), in which we have used the
relations

(0)

T
(00)

m
jl =

(
Lm

jl − Lm
lj

)
,

(0)

T
(01)

m
jl = Cm

jl.

We note that we take into account only curves c : [0, 1] → TM with yi = dxi

dt
= V (0)i,

i.e., extensions to TM of curves t 7→ xi(t) on M , and we look for conditions for
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such horizontal geodesics to project to geodesics of M. For any curve on TM , we

have V (0)i =
dxi

dt
, and hence from (5.1), we infer that the h-geodesics of TM which

are extensions of curves of M are locally characterized by





dyi

dt
+ N i

jy
j = 0

dyi

dt
+ Li

jky
jyk = g

(0)

il g
(0)

mh

(
Lm

jl − Lm
lj

)
yjyh

g
(1)

il g
(0)

mhC
m
jly

jyh = 0.

(5.2)

We further obtain:

Proposition 4. Let Gi be the coefficients of the Kern canonical semispray
(2.2) of the Lagrangian L = g

(0)
ijy

iyj. If one of the two following relations holds

along any curve t → (xi(t)) of M :

1. 2Gi

(
x,

dx

dt

)
=

(
Li

jh − g
(0)

il g
(0)

mh

(
Lm

jl − Lm
lj

)) dxj

dt

dxh

dt
;

2. 2Gi

(
x,

dx

dt

)
= N i

jy
j;

then any horizontal geodesic of TM projects onto a geodesic of M.

Example. If F is a Finsler metric on M and N is the canonical (Cartan) non-

linear connection of F 2, given by N i
j =

∂Gi

∂yj
, then any horizontal curve (including

the case of a horizontal geodesic) of TM is projected onto a geodesic of M.

In particular, for g
(0)

= g
(1)

and (N i
j, L

i
jk, C

i
jk) the Cartan connection, both

the conditions 1) and 2) in the above Proposition are satisfied. Moreover, the third
set of equations (5.2) is satisfied by any curve, and the first and the second one
are both equivalent with the equations of geodesics of M. Then in this case, there
holds:

Corollary 1 ([1]). For the canonical Cartan connection and a given extension
Γ on TM , we have:

a) If Γ is a horizontal curve then Γ is a horizontal geodesic;

b) Γ is a horizontal curve iff Γ is projectable onto a geodesic of M .
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It is shown that Finsler spaces with polynomial metric allow metrical tensorial con-
nections (i.e., which are linear for a given type of tensors). It is pointed out that many
of these connections induce, in a natural way, metrical non-linear connections on the
considered manifold.

MSC: 53B40, 53B15.

1 Introduction

Let M be a paracompact n-dimensional manifold and a an r-form, that is
a covariant tensor a ∈ T ◦

r of type (0, r) on M with components ai1...ir(x), 1 ≤
i1, . . . , ir ≤ n in a local coordinate system (x). Then ai1...ir(x)yi1 . . . yir , y ∈ TxM
(summation over 1 ≤ i1, . . . , ir ≤ n) is an r-th order homogeneous polynomial in
TxM(y) [yi1 . . . yir ≡ yi1 × · · · × yir ]. We suppose that

aii...ir(x)yi1 . . . yir = 1

is a star-shaped convex hypersurface in TxM(y). Then F n = (M,F) with the
Finsler metric

F r(x, y) = ai1...ir(x)yi1 . . . yir (1)

is a Finsler space with polynomial metric. Such F n are generalizations of the
Berwald-Moór metric (see [1] p. 53 or [20], [21], [14], [17], [18]). F n with polynomial
metric were recently investigated by several authors, such as V. Balan, N. Brinzei,
S. Lebedev, D.G. Pavlov etc. in [2], [3], [8], [13], [19]. They considered these spaces
endowed with linear metrical connections acting in the vector bundle

TM ×M TM = VTM = (V TM, π,Vn)

π−1(x, y) = Vn = {ξ(x, y)},

where Vn is an n-dimensional real vector space, and (x, y) is a line-element. VTM
is no tangent bundle, for dim TM = 2n 6= n = dimVn. In VTM there exist linear
metrical connections (e.g. Cartan connection), which allow to develop a curvature
theory, etc. in a way similar to that of Riemannian geometry. But using this bundle
and line-elements (x, y) has some disadvantages too. The theory becomes more
complicated, and the difference between the dimensions of the base space TM and
the fiber Vn is sometimes inconvenient, especially in physics. A linear connection
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acting in the bundle τM = (TM, π, M, Vn) is more simple, but in a Finsler space
it cannot be metrical in general. Nevertheless there are many Finsler spaces which
allow linear metrical connections in the tangent bundle. Such are the Riemannian
spaces V n, Minkowski spaces Mn, locally Minkowski spaces `Mn, and also the
affine deformations A`Mn of locally Minkowski spaces ([23], [24]), the Finsler
spaces with 1-form metric ([15], [16]), the spaces modelled on a Minkowski space
([11], [12]). Some of these spaces may not exist on every paracompact manifold ([6],
[24]). There are also Finsler spaces admitting metrical connections in τM which are
only near to linear connections [25] or which are homogeneous only [13].

In this paper we want to show that Finsler spaces with polynomial metric allow
metrical tensorial connections (linear for a given type of tensors). Many of them
induce, in a natural way, metrical non-linear connections in τM .

2 Tensorial connection

Let us consider the tensors t of type (r, 0), t ∈ T r
0 over the n-dimensional

manifold M . T r
0 is a real vector space VN of dimension N = nr. Thus tA, A =

1, 2, . . . , N can be considered as the components of t.

Ê = (Ê, π, M,VN), π : Ê → M, π−1(p) ≈ VN , p ∈ M (2)

is a tensor bundle, that is a vector bundle of rank N over M . A linear connection
γ acting in Ê is called tensorial connection. In a local coordinate system (x) it is
given by the connection coefficients

γA
B

k(x), A,B = 1, 2, . . . , N, k = 1, 2, . . . , n

and the parallel translated Pγ
x(τ)t0 of t0 ∈ π−1(x(τ0)) along a curve x(τ) according

to γ is defined by the solution t(τ) of the ODE system

DtB

dτ
≡ dtB

dτ
− γA

B
k(x(τ))tA

dxk

dτ
(3)

with initial value t(0) = t0. With an appropriate γ one can realize any linear
mapping between π−1(x(τ0)) ≈ VN and π−1(x(τ)) ≈ VN . – An affine connection Γ
with coefficients Γj

i
k(x) also induces certain (linear) mappings between the above

fibers. These mappings are realized by special tensorial connections. In case of
r = 2 the corresponding γ has the coefficients

γA
B

k(x) ≡ γrs
ij

k(x) = Γr
i
k(x)δj

s + δi
rΓs

j
k(x). (4)

Clearly γ-s of this form are special ones, and they do not generate all linear
mappings between π−1(x(τ0)) and π−1(x(τ)). Also conversely, if a γA

B
k can be

represented in the form (4), then the tensorial connection γ reduces to the affine
connection Γ.
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The tensorial connection given by (3) is linear in t ∈ T r
0 , and the operator

D
dτ

of (3) can be extended to the tensor algebra of tensors of type (λr, µr), where
λ and µ can be arbitrary non-negative integers. Tensorial connection was intro-
duced by E. Bompiani [9], and investigated by A. Cossu [10], L. Tamássy [22],
M. Kucharzewski [14], and others.

Let M be an N = nr dimensional manifold with local coordinates x, such that
M ⊂ M , and let γ(x) be a C◦ extension of γ. Then the restriction of γ to M yields
γ : γ(x) ¹M= γ(x). Then (M, γ) is an (ordinary) affine connection in the tangent
bundle τM = (TM, π, M,VN). So we obtain the

Proposition 1. Any tensorial connection (Mn(x), γ(x)) is the restriction of an

affinely connected space (M
N

(x), γ(x)) in the form

(Mn, γ(x)) = (M
N

, γ(x)) ¹ M, N = nr.

Here the restriction happens in the base manifold M . This is in analogy to the
fact that any Finsler space F n can be considered as the restriction of a Riemannian
space V 2n = (TM,G), where G is the Sasakian type metric of F n. Here the
restriction happens in the fiber. The tangent space TTM of V 2n is restricted to
the vertical bundle VTM of the Finsler space.

A tensorial connection γ has two curvature tensors AE
C

i; Rj
i
k`, and a torsion

tensor Sj
i
k. Vanishing of A characterizes the reduction of γ to Γ. In this case also

R and S reduce to the curvature RΓ and the torsion SΓ of Γ ([22]).

3 Tensorial connections in case of polynomial metric

The a(x) ∈ T r
0 appearing in (1) is parallel along x(τ) according to γ, if

daA

dτ
= γA

B
k(x(τ))aB

dxk

dτ
,

and a(x) is an absolute parallel tensor field on M (or on a domain of it), if

∇kaA = 0, (5)

that is
∂aA

∂xk
= γA

B
k(x)aB. (5’)

The Finsler norm ‖y‖F of a vector y ∈ TxM in our F n with polynomial metric
(1) is ‖y‖r

F = F r(x, y) = aAbA, A = i1 . . . ir, bA = yi1 . . . yir , and we define the
Finsler norm ‖t‖F of a tensor t ∈ T r

0 in our F n by

‖t‖F : aA(x)tA(x). (6)

Thus
‖y‖r

F = F r(x, y) = ‖b‖F . (7)
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The tensorial connection is called metrical if

‖Pγ
x(τ)t0‖F = ‖t(τ)‖F = const., ∀ x(τ) ⊂ M, t0 ∈ T r

0 , (8)

and thus

d

dτ
‖t(τ)‖F =

D

dτ

(
aA(x(τ))tA(τ)

)
=

[
(∇kaA)

dxk

dτ

]
tA + aA

DtA

dτ
=

d

dτ
const. = 0 (8’)

for any t(τ) parallel along any x(τ). Since for parallel t(τ) DtA

dτ
= 0, and for an

appropriate x(τ) we can obtain every x0 and ẋ0, (8) is equivalent to (5) and to (5’).
For given a(x) (5’) is a linear equation system at any point x0 for the unknowns

γA
B

k(x0). The equations of (5’) are independent in the sense that each γA
B

k(x0)
appears in a single equation only. Hence (5’) is solvable for γA

B
k(x). Thus we

obtain

Theorem 1. Any Finsler space with polynomial metric (1) has metrical tensorial
connections.

(5’) consist of Nn equations, and in each of them (for fix A and k) appear N
unknowns γA

B
k, of which N − 1 can arbitrarily be chosen. Thus in the solution of

(5’) Nn(N − 1) = (N2 −N)n of the γA
B

k remain arbitrary.
The upper script indices of a totally symmetric tensor ti1...ir ∈ T r

0 are the
multiple combinations of order r from the elements 1, 2, . . . , n. These tensors form
a linear subspace sT r

0 of T r
0 . The dimension of sT r

0 is Cm
r,n = (n−1+r)!

(n−1)!r!
= C, the

number of the multiple combinations of order r from n elements 1, 2, . . . , n. The
components of such a tensor will be denoted by tα, α = 1, 2, . . . , C. Also yi1 . . . yir =
bi1...ir = bα ∈ sT r

0 . If in (1) we draw together those ai1...ir in which the same
i1, i2, . . . ir appear (independently from the order), and denote their sum by gα,
then with respect to (6), (1) gets the form

F r(x, y) = gαbα = ‖b‖F , α = 1, 2, . . . , C. (1’)

b is decomposable. It is an r-times tensor product of y ∈ TxM :

b =
1

y ⊗ · · · ⊗ r

y.

Thus
φ := {b}

is a cone in sT r
0 . Its parameter representation is

bα = fα(y′, . . . , yn) := yi1 . . . yir , α = i1 . . . ir. (9)

The correspondence between (y1, . . . , yn) ∈ Vn(y) and b ∈ φ ⊂ sT r
0 is 1 : 1. Thus

dim φ = n. (9) is independent of x ∈ M . Thus φ has the same form in each fiber
VC ≈ sT r

0 ⊂ T r
0 ≈ π−1(x) of the bundle Ẽ = (Ẽ, π, M,VC).
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One can see that

Pγ
x(τ)b0 =: b̃(x(τ)) ≡ b̃(τ) ∈ φ(x(τ)), ∀ b0, ∀x(τ) (10)

or in another form
Pγ

x(τ)φ(x0) = φ(x(τ)) (10’)

does not hold in every tensorial connection γ. We want to obtain necessary and
sufficient conditions for (10) to hold. We suppose that b̃(x(τ)) = b̃(τ) ∈ φ(x(τ)) =
φ(x), where φ(x) is independent of x. Hence every b̃(x(τ)) = b(x) can be considered
as a point of a single representative φ of the φ(x)-s. Thus in case of (10) every ∂bα

∂xk

is a tangent of this φ:
∂bα

∂xk
∈ Tbφ. (11)

But also conversely, if (10) is satisfied, then so is (10).
On the other hand, under the supposed conditions b̃(τ) = b(τ) of (10) is a

solution of Dbα

dτ
= 0, that is (see (3))

dbα

dτ
=

∂bα

∂xk

dxk

dτ
= γβ

α
k(x(τ))bβ dxk

dτ
, α, β = 1, 2, . . . , C, ∀x, ẋ.

Thus γβ
α

k must satisfy the relation

∂bα

∂xk
(y) = γβ

α
k(x)bβ(y). (12)

Furthermore any tangent of φ at y is a linear combination of ∂fα

∂yj ≡ ∂bα

∂yj . Thus the

required necessary and sufficient condition (10) gets the form

cj
k(y)

∂bα

∂yj
(y) = γβ

α
k(x)bβ(y). (13)

This must be satisfied identically in y.
(12) can be considered as a linear equation system for γβ

α
k and cj

k. We show
that (12) has a solution, while many of the unknowns γβ

α
k and cj

k remain undeter-
mined (free).

bβ(y) is a homogeneous polynomial of order r in y. ∂bα

∂yj is also a homogeneous

polynomial of order r − 1. Thus cj
k must be a homogeneous polynomial of order

1 : cj
k(y) = sc

j
ky

s. So (12) gets the form

sc
j
ky

s ∂bα

∂yj
(y) = γβ

α
k(x)bβ(y). (13’)

This is a special, very simple equation system. For any fixed k0 we obtain a
subsystem

sc
jys ∂bα

∂yj
(y) = γβ

α(x)bβ(y), sc
j = sc

j
k0

, γβ
α = γβ

α
k0 . (14)
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The unknowns sc
j
k0

and γβ
α

k0 appear in one single subsystem only. Since every
subsystem has the same structure, our statement for one of them is true for all
of them. Let us fix α = α0. Then on both sides of (13) there is a homogeneous
polynomial of order r in y, and (13) must hold identically in y. Thus the coefficients
of yi1 . . . yir consisting of the different sc

j and γβ
α must be equal on the two sides.

These yield homogeneous linear equations, C in number, for sc
j and γβ

α. The
number of the unknowns sc

j and γβ
α is n2 + C2. For the different α-s (13) consists

of C equations. So the number of the equations for sc
j and γβ

α stemming from
(13) is C2, and the number of the unknowns remains n2 + C2. (13’) consists of n
subsystems for the different k0 with new unknows in each. Thus (13’) yields, as
identities in ys , C2n equations with n3 + C2n unknowns. So we obtain

Proposition 2. There are many tensorial connections γ taking by parallel trans-

lation any decomposable tensor b =
i

y ⊗ · · · ⊗ r

y into a similar one: Pγ
x(τ)b0 = b(τ).

4 Induced non-linear connection in τM

A tensorial connection γ for which Pγ
x(τ)b0

(10)
= b(x(τ)), or in another form

Pγ
x(τ)φ(x0)

(10’)
= φ(x(τ)) ≈ φ holds, induces a non-linear connection in τM . Namely,

as also the diagram

b0 ∈ φ(x0)
Pγ

x(τ)−−−→ b(τ) ∈ φ(x(τ))xf

yf−1

y0 ∈ Tx0M
N

- - -99K y(τ) ∈ Tx(τ)M

shows (fα from (9))
N := (fα)−1 ◦ Pγ

x(τ) ◦ fα (15)

takes any y0 ∈ Tx0M into a y(τ) ∈ Tx(τ)M . Each mapping on the right side of (14)
is homogeneous in y. Thus

PNx(τ)y0 = y(τ). (16)

N is non-linear in y, for Pγ is so in b. Thus we obtain

Theorem 2. Any tensorial connection, which takes tensors b =
1

y ⊗ · · · ⊗ r

y into

similar ones determines in τM among the vectors y ∈ TxM a non-linear connection
N in a natural way.

We want to investigate metrical tensorial connections γ of a Finsler space with
polynomial metric, which induce non-linear connections N in τM . Then γ satisfies
(13’), and it is metrical. A tensorial connection is metrical, if (5’) or, in view of
the symmetry of aA,

∂gα

∂xk
= γα

β
k(x)gβ (17)
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holds. At a given (x) (16) means Cn linear equations for the unknowns γα
β

k. So
(13’) (respectively the equations stemming from the fact that the equations of (13’)
must be identities in ys) combined with (16) consists of Cn + C2n (simple) linear
equations, and the number of the unknowns sc

j
k and γβ

α
k remains C2n + n3. The

rank of the combined system is maximal. If the number of the unknowns is not
less than the number of the equations, that is if C2n + n3 ≥ C2n + Cn, or

n2 ≥ C = Cm
n,r, (18)

then the combined system is solvable. Since (in consequence of (16)) γ is metrical,
in this case we have

‖Pγ
α(τ)b0‖F

(8)
=‖b(τ)‖F = const.

(7)
=F(x, y(τ)) = ‖y(τ)‖r

F = ‖PNx(τ)y0‖r
F .

Thus ‖PNx(τ)y0‖F = const.. This yields

Theorem 3. If γ is metrical (satisfies (16)), and takes every b =
1

y⊗, . . . ,
r

y into a

similar tensor (which satisfies (13’)), then also the induced non-linear connection
N is metrical with respect to the F n with polynomial metric.

The condition of the solvability of the combined system is (17). For which
n and r will it be satisfied? It is clear from the notion of multiple combination
that Cm

n,r is monotone increasing in r for every fix n, and also in n for every fix r.
Therefore there exists a maximal r for every n for which n2 ≥ Cm

n,r. We denote this
r by rn. Then we obtain

Proposition 3. (17) holds iff r ≤ rn. In this case the combined system (13’) and
(16) is solvable, and the induced non-linear connection N is metrical.

In case of r = 2 we have Cm
n,r = n(n+1)

2
< n2. Thus (17) holds for ∀n, and so

we have tensorial connections γ inducing metrical non-linear connections N in τM .
In this case F2(x, y) = aα(x)ba = aij(x)yiyj. This means that for r = 2 the Finsler
space with polynomial metric is a Riemann space: F n = V n. Then γα

β
k(x) =

γij
rs

k(x) = Γi
r
k(x)δs

j +δr
i Γj

s
k(x). This γ is constructed from the symmetric (torsion

free) or non-symmetric Christoffel symbols Γj
i
k of V n. This γ yields a metrical

tensorial connection, and the metrical connection N in τM becomes linear with
coefficients Γj

i
k(x).

In case of r = 3 (17) reads as Cm
n,3 = n(n+1)(n+2)

6
≤ n2 or equivalently n2 + 1 ≤

3n. This holds for n = 2, but for r = 3 and n = 3 (17) is not yet true. For n0 ≥ 3,
r ≥ 3 we have n2

0 < Cm
n0,2 < Cm

n0,r, since Cm
n0,r is increasing in r. Thus for n ≥ 3,

r ≥ 3 (17) does not hold. For n = 2 Cm
2,r = r+1. Thus (17) holds for n = 2, r = 3:

22 = Cm
2,3 (as we have already seen), but Cm

2,3 < Cm
2,r, r > 3, since Cm

2,r is increasing
in r. So we have n2 = 4 = Cm

2,3 < Cm
2,r, that is (17) holds neither for n = 2, r > 3.
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But there may exist special gα(x) for which the number K of the independent
equations of (16) is smaller than Cn, and thus the combined system (13’) and (16)

still has a solution, for example if
∂gα1

∂αk +
∂gα2

∂xk =
∂gα3

∂xk for certain (or several) k.

Theorem 4. If γ is metrical (satisfies (16)), and takes every b =
1

y ⊗ · · · ⊗ r

y into

a similar tensor (satisfies (13’)), then the induced non-linear connection N is also
metrical with respect to the F n with polynomial metric. The condition for this is
n2 ≥ Cm

n,r, or n3 ≥ K if (16) has only K independent equations..

Such γ exists for any Finsler space with polynomial metric only if r = 2 (in
this case the Finsler space is a Riemannian space) or in case of r = n = 3. Such γ
exists also for arbitrary r and n, but not for every polynomial metric.

Finally we make two remarks:

Remark 1. aA(x) of (1) may have the form

aijk`(x) = gij(x)hm`(x), (19)

where gij(x) and hm`(x) are metric tensors of two Riemannian spaces V n
1 and V n

2

on M . Then
F4(x, y) = ‖y‖4

F = ‖y‖2
V1
‖y‖2

V2
.

This may have a mathematical interest. ‖y‖V1 and ‖y‖V2 can also mean two
different impacts of a physical phenomenon. In this case (18) has a physical interest.

Remark 2. A Randers space Rn = (M,R(x, y)) is a special Finsler space ([7],
[14]), where

R(x, y) = (gij(x)yiyj)1/2 + bi(x)yi

in place of F(x, y) means the Randers metric. In a degenerate case we may have
R(x, y) = bi(x)yi. If we endow in the vector bundle Ê (see (2)) of rank N each
fiber π−1(x) ≈ VN with the metric R(x, y) = aA(x)bA, then we obtain a degenerate
Randers vector bundle Rn

N . Thus any Finsler space with polynomial metric (1) can
be considered as a degenerate Randers vector bundle. – It could have some interest
to consider a Finsler space with polynomial metric as a degenerate Randers vector
bundle.
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We consider a pair of metrical Finsler structure gij(x, y), sij(x, y), (x, y) ∈ TM,

i, j = 1, n, dimM = n and we investigate the cases in which is possible to find Finsler
connections compatible to them: rank ‖gij (x, y)‖ = n, rank ‖sij (x, y)‖ = n − k, k ∈
{0, 1, ..., n− 1} , ∀ (x, y) ∈ TM \ {0} .

MSC: 53B40, 53C60, 53B15.

1 Metrical Finsler structures and metrical Finsler connections ([7])

Let M be an n−dimensional differentiable manifold and x = (xi) and y =
(yi) denote a point of M and a supporting element respectively. We put ∂i =
∂/∂xi, ∂̇i = ∂/∂yi, (i = 1, 2, ..., n) .

Let gij (x, y) =
(
∂̇i∂̇jF

2
)

/2 be a Finsler metric and N (N i
j) a nonlinear

connection, which us given the adapted basis
{

δi, ∂̇i

}
of the tangent bundle

TM =: HM ⊕ V M :

δi =
δ

δxi
= ∂i −N j

i∂̇j. (1.1)

We denote {dxi, dyi} the dual basis of adapted basis, where

δyi = dyi + N i
jdxj. (1.2)

We shall express a Finsler connection FΓ in terms of its coefficients as
FΓ = (N j

k, F
i
jk, C

i
jk) , (cf. with M.Matsumoto [6], R.Miron [7] and E. Stoica

[13]). A Finsler connection having a fixed nonlinear connection N is also denoted
by FΓ (N) = (F i

jk, C
i
jk) . And the respective h- and v-covariant derivatives are

denoted by short and long bars, e.g., gijpk, gij|k (with respect to FΓ), g
ij
◦
pk

, g
ij
◦
|k

(with

respect to F Γ̊), etc.
Given a Finsler metric gij, a Finsler connection FΓ is called metrical, if it

satisfies

gijpk = 0, gij|k = 0. (1.3)
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For a Finsler metric gij, we have so-called Obata’s operators, [10]:

Λ
1

pq

ij =
1

2

(
δp
i δ

q
j − gijg

pq
)
, Λ

2

qp

ij =
1

2

(
δp
i δ

q
j + gijg

pq
)
, (1.4)

where (gij) = (gij)
−1. Then we have

Theorem 1.1 Let F Γ̊ (N) =
(
Γ̊i

jk, C̊
i
jk

)
be a fixed Finsler connection. For a

Finsler metric gij, we define tensor fields U i
jk, Ũ

i
jk by

U i
jk = −1

2
girg

rj
◦
pk

, Ũ i
jk = −1

2
girg

rj
◦
|k

. (1.5)

Then a Finsler connection FΓ (N) = (F i
jk, C

i
jk) is metrical, if and only if the

difference tensor fields Bi
jk, D

i
jk given by

F i
jk = F̊ i

jk −Bi
jk, Ci

jk = C̊i
jk −Di

jk, (1.6)

are solutions of the equations

Λ
2

ip

qjB
q
pk = U i

jk, Λ
2

ip

qjD
q
pk = Ũ i

jk. (1.7)

Conform with Obata’s theory, [10], the above equations have solutions and their
general forms are given by

Theorem 1.2 (R. Miron, [7]) Let F Γ̊ (N) =
(
F̊ i

jk, C̊
i
jk

)
be a fixed Finsler

connection. For a Finsler metric gij, there exists a metrical Finsler connection
FΓ (N) = (F i

jk, C
i
jk) and the set of all such connections is given by

F i
jk = F̊ i

jk +
1

2
girg

rj
◦
pk

+ Λ
1

ip

qjX
q
pk,

Ci
jk = C̊i

jk +
1

2
girg

rj
◦
|k

+ Λ
1

ip

qjY
q
pk,

(1.8)

where X i
jk, Y

i
jk are arbitrary Finsler tensor fields.

2 Finsler connections compatible with a pair of Finsler metrics

Let gij and sij be two given Finsler metrics. A Finsler connection is called
compatible with the pair (gij, sij) , if it is metrical with respect to both gij and
sij:

gijpk = 0, gij|k = 0, sijpk = 0, sij|k = 0. (2.1)

We define Obata’s operators by (1.4) and

O
1

pq

ij =
1

2

(
δp
i δ

q
j − sijs

pq
)
, O

2

pq

ij =
1

2

(
δp
i δ

q
j + sijs

pq
)
, (2.2)
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where (sij) = (sij)
−1. Then we have

Theorem 2.1 Let F Γ̊ (N) =
(
F̊ i

jk, C̊
i
jk

)
be a fixed Finsler connection. For a

pair of Finsler metrics (gij, sij) we define Finsler tensor fields U i
jk, Ũ

i
jk, V

i
jk, Ṽ

i
jk

by (1.5) and

V i
jk = −1

2
sirs

rj
◦
pk

, Ṽ i
jk = −1

2
sirs

rj
◦
|k

. (2.3)

Then a Finsler connection FΓ (N) = (F i
jk, C

i
jk) is compatible with the pair

(gij, sij) , if and only if the difference tensor fields Bi
jk, D

i
jk given by (1.6) are

solutions of the equations (1.7) and following equations

O
2

ip

qjB
q
pk = V i

jk, O
2

ip

qjD
q
pk = Ṽ i

jk. (2.4)

It is complicated to solve the above equations.
We shall show the case when the equations have solutions.
A pair of two Finsler metrics gij, sij is called natural, if there exists a nonva-

nishing Finsler function µ (x, y) such that

gipgjqs
pq = µsij, (2.5)

or equivalently, if the commutativities

Λ
α

ip

qjO
β

qr
tp = O

β

ip

qjΛ
α

qr
tp, (α, β = 1, 2) , (2.6)

hold. Then, we have

Proposition 2.1 All the commutativities (2.6) hold if any one of them holds.

Proposition 2.2 Let (gij, sij) be a natural pair of Finsler metrics. If there
exists a Finsler connection compatible with the pair, the function µ in (2.5) is
constant.

Proof. The equations (2.1) are equivalent by the following equations:

gij pk= 0, gij |k= 0, sij pk= 0, sij |k= 0. (2.7)

By (2.1) and (2.1′) we have µpksij = 0, µ |k sij = 0, which are reduced to
µpk = 0, µ |k= 0 because sijs

ij = n 6= 0. Hence the nonvanishing function µ is
constant.

Proposition 2.3 Let gij be a Finsler metric. There exists a Finsler metric sij

such that the pair (gij, sij) is natural by a constant µ = εc2 (ε = ±1, c > 0) , if and
only if there exists a Finsler tensor field tij of type (1, 1) satisfying

εtirt
r
j = δi

j, εgpqt
p
it

q
j = gij. (2.8)
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The correspondence between tij and sij in Proposition 2.3 is given by

tij = cgirsrj, sij =
1

c
girt

r
j. (2.9)

Remark 2.1 If ε = −1, then µ = −c2 and tij is an almost complex Finsler
structure f i

j : f 2 = −I, (n = 2m) . In this case, the natural pair (gij, sij) is called
of elliptical type, or a (g, f, –1)−structure (cf. with Gh. Atanasiu [1], Gh.
Atanasiu, M. Hashiguchi, R. Miron [3]), or an anti-Hermitian structure:

f i
rf

r
j = −δi

j, gpqf
p
if

q
j = −gij. (2.10)

Remark 2.2 If ε = +1, then µ = c2 and tij is an almost product Finsler struc-
ture pi

j : p2 = I. In this case, the natural pair (gij, sij) is called of hyperbolical
type, or a (g, p, +1)−structure (see [1], [3]:

pi
rp

r
j = δi

j, grtp
r
ip

t
j = gij. (2.11)

Using Proposition 2.3 we can show that for a natural pair (elliptic or hyperbolic)
with a constant µ 6= 0 the equations (1.7) and (2.4) have solutions and their general
forms are given by

Theorem 2.2 Let F Γ̊ (N) =
(
F̊ i

jk, C̊
i
jk

)
be a fixed Finsler connection. For a

natural pair with a constant µ 6= 0 of Finsler metric gij, sij, there exists a Finsler
connection FΓ (N) = (F i

jk, C
i
jk) compatible with the pair and the set of all such

connections is given by

F i
jk = F̊ i

jk +
1

2

(
girg

rj
◦
pk

+ Λ
1

ip

qjs
qts

tp
◦
pk

)
+ Λ

1

ip

qjO
1

qr
tpX

t
rk,

Ci
jk = C̊ i

jk +
1

2

(
girgrj

◦
|k + Λ

1

ip

qjs
qtstp

◦
|k

)
+ Λ

1

ip

qjO
1

qr
tpY

t
rk,

(2.12)

where X i
jk, Y

i
jk are arbitrary Finsler tensor fields.

3 The case of Finsler metric with an additional structure

The previous results for a pair of Finsler metrics gij(x, y), sij(x, y) are general-
ized to the case sij(x, y) is degenerate.

Let a Finsler space (M, gij) admit a symmetric and degenerate Finsler tensor
field sij(x, y) :

sij = sji (3.1)

rank (sij) = n− k, (3.2)

where k is an integer and 0 < k < n. Then (M, gij) is called to have an additional
structure of index k. The case of a Finsler metric sij (x, y) is contained in the
following duscussions as the exceptional case k = 0.
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The matrix (gij) has the inverse
(
gjk

)
, but the matrix (sij) is not regular. So

we shall construct some matrix
(
sjk

)
which plays the role similar to the inverse

matrix. (see, V. Oproiu [11], [12]). Because (gij) is positive-definite, then on each
local chart there are exaktly k independent Finsler vector fields ξi

a (a = 1, ..., k)
with the properties

sijξ
i
a = 0, gijξ

i
aξ

j
b = δab (a, b = 1, ..., k) . (3.3)

Then we define local Finsler covector fields ηa
i (a = 1, ..., k) by

ηa
i = gijξ

j
a. (3.4)

If we define local Finsler tensor fields lij and mi
j by

lij = Σ
a

ξi
aη

a
i , mi

j = δi
j − lij, (3.5)

then lij and mi
j are independent on the choice of ξi

a and globally defined as the
respective projectors on the kernel K of the mapping sij : ξj

a −→ sijξ
j
a and the

orthogonal H to K with respect to gij. Then a global Finsler tensor field sjk is
uniquely determined from (gij, sij) by

sijs
jk = mk

i, lijs
jk = 0. (3.6)

A Finsler connection of a Finsler space (M, gij) with an additional structure
sij is called compatible with the pair (gij, sij) , if it satisfies (2.1) . Then the
condition that a Finsler connection FΓ is compatible with the pair (gij, sij) is
given by Theorem 2.1, if we define V i

jk, Ṽ
i
jk by

V i
jk = −1

2

(
sirs

rj
◦
pk

+ 3litl
t

j
◦
pk
− li

j
◦
pk

)
,

Ṽ i
jk = −1

2

(
sirsrj̊|k + 3litl

t
j̊|k − lij̊|k

)
,

(3.7)

and Obata’s operators O
α

pq

ij (α = 1, 2) by

O
1

pq

ij =
1

2

(
δp
i δ

q
j − δp

i l
q
j − lpi δ

q
j + 3lpi l

q
j − sijs

pq
)
,

O
2

pq

ij =
1

2

(
δp
i δ

q
j + δp

i l
q
j + lpi δ

q
j − 3lpi l

q
j + sijs

pq
)
,

(3.8)

and impose on the Bi
jk and Di

jk the additional conditions:

lristjB
t
rk = −lris

rj
◦
pk

, lristjB
t
rk = −lrisrj̊|k,

litm
r
jB

t
rk = −litl

t

j
◦
pk

, litm
r
jD

t
rk = −litltj̊|k.

(3.9)
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If we define the naturality of a pair (gij, sij) by (2.5), or equivalently (2.6)
where O

α

pq

ij are defined by (3.8), then Propositions 2.1 and 2.2 still hold. Corre-

sponding to Proposition 2.3, the condition that a Finsler space (M, gij) admits
an additional structure sij of index k such that the pair (gij, sij) is natural by a
constant µ = εc2 (ε = ±1, c > 0) is given by the existence of a Finsler tensor field
tij of type (1, 1) , k Finsler vector fields ξi

a (a = 1, ..., k) and k Finsler covector fields
ηa

i (i = 1, ..., k) satisfying

εtirt
r
j = δi

j − ξi
aη

a
j , εgpqt

p
it

q
j = gij − Σ

a

ηa
i η

a
j ,

ηa
i t

i
j = 0, tijξ

j
a = 0, ηa

i ξi
b = δa

b .
(3.10)

Remark 3.1 If ε = −1, then µ = −c2 and tij is an degenerate almost complex
Finsler structure f i

j (x, y) :

f i
rf

r
j = −δi

j + ξi
aη

a
j , gpqf

p
if

q
j = −gij + Σ

a

ηa
i η

a
j ,

ηa
i f

i
j = 0, f i

jξ
j
a = 0, ηa

i ξ
i
b = δa

b .
(3.11)

In this case we have a (g, f, ξ, η,−1)−structure, [5], [9].

Remark 3.2 If ε = +1, then µ = c2 and tij is an degenerate almost product
Finsler structure pi

j (x, y):

pi
rp

r
j = δi

j − ξi
aη

a
j , grtp

r
ip

t
j = gij − Σ

a

ηa
i η

a
j ,

ηa
i p

i
j = 0, pi

jξ
j
a = 0, ηa

i ξ
i
b = δa

b .
(3.12)

and we have a (g, p, ξ, η, +1)−structure, [3], [9].
The existence and arbitrariness of Finsler connections compatible with a pair

(gij, sij) with a constant µ 6= 0, is given by

Theorem 3.1 Let FΓ
(
N̊

)
=

(
F̊ i

jk, C̊
i
jk

)
be a fixed Finsler connection. There

exists a Finsler connection FΓ (N) =
(
F i

jk, C
i
jk

)
compatible with the pair and

the set of all such connections is given by

F i
jk = F̊ i

jk +
1

2

[
girg

rj
◦
pk

+ Λ
1

ip

qj

(
sqts

tp
◦
pk

+ 3lqtl
t

p
◦
pk
− lq

p
◦
pk

)]
+ Λ

1

ip

qjO
1

qr
tpX

t
rk ,

Ci
jk = C̊ i

jk +
1

2

[
girgrj̊|k + Λ

1

ip

qj

(
sqtstp̊|k + 3lqtl

t
p̊|k − lqp̊|k

)]
+ Λ

1

ip

qjO
1

qr
tpY

t
rk.

(3.13)
where O

1

pq

ij is given by (3.8) and X i
jk, Y

i
jk are arbitrary Finsler tensor fields.

Lastly, it is noted whether the naturality is necessary in order that the system
of equations (1.7), (2.4), (3.9) with unknowns Bi

jk, D
i
jk has a solution is an open

problem.
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For Randers and Kropina Finsler spaces are described the extended equations of
minimal and CMC hypersurfaces. For the Berwald-Moor type Finsler metric are then
considered different types of symmetric polynomials generating the fundamental function
and classes of CMC surfaces are evidentiated. Maple 9.5 representations of indicatrices
point out structural differences among Berwald-Moor fundamental functions of different
order, leading to different CMC approaches.
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1 Introduction

Recently Z. Shen ([16]), and further M. Souza and K. Tenenblat ([17]) have
investigated minimal surfaces immersed in Finsler spaces from differential geometric
point of view. Still, earlier rigorous attempts using functional analysis exist in the
works of G. Bellettini and M. Paolini (after 1995, e.g., [7, 8, 9]). In 1998, based on
the notion of Hausdorff measure, Z. Shen ([16]) has introduced the notion of mean
curvature on submanifolds of Finsler spaces as follows.

If (M̃, F̃ ) is a Finsler structure, and ϕ : (M,F ) → (M̃, F̃ ) is an isometric
immersion (hence F is induced by F̃ ), then the mean curvature of M is given by
([16, (57), p. 563])

Hϕ(X) =
1

G

(
G;xi −G;zi

azj
b
ϕj

;uaub −G;xjzi
a
ϕj

;ua

)
X i,

where lower indices stand for corresponding partial derivatives and:

• (ua, vb)a,b∈1,n are local coordinates in TM (dim M = n);

• (xi, yj)i,j∈1,m are local coordinates in TM̃ (dim M̃ = m);

• zi
a are the entries of the Jacobian matrix [J(ϕ)] = (∂ϕi/∂ua)a=1,n, i=1,m;

• ϕt : M → M̃, t ∈ (−ε, ε), ϕ0 = ϕ, is the variation of the surface;

• X is the vector field Xx = ∂ϕt

∂t
| t=0 (x) induced along ϕ attached to the

variation;

• G is the Finsler induced volume form
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Gẽ(z) =
vol[Bn]

vol{(va) ∈ Rn | F̃ (vazi
aẽi) ≤ 1} , (1.1)

where z = (zi
a)a=1,n, i=1,m ∈ GLm×n( R), ẽ = {ẽi}i=1,m is an arbitrary basis in Rm

and Bn ⊂ Rn is the standard Euclidean ball.

It was proved that the variation of the volume in M reaches a minimum for
Hϕ = 0 ([16]). Recent advances in constructing minimal surfaces (n = 2) based on
(1.1) were provided in ([17]), by characterizing the minimal surfaces of revolution
in Randers spaces (M̃ = R3, F̃ ) with the Finsler (α, β)-fundamental function

F̃ (x, y) = α(x, y) + β(x, y), α(x, y) =
√

aij(x)iyj, β(x, y) = bi(x)yi,

for the particular case when aij = δij (the Euclidean metric) and β = b · dx3, with
b ∈ [0, 1).

We further consider a real smooth manifold M̃ of dimension n + 1 endowed
with a positive 1-homogeneous locally Minkowski Finsler fundamental function
F : TM̃ → R ([13]).

2 Generalized Randers-Kropina hypersurfaces ([4])

Let H = Im ϕ, ϕ : D ⊂ Rn → M̃ = Rn+1 be a simple hypersurface. We
denote zi

α = ∂ϕi

∂uα , u = (u1, . . . , un) ∈ D. We shall further determine the volume of

the body Q ⊂ Tϕ(u)H bounded by the induced on Tϕ(u)H indicatrix from M̃

Σ∗ = Tϕ(u)H ∩ {y ∈ Tϕ(u) Rn+1|F (y) = 1}.

If v = vα ∂
∂uα ∈ TuD, then ϕ∗,u(v) = zi

αvα ∂
∂yi

∣∣∣
ϕ(u)

∈ Tϕ(u)H and hence at some fixed

point u ∈ D, Q is given by

Q = {v ∈ TuD | F (ϕ(u), ϕ∗,u(v)) ≤ 1}.
We have the following:

Theorem 1. If the body Q is given by

Q :
n∑

i=1

(zi
αvα)2 + µ(zn+1

α vα)2 + 2νzn+1
α vα + ρ ≤ 0, (2.1)

where µ, ν, ρ ∈ R , then

V ol(Q) =





V ol(Bn)√
δ · (1 + τ)(n+1)/2

·
(

ν2τ

µ− 1
− ρ(1 + τ)

)n/2

, for µ 6= 1

V ol(Bn) · (−ρ + ν2zn+1
a zn+1

b hab)n/2

√
δ

, for µ = 1,

(2.2)
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where τ and δ are given by

τ = (µ− 1)zn+1
a zn+1

b hab, δ = det(hab)a,b=1,n,

and Bn ⊂ Rn is the standard n-dimensional ball and hab is the dual of hab (hashsb =
δa
b ).

In particular, we obtain the following result:

Corollary 1. a) In the Randers case

F (x, y) =

√√√√
n+1∑
i=1

(yi)2 + byn+1, b ∈ [0, 1), (2.3)

we obtain the known result ([17, (5), p. 627]),

V ol(QR) =
V ol(Bn)√

δ(1− b2zn+1
a zn+1

b hab)(n+1)/2
.

b) In the Kropina case

F (x, y) = (byn+1)−1 ·
n+1∑
i=1

(yi)2, b ∈ [0, 1), (2.4)

we have

V ol(QK) =
V ol(Bn)

(
b2

4
zn+1

a zn+1
b hab

)n/2

√
δ

.

Remarks. In the Kropina case, the function G in (1.1) has the expression

G =
V ol(Bn)

V ol(QK)
=

√
δ

(zn+1
a zn+1

b hab · b2/4)n/2
= 2n · CB−n/2,

where we have used the notations from [17], B = b2zn+1
a zn+1

b hab, C =
√

δ. Then
the mean curvature vector field has the components

H̄i =
1

G

(
∂2G

∂zi
εz

j
η

· ∂2ϕj

∂uε∂uη

)
, i = 1, n + 1,

and the volume form of the hypersurface H is

dVF =

√
δ

(
b2

4
zn+1

a zn+1
b hab

)n/2
du1 ∧ · · · ∧ dun.
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Theorem 2. The mean curvature vector field of the hypersurface M in the
Kropina space M̃ = Rn+1 with the fundamental function (2.4) has the following
expression in terms of B and C

Hi = 2nB−(n+4)/2

[
∂2C

∂zi
ε∂zj

η

B2 +
n(n + 2)

4
C

∂B

∂zi
ε

∂B

∂zj
η

−

−nB

2

(
∂C

∂zi
ε

∂B

∂zj
η

+
∂C

∂zj
η

∂B

∂zi
ε

+ C
∂2B

∂zi
ε∂zj

η

)]
∂2ϕj

∂uε∂uη
, i = 1, n + 1.

Corollary 2. The mean curvature vector field of the surface M in the Kropina
space M̃ = Rn+1 with the fundamental function (2.4) has the following expression

Hi =
4C

E3

[
6E2 ∂C

∂zi
ε

∂C

∂zj
η

+ 2C2 ∂E

∂zi
ε

∂E

∂zj
η

− C2E
∂2E

∂zi
ε∂zj

η

−

−3CE

(
∂E

∂zi
ε

∂C

∂zj
η

+
∂E

∂zj
η

∂C

∂zi
ε

)
+ 3E2C

∂2C

∂zi
ε∂zj

η

]
∂2ϕj

∂uε∂uη
, i = 1, n + 1,

(2.5)

where

E = b2

3∑

k=1

2∑

α,β=1

(−1)α+βzk
α̃zk

β̃
z3

αz3
β, α̃ = 3− α.

Corollary 3. The mean curvature of the surface M in the Kropina space (2.4)
is H∗ = HiX

i, where Hi are given by (2.5),

X ∈ Ker(G∗Z1) ∩Ker(G∗Z2) ∩ {y ∈ Tϕ(u)M̃ | F (y) = 1},

Z1 = (z1
1 , z

2
1 , z

3
1), Z2 = (z1

2 , z
2
2 , z

3
2), and G∗v is defined by the equality (G∗v)(v′) =

〈v, v′〉F =
1

2

∂F 2

∂yi∂yj
viv′j.

Corollary 4. Let M = Σ = Im ϕ be a surface of revolution described by

ϕ(t, θ) = (f(t) cos θ, f(t) sin θ, t), (t, θ) ∈ D = R × [0, 2π).

Then M is minimal iff the function f satisfies the ODE

1 + f ′2 = 3ff ′′(1 + 2f ′2).

3 The Berwald-Moor Finsler case

We shall further point out the obstructions present in the case of a Berwald-
Moor Finsler metric and evidentiate the means of construction of spatial and
temporal CMC and minimal surfaces. The substantial difference between the
Randers-Kropina framework and the Berwald-Moor Finsler metric relies in the fact
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that the indicatrix Σ : F (x, y) = 1, x ∈ M is in general noncompact for all values
of x. Hence, one may not talk about the volume contained inside this hypersurface
Σ, which in the latter case extends to infinity and the volume is provided by a
divergent integral.

However, specializing to certain temporal or spatial slices, one may define
within them CMC or minimal submanifolds of codimension 1, in particular sur-
faces.First we note that in the case of Minkowski Finsler metrics of Berwald-Moor
type

F (x, y) = k
√

Pk(y1, . . . , yn), (dim M = n ≥ 3),

provided by appropriate order square roots of homogeneous polynomials Pk, even
in the case when the indicatrix Σ is compact and strongly convex, e.g.,

F (x, y) = 2k
√

(y1)2k + · · ·+ (yn)2k, (k ≥ 2), (3.1)

the task of computing the volume bounded by Σ becomes difficult for higher orders
k (see Appendix I). This points out once more that from technical point of view
choosing an appropriate submanifold which would decrease the dimension, is a
desirable attempt.

We shall discuss further several cases of nonpositive signature of the Finsler
metric tensor field given by the halved y-Hessian of F 2.

1. The H(4) ∼ R ⊕ R ⊕ R ⊕ R - type Berwald-Moor Minkowski - Finsler
metrics [11]:

F2(y) =
√
|(a + b)(c + d) + ab + cd|,

F3(y) = 3
√
|ab(c + d) + cd(a + b)|,

F4(y) = 4
√
|abcd|,

(3.2)

where n = 4, y = (y1, y2, y3, y4) = (a, b, c, d) ∈ Tp( R4). After performing the

Hadamard change of basis of matrix C =
1

4

(
A A

A −A

)
, with A =

(
1 1

1 −1

)
given

by yT = CŷT , ŷ = (t, x, y, z), the functions (3.2) transform into

F̂2(ŷ) =
√
|6t2 − 2(x2 + y2 + z2)|,

F̂3(ŷ) = 3
√
|8xyz + 4t(t2 − x2 − y2 − z2)|,

F̂4(ŷ) = 4
√
|x4 + y4 + z4 + t4 + 8txyz − 2[(x2 + y2)(z2 + t2) + x2y2 + z2t2]|.

Hence for F̂2 one might consider the slice submanifold ŷ1 ≡ t = const where the
CMC imbedded surfaces are the Euclidean ones.
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For F̃4, besides considering the spatial slices vi = const, (i ∈ 1, 4) one might
look for subclasses of CMC surfaces which satisfy additional PDEs, by reformu-
lating the energy-minimizing problem using Lagrange multipliers imposed, e.g.,
by

(v1)4 + · · ·+ (vn)4 ≡ F̃4(ŷ)|ŷi=(C−1)i
jzj

αvα, i=1,4 ,

or, for the initial basis,

(v1)4 + · · ·+ (vn)4 ≡ (z1
αvα)(z2

βvβ)(z3
γv

γ)(z4
δv

δ),

where the Greek indices run through 1, n, with n ≥ 1.

2. In general, for m ≥ 3 and Berwald-Moor metrics of type (3.1), valid ad-
ditional PDEs which impose the change of energy to provide surface-like CMC
surfaces are

(v1)2k + · · ·+ (vn)2k ≡ F (y)|yi=zi
αvα, i=1,m ,

with the same conventions as above.

3. A notable difference exhibited by Berwald-Moor Finsler fundamental func-
tions

F (v) = k
√

(v1)k + . . . + (vn)k, n ∈ {2, 3} (3.3)

and hence, by their indicatrices, is the dependence of the topologic properties on
the index k. For k even, the indicatrices are compact and have a strictly convex
interior set, while for k odd, the indicatrices are unbounded and define no finite
volume. This is illustrated for m = 2 by the following Maple plots of indicatrices
F (v) = 1 with F provided by (3.3):

Berwald-Moor indicatrices (m = 2; even (k ∈ {2, 4, 6}) and odd (k ∈ {3, 5}) root index).

In higher dimensions (e.g. for m = 3) the topology strongly differs as well:
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Berwald-Moor indicatrices for k ∈ {2, . . . , 6} (m = 3)

Moreover, even for small even values of k, to compute the encompassed volume
inside a bounded indicatrix implies the usage of special functions. Though the
case k = 2 is calssical, providing volumes of (hyper)-spheres (V ol(Q)m=2,k=2 = π,
V ol(Q)m=2,k=2 = 4π/3, etc), for larger values of k we get results as:

V ol(Q)m=2,k=4 =
1

4
B

(
1

4
,
3

2

)
, V ol(Q)m=2,k=6 =

1

6
B

(
1

6
,
3

2

)
,

where B( · , · ) is the Bessel function.
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Starting with A. Poincare’s studies about the definition of simultaneity of events in
an inertial system of a reference, in this paper a new definition of simultaneous events
using the signal method in Finsler Space-Time, is investigated. General transformations
which preserve the metric function of the considered projective space are obtained. Using
the Hamiltonian formalism, the relations for energy and impulse of a particle, and their
transformations are discussed.

MSC2000n: 53B40, 83D05, 70S05.

1 Introduction

In well-known work [1] A. Poincare are reduced for the first time with definition
of simultaneity distant events in an inertial system of a reference. The geometrical
form in three-dimensional space is sphere (or a so-called surface of a stationary value
of a phase) as an orb possessing a central symmetry, and geometrical object is the
distance. Using methods of metric geometry, A. Poincare for the first time has con-
sidered a formalism of a four-dimensional space-time and has found all invariants
of a Lorenz group [2]. Finally, G. Minkowski [3] used a A. Poincare’s formalism,
and has suggested local isotropic four-dimensional pseudoeuclidean space-time in
Galilean coordinates which is base physical relativistic theories (for a case of a
special relativity theory). Metric function

F = ds =
[
(cdt)2 − (dx)2 − (dy)2 − (dz)2]1/2

, (1.1)

equal to distance between events in space-time, has at F = 0 two characteristic for
a signal.

Studies by French scientist have great significance for relativistic mechanics
and they are un-deservedly belittled at present. In 1904 the Kazan Society of
Physics and Mathematics awards A. Poincare of a gold medal of Fund of a name
of N. I. Lobachevsky, and the prize of a name of N. I. Lobachevsky is adjudged
to D. Gilbert. N. I. Lobachevsky of 19 years (1827–1846) was as the rector of
the Kazan Imperial University founded on November, 17 (5), 1804 by emperor
Alexander I, and for the first time discovered non-Euclidean geometry [4] in 1826.
In particular, this geometry is realized in three-dimensional Fock velocities-space
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[5]. A. Poincare and N. I. Lobachevsky stated, that different physical phenomena
would be described in terms of various geometries.

There are some models of expansion of pseudoeuclidean geometry. One
of perspective approaches is the study local Finsler space-time which refer-
ence property is presence of an anisotropy. Recently in works [6–9] the new
model of a four-dimensional space-time as local anisotropic Finsler geometry with
Berwald-Moor metric function

F =
[
(cdt + dx + dy + dz) · (cdt− dx + dy − dz) ·

· (cdt + dx− dy − dz) · (cdt− dx− dy + dz)
]1/4

(1.2)

and its generalizations

F =
[
(cdt− dx− dy − dz)1+r1+r2+r3 (cdt + dx− dy + dz)1−r1+r2−r3 ×

× (cdt− dx + dy + dz)1+r1−r2−r3 (cdt + dx + dy − dz)1−r1−r2+r3
]1/4

,
(1.3)

are investigated. This metrical function has four characteristics for a signal. At
r1 = r2 = r3 = 0 and replacement x → −x, y → −y, z → −z metric function (1.3)
coincides with (1.2).

The geometrical form in three-dimensional space is the specially oriented coor-
dinate tetrahedron, which does not possess a central symmetry. Geometrical object
is the volume. In such model it is natural to apply methods of a projective geome-
try with the relevant theory of invariants and measures among which, as is known,
there is a definition of distance of the metric form, however there is a measure of
an angle, etc. Transformations of the projective homogeneous coordinates t, x, y
and z at transitions between moving inertial systems of references which maintain
a form-invariance of metric functions (1.2) and (1.3) have been obtained. Also we
have obtained the transformations of the projective nonhomogeneous coordinates
ux, uy, uz (components of a three-dimensional velocity). Transformations of impulse
and energy of a particle to Finsler geometry with (1.3) are given in [10].

Metrics functions (1.2) and (1.3) refer to a class of Riemann functions [11]

F =
[(

aidxi
)1+a (

bidxi
)1+b (

cidxi
)1+c (

eidxi
)1+e

]1/4

, a + b + c + e = 0. (1.4)

The aim of the present work is the study of the definition of simultaneity distant
events in a general view for such Finsler structure of a four-dimensional projective
geometry and to find new transformations of the projective coordinates, energies
and impulse of a particle.

2 The definition of simultaneity distant events

Let’s consider distant events in four points of three-dimensional space of an
inertial system of the reference (K). Let from a point O in a time T signals in
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four points A and An (n = 1, 2, 3) are sent. Signals reach these points in a time t
(t > T ). After reflection from points An signals are returned in a point O in a time
T n (T n > t). Observable magnitudes are T and T n in a point O.

Definition 1. There is a unique time (or the definition of a simultaneity of
events is given) for points O, A and An at realization of a equality

(t− T ) =
(
T 1 − t

)
+

(
T 2 − t

)
+

(
T 3 − t

)
. (2.1)

The given definition means equality of an interval of time at propagation of a
signal from a point O up to a point A to the sum total of intervals of times at
propagation from three points An in a point O, noted as tOA = tA1O + tA2O + tA3O

(tOA = −tAO > 0, tAnO = −tOAn > 0). From (2.1) we obtain a value of a time
coordinate t

t = T +
1

4

3∑
n

(T n − T ) =
1

4

(
T +

3∑
n

T n
)
, (2.2)

depending on the times T and T n in a point O. The value t is arithmetic mean.
According to (2.2) clocks in points O, A also An are synchronized.

Definition 2. The value

OA = A1O + A2O + A3O (2.3)

is a length of a segment paths from a point O up to a point A and is equaled to
the sum total of lengths of paths from three points up to a point O.

Definition 3. The value

c =
OA + A1O + A2O + A3O

tOA + tA1O + tA2O + tA3O

(2.4)

is the universal constant and defines a physical velocity of a signal in various inertial
systems of references.

According to (2.1) and (2.3), from (2.4) we have a relation t−T = OA
/

c from

which follows OA = −AO > 0. Similar definitions are fulfilled for points A1, A2

and A3. For example, using definitions for a point A1,, we find

tOA1 = tAO + tA2O + tA3O, OA1 = AO + A2O + A3O,

c =
OA1 + AO + A2O + A3O

tOA1 + tAO + tA2O + tA3O

(2.5)

and we have T 1 − t = A1O
/

c.

Thus, for three points we shall note the following equalities

T n − t =
AnO

c
, AnO = −OAn > 0. (2.6)
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Let the point O is an origin of coordinates of three-dimensional space. From
(2.3) and (2.6) follow, in view of inequalities for lengths of segments of paths, the
linear forms for coordinates

OA = (εx) , AnO = (εnx) , (2.7)

The expressions (2.7) are products of constant vectors ε = {εx, εy, εz},
εn =

{
εn

x, ε
n
y , εn

z

}
and a vector x = {x, y, z}. The length of segments of paths

will consist of lengths of segments, directional along axes and parallel it direct
lines. We have four preferred directions as vectors ε and εn and four equalities for
characteristics

T = t− (εx)

c
, T n = t +

(εnx)

c
, (2.8)

The given equalities are characteristic for a projective geometry where t, x, y, z
are the projective homogeneous coordinates. In a metric space-time geometry of
Minkowski is considered with (1.1) two equalities T = t−|x| /c, T 1 = t+ |x| /c for
the characteristics implying from definition of simultaneity of Poincare, definition
of distance between points and definitions of the universal constant value c.

From (2.8) follows, that the signal represents a simple plane wave. For such
plane wave the surface of a constant value of a phase is a plane, which goes with
a phase velocity not dependent on frequency. The four planes moves in directions
of four vectors ε and εn. Such amount of vectors is minimum for formation in
three-dimensional space of the made surface as a tetrahedron.

Equality 1. The equality is fulfilled

1

4

(−εi + ε1
i + ε2

i + ε3
i

)
= 0, (2.9)

which is a result of relations (2.2), (2.8) and is a linear relation of vectors

ε =
3∑
n

εn. (2.10)

Further we shall consider two inertial systems of references (K) and (K ′) which
coincide. Then we use equalities T = T ′ and T n = T ′n and we have

t− (εx)

c
= t′ − (εx′)

c
, t +

(εnx)

c
= t′ +

(εnx′)
c

. (2.11)

Sum equalities (2.11), we find t′ = t. For coordinates we have condition

ε (εx) +
3∑
n

εn (εnx) = ε (εx′) +
3∑
n

εn (εnx′) . (2.12)

As x = x′, the following new equality is necessary.
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Equality 2. The equality is fulfilled

1

4

(
εiεj + ε1

i ε
1
j + ε2

i ε
2
j + ε3

i ε
3
j

)
= δij, (2.13)

where δij is a Kronecker symbol (or a unit three-dimensional matrix).
Using (2.13), we shall reduce relations for characteristics in various systems of

references

t2 + x2
/

c2 =
1
4

(
T 2 +

3∑
n

(Tn)2
)

, t′2 + x′2
/

c2 =
1
4

(
T ′2 +

3∑
n

(
T ′n

)2
)

(2.14)

Four equalities (2.8) is defined by T = HX, where

H =




1 −εx −εy −εz

1 ε1
x ε1

y ε1
z

1 ε2
x ε2

y ε2
z

1 ε3
x ε3

y ε3
z




, T =




T

T 1

T 2

T 3




, X =




t

x/c

y/c

z/c




. (2.15)

It is consider of a matrix product HHT (where HT – a transpose of a matrix).
Relations (2.14) are valid in only case when the following conditions satisfied

1− (εεn) = 0, 1 + (εnεr) = 0 (n 6= r) , 1 + ε2 = 1 + (εn)2 = 4. (2.16)

The module of vectors is equal |ε| = |εn| =
√

3, and HHT = 4I (I – a
unit four-dimensional matrix). Using the equalities (2.16) we obtain arbitrar-
ily oriented coordinate tetrahedron. The volume of such coordinate tetrahe-
dron with vertexes on the points of four vectors (−ε) also εn accepts a value
Vtetr = detH/6 = (ε1 [ε2ε3]) /3 equal to third of volume of a parallelepiped, con-
structed on noncoplanar vectors ε1, ε2, ε3. The surface of a constant value of a
phase represents other coordinate tetrahedron with four edges, perpendicular to
vectors (−ε) and εn.

Further we have, according to (2.2), (2.8), (2.9), (2.13) and (2.14), the following
relations

t2 + x2/c2 =
1

4

4∑
m

(Tm)2 ,

x/c =
1

4

4∑
m

εmTm, t =
1

4

4∑
m

Tm,
1

4

4∑
m

εm
i = 0,

1

4

4∑
m

εm
i εm

j = δij,

3t2 − x2/c2 =
1

2
(T1T2 + T1T3 + T1T4 + T2T3 + T2T4 + T3T4) ,

u = c

4∑
m

εmTm

4∑
m

Tm

, |u| =
√

u2 = c




1

4

4∑
m

(Tm)2

(
1

4

4∑
m

Tm

)2 − 1




1/2

,

(2.17)
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expressed through times Tm = t + εmx (m = 1, 2, 3, 4) and εm → (−ε, εn). As
Tm ≥ 0 the requirement 1 + (εmu) /c ≥ 0 with an equal sign, hence, is valid at
driving on characteristics. In (2.17) we have the square-law form from the projective
homogeneous coordinates, values of components of a vector, coordinate time, a
coordinate velocity of a signal and its module. At equality to unity the square-law
form defines a hypersurface of the second order in the space-time, intersecting all
four characteristics (2.8) for a signal. Any two rows of matrixes H are orthogonal
in a four-dimensional Euclidean space with Galilean coordinates {ct, x}. Thus,
magnitudes Tm of the linear vector function of the first sort give four axes of
a considered hypersurface. The considered coordinate tetrahedron is a boundary
tetrahedron of some exact body in a four-dimensional Euclidean space. It is known,
that such bodies, restricted three-dimensional tetrahedrons is present three.

Definition 4. Proper time in a point {x, y, z} is defined by metric function
(1.3) in the generalized expression

T0 =
F

c
=

4∏
m

(Tm)pm

=
[
(T )1+(εr) (

T 1
)1−(ε1r) (

T 2
)1−(ε2r) (

T 3
)1−(ε3r)

]1/ 4

=

=





[
t− (εx)

c

]1+(εr)
[
t +

(
ε1x

)

c

]1−(ε1r) [
t +

(
ε2x

)

c

]1−(ε2r) [
t +

(
ε3x

)

c

]1−(ε3r)




1/ 4

. (2.18)

Here the vector-parameter r = {r1, r2, r3} has a constant value to magnitudes
pm = (1/4) [1− (εmr)] for which equalities are fulfilled

1

4

(
1 + r2

)
=

4∑
m

(pm)2 , −r =
4∑
m

εmpm, 1 =
4∑
m

pm. (2.19)

At a value F = 0 the equation (2.18) represents the equation of a hypersurface with
four characteristics in space-time. It means presence of four real roots for time t.

Different relativistic techniques in Finsler space-time were considered in [12–16].
Unidirection physical or coordinate speed of signal has nonisotropic quantity. Using
general nonstandard clock synchronization [17, 18] in definition of simultaneity.

3 Transformations of the projective homogeneous coordinate

Let’s consider transformations of the projective homogeneous coordinates at
transition between moving inertial systems of references (K) and (K ′) with the
relative velocities v = {vx, vy, vz} and v′ =

{
v′x, v

′
y, v

′
z

}
, accordingly. Velocities v

and v′ with c = 1 express in scale unities of systems of references, according to
a principle of a relativity. Transformations leave form-invariant metric function
(2.18) in a global geometry and volume of a coordinate tetrahedron. At transition
to local Finsler geometry the projective homogeneous coordinates are substituted
with their differentials. The vectors εm are stationary values and we have

{
4∏
m

[dt + (εmdx)]1−(εmr)

}1/4

=

{
4∏
m

[dt′ + (εmdx′)]1−(εmr)

}1/4

. (3.1)
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Extending the method of coefficient ”k” earlier used for a case of one
spatial coordinate [12–16], we shall note relations Tm = km (v, r) T ′m and
T ′m = km (v′, r) Tm. We have

[t + (εmx)] = km (v, r) [t′ + (εmx′)] ,

[t′ + (εmx′)] = km (v′, r) [t + (εmx)] ,
(3.2)

where coefficients km (v, r) also km (v′, r) characterize Doppler effects of a frequen-
cies ωm and ω′m a plane wave on four preferred directions

ωmkm (v, r) = ω′m, ω′mkm (v′, r) = ωm. (3.3)

From (3.1) one gets the relations

4∏
m

[km (v, r)]1−(εmr) =
4∏
m

[km (v′, r)]
1−(εmr)

= 1, km (v, r) km (v′, r) = 1.

At x′ = 0 we have x = vt, and at x = 0 we have x′ = v′t′. Then from (2.18)
and (3.2) we obtain the following equalities

t = t′N (v′, r) , km (v′, r) t = [1 + (εmv′)] t′,

t′ = tN (v, r) , km (v, r) t′ = [1 + (εmv)] t.
(3.4)

where expressions with three-dimensional velocities

T0

t
= N (v, r) =

N (v)

A (v, r)
=

{
4∏
m

[1 + (εmv)]1−(εmr)

}1/4

,

T0

t′
= N (v′, r) =

N (v′)
A (v′, r)

=

{
4∏
m

[1 + (εmv′)]1−(εmr)

}1/4

,

N (v) =

{
4∏
m

[1 + (εmv)]

}1/4

, N (v′) =

{
4∏
m

[1 + (εmv′)]
}1/4

,

A (v, r) =
4∏
m

[
1 + (εmv)

N (v)

](εmr)/4

, A (v′, r) =

{
4∏
m

[
1 + (εmv′)

N (v′)

](εmr)/4
}

,

(3.5)
The functions A (v, r) , A (v′, r) depend on a vector r and N (v) = N (v, 0).

Finally from (3.4) we obtain values of coefficients and the following identities

km (v, r) =
1 + (εmv)
N (v, r)

, km
(
v′, r

)
=

1 + (εmv′)
N (v′, r)

,
1 + (εmv)
N (v, r)

· 1 + (εmv′)
N (v′, r)

= 1,

{
1
4

4∑
m

[km (v, r)]2
}1/2

=
√

1 + v2

N (v, r)
,

{
1
4

4∑
m

[
km

(
v′, r

)]2

}1/2

=
√

1 + v′2

N (v′, r)
, (3.6)

1
4

4∑
m

km (v, r) =
1

N (v, r)
,

1
4

4∑
m

km
(
v′, r

)
=

1
N (v′, r)

,
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where (K) and (K ′) – relative velocities of reference systems.
Direct and inverse transformations of characteristics (3.2) will become

[t + (εmx)] =
1 + (εmv)

N (v, r)
[t′ + (εmx′)] =

N (v′, r)

1 + (εmv′)
[t′ + (εmx′)] ,

[t′ + (εmx′)] =
1 + (εmv′)
N (v′, r)

[t + (εmx)] =
N (v, r)

1 + (εmv)
[t + (εmx)] , (3.7)

From (3.3) we have formulas for Doppler effect

ω′m =
A (v, r) [1 + (εmv)]

N (v)
ωm, ωm =

A (v′, r) [1 + (εmv′)]
N (v′)

ω′m, (3.8)

with the relative velocities of moving of a radiant and the receiver of signals ac-
cording to a principle of a relativity.

According to (3.7), we find equality

t + (εmx)

t + (εkx)
=

1 + (εmv)

1 + (εkv)
· t′ + (εmx′)

t′ + (εkx′)
, (3.9)

Using of a linear relation of vectors (2.10) we obtain the following relations

1
N (v, r) N (v′, r)

=
1
4

4∑
m

1
1 + (εmv)

=
1
4

4∑
m

1
1 + (εmv′)

=
1

1 + (vv′)
,

1 +
(
εmv′

)
=

1
1 + (εmv)

[
1
4

4∑
m

1
1 + (εmv)

]−1

, (3.10)

1 + (εmv) =
1

1 + (εmv′)

[
1
4

4∑
m

1
1 + (εmv′)

]−1

,

where 1 + (εmv) 6= 0 and 1 + (εmv′) 6= 0. From (3.10) it follows formulas

v′ =

[
1
4

4∑
m

εm

1 + (εmv)

][
1
4

4∑
m

1
1 + (εmv)

]−1

=

=

[
−1

4

4∑
m

εm (εmv)
1 + (εmv)

] [
1
4

4∑
m

1
1 + (εmv)

]−1

,

v =

[
1
4

4∑
m

εm

1 + (εmv′)

][
1
4

4∑
m

1
1 + (εmv′)

]−1

=

=

[
−1

4

4∑
m

εm (εmv′)
1 + (εmv′)

] [
1
4

4∑
m

1
1 + (εmv′)

]−1

,

A (v, r) A (v′, r) = 1, N (v, r) N (v′, r) = N (v)N (v′) .

(3.11)
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Taking into account equalities (2.10) and (2.13) we shall receive direct transforma-
tions with c 6= 1 in vectorial form I

x =
A (v/c, r)
N (v/c)

[
x′ + vt′ +

1
4c

4∑
m

εm (εmv)
(
εmx′

)
]

=

=
N (v′/c)

4A (v′/c, r)

4∑
m

εm

[
εm (x′ − v′t′)
1 + (εmv′) /c

]
,

t =
A (v/c, r)
N (v/c)

[
t′ +

1
c2

(
vx′

)]
=

N (v′/c)
4A (v′/c, r)

4∑
m

t′ + (εmx′) /c

1 + (εmv′) /c

(3.12)

and inverse between systems of references (K) and (K ′)

x′ =
A (v′/c, r)
N (v′/c)

[
x + v′t +

1
4c

4∑
m

εm
(
εmv′

)
(εmx)

]
=

=
N (v/c)

4A (v/c, r)

4∑
m

εm

[
εm (x− vt)
1 + (εmv) /c

]
,

t′ =
A (v′/c, r)
N (v′/c)

[
t +

1
c2

(
v′x

)]
=

N (v/c)
4A (v/c, r)

4∑
m

t + (εmx) /c

1 + (εmv) /c

(3.13)

At v = {vx, 0, 0} we have from (3.13) direct transformation

x =
A (vx/c, r)
N (vx/c)

[
x′ + vxt′ +

vx

4c

4∑
m

(εm
x )2

(
εmx′

)
]

=

=
N (v′/c)

4A (v′/c, r)

4∑
m

εm
x

[
εm (x′ − v′t′)
1 + (εmv′) /c

]
,

y =
A (vx/c, r)
N (vx/c)

[
y′ +

vx

4c

4∑
m

(
εm
y εm

x

) (
εmx′

)
]

=

=
N (v′/c)

4A (v′/c, r)

4∑
m

εm
y

[
εm (x′ − v′t′)
1 + (εmv′) /c

]
,

z =
A (vx/c, r)
N (vx/c)

[
z′ +

vx

4c

4∑
m

(εm
z εm

x )
(
εmx′

)
]

=

=
N (v′/c)

4A (v′/c, r)

4∑
m

εm
z

[
εm (x′ − v′t′)
1 + (εmv′) /c

]
,

t =
A (vx/c, r)
N (vx/c)

[
t′ +

vxx′

c2

]
=

N (v′/c)
4A (v′/c, r)

4∑
m

t′ + (εmx′) /c

1 + (εmv′) /c
,

(3.14)
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where functions

N (vx/c) =

[
4∏
m

(1 + εm
x vx/c)

]1/4

, A (vx/c, r) =
4∏
m

[
1 + εm

x vx/c

N (vx/c)

](εmr)/4

. (3.15)

The velocity of a system of reference (K) is relative equaled (K ′)

v′ =

[
1

4

4∑
m

εm

1 + εm
x vx/c

][
1

4

4∑
m

1

1 + εm
x vx/c

]−1

=

=

[
−1

4

4∑
m

εmεm
x vx

1 + εm
x vx/c

][
1

4

4∑
m

1

1 + εm
x vx/c

]−1

. (3.16)

4 The composition law of elements of coordinate velocities group
and its properties

Let’s consider the law of a composition of elements of group of coordinate
three-dimensional velocities with c = 1. From (2.18) we obtain equality

N (u′, r) t′ = N (u, r) t, N (0, r) = 1. (4.1)

Taking into account (3.12) and (3.13), we shall receive relations

N (u′, r) =
N (v′, r) N (u, r)

1 + (uv′)
, N (u, r) =

N (v, r) N (u′, r)

1 + (u′v)
,

N (v) N (v′) = [1 + (u′v)] [1 + (uv′)] ,

(4.2)

where u = x/t also u′ = x′/t′ are coordinate velocities in systems (K) and (K ′).
The law of a composition of elements of group in a representation of a group

as function km (u, r) will be noted, according to (3.7) and (4.1), as follows

1 + (εmu)

N (u)
=

1 + (εmv)

N (v)
· 1 + (εmu′)

N (u′)
,

A (u, r) = A (v, r) A (u′, r) , A (u′, r) = A (v′, r) A (u, r).

(4.3)

for the function depending only from a velocity, and function A (u, r). For both
functions binary operation of the law of a composition as usual operation of mul-
tiplication is fulfilled. Let w′ be a velocity of moving of the third inertial system
of a reference (K ′′) concerning second (K ′), and z′′ concerning first (K). Then
we have operations of multiplication of functions km (u, r) and, according to (3.6),
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equalities

km (u, r) = km (v, r) km (u′, r) , km (u′, r) = km (w′, r) km (u′′, r) ,

km (u, r) = km (z′′, r) km (u′′, r) , km (v, r) km (w′, r) = km (z′′, r) ,

1

4

4∑
m

km (u, r)

{
1

4

4∑
m

[km (u, r)]2
}1/2

=
1√

1 + u2
,

1

4

4∑
m

km (v, r) km (u′, r)

{
1

4

4∑
m

[km (v, r)]2
}1/2 {

1

4

4∑
m

[km (u′, r)]
2

}1/2
=

1 + (vu′)√
1 + v2

√
1 + u′2

,

(4.4)

where the law of a composition

u = v ◦ u′, u′ = w′ ◦ u′′, u = z′′ ◦ u′′, v ◦w′ = z′′. (4.5)

Direct and inverse transformations of the dimensionless coordinate three-
dimensional velocities

u =

u′ + v +
1

4

4∑
m

εm (εmu′) (εmv)

1 + (u′v)
=

4∑
m

εm

[
εm (u′ − v′)
1 + (εmv′)

]

4∑
m

1 + (εmu′)
1 + (εmv′)

,

u′ =

u + v′ +
1

4

4∑
m

εm (εmu) (εmv′)

1 + (uv′)
=

4∑
m

εm

[
εm (u− v)

1 + (εmv)

]

4∑
m

1 + (εmu)

1 + (εmv)

(4.6)

in vectorial form I do not depend on vector-parameter r.
Thus, we have nonadditive group of elements for coordinate three-dimensional

velocities, inhering only to different systems of references with the law of a com-
position (4.6) containing square-law nonlinearity.

Formulas (4.6) are linear-fractional functions of velocities u, u′ and represent
direct and inverse projective (collinear) transformations of the nonhomogeneous
coordinates to a projective geometry.

Let’s consider the basic properties of the law of a composition u = u1 ◦u2, not
distinguishing a velocity in different systems and the relative velocities between
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them. The law of a composition

u1 ◦ u2 = u2 ◦ u1 =

u1 + u2 +
1

4

4∑
m

εm (εmu1) (εmu2)

1 + (u1u2)
(4.7)

has property of a commutability, that is the group is Abelian.

Group postulates are fulfilled.

1. An associativity:

(u1 ◦ u2) ◦ u3 = u1 ◦ (u2 ◦ u3) =
{

u1 + u2 + u3 +
1
4

4∑
m

[
εm (εmu1) (εmu2)+

+εm (εmu2) (εmu3) + εm (εmu3) (εmu1)
]
+

1
4

4∑
m

εm (εmu1) (εmu2) (εmu3)
}
×

×
{

1 + (u1u2) + (u2u3) + (u3u1) +
1
4

4∑
m

(εmu1) (εmu2) (εmu3)
}−1

.

(4.8)

2. A unity element: u ◦ E = u. The unity element corresponds to a zero
value of a velocity.

3. An inverse device: u ◦ u−1 = E. Expression of an inverse element is
equaled

u−1 =

[
1

4

4∑
m

εm

1 + (εmu)

][
1

4

4∑
m

1

1 + (εmu)

]−1

=

=

[
−1

4

4∑
m

εm (εmu)

1 + (εmu)

][
1

4

4∑
m

1

1 + (εmu)

]−1
(4.9)

at side conditions 1 + (εmu) 6= 0 and 1 + (uu−1) 6= 0. According to (4.9) follows,
that the relative velocity v′ = v−1 is an inverse element of group for the relative
velocity v, not equal to an opposite element (−v). Then the law of a composition
u = v◦u′ will be noted as u = (v′)−1◦u′. It means property of a noncommutability
the law of a composition of three-dimensional velocities, inhering only to one frame
of reference at replacement v′ by u′. The inverse element (4.9) is equal to the sum
total of the vectors εm increased on coefficients, depending from a velocity u.

Using the law of a composition and the reduced properties, we have the follow-
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ing equalities

1 +
(
uu−1

)
=

[
1
4

4∑
m

1
1 + (εmu)

]−1

=

[
1
4

4∑
m

1
1 + (εmu−1)

]−1

= N (u) N
(
u−1

)
,

u + u−1

1 + (uu−1)
=

1
4

4∑
m

εm + u

1 + (εmu)
=

1
4

4∑
m

εm + u−1

1 + (εmu−1)
,

u =
(
u−1

)−1 =

[
1
4

4∑
m

εm

1 + (εmu−1)

][
1
4

4∑
m

1
1 + (εmu−1)

]−1

,

N (u) =
N (u1) N (u2)

1 + (u1u2)
,

u

N (u)
=

u1 + u2 +
1
4

4∑
m

εm (εmu1) (εmu2)

N (u1)N (u2)
,

[1 + (εmu)] [1 + (u1u2)] = [1 + (εmu1)] [1 + (εmu2)] , (4.10)

u1 = u ◦u−1
2 =

{
1
4

4∑
m

εm + u

1 + (εmu2)
+

1
4

4∑

k

4∑
m

εm (εmu)
(
εku2

)

1 + (εku2)

}{
1
4

4∑
m

1 + (εmu)
1 + (εmu2)

}−1

u2 = u−1
1 ◦u =

{
1
4

4∑
m

εm + u

1 + (εmu1)
+

1
4

4∑

k

4∑
m

εm (εmu)
(
εku1

)

1 + (εku1)

}{
1
4

4∑
m

1 + (εmu)
1 + (εmu1)

}−1

1
4

4∑
m

εm (εmu) = u,
1
4

4∑
m

εm
(
εmεk

)
(εmu) = εk

(
εku

)
− u,

1
4

4∑
m

(εmu1) (εmu2) =
1
16

4∑

k

4∑
m

(
εkεm

)
(εmu1) (εmu2) = (u1u2) ,

1
4

4∑
m

(
εkεm

)
(εmu1) (εmu2) =

(
εku1

)(
εku2

)
− (u1u2) ,

|u| =
√

u2 =

√√√√1
4

4∑
m

(εmu) (εmu).

Vectors of the preferred directions are not elements of group of velocities. They
have no inverse elements. Therefore we have only a formal equality

εm ◦ u = u ◦ εm = εm. (4.11)

Finally, we shall consider a special case when the law of a composition depends
only on values of the nonhomogeneous projective coordinates. The following new
equality to Equalities 1 and 2 is necessary, for example.
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Equality 3. The equality is fulfilled

1

4

4∑
m

εm
i εm

j εm
r = εijr, (4.12)

where εijr – the symmetric symbol with properties εijr = 1 at i 6= j 6= r, and
remaining values are zero. Then, the law of a composition of vectors in coordinate
representation is

ui =

[
u1i + upi +

3∑

j,k

εijku1ju2k

]
×

[
1 +

3∑
i,j

δiju1iu2j

]−1

. (4.13)

According to Equalities 1–3 we have following relations

t3 + 3tx2/c2 + 6xyz/c3 = 1
4

4∑
m

(Tm)3 ,

4t [t2 − x2/c2] + 8xyz/c3 = T 1T 2T 3 + T 1T 2T 4 + T 1T 3T 4 + T 2T 3T 4,

1
4

4∑
m

(Tm − t) = 0, 1
4

4∑
m

(Tm − t)2 = x2/c2, 1
4

4∑
m

(Tm − t)3 = 6xyz/c3.

5 An angular measure

Definition 5. Expression of the additive angular measure is equaled

αm (u) = ln
1 + (εmu)

N (u)
, αm (0) = 0. (5.1)

According to (3.6) and (5.1), we obtain relations

αm (u) = αm (u1) + αm (u2) ,
4∑
m

αm (u) = 0,

1

4

4∑
m

exp [αm (u)] =
1

N (u)
,

1

4

4∑
m

exp [−αm (u)] =
1

N (u−1)
,

αm (u−1) = −αm (u) = ln
1 + (εmu−1)

N (u−1)
,

u =

4∑
m

εmeαm(u)

4∑
m

eαm(u)

, u−1 =

4∑
m

εme−αm(u)

4∑
m

e−αm(u)

.

(5.2)

Definition 6. The vector-parameter β = {β1, β2, β3} of an angular measure is
defined so

β =
1

4

4∑
m

εmαm (u) . (5.3)
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Taking into account (2.15), (3.5) and (5.2), we have equalities for an angular mea-
sure and relations

αm (u) = (εmβ) , (rβ) = ln A (u, r) = ln
4∏
m

[
1 + (εmu)

N (u)

](εmr)/4

,

β (u) = β (v) + β (u′) , t− (rx) /c =
4∑
m

Tmpm,

x− rct− 1

4

4∑
m

εm (εmx) (εmr) = c

4∑
m

εmTmpm, (5.4)

(u/c) ◦ (−r) =

4∑
m

εmTmpm

4∑
m

Tmpm

.

From transformations of characteristics (3.7) we have

t + (εmx) = e(rβ)e(εmβ) [t′ + (εmx′)] ,

t′ + (εmx′) = e(rβ′)e(εmβ′) [t + (εmx)] .
(5.5)

In (5.5) the factor depending on vectors-parameters β = β (v), β′ = β (v′) = −β
and r is conformal multiplier.

Taking (2.17) and (5.1) into account we can obtain

Tm

(1

4

4∑
m

Tm
) = eβ+(εmβ),

cTm

F
= e(rβ)+(εmβ),

F
(1

4

4∑
m

cTm
) = eβ−(rβ), β = ln N (u) .

(5.6)

Let’s enter values of angles α4 = −α (v) , αn = αn (v) (n = 1, 2, 3), and we
have, according to (5.5), direct transformation of coordinates and time with c 6= 1
in the vectorial form II

x = e(rβ)

{
c

4

3∑
n

[
e(εnβ) + e−(εβ)

]
εnt +

1

4

3∑
n

[
e(εnβ)εn + e−(εβ)

3∑

k

εk

]
(εnx′)

}
,

t = e(rβ)

{
1

4

[
3∑
n

e(εnβ) + e−(εβ)

]
t′ +

1

4c

3∑
n

[
e(εnβ) − e−(εβ)

]
(εnx′)

}
.

(5.7)

The replacement x → x′, t → t′ and β → −β leads to the inverse transformations.
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From (5.2) and (5.3) one finds expression of a vector of a three-dimensional
velocity v and vector-parameter

v = c

3∑
n

εn
[
e(εnβ) − e−(εβ)

]
[

3∑
n

e(εnβ) + e−(εβ)

] ,

β =
1

4

3∑
n

εn [αn (u)− α (u)] , (εβ) =
3∑
n

(εnβ) ,

(5.8)

depending on considered angles.

6 An energy and impulse of a particle

It is consider the particle, which moves relative to inertial system of a reference
(K) . The Lagrangian with c 6= 1 is

L = −m0c
2F (dx/dt, r) = −m0c

2N (u/c, r) ,

N (u/c, r) =

{
4∏
m

[1 + (εmu) /c]1−(εmr)

}1/4

.
(6.1)

Here the requirement r 6= −εk satisfies at m0 6= 0 as at equality r with a vector of
one εk from (6.1) the Lagrangian L = −m0c

2 [1− (ru) /c], which linearly depends
on a velocity implies.

Using Hamilton formalism, we have impulse and an energy of a particle in
vectorial forms

∂ =
∂L

∂u
= m0cN (u/c, r)

[
1

4

4∑
m

εm εm (u/c + r)

1 + (εmu) /c

]
=

=
m0c

N (u−1/c, r)

[
−u−1

/
c + r +

1

4c

4∑
m

εm
(
εmu−1

)
(εmr)

]
,

E = (∂u)− L = m0c
2N (u/c, r)

[
1

4

4∑
m

1− (εmr)

1 + (εmu) /c

]
=

=
m0c

2

N (u−1/c, r)

[
1− (

u−1r
) /

c
]
,

(6.2)

Let us consider three special cases. In the first case at ∂ = 0 one gets
E = m0c

2N (−r, r) for a moving particle with a velocity u = −cr. The second case
at r = 0 corresponds to the generalized Berwald-Moor metric function. For such
space-time we have values ∂ = −m0u

−1/N (u−1/c) and E = m0c
2/N (u−1/c). If

u = 0, in the third case we shall receive values of an energy E0 = m0c
2, impulse
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∂0 = m0cr and vector-parameter c∂0/E0 = r of the rest particle, discussed in [10].
We shall mark also presence of a moment M0 = m0c [xr] of a rest particle, which
varies at transformations (3.12). Generally expressions (6.2) with the account
(4.10) give a relation as

E − c (εm∂) =
1 + (εmu−1) /c

N (u−1/c, r)
[E0 − c (εm∂0)] ,

E0 − c (εm∂0) =
1 + (εmu) /c

N (u/c, r)
[E − c (εm∂)] ,

(6.3)

from which the energy, impulse of a rest particle and vector-parameter imply

E0 =
E − (∂u)

N (u/c, r)
,

∂0 =
1

N (u/c, r)

[
∂ − Eu

/
c2 +

1

4c

4∑
m

εm (εmu) (εm∂)

]
,

r =
c∂0

E0

=

[
∂ − Eu/c2 +

1

4c

4∑
m

εm (εmu) (εm∂)

]

E − (∂u)
.

(6.4)

From (6.3) we have the following formula correlations of an energy and impulse

{
4∏
m

[E − c (εm∂)]1−(εmr)

}1/4

= m0c
2

{
4∏
m

[1− (εmr)]1−(εmr)

}1/4

(6.5)

and also value of velocities

u =
∂E

∂∂
= c

4∑
m

εm (1− εmr)

E − c (εm∂)

[
4∑
m

1− (εmr)

E − c (εm∂)

]−1

,

c2∂

E
=

[
1

4

4∑
m

εm εm (u + cr)

1 + (εmu) /c

][
4∑
m

1− (εmr)

1 + (εmu) /c

]−1

.

(6.6)

Let’s present (6.3) in a general view

E − c (εm∂) =
1 + (εmv′) /c

N (v′/c, r)
[
E′ − c

(
εm∂′

)]
=

N (v/c, r)
1 + (εmv) /c

[
E′ − c

(
εm∂′

)]
,

E′ − c (εm∂′) =
1 + (εmv) /c

N (v/c, r)
[E − c (εm∂)] =

N (v′/c, r)
1 + (εmv′) /c

[E − c (εm∂)] ,

(6.7)

where coefficients km (v/c, r) and km (v′/c, r) are used. Then from (6.7) we shall
receive direct transformations of an energy and impulse between inertial systems
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of references (K) and (K ′) in vectorial form I

∂ =
A (v′/c, r)
N (v′/c)

[
∂′ − E′v′

c2
+

1
4c

4∑
m

εm
(
εmv′

) (
εm∂′

)
]

=

=
N (v/c)

4A (v/c, r)

4∑
m

εm

[
εm

(
∂′ + E′v

/
c2

)

1 + (εmv) /c

]
,

E =
A (v′/c, r)
N (v′/c)

[
E′ − (

v′∂′
)]

=
N (v/c)

4A (v/c, r)

4∑
m

E′ − c (εm∂′)
1 + (εmv) /c

,

(6.8)

which leave form-invariant a relation (6.5). The replacement ∂ → ∂′, E → E ′ and
v → v′ lead to the inverse transformations.

Let’s enter in four-dimensional space with coordinates {E, c∂} four character-
istics Em = = E − c (εm∂) for which relations are valid

E2 + c2∂2 =
1
4

4∑
m

(Em)2 , E =
1
4

4∑
m

Em,

−∂ =
1
4c

4∑
m

εmEm, −c∂

E
=

4∑
m

εmEm

4∑
m

Em

.

(6.9)

In (6.9) we have the square-law form, which at equality to a value (m0c
2)

2
defines

the hypersurface of the second order intersecting all four characteristics. Expres-
sions Em of the linear vector function of the first sort give four axes of a considered
hypersurface. In (6.9) we have the square-law form, which at equality to a value
defines the hypersurface of the second order intersecting all four characteristics.
Expressions of the linear vector function of the first sort give four axes of a consid-
ered hypersurface.

Transformations (3.12) and (6.8) also imply from an invariance of a relation
EmTm = E ′mT ′m, noted in the form

[E − c (εm∂)] [t + (εmx) /c] = [E ′ − c (εm∂′)] [t′ + (εmx′) /c] . (6.10)

According to (5.5) from (6.10) we have transformations with an angular mea-
sure

Em = e(rβ′)e(εmβ′)E ′m, E ′m = e(rβ)e(εmβ)Em. (6.11)

From transformations (6.2), (6.4) and (6.8) we find laws of a composition of
elements of group with c 6= 1

(−c∂/E) = (u−1/c) ◦ (−r) , (−r)−1 = (−c∂/E)−1 ◦ (u−1/c) ,

(−c∂/E) = (v′/c) ◦ (−c∂′/E ′) , (−c∂′/E ′) = (v/c) ◦ (−c∂/E) ,

(−r) = (u/c) ◦ (−c∂/E) = (u′/c) ◦ (−c∂′/E ′) .

(6.12)
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Hence, the dimensionless velocities u/c, (−c∂/E), and vector-parameter (−r)
are equivalent elements of group of three-dimensional velocities and the following
conditions 1 − (εm∂) c/E ≥ 0, 1 − (εmr) > 0 are valid. Last equality in (6.12)
means an invariance of vector-parameter r, as it was necessary to expect.

For a particle with m0 = 0 from (6.3) we obtain the equality E = c (εm∂).
According to (4.11) and (6.12) we given by the expressions

−u−1 = r = −εk, ∂ = mcr (1 + r2) , E = mc2 (1 + r2) ,

m = lim
m0→0

u→cεk

m0

N (u/c, r)
, ∂ =

Er

c
, E = mc2

(
1 +

c2∂2

E2

)
.

(6.13)

Here r coincides with the fixed value of a vector of the preferred direction and m
there is a mass of ”photon” in Finsler space-time.

According to (4.10) we shall write out some relations

EN (−c∂/E, r) = m0c
2N (−r, r) , N (0, r) = 1,

N (−c∂/E) =

{
4∏
m

[1− (εm∂) c/E]1−(εmr)

}1/4

,

N (−r, r) =

{
4∏
m

[1− (εmr)]1−(εmr)

}1/4

,

1− (εmr) =
[1 + (εmu) /c] [E − c (εm∂)]

E − (u∂)
,

1− (εmr)

N (−r)
=

1 + (εmu) /c

N (u/c)
· 1− (εm∂) c/E

N (−∂c/E)
,

N (−r, r) =
N (u/c, r) N (−c∂/E, r)

1− (u∂) /E
.

(6.14)

The inverse element of vector-parameter is

(−r)−1 =

[
1

4

4∑
m

εm

1− (εmr)

][
1

4

4∑
m

1

1− (εmr)

]−1

=

=

[
1

4

4∑
m

εm (εmr)

1− (εmr)

][
1

4

4∑
m

1

1− (εmr)

]−1
(6.15)
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Also the following equalities we get

ln T0 =
4∑
m

pm ln Tm, ln N (−r, r) =
4∑
m

pm ln pm,

T0 = lim
q→0

Nq (T ) , N (−r, r) = lim
q→0

Nq (p) ,

Nq (T ) =

{
4∑
m

(Tm)q pm

}1/ q

, Nq (p) =

{
4∑
m

(pm)q+1

}1/ q

,

1− (εmr)

N (−r)
· 1 +

[
εm (−r)−1]

N
[
(−r)−1] = 1,

4∏
m

[t + (εmx) /c]
1−(εmr)

N(−r) =
4∏
m

[t + (εmx) /c]

N[(−r)−1]
1+[εm(−r)−1] .

(6.16)

At probability concept [14–16] of value pm are interpreted as a probability
distribution, and Tm – as the random observable variables describing of geometry.
Then function Nq (T ) for a value 1 ≤ q < ∞ is expressions of a half-norm [19].
For a half-norm it is admissible Nq (T ) = 0 at T 6= 0. This property the half-norm

differs from norm N2 (T ) =
{ 4∑

m

(Tm)2 pm
}1/2

at q = 2. If r = 0, we have equality

probability distribution pm = 1/4.
Finally, we shall present a signal for an establishment of the definition of a

simultaneity (2.2) as a de Broglie plane wave in a normal form

ψ (x, t) = A exp i[Et− (∂x)] /~ = A exp iω [t− (kx) /ω] , (6.17)

where A – amplitude, k – a wave vector, E = ~ω and ∂ = ~k. According to (6.10)
magnitude

ϕ =
[Et− (∂x)]

~
=

1

4~

4∑
m

EmTm =
1

4~

4∑
m

E ′mT ′m (6.18)

is a form-invariant phase of a wave.
For a particle with ∂ = 0 also u = 0 we have, accordingly, waves in forms

ψ (x, t) = A exp i[Et] /~ = A exp [iω0tN (−r, r)] , ω0 = m0c
2/~,

ψ (x, t) = A exp i[E0t− (∂0x)] /~ = A exp iω0 [t− (rx) /c] .
(6.19)

The wave function in a generalized Berwald-Moor space-time with r = 0 satis-
fies, according to (6.5), to the following functional wave equation

{
4∏
m

[
∂

∂t
+ εm ∂

∂x

]}
ψ (x, t) =

(
m0c

2

~

)4

ψ (x, t) . (6.20)



R. G. Zaripov The definition of a simultaneity in Finsler space-time 355

7 Discussion

In work Definitions on the basis of which the theory of the anisotropic Finsler
space-time is under construction are reduced. We shall consider some deductions
implying from obtained results.

We use values of vectors ε = (−1,−1,−1), ε1 = (−1, 1,−1), ε2 = (1,−1,−1) ,
ε3 = (−1,−1, 1) for specially oriented coordinate tetrahedron [8, 9] and satisfying
to Equalities 1–3. In outcome the symmetrical matrix H in (2.15) is a Hadamard
matrix of order 4 with elements equal to numbers ±1

H4 =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




=

(
H2 H2

H2 −H2

)
, H2 =

(
H1 H1

H1 −H1

)
, H1 = 1. (7.1)

The Hadamard matrix can be constructed by the Sylvester method the recursion
evaluation from matrixes H1 and H2 and is widely used in an information theory.
As the first line and the first column will consist of numbers +1 we have the
normalized Hadamard matrix. The elements of row of matrixes are discrete values
of Walsh orthogonal functions.

In works [6, 7] values of vectors ε = (1, 1, 1), ε1 = (1,−1, 1), ε2 =
(−1, 1, 1), ε3 = (1, 1,−1) are used. Then nonnormalized matrix has properties

H̄4 =




1 −1 −1 −1

1 1 −1 1

1 −1 1 1

1 1 1 −1




=

(
H̄2 −H2

H̄2 H2

)
, H̄2 =

(
H̄1 −H1

H̄1 H1

)
, H̄1 = 1,

H̄4H̄
T
4 = 4I, H4H̄4 = 4G4, G4 =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




.

(7.2)

From (3.12), (3.13) and (4.6) we shall receive known direct and inverse trans-
formations of the projective homogeneous and nonhomogeneous coordinates for
metric functions (1.2) and (1.3), de-pending only from components of the relative
velocities. From (6.2) and (6.5) known relations for an energy and impulse [10]
imply. For example, from (3.14) we have the following direct transformations

x =
(

1 + vx/c

1− vx/c

)r1/2 x′ + vxt′√
1− v2

x

/
c2

, t =
(

1 + vx/c

1− vx/c

)r1/2 t′ +
(
vx

/
c2

)
x′√

1− v2
x

/
c2

,

y =
(

1 + vx/c

1− vx/c

)r1/2 y′ + (vx/c) z′√
1− v2

x

/
c2

, z =
(

1 + vx/c

1− vx/c

)r1/2 z′ + (vx/c) y′√
1− v2

x

/
c2

,

(7.3)

which at r1 = 0 coincide with known [9]. Components of vector-parameter of an
angular measure β are equaled to values of group parameters and the arguments
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entered in [7, 8]. Expression β are equaled to the value relevant to it from [8].
From (6.8) we shall receive known transformations of impulse and the energies [10]
noted in other form.

At the formal limit c →∞ from (3.12), (3.13) both (4.6) we obtain direct and
inverse Galilei transformations

x = x′ + vt′, x′ = x− vt, t′ = t (7.4)

and the law of a composition in an Abelian group of three-dimensional velocities

u = u′ + v. (7.5)

Here we have the relative velocity v′ = v−1 = −v implying from (3.11). For
(7.5) group postulates are fulfilled.

Let us consider the kinematics effects of a course of time. We shall note trans-
formation of time (3.13) so

t′ =
A (v′/c, r)

N (v′/c)

[
t +

1

c2
(v′x)

]
=

N (v/c)

A (v/c, r)

[
t +

1

4

4∑
m

εm (x− vt)

c + (εmv)

]
. (7.6)

At x = vt we have from (7.6), according to (3.10), the formula for time-dilation in
origin x′ = 0 of a frame of reference (K ′)

t′ =
N (v/c)

A (v/c, r)
t (7.7)

Expression (7.7) is equaled (3.4).
Let in a system of reference (K ′) simultaneous two events in origin x′ = 0 and

in point x′ that is ∆t′ = t′ (x′) − t′ (0) = 0. Then with a system of reference (K)
these events are non-simultaneous and from (7.6) the formula for effect of a relative
of simultaneity distant events in points x1 = vt and x2 = x we obtain

∆t = t (x)− t (vt) = −1

4

4∑
m

εm (∆x)

c + (εmv)
(7.8)

where ∆x = x2 − x1.
The effect of length-contraction of segments of paths is

x′ =
N (v/c) c

4A (v/c, r)

4∑
m

εm (εm∆x)

c + (εmv)
. (7.9)

Let’s consider strict kinematics reviewing Finsler space-time with transforma-
tions (7.4) and (7.5) classical physics with absolute simultaneity distant events.
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Definition 7. There is a unique time (or the definition of a simultaneity of
events is given) for points O, A and An at realization of a equality

4∑
m

cm (Tm − t) = 0, (7.10)

where cm is a velocity of a signal in directions of the preferred vectors εm

( 4∑
m

εm = 0
)

of an inertial system of a reference (K).

Lengths of segments of the paths moving by a signal, are values (εmx) and for
characteristics we have the following equalities

Tm = t +
(εmx)

cm
. (7.11)

Definition 8. Expression

c =
1

4

4∑
m

cm (7.12)

is the universal constant and defines a ”average” physical velocity of a signal in
various inertial sys-tems of references.

According to (7.12), from (7.10) we obtain the following relations

t =

4∑
m

cmTm

4∑
m

cm

=
1
4c

4∑
m

cmTm, x/c =
1
4

4∑
m

εmcmTm, u = c

4∑
m

εmcmTm

4∑
m

cmTm

. (7.13)

Definition 9. Form-invariant metric function in local Finsler geometry is
defined so

F =

{
4∏
m

[cmdt + εmdx]1−(εmr)

}1/4

=

{
4∏
m

[
c′mdt′ + εmdx′

]1−(εmr)

}1/4

(7.14)

Metric function (7.14) refers to a class of functions (1.4).

We use a method of coefficient ”k” and we shall note relations in vectorial form

t +
(εmx)

cm
= km (v, r)

[
t′ +

(εmx′)
c′m

]
, t′ +

(εmx′)
c′m

= km
(
v′, r

) [
t +

(εmx)
cm

]
(7.15)

where km (v, r) km (v′, r) = 1. We shall substitute (7.15) in (7.14) and we have

4∏
m

(cm)1−(εmr)
4∏
m

[km (v, r)]1−(εmr) =
4∏
m

(c′m)1−(εmr) ,

4∏
m

(c′m)1−(εmr)
4∏
m

[km (v′, r)]1−(εmr) =
4∏
m

(cm)1−(εmr) .

(7.16)
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Further we obtain the equalities implying from (7.14) and (7.15), under known
conditions x′ = 0 at x = vt and x = 0 at x′ = v′t′, and also the new definition an
anisotropy of a velocity of a signal in a moving system of reference.

Definition 10. The linear vector function of the first sort is a velocity of a
signal in a system (K ′)

c′m = cm + (εmv) (7.17)

depending from the relative velocity..

In a result we shall receive values of coefficients

km (v, r) = 1 +
(εmv)

cm
, km (v′, r) = 1 +

(εmv′)
c′m

(7.18)

with v′ = −v and equality c′mT ′m = cmTm. According to (7.15), we obtain Galilei
transformations (7.4) and formulas for Doppler effect on four preferred directions

ω′m =

[
1 +

(εmv)

cm

]
ωm, ωm =

[
1 +

(εmv′)
c′m

]
ω′m. (7.19)

At cm = c and use of a dynamic substantiation of three effects in formulas
(7.7)–(7.9), we have equality c′m = c and transformations (3.12) for metric function
(3.1). Such interpretation of transformations (3.12) is compounded with idea of not
carried away ether of classical physics with Galilei transformations with a velocity
of a signal (7.17) and their further transformation.
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It is shown that the World function can be regarded as a link between the qualitatively
different geometries with a certain congruence of world lines (geodesics). If the space in
which the World function is defined is a polynumber space, then the hypothesis of the
analyticity of the vector field of generalized velocities of the world lines leads to the
strict limitations on the structure of the World function. The main result states that the
Minkowskian space and the polynumber space correspond to the same physical World.

MSC2000: 83D05, 30C15, 53C22, 30C15.

1 Introduction

The idea that everything happening in the physical world is governed by a
single scalar function has originated long ago and can hardly be attributed to any
scientist or even to a group of scientists. It is this function that will be called
the World function here. For example, H. Weyl [1] uses the term ”World function”
when discussing the Mie theory. It is not definitely clear what to choose as a World
function. G. Mie in his theory (a field theory) suggested to choose the Lagrangian
of the field, i.e. to take the density of the Lagrange function as a World function.
In this paper the field equations and the field theories will not be discussed.

For the observer using the classical mechanics and Finsler geometry, it is suf-
ficient to know how all the material points move, in other words it is sufficient
to know the congruence of the world lines in the space-time. In Finsler geometry
such a congruence is a normal congruence of the geodesics [2], i.e. there exists
such a scalar function, S, the level surfaces of which are transversal to the given
congruence of geodesics. In classical mechanics such function is usually called
’action as a function of coordinates’. In this paper it is this finction, S, that will
be considered the World function.

So, let us adopt that in the coordinate space x1, x2, ..., xn the scalar function
S(x) corresponding to the notion of action as a fuction of coordinates x1, x2, ..., xn

in classical mechanics plays a role of the World function. Taken as it is, the scalar
function, S, can not define the field of velocities and, therefore, can not define a
congruence of geodesics each of which corresponds to an observer or to a material
particle. One needs an additional procedure, ϕ̃, providing the possibility to pass
from the covariant ’vectors’ to the contravariant ’vectors’. In any Finsler geometry,
Φn, there is such a procedure. Thus, the pair {S; ϕ̃} as well as the pair {S; Φn}
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defines the congruence of the world lines for all the points of the space, that is
defines the evolution of this space.

Let x0, x1, x2, x3 be the Minkowskian space with the length element defined as

ds = mc
√

(x0)2 − (x1)2 − (x2)2 − (x3)2 ≡ mc

√
o
gij xixj , (1)

where the factor mc – optional from the geometric point of view – provides a better
possibility to give a physical interpretation of the geometrical objects; m and c are
the rest mass of the particle and the light velocity in vacuum. The tangent equation
of the indicatrix in such a space can be written as follows

(p0)
2 − (p1)

2 − (p2)
2 − (p3)

2 = (mc)2 . (2)

Then, S(x0, x1, x2, x3), the action as a function of coordinates in the Minkowski
space must suffice the Hamilton-Jacoby equation

(
dS

dx0

)2

−
(

dS

dx1

)2

−
(

dS

dx2

)2

−
(

dS

dx3

)2

= (mc)2 . (3)

Let us now take an arbitrary function S̃ which suffice

(
dS̃

dx0

)2

−
(

dS̃

dx1

)2

−
(

dS̃

dx2

)2

−
(

dS̃

dx3

)2

> 0 . (4)

and substitute it into (3). The result is that the function S̃ is a solution of the
Hamilton-Jacoby equation which corresponds to the Finsler geometry with the
length element

ds̃ = κ(x) ·mc
√

(x0)2 − (x1)2 − (x2)2 − (x3)2 (5)

and the tangent equation of the indicatrix

(p0)
2 − (p1)

2 − (p2)
2 − (p3)

2 = κ(x)2 · (mc)2 , (6)

where

κ(x) ≡ 1

mc

√√√√
(

dS̃

dx0

)2

−
(

dS̃

dx1

)2

−
(

dS̃

dx2

)2

−
(

dS̃

dx3

)2

. (7)

Notice, that if the length elements of two geometries, ds, ds̃, defined in the
same coordinate space x1, x2, ..., xn are related as

ds̃ = κ(x)ds , (8)

where k(x) > 0 is an arbitrary function of a point, then these two geometries
are called conformly connected [2]. The geometry ds̃ differs from the geometry
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ds in such a way that in every infinitely small vicinity of every point of space,
x1, x2, ..., xn, there is a scale transformation while the extension-contraction coeffi-
cient, κ(x), depends on the point.

Thus, we see that if we know the arbitrary scalar function, S̃, sufficing (4) in
the flat Minkowski space (1), then we know the World function in the space given
by (5) which is conformly connected to the Minkowski space. Therefore, the world
lines equations in space (5) can be written as:

ẋi =
o
g

ij dS̃

dxj
λ(x, y) , (9)

where ẋi ≡ dxi

dτ
is a derivative over τ (evolution parameter) along the world line,

and λ(x, y) > 0 is an arbitrary function.
All the above said is true (with regard to the obvious changes of notation in

formulas) for the Euclidean or for pseudo Euclidean geometry of the arbitrary
dimension n, but only for n = 2 one could correlate a system of the associative
commutative non-degenerate numbers (correspondingly, complex numbers, C2, and
hyperbolic numbers, H2), to the Euclidean or to pseudo Euclidean space.

In this approach the form of the World function is not limited by anything but
(4). To make the form of the World function concrete for the polynumber space,
Pn, one could use the analyticity condition - the condition giving a relation between
the World function and the analytical functions of the polynumber variable, Pn. In
this paper this is done in the form of Hypotheses I, II. The other realizations are
also possible.

1.1 Complex plane

Hypothesis IC2 : Components of the vector field that produces the world lines
corresponding to the given World function, are the components of the analytical
function of the complex variable.

According to this Hypothesis

λ(x, y) · ∂S̃

∂x
= u , λ(x, y) · ∂S̃

∂y
= v , (10)

where F (z) = u(x, y) + iv(x, y) is an analytical function of the complex variable
z = x+iy. Then the Cauchi-Riemann relations give the following partial differential
equations for the World function S̃:

∂

∂x
λ(x, y)

∂S̃

∂x
=

∂

∂y
λ(x, y)

∂S̃

∂y
,

∂

∂y
λ(x, y)

∂S̃

∂x
= − ∂

∂x
λ(x, y)

∂S̃

∂y
. (11)

If λ(x, y) ≡ 1, then the equations (11) simplify:

∂2S̃

∂x2
− ∂2S̃

∂y2
= 0 ,

∂2S̃

∂x∂y
= 0 . (12)
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The general solution of this system of equations is

S̃ =
A

2
(x2 + y2) + a1x + a2y + b , (13)

where A, a1, a2, b are real numbers. Notice, that if A 6= 0, then function S̃ is not a
component of the analytical function of complex variable.

Hypothesis IIC2 : The components of the vector field that produces the world
lines corresponding to the given World function, are the components of the function
of complex variable conjugate to the analytical function of complex variable.

Then according to this hypothesis

λ(x, y) · ∂S̃

∂x
= u , λ(x, y) · ∂S̃

∂y
= −v , (14)

where F (z) = u(x, y)+iv(x, y) is an analytical function of complex variable z = x+
iy. The Cauchi-Riemann relations give the following partial differential equations
for the World function S̃:

∂

∂x
λ(x, y)

∂S̃

∂x
= − ∂

∂y
λ(x, y)

∂S̃

∂y
,

∂

∂y
λ(x, y)

∂S̃

∂x
=

∂

∂x
λ(x, y)

∂S̃

∂y
. (15)

If λ(x, y) ≡ 1, then the equations (15) simplify and give a single partial differ-
ential equation:

∂2S̃

∂x2
+

∂2S̃

∂y2
= 0 . (16)

Thus, provided the Hypothesis IIC2 is true and λ(x, y) ≡ 1, the function S̃ is a
component of the analytical function of the complex variable, and the corresponding
geometry which is conformly connected to the Euclidean plane can be obtained with
the help of the conformal transformation of the Euclidean plane.

1.2 Hyperbolic plane

The metric tensor for the hyperbolic plane has the form

o
gij= diag(1,−1) , (17)

and the Cauchi-Riemann relations for the analytical functions F (z) = u(x, y) +
jv(x, y) of the variable H2 3 z = x + jy, j2 = 1 can be written as:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
=

∂v

∂x
. (18)

Hypothesis IH2 : Components of the vector field that produces the world lines
corresponding to the given World function, are the components of the analytical
function of the variable H2.
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According to this hypothesis and in analogy to (9) for n = 2, one gets

λ(x, y) · ∂S̃

∂x
= u , λ(x, y) · ∂S̃

∂y
= −v , (19)

where F (z) = u(x, y) + iv(x, y) is an analytical function of the variable H2 3 z =
x + jy. Then the Cauchi-Riemann relations give the following partial differential
equations for the World function, S̃:

∂

∂x
λ(x, y)

∂S̃

∂x
= − ∂

∂y
λ(x, y)

∂S̃

∂y
,

∂

∂y
λ(x, y)

∂S̃

∂x
= − ∂

∂x
λ(x, y)

∂S̃

∂y
. (20)

If λ(x, y) ≡ 1, then the equations (20) simplify:

∂2S̃

∂x2
+

∂2S̃

∂y2
= 0 ,

∂2S̃

∂x∂y
= 0 . (21)

The general solution of this system of equations is

S̃ =
A

2
(x2 − y2) + a1x + a2y + b , (22)

where A, a1, a2, b are real numbers. Notice, that if A 6= 0, function S̃ is not a
component of the analytical function of variable H2.

Hypothesis IIH2: The components of the vector field that produces the world
lines corresponding to the given World function, are the components of the function
of variable H2 conjugate to the analytical function of the variable H2.

According to this hypothesis

λ(x, y) · ∂S̃

∂x
= u , λ(x, y) · ∂S̃

∂y
= v , (23)

where F (z) = u(x, y) + jv(x, y) is an analytical function of the variable H2 3 z =
x + iy. Then the Cauchi-Riemann relations give the following partial differential
equations for the World function S̃:

∂

∂x
λ(x, y)

∂S̃

∂x
=

∂

∂y
λ(x, y)

∂S̃

∂y
,

∂

∂y
λ(x, y)

∂S̃

∂x
=

∂

∂x
λ(x, y)

∂S̃

∂y
. (24)

If λ(x, y) ≡ 1, then the equations (24) simplify and give a single partial differ-
ential equation:

∂2S̃

∂x2
− ∂2S̃

∂y2
= 0 . (25)

Thus, provided the Hypothesis IIH2 is true and λ(x, y) ≡ 1, the function S̃ is a
component of the analytical function of the variable H2, and the corresponding
geometry which is conformly connected to the hyperbolic plane can be obtained
with the help of the conformal transformation of the hyperbolic plane.
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2 Polynumbers Pn

Let us regard a system of the non-degenerate n-numbers Pn. The corresponding
coordinate space, x1, x2, ..., xn, is a Finsler metric space with the length element

ds = mc
n

√
o
gi1i2...in dxi1dxi2 ...dxin , (26)

o
gi1i2...in is a metric tensor that does not depend on point. The Finsler spaces of this
kind have been studied in mathematical literature for a long time (see, for example,
[3] - [6]), but the fact that all the polynumber spaces are just the Finsler spaces of
this type was discovered not long ago in [7], [8] and the subsequent papers of the
same authors.

The components of the generalized momentum in the geometry (26) can be
calculated according to the formulas:

pi = mc

o
gij2...jn dxj2 ...dxjn

(
o
gi1i2...in dxi1dxi2 ...dxin

)n−1
n

. (27)

Finsler geometry with the length element (26) will be called resolvable if the
tangent equation for the indicatrix can be written as

o
g

i1i2...in
pi1pi2 ...pin = µn(mc)n , (28)

where µ > 0 is a constant. For the Riemannian or pseudo Riemannian geometry
the re solvability means that the determinant of the metric tensor is not equal
to zero. It seems that the Finsler geometry in the space of the non-degenerate
polynumbers is always resolvable, but this statement demands the strict proof.

As it can be seen from expressions (26) - (28), tensors
o
gi1i2...in ,

o
g

i1i2...in
must

suffice the following relation of the resolvable Finsler geometry

o
g

j1j2...jn ×
× o

gj1i2...in dxi2 ...dxin
o
gj2k2...kn dxk2 ...dxkn ...

o
gjnm2...mn dxm2 ...dxmn =

= µn
(

o
gi1i2...in dxi1dxi2 ...dxin

)n−1

.

(29)

Action as a function of coordinates in geometry (26) suffices the Hamilton-
Jacoby equation:

o
g

j1j2...jn ∂S̃

∂xj1

∂S̃

∂xj2
...

∂S̃

∂xjn
= µn(mc)n . (30)

Let us regard an arbitrary World function, S̃(x1, x2, ..., xn), with the only con-
dition

o
g

j1j2...jn ∂S̃

∂xj1

∂S̃

∂xj2
...

∂S̃

∂xjn
> 0 , (31)
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Then function S̃(x) is the action for the geometry conformly connected to geometry
(26) with the length element

ds̃ = κ(x) ·mc
n

√
o
gi1i2...in xi1xi2 ...xin , (32)

where κ(x) > 0 is the extension–contraction coefficient which varies from point to
point of the coordinate space

κ(x) =
1

µ ·mc

n

√
o
g

j1j2...jn ∂S̃

∂xj1

∂S̃

∂xj2
...

∂S̃

∂xjn
, (33)

and the World function, S̃, is the solution of the Hamilton-Jacoby equation of the
following form:

o
g

j1j2...jn ∂S̃

∂xj1

∂S̃

∂xj2
...

∂S̃

∂xjn
= κ(x)n · µn(mc)n . (34)

The field of velocities that defines the congruence of the world lines can be
expressed by the World function, S̃, by the formula

ẋi =
o
g

ij2...jn ∂S̃

∂xj2
...

∂S̃

∂xjn
· λ(x)n−1 , (35)

where λ(x) > 0 is an arbitrary scalar function.
The algebra of polynumbers Pn 3 X = x1e1 + x2e2 + ... + xnen is completely

defined by the multiplication rule for the basis elements:

eiej = pk
ijek (36)

that is by the number tensor, pk
ij. Notice, that the polynumbers, Pn, are called

non-degenerate if
det(qij) 6= 0 , qij ≡ pk

impm
kj . (37)

In this case one can construct tensor qij. If εi are the coefficients of the expansion of
the unity 1 ∈ Pn in the basis ei, then the Cauchi-Riemann relation for the analytical
function F (X) = f(x)iei of the variable Pn can be written in the following form:

∂f i

∂xk
− pk

ijε
m ∂f j

∂xm
= 0 . (38)

Hypothesis IPn : Components of the vector field that produces the world lines
corresponding to the given World function, are the components of the analytical
function of the variable Pn.

If F (X) = f(x)iei is an analytical function of the variable Pn, then this hy-
pothesis leads to the expression:

f i(x1, x2, ..., xn) =
o
g

ij2...jn ∂S̃

∂xj2
...

∂S̃

∂xjn
· λ(x)n−1 . (39)
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Substituting these components of the analytical function expressed by the World
function into the Cauchi-Riemann relations, we get such a system of partial differ-
ential equations that if Hypothesis IPn is fulfilled, then the World function suffices
this system.

Hypothesis IIP2 : Components of the vector field that produces the world lines
corresponding to the given World function, are the components of the function of
the variable Pn conjugate to the analytical function of the same variable with the
help of a special unary operation.

Let us define the unary operation X̄ = Y acting on the set Pn 3 X, Y in the
following way:

yi =
o
g

ij2...jn

qj2m2 ...qjnmnxm2 ...xmn . (40)

For complex numbers C2 and hyperbolic numbers H2 such a unary operation
is a regular conjugation, while on the polynumber set H4 (and Hn) this operation
coincides with the operation of normal conjugation [9] within the accuracy of a
number factor. The unary operation (40) can be generalized for (n−1) arguments,
it will remain symmetrical due to its definition. To distinguish such a unary op-
eration and a corresponding (n − 1)-ary operation from other conjugations in the
polynumber algebras, let us call such an operation symmetrical conjugation.

Comparing formulas (35) and (40) and changing xi to f i, we see that the
realization of the Hypothesis IIP2 leads to the relations

qijf
j =

∂S̃

∂xi
λ(x) , (41)

or

f i = qij ∂S̃

∂xj
λ(x) , (42)

that is the quantities qij ∂S̃
∂xj λ(x) are the components of the analytical function of

the variable Pn.
Let us show that one and the same pair {World function; congruence of the

world lines} can be realized in various Finsler geometries.
We introduce the notation

gij(x) =

[
1

κ(x) · µ · cm
]n−2

o
g

ijj3...jn ∂S̃

∂xj3
...

∂S̃

∂xjn
. (43)

Let det(gij(x)) 6= 0, then we can construct the twice covariant tensor gij(x). Let
us regard the pseudo Riemannian geometry with the length element

ds′ = κ(x) · µ · cm
√

gijdxidxj . (44)

The tangent equation of the indicatrix in such a geometry is

gijpipj = κ(x)2 · µ2 · (cm)2 , (45)
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and the Hamilton-Jacoby equation for the action S ′(x) is

gij ∂S ′

∂xi

∂S ′

∂xj
= κ(x)2 · µ2 · (cm)2 . (46)

Substitute the expression (43) into this equation and get

o
g

j1j2j3...jn ∂S ′

∂xj1

∂S ′

∂xj2

∂S̃

∂xj3
...

∂S̃

∂xjn
= κ(x)n · µn(mc)n . (47)

Thus, we see that the function S ′ = S̃ is the solution of the equation (46), that is
function S̃ remains the World function in the geometry (44).

The field of velocities in the geometry (44) is defined by the formula

ẋi = gij ∂S̃

∂xj
· λ′(x) , (48)

where λ′(x) > 0 is a scalar function. Substitute the expression (43) into this
equation

λ′(x) = κ(x)n−2 · µn−2 · (cm)n−2 · λ(x)n−1 (49)

and get the formula

ẋi =
o
g

ij2...jn ∂S̃

∂xj2
...

∂S̃

∂xjn
· λ(x)n−1, (50)

which coincides with the formula (35).
So, one and the same pair {World function; congruence of the world lines} can

be realized in the qualitatively different geometries.
One can use metric tensor gi1i2...im(xi1xi2 ...xin) to obtain metric tensor with less

number of indices, r < m. To do this one should contract some indices with vector
or tensor contravariant fields (see, for example, [3] – [6]). The speculations given
above show that the best method of contraction for polynumber spaces Pn is the
following:

gi1i2...ir(x
i1xi2 ...xin) = a(x) · gi1i2...im(xi1xi2 ...xin)f

ir+1

(1) f
ir+2

(2) ...f im
(m−r),

where a(x) is some scalar function and f i
(A) are the components of the analytical

functions of variable Pn or the components of some conjugated functions to the
analytical functions of the same variable.

3 Hypercomplex numbers H4

Notice, that the system of hypercomplex numbers H4 is isomorphic to the
algebra of real square diagonal matrices 4×4. The corresponding coordinate space
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is the metric Finsler space with Berwald-Moor metric. In H4 there is a special
basis, e1, e2, e3, e4, with the following multiplication rule

eiej = pk
ijek , pk

ij =

{
1 , i = j = k ,

0 ,
(51)

The components of tensors qij (37), qij in this basis give a unity matrix:

(qij) = (qij) = diag(1, 1, 1, 1) . (52)

The length element in the H4 space in the special basis (51) is

ds = mc
4
√

dx1dx2dx3dx4 ≡ mc
4

√
o
gijkm dxidxjdxkdxm , (53)

where
o
gijkm=

{
1
24

, for all different i, j, k, m

0 , else.
(54)

The components of the generalized momentum are defined by the formula

pi =
mc

4
·

4
√

dx1dx2dx3dx4

dxi
, (55)

and the tangent equation of the indicatrix is

p1p2p3p4 =
(mc

4

)4

, (56)

or in the covariant form

o
g

ijkm

pipjpkpm =
(mc

4

)4

, (57)

For the special basis used above, we have

(
o
g

ijkm)
=

(
o
gijkm

)
. (58)

Action as a function of coordinates in the H4 space suffices the equation

o
g

ijkm ∂S̃

∂xi

∂S̃

∂xj

∂S̃

∂xk

∂S̃

∂xm
=

(mc

4

)4

, (59)

or
∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
=

(mc

4

)4

. (60)

Substitute into (60) some World function, S̃(x), that suffices the only condition

∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
> 0 , (61)
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and get
∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
= κ(x)4 ·

(mc

4

)4

, (62)

This means that the function, S̃(x), is a World function in the geometry which
is conformly connected to the Berwald-Moor geometry (53), which is a geometry
with the length element

ds = κ(x) ·mc
4
√

dx1dx2dx3dx4 , (63)

The extension-contraction coefficient is given by

κ(x) =
4

mc

4

√
∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
. (64)

In this geometry the field of velocities defining the congruence of the world lines is

ẋi =
∂S̃
∂x1

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x4

∂S̃
∂xi

· λ(x)3 , (65)

where λ(x) > 0 is a scalar function.

Hypothesis IH4 : Components of the vector field that produces the world lines
corresponding to the given World function, are the components of the analytical
function of the variable H4.

In the special basis in question an arbitrary analytical function of the variable
H4 has the form

F (X) = f 1(x1)e1 + f 2(x2)e2 + f 3(x3)e3 + f 4(x4)e4 , (66)

where f i are the arbitrary functions of a single real variable. That is why the
Hypothesis IH4 leads to the demand

f i(xi−) =
∂S̃
∂x1

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x4

∂S̃
∂xi

· λ(x)3 . (67)

Multipliing the expressions (67) with different indices and performing some trans-
formations, one gets

∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
=

3
√

f 1f 2f 3f 4

λ4
(68)

and
∂S̃

∂xi
=

3
√

f 1f 2f 3f 4

λf i
. (69)

Using the commutativity of the partial derivatives

∂

∂xj

∂S̃

∂xi
=

∂

∂xi

∂S̃

∂xj
(70)
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we get the system of six differential equations for λ(x). Writing down one of them
for i = 1, j = 2, one gets:

3(f 1)2 ∂λ

∂x1
− 3(f 2)2 ∂λ

∂x2
= λ(f 1 − f 2) . (71)

If λ = const, then f i = f j = const, which means that S̃ is a following linear
function of coordinates:

S̃ = a
(
x1 + x2 + x3 + x4

)
+ b , (72)

where a, b are constants.

If λ 6= const and f i 6= 0, then we introduce the following notation for the
indefinite integrals

I i =

xi∫
dxi−

(f i−)2
, J i =

xi∫
dxi−

3f i−
, (73)

and the equation (71) and its analogues give

λ(x1, x2, x3, x4) = exp
(
W (I1 + I2 + I3 + I4) + J1 + J2 + J3 + J4

)
, (74)

where W is an arbitrary function of a single real variable. The World function,
S̃, can be obtained with the help of a line integral of the second kind for an
arbitrary path in the H4 space. This path connects the fixed point with the point
M(x1, x2, x3, x4).

The expressions (69), (73) and (74) mean that the derivatives ∂S̃
∂xi are not the

components of the analytical function of the variables H4 or their linear combina-
tions. The only exception takes place when all these derivarives are equal and equal
to a constant a (72). The same can be stated for the function, S̃, if we exclude
the linear dependence (72). But for every analytical function, F (X), with f i 6= 0,
there is a corresponding World function, S̃, that can be expressed with the help of
the squares of the components of F (X), while the corresponding field of velocities
defining the world lines is an analytical function, F (X), of variables H4.

Hypothesis IIH4 : Components of the vector field that produces the world lines
corresponding to the given World function, are the components of the function
of the variable H4 symmetrically conjugate to the analytical function of the same
variable.

According to (52), (54), (58) the symmetrical conjugation (40) in the H4 space
coincide with the normal conjugation [9], and in the mentioned special basis the
expression (40) becomes

yi =
x1x2x3x4

xi
. (75)
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Taking into acount this formula and the expression (65) as a consequence of the
Hypothesis II, one gets

f 1f 2f 3f 4

f i
=

∂S̃
∂x1

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x4

∂S̃
∂xi

· λ(x)3 , (76)

or

f i(xi−) =
∂S̃

∂xi
· λ(x) . (77)

If λ = const, then

S̃ =
1

4

(
f̃ 1(x1−) + f̃ 2(x2−) + f̃ 3(x3−) + f̃ 4(x4−)

)
, (78)

where f̃ i(xi−) is a function of a single real variable xi− . Within the accuracy of a
number factor, these functions are the primitives of the components f i(xi−) of the
initial analytical functions F (X). The properties of the polynumbers H4 provide
the formal coincidence of the scalar function, S̃, (78), with the component of the
analytical function

F̃ (X) = f̃ i(xi−)ei (79)

for the unity element in the basis 1, j, k, jk; j2 = k2 = (jk)2 = 1:

1 = e1 + e2 + e3 + e4 , j = e1 + e2 − e3 − e4 ,

k = e1 − e2 + e3 − e4 , jk = e1 − e2 − e3 + e4 .

}
(80)

Let λ 6= const, then the expression (77) gives the system of six equations to
define function λ(x):

f i ∂λ

∂xj
= f j ∂λ

∂xi
(81)

The general solution of this system is

λ(x) = Λ
(
f̃ 1(x1−) + f̃ 2(x2−) + f̃ 3(x3−) + f̃ 4(x4−)

)
, (82)

where Λ is a function of a single real variable, and f̃ i(xi−) are the primitives of the
components f i(xi−) of the initial analytical function F (X).

The World function S̃ can be obtained with the help of a line integral of the
second kind for an arbitrary path in the H4 space. This path connects the fixed
point with the point M(x1, x2, x3, x4).

In general case, the derivatives ∂S̃
∂xi are not the components of the analytical

function of the variable H4 or their linear combinations. The same can be stated
for function S̃. But for every analytical function F (X) there is a corresponding
World function, S̃, that can be expressed with the help of the squares of the com-
ponents of F (X), while the corresponding field of velocities defining the world lines
is symmetrically conjugate to the analytical function F (X) of variables H4.
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Let us suggest that we know the World function in the space (63) which is
conformly connected to the Berwald-Moor space. Let us regard tensor

gij(x) =
1

κ(x)2 · µ2 · (mc)2

o
g

ijkm ∂S̃

∂xk

∂S̃

∂xm
, (83)

in which µ = 1/4 according to (57). Let det(gij(x)) 6= 0, then in the same coordi-
nate space, x1, x2, x3, x4, one can define the pseudo Riemannian geometry with the
length element

ds′ = κ(x) · µ ·mc
√

gijdxidxj (84)

and the tangent equation for the indicatrix

gijp′ip
′
j = κ(x)2 · µ2 · (mc)2 . (85)

The Hamilton-Jacoby equation for the action, S ′, is

gij ∂S ′

∂xi

∂S ′

∂xj
= κ(x)2 · µ2 · (mc)2 , (86)

and the field of velocities defining the congruence of the world lines has the form

ẋi = gij ∂S ′

∂xj
λ′(x) , (87)

where λ′(x) is a scalar function. Substituting the expression for gij (83) into the
last two formulas, one can see that the solution of the equation (86) is the World
function S ′ = S̃, and the congruences of the world lines in the spaces (63) and (84)
coincide.

Let us regard tensor

Gij(x) =
o
g

ijkm ∂S̃

∂xk

∂S̃

∂xm
, (88)

which coincides with tensor gij (83) within the accuracy of a number factor. In the
matrix form

(
Gij(x)

)
=

1

12




0 ∂S̃
∂x3

∂S̃
∂x4

∂S̃
∂x2

∂S̃
∂x4

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x3

∂S̃
∂x4 0 ∂S̃

∂x1
∂S̃
∂x4

∂S̃
∂x1

∂S̃
∂x3

∂S̃
∂x2

∂S̃
∂x4

∂S̃
∂x1

∂S̃
∂x4 0 ∂S̃

∂x1
∂S̃
∂x2

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x1

∂S̃
∂x3

∂S̃
∂x1

∂S̃
∂x2 0




. (89)

Since

det
(
Gij

)
= − 3

124

(
∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4

)2

6= 0 , (90)

due to the inequality (61), one can construct tensor Gij, and, thus, construct tensor
gij.
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The basis, e1, e2, e3, e4, used in this Section is not the physical basis commonly
used. So, let us pass to the basis (80), though not for the general case but for the
simplest World function

S̃ =
1

4

(
x1 + x2 + x3 + x4

)
+ const , (91)

which in the basis (80) has the form

S̃ = x0 + const , (92)

where x0 is the coordinate of the unity element in the basis (80). In this case
matrix (Gij) takes the form

(
Gij(x)

)
=

1

12 · 42




0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0




. (93)

To obtain matrix (Gij) of tensor Gij in the new basis (80), that is matrix
(
Gi′j′

)
,

one should multiply the matrix (Gij) (with regard to the fact that the transition
matrix is symmetrical) from the left and from the right by the matrix reverse to
the transition matrix. The result is

(
Gi′j′(x)

)
=

1

44




1 0 0 0

0 −1
3

0 0

0 0 −1
3

0

0 0 0 −1
3




. (94)

Thus, the World function (91) in space H4 corresponds to the pseudo Euclidean
geometry with the signature (1,−1,−1,−1).

Conclusion

All the above said means that the relation between the World function, S̃,
defined in a polynumber space Pn, and the analytical functions of the variable Pn

can be postulated in various forms.
The most strong limitations on the form of the World function, S̃, are given by

Hypothesis I: Components of the vector field that produces the world lines corre-
sponding to the given World function, are the components of the analytical function
of the variable Pn.

Less strong though strong enough limitations on the form of the World function,
S̃, are given by Hypothesis II: Components of the vector field that produces the
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world lines corresponding to the given World function, are the components of the
function of the variable Pn symetrically conjugate to the analytical function of the
same variable.

It seems that Hypothesis II is more closely linked to Physics.
Although the approach used to describe the World with the help of a World

function demands some operation of the ”index rising” for the covariant tensors
(and this operation can be always realized for a fixed geometry), the all-sufficient
pair {World function; congruence of the world lines} can correspond to qualitatively
different geometries.

In this paper it is shown that Finsler space H4 with the Berwald-Moor metric
corresponds to the Minkowski space.

Finally, regarding the physical World as the congruence of the world lines in the
four dimensional space-time, we conclude that the geometry is not a fixed notion.
One can pass from one geometry to another depending on the problems of interest,
and with this not only the congruence of the world lines, i.e. World itself, will be
conserved, but the World function also.

Thus Minkowskian space and polynumber space H4 correspond to the same
physical World.
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A way to construct the metric tensor of a 4-dimensional pseudo-Riemannian space
(Space-Time) is suggested, emerging from the 4-contravariant tensor of the tangent indi-
catrix equation of the Berwald-Moor space and the World function. The Berwald-Moor
space appears to be closely related to the Minkowski space. The break of the analyticity
of the World function leads to the non-trivial curving of the 4-dimensional Space-Time
and, particularly, to the Newtonian potential in the nonrelativistic limit. So, one re-
marks that the algebra of commutative and associative hypercomplex numbers, denoted
by H4, and the corresponding Finsler geometry can be used as a mathematical model
of the real Space-Time. This model is conjectured to be more productive than the
pseudo-Riemannian constructions prevailing in Physics now.

MSC: 53B40, 30G35, 83D05.

1 Introduction

The fascinating beauty of the theory of the functions of complex variable reveals
itself, for example, in the harmony of the algebraic fractals on the Euclidian plane.
It makes many researches look for the analogous number systems, the elements of
which could be correlated not to the points on the plane but to the points of the
4-dimensional space-time. In case of the success of such a search, we could really
trust the famous Pythagoras saying ’all the existing is number’. On this way, the
interesting results were obtained for quaternions [1], biquaternions [2-4], octaves [5]
and so forth. Nevertheless, none of these number system theories can be compared
even to the theory of the relatively simple 2-component complex numbers. The
main reason for this seems to be the lack of the commutativity (and sometimes
even of the associativity) of the multiplication in these algebras. Although the
authors of this paper realize the conceptual bases of all the variety of algebras,
the commutativity of the multiplication is the integral property of all the principal
number systems that contain natural, integer, rational, real and complex numbers.
Finally, the commutativity and the associativity of the multiplication are among
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the axioms of arithmetic which presents the foundation of mathematics, and it
would be strange if the algebraic system which is the most natural for our real
world does not correspond to the rules of regular counting.

One of the systems free from this drawback is the algebra of the commutative
and associative hyper complex numbers, related to the direct sum of the four real
algebras, which will be denoted as H4. The algebra of these numbers is isomorphic
to the algebra of the 4-dimensional square real diagonal matrices, and the corre-
sponding space is a linear Finsler space with the Berwald-Moor metric (the last
fact was proved by the authors in [6]). It should be mentioned that Finsler space
with the Berwald-Moor metric has been known and partially investigated for a long
time [7–8].

One of the main properties of this space is the existence of such a range of
the parameters that the 3-dimensional distances (from the point of view of the
observer who uses the radar method to measure them [9]) correspond to the pos-
itively defined metric function the limit of which is the quadratic form [10]. In
other words, the 3-dimensional world observed by an ”H4 inhabitant” is Euclidian
within certain accuracy. Moreover, when one passes to the relativistic velocities,
the 4-dimensional intervals between the H4 events present the Minkowski space
correlations [11]. All this makes possible to suggest that the H4 space and the
corresponding Finsler geometry can be used as a mathematical model of the real
space-time, and maybe this model would be even more productive than the pseudo
Riemannian constructions prevailing in Physics now.

Any hypercomplex algebra is completely defined by the multiplication rule for
the elements of a certain fixed basis. In the H4 number system there is a special –
isotropic – basis e1, e2, e3, e4, such that

eiej = pk
ijek pk

ij =

{
1 , if i = j = k ,

0 , else .
(1)

Any analytical function in this basis can be given as

F (X) = f 1(ξ1)e1 + f 2(ξ2)e2 + f 3(ξ3)e3 + f 4(ξ4)e4 , (2)

where
H4 3 X = ξ1e1 + ξ2e2 + ξ3e3 + ξ4e4 , (3)

and f i are four arbitrary smooth functions of a single real variable.
In H4 there is one more – orthogonal – selected basis 1, j, k, jk, which is related

to the isotropic basis by the following formulas

1 = e1 + e2 + e3 + e4 ,

j = e1 + e2 − e3 − e4 ,

k = e1 − e2 + e3 − e4 ,

jk = e1 − e2 − e3 + e4 ,





(4)
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where 1 is the unity of algebra, and the corresponding component of the analytical
function of the H4 variable is defined by the formula

u =
1

4

[
f 1(ξ1) + f 2(ξ2) + f 3(ξ3) + f 4(ξ4)

]
. (5)

If X is a radius vector, then the coordinate space ξ1, ξ2, ξ3, ξ4 is a Berwald-
Moor space with the length element

ds = 4
√

dξ1dξ2dξ3dξ4 ≡ 4

√
gijkldξidξjdξkdξl , (6)

where

gijkl =





1
4!

, (i 6= j 6= k 6= l),

0 , (else).

(7)

For this geometry the tangent indicatrix equation is

gijklpipjpkpl − 1 = 0 , (8)

where

gijkl =





44

4!
, (i 6= j 6= k 6= l),

0 , (else),

(9)

pi =
gijkldξjdξkdξl

(gmrstdξmdξrdξsdξt)3/4
(10)

are the components of the generalized momentum or generalized momenta.
If we have tensors pk

ij, gijkl, gijkl and vector fields of the analytical func-
tions F(A)(X) of the H4 variables, we could construct the metric tensors in the
4-dimensional space-time in many ways. For example,

gij(ξ) = gijklf
k
(1)f

l
(2) , (11)

Now one can investigate the obtained Riemannian geometry. The main drawback
of this approach is the variety of the ways to construct it.

It is known [12] that if the tangent indicatrix equation is defined as

Φ(p; ξ) = 0 , (12)

then the geodesics will be the solutions of the canonical system of differential
equations

ξ̇i =
∂Φ

∂pi

· λ(p; ξ) , ṗi = −∂Φ

∂ξi
· λ(p; ξ) , (13)

λ(p; ξ) 6= 0 is an arbitrary smooth function, and a dot above ξi and pi means the
derivation by the evolution parameter, τ .
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2 Construction of the metric function
of the pseudo-Riemannian space

Let us regard a space which is conformally connected to the H4 space, that is
to the space with the length element

ds′ = κ(ξ) · 4

√
gijkldξidξjdξkdξl , (14)

where κ(ξ) > 0 is a scalar function which is a contraction-extension coefficient
depending on the point.

Let there be a normal congruence of geodesics (world lines). Then there is a
scalar function S(ξ) (see, e.g. [12]) such that its level hyper surfaces are transversal
to this normal congruence of the world lines and this function is a solution of the
equation

gijkl ∂S

∂ξi

∂S

∂ξj

∂S

∂ξk

∂S

∂ξl
= κ(ξ)4 , (15)

while the generalized momenta along this congruence of the world lines are related
to S(ξ) by

pi =
∂S

∂ξi
, (16)

The equations for the world lines obtain the form

ξ̇i = gijkl ∂S

∂ξj

∂S

∂ξk

∂S

∂ξl
· λ(ξ) , (17)

were λ(ξ) 6= 0.
In Physics the function S(ξ) is called ”action as a function of coordinates” and

(15) is known as the Hamilton-Jacoby equation. In [10] the function S(ξ) was
called the World function.

If there is a congruence of the world lines, then the evolution of every point
in space is known, particularly, the velocity field is known, but the energy char-
acteristics of the material objects (observers) corresponding to a given world line
are not known. The knowledge of the World function S(ξ) makes it possible to
calculate the generalized momenta pi, corresponding to the energy characteristics,
and the invariant energy characteristic, κ(ξ), which has also the meaning of the
local contraction-extension coefficient of the plane H4 space.

So, if our world view is the classical mechanics, then any pair out of the three:
World function, congruence of the world lines, Finsler geometry – gives us the
complete knowledge of the World.

Let us construct a twice contravariant tensor gij(?) in the following way:

gij(ξ) =
1

κ(ξ)4
· gijkl ∂S

∂ξk

∂S

∂ξl
. (18)
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Since

det(gij(ξ)) = − 44

33κ(ξ)8
6= 0 , (19)

then everywhere where the geometry (14) is defined, one can construct a tensor
gij(ξ) such that

gik(ξ)gkj(ξ) = δi
j , (20)

gij(ξ) = 4 ·




−2
(

∂S
∂ξ1

)2
∂S
∂ξ1

∂S
∂ξ2

∂S
∂ξ1

∂S
∂ξ3

∂S
∂ξ1

∂S
∂ξ4

∂S
∂ξ1

∂S
∂ξ2 −2

(
∂S
∂ξ2

)2
∂S
∂ξ2

∂S
∂ξ3

∂S
∂ξ2

∂S
∂ξ4

∂S
∂ξ1

∂S
∂ξ3

∂S
∂ξ2

∂S
∂ξ3 −2

(
∂S
∂ξ3

)2
∂S
∂ξ3

∂S
∂ξ4

∂S
∂ξ1

∂S
∂ξ4

∂S
∂ξ2

∂S
∂ξ4

∂S
∂ξ3

∂S
∂ξ4 −2

(
∂S
∂ξ4

)2




. (21)

No doubt that in the same coordinate space ξ1, ξ2, ξ3, ξ4 such tensor gij(ξ)
defines a Riemannian or pseudo Riemannian geometry with the length element

ds′′ =
√

gij(ξ)dξidξj . (22)

The construction of tensor gij(ξ) leads directly to the conclusion: the change
of geometry (14) to the geometry (22) does not lead to the change of the initial
congruence of the world lines and corresponding World function S(ξ).

Therefore, in our concept one and the same World, i.e. the pair {World func-
tion; congruence of the world lines}, corresponds to a whole class of related but
qualitatively different Finsler geometries.

3 Analyticity condition and the Minkowski space

Let the World function S(ξ) be the (unity) component of an analytical function
of the H4 variable in the orthogonal basis (4), that is

S(ξ) =
1

4

[
f 1(ξ1) + f 2(ξ2) + f 3(ξ3) + f 4(ξ4)

]
. (23)

Then

gijkl ∂S

∂ξi

∂S

∂ξj

∂S

∂ξk

∂S

∂ξl
=

∂f 1(ξ1)

∂ξ1

∂f 2(ξ2)

∂ξ2

∂f 3(ξ3)

∂ξ3

∂f 4(ξ4)

∂ξ4
= κ(ξ)4 > 0 , (24)

and this leads to the limitation on the functions, fi:

∂f 1(ξ1)

∂ξ1

∂f 2(ξ2)

∂ξ2

∂f 3(ξ3)

∂ξ3

∂f 4(ξ4)

∂ξ4
> 0 . (25)
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It follows from (24) that the space with the length element (14) can be obtained
from the space with the length element (6) with the help of the conformal trans-
formation, which means that the condition of the analyticity of the World function
can be treated in a sense as the condition of the conformal symmetry.

Let us construct tensor gij(ξ) following the algorithm developed in the previous
section. It turns out that in a region where functions f i have no singularities there
will always be such a coordinate system x0, x1, x2, x3 in which the length element
ds′′ has a form

ds′′ =
√

(x0)2 − (x1)2 − (x3)2 − (x3)2 . (26)

Let us express the coordinates x0, x1, x2, x3 in terms of the initial coordinates
ξ1, ξ2, ξ3, ξ4:

x0 =
1
4

(
f1(ξ1) + f2(ξ2) + f3(ξ3) + f4(ξ4)

)
,

x1 =
√

3
4

(
f1(ξ1) + f2(ξ2)− f3(ξ3)− f4(ξ4)

)
,

x2 =
√

3
4

(
f1(ξ1)− f2(ξ2) + f3(ξ3)− f4(ξ4)

)
,

x3 =
√

3
4

(
f1(ξ1)− f2(ξ2)− f3(ξ3) + f4(ξ4)

)
.





(27)

Therefore, to obtain the non-trivial curving of the space-time one should use
the World functions with the broken conformal symmetry.

4 Newtonian potential

Let us show that there are World functions that lead to the non-trivial pseudo
Riemannian 4-dimensional spaces. Let us regard a function

S(ξ) =
1

4

(
ξ1 + ξ2 + ξ3 + ξ4

)
+ α · ψ(%) , (28)

where α is the parameter characterizing the break of the analyticity of the World
function (the break of the conformal symmetry in the H4 space), ψ is an arbitrary
function of a single argument

% =
√

(y1)2 + (y2)2 + (y3)2 , (29)

and y0, y1, y2, y3 are the coordinates in the orthogonal basis 1, j, k, jk:

y0 =
1
4
(ξ1 + ξ2 + ξ3 + ξ4) ,

y1 =
1
4
(ξ1 + ξ2 − ξ3 − ξ4) ,

y2 =
1
4
(ξ1 − ξ2 + ξ3 − ξ4) ,

y3 =
1
4
(ξ1 − ξ2 − ξ3 + ξ4) .





(30)
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Then the derivatives of the World functions over the coordinates ξi can be expressed
in the following way:

∂S

∂ξ1
=

1
4

[
1 +

α

%

dψ

d%

(
y1 + y2 + y3

)]
,

∂S

∂ξ2
=

1
4

[
1 +

α

%

dψ

d%

(
y1 − y2 − y3

)]
,

∂S

∂ξ3
=

1
4

[
1 +

α

%

dψ

d%

(−y1 + y2 − y3
)]

,

∂S

∂ξ4
=

1
4

[
1 +

α

%

dψ

d%

(−y1 − y2 + y3
)]

.





(31)

Let us calculate the components of the metric tensor in coordinates
y0, y1, y2, y3 using the invariance of the square of the length element

gij(ξ)dξidξj = g̃ij(y)dyidyj (32)

Grouping the terms, one gets

g̃00 = 1− 3α2

(
dψ

d%

)2

, g̃ββ− = −3

{
1 + α2

(
dψ

d%

)2 [
1− 4(yα)2

3ρ2

]}
, (33)

2 ˜g0β = −4

[
α

dψ

d%

yβ

%
+ 3α2

(
dψ

d%

)2

· y1y2y3

yβ%2

]
, (34)

2g̃βγ = −4

[
3α

dψ

d%

yδ

%
+ α2

(
dψ

d%

)2

· yβyγ

%2

]
, (35)

where β, γ, δ, = 1, 2, 3; β ≡ β− but no summation is performed here; in the last
formula all the indices β, γ, δ are different.

If α = 0, then
(g̃ij) = diag(1,−3,−3,−3) . (36)

This means that the real physical coordinates x0, x1, x2, x3 of the space-time are
expressed by the coordinates y0, y1, y2, y3 in the following way

x0 = y0 , xβ =
√

3 · yβ . (37)

Let us pass to the physical coordinates x0, x1, x2, x3:

g̃ij(y)dyidyj = ḡij(x)dxidxj , (38)

where

ḡ00 = g̃00 , ḡ0β =
1√
3
· g̃0β , ḡβγ =

1

3
· g̃βγ . (39)
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Let us denote
r =

√
(x1)2 + (x2)2 + (x3)2 ≡

√
3 · % , (40)

Then

ḡ00 = 1− 9α2

(
dψ

dr

)2

, ḡββ− = −
{

1 + 3α2

(
dψ

dr

)2 [
1− 4(xα)2

3r2

]}
, (41)

2 ¯g0β = −4

[
α

dψ

dr

xβ

r
+ 3

√
3α2

(
dψ

dr

)2

· x1x2x3

xβr2

]
, (42)

2ḡβγ = −4

[√
3α

dψ

dr

xδ

r
+ α2

(
dψ

dr

)2

· xβxγ

r2

]
. (43)

The metric tensor ḡij(x) = ḡij(x
1, x2, x3) depends only on the space coordinates

x1, x2, x3, and this corresponds to the stationary gravitational field, stationary
Universe. The probe particle of mass m moves along the geodesic of the pseudo
Riemannian space with metric tensor ḡij(x

1, x2, x3).
Let a particle move in a fixed frame and have velocity much less than the light

velocity, c:
dxβ

dt
= vβ , |vβ| ¿ c , (44)

The gravitational fields are weak, that is the condition |vβ| << 1 remains valid
for all the time of the particle motion. Let us obtain the Lagrange function, L,
to describe such non-relativistic motion of the probe particle in the weak gravity
field. To do this, develop the right hand side of the expression

L = −mc ·
√

ḡij(x1, x2, x3)dxidxj

dt
(45)

Within the accuracy of
(

v
c

)2

L = −mc2√ḡ00 ·
√

1 +
1

ḡ00

(
2ḡ0β

vβ

c
+ ḡβγ

vβvγ

c2

)
, (46)

L ' −mc2√ḡ00 ·
{

1 +
1

2ḡ00

(
2ḡ0β

vβ

c
+ ḡβγ

vβvγ

c2

)
− 1

8ḡ2
00

(
2ḡ0β

vβ

c

)2
}

. (47)

Opening the brackets in the right hand side, we get an additive term which is the
full time derivative of a certain function f(r), it depends linearly on the velocity
components and, thus, it can be omitted. Leaving the same designation for the
Lagrange function, we get

L ' −mc2√ḡ00 ·
{

1 +
1

2ḡ00

· ḡβγ
vβvγ

c2
− 1

8ḡ2
00

(
2ḡ0β

vβ

c

)2
}

. (48)
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Our goal is the Lagrange function of the form

L =
m~v2

2
− U(~x) , (49)

where U(~x) is the potential energy of the probe particle, ~x ≡ (x1, x2, x3), ~v ≡
(v1, v2, v3), r2 = ~x 2, ~v 2 = (v1)2 + (v2)2 + (v3)2 ≡ v2. To reach it we have to
make some assumptions about the correlation between the parameter, α and light
velocity:

α =
ν

c
, when c →∞ α → 0 . (50)

Besides, let α be of the same order (or smaller) with the relation
∣∣∣v
c

∣∣∣. Then leaving

only the terms that don’t disappear at c →∞ in the (48), one gets

L ' −mc2 + mc2 9

2

ν2

c2

(
dψ

dr

)2

+ m · v1v1 + v2v2 + v3v3

2
. (51)

Since (−mc2) is a full time derivative of function (−mc2 · t), we omit it and get

L ' m~v2

2
+

9mν2

2

(
dψ

dr

)2

. (52)

Let a mass M be motionless in the frame origin, and then the potential energy
of the probe particle with mass m located at x1, x2, x3 is equal to

U(r) = −γ
mM

r
, (53)

where γ is the gravitational constant. Comparing (49) and (52), we get the equation
for ψ(r):

9mν2

2

(
dψ

dr

)2

= γ
mM

r
⇒ dψ

dr
= ±

√
2γM

3ν

1

r1/2
. (54)

Therefore,

ψ(r) = ±2
√

2γM

3ν
· r1/2 + ψ0 (ψ0 = const). (55)

Finally, the World function is equal to

S = x0 ± 2
√

2γM

3c
· r1/2 + C0 (C0 = const), (56)

When it performs a conformal transformation of the length element of the plane
Berwald-Moor space, it induces a pseudo Riemannian geometry in the Minkowski
space. For a non-relativistic probe particle of mass m, this geometry gives the
motion equations for the Kepler problem for the point mass M located in the
origin of the space frame.
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The more complicated World function, maybe also leading to the stationary
Universe, has the form

S(ξ) =
1

4

(
ξ1 + ξ2 + ξ3 + ξ4

)
[1 + α1 · ψ1(%)] + α2 · ψ2(%) , (57)

where αA are the parameters of the analyticity break of the World function (pa-
rameters of the conformal symmetry break in the H4 space), ψA are the arbitrary
functions of single argument % (29), (30).

Conclusion

The results obtained in this paper point at the deep correlation between the
Einstein geometries and Finsler spaces with Berwald-Moor metric. We managed
to find the concrete Finsler space with the Berwald-Moor metric which in the limit
appeared to be related to the curved pseudo Riemannian space with the Newtonian
gravitational potential. This fact points at the principal possibility to built more
interesting constructions, particularly, such Finsler spaces whose limit cases would
be the known relativistic solutions.
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The paper introduces the approach to construction of the Lagrangian of the field
(fields). This approach is based solely on the metric function of the Finsler space: the
Lagrangian is constructed as the unit divided by the volume swept by the unit vector
running through all the points of the indicatrix in the tangent space under the assumption
of the tangent space being Euclidean. For the space, which is conformally connected to
the Minkowski space, under the assumption of the exponential time dependence and
spherically symmetrical coordinates dependence the cosmological equation is written,
which yields Hubble law for distances from the origin which are much less than the size
of the universe. The cosmological equation is written for the field describing the universe
with the geometry conformally connected to the geometry of polynumbers H(4) with the
Berwald-Moore metrics.

MSC: 83D05, 53C40, 70S05.

1 Introduction

Both in classical theory [1] and in the theory of quantized fields [2] the most
‘convenient’ method of field equations construction deals with such concepts as
Lagrangian, action and the principle of the least action (Hamilton’s principle).
According to this approach, the relation is defined unambiguously [3] between
continuous transformations (with respect to which the action is invariant) and
physical laws of conservation, that can be verified empirically.

If x0, x1, x2, x3 are coordinates, f(x) ≡ f(x0, x1, x2, x3) is a scalar field in
Minkowski space, and L , given by

L ≡ L

(
f(x);

∂f

∂x0
,

∂f

∂x1
,

∂f

∂x2
,

∂f

∂x3

)
, (1)

is the Lagrangian, then the integral of the Lagrangian over certain 4-dimensional
volume V in space-time,

I[f ] =

4∫

V

L dx0dx1dx2dx3 (2)

is said to be ‘action’. Under the assumption, that variations of the field func-
tion δf are equal to zero on the boundary of integration domain, and taking into
consideration the requirement of stationarity of action,

δI[f ] = 0 , (3)
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applying the well-known method, we get Euler-Lagrange equation, the field equa-
tion:

∂

∂xi

∂L

∂
(

∂f
∂xi

) − ∂L

∂f
= 0 . (4)

Usually Lagrangian is selected with the purpose to obtain finally the given field
equations, or constructed with the purpose to ensure the desired symmetry and to
meet certain auxiliary requirements: e.g. when selecting the Lagrangian we may try
to obtain the linear partial differential equations of second order. Construction of
the essentially new Lagrangians describing non-linear physical processes reperesents
is, in certain sense, a kind of ‘art’.

The functional (2) may be interpreted from a purely geometrical standpoint: i.e.
not as the integral (of the Lagrangian L as the integrand) in the Minkowski space,
but as the volume in the space (more complex space) with the volume element
given by:

dV = L dx0dx1dx2dx3 . (5)

Consider the Finsler space x1, x2, ..., xn [4] with the metric function

L(dx; x) ≡ L(dx1, dx2, ..., dxn; x1, x2, ..., xn) . (6)

In this space, let the length element ds be defined by

ds = L(dx1, dx2, ..., dxn; x1, x2, ..., xn) . (7)

The metric properties of Finsler space may be more evidently described in terms
of the concept of indicatrix. In every point M(x1, x2, ..., xn) of the main space the
indicatrix is defined in the corresponding tangent centroaffine space ξ1, ξ2, ..., ξn as
a hyperspace made up from the ‘endpoints’ of unit radius-vectors ξ(1). Points of
this hypersurface satisfy the equality:

L(ξ1, ξ2, ..., ξn; x1, x2, ..., xn) = 1 . (8)

If the system of indicatrices is defined in every point of the main space, or (what
is the same) the sets of unit vectors are defined, the Finsler geometry is defined
completely. To calculate the length of the vector (dx1, dx2, ..., dxn), one has to find
a unit vector ξ(1) co-directional with the vector dx, then the scalar coefficient ds in
the relation

dxi = ds · ξi
(1) (9)

will be the length of the vector dx. From the last relation it follows that, the length
element

ds =
|dx|eu
|ξ(1)|eu , (10)

where |dx|eu, |ξ(1)|eu are lengths of vectors (dx1, dx2, ..., dxn) and (ξ1, ξ2, ..., ξn) re-
spectively, calculated as if the spaces dx1, dx2, ..., dxn and ξ1, ξ2, ..., ξn were Euclid-
ean, and coordinate systems employed were Cartesian.
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If under these assumptions, this is possible to calculate the volume of the
indicatrix, i.e. the n-dimensional volume, swept by the unit vector ξ(1) in the
tangent space ξ1, ξ2, ..., ξn, running through all the points of the indicatrix, then in
the Finsler space it is possible (similar to (10)) to define the volume element dV
by

dV = const · dx1dx2...dxn

(Vind)eu

, (11)

where (Vind)eu is the volume of the indicatrix, calculated under the assumption,
that the tangent space is Euclidean and the coordinates are Cartesian. This is
quite evident, that volume element, defined in this way is invariant with respect to
coordinate transformations.

Consider n-dimensional Riemannian space. In this case the metric function is
given by

L(dx; x) =
√

gijdxidxj , (12)

and the equation of the indicatrix is given by

gijξ
iξj = 1 . (13)

This equation defines the hypersurface of order 2, namely the ellipsoid. If the space
ξ1, ξ2, ..., ξn is Euclidean, then the volume of this ellipsoid is equal to

(Vind)eu =
const′√
det(gij)

. (14)

Substituting the last relation into (11), we obtain the formula for the volume ele-
ment in an arbitrary Riemannian space:

dV = const ·
√

det(gij) dx1dx2...dxn , (15)

This relation is a conventional definition of invariant volume element in the Rie-
mannian space.

For pseudo-Riemannian spaces, when there are no additional constraints on the
indicatrix, we get

(Vind)eu = ∞ ⇒ dV = 0 · dx1dx2...dxn . (16)

But this is possible to provide the line of reasoning which allows one to propose
for pseudo-Riemannian space the definition of the invariant volume element in the
form, similar to(15). The same reasoning should be provided to obtain the invariant
volume element in Finsler spaces, where the problem (16) takes place. As a start,
we should consider some flat space, close to the space, where the volume element
should be defined.
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We will provide this reasoning for a particular example: for pseudo-Riemannian
space with the signature (+,−,−,−). In this case we will start with Minkowski
space x0, x1, x2, x3, with the metric function of the form

L(dx) =
√

(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 ≡
√

o
gij dxidxj , (17)

and with the tangential equation of the indicatrix in the form

(ξ0)2 − (ξ1)2 − (ξ2)2 − (ξ3)2 = 1. (18)

This equation is of the second order and it defines the hypersurface, which is
a hyperboloid of two sheets; thus, the problem of calculating the volume of the
indicatrix does take place. As both the metric function and indicatrix equation are
the same for all the point in the space, then regardless of how the corresponding
integral is regularized, we will obtain a real number, the same for all the points in
the space . Let us denote this number by (Vind)eu. In order to obtain the invariant
volume element in Minkowski space using (11), the quantity (Vind)eu should be
written in the form

(Vind)eu =
const′√
−det

(
o
gij

) . (19)

Now we change the coordinates x0, x1, x2, x3 to curvilinear coordinates

x0′ , x1′ , x2′ , x3′ . As a result,
o
gij will be substituted by g(x′)i′j′ , and the volume

element in Minkowski space in the curvilinear coordinates x0′ , x1′ , x2′ , x3′ will be
given by

dV = const ·
√
−det (g(x′)i′j′) dx0′dx1′dx2′dx3′ , (20)

but this is still the same Minkowski space.
Consider the pseudo-Riemannian space which is conformally connected [4] with

Minkowski space

ds = κ(x) ·
√

o
gij dxidxj , (21)

where κ(x) > 0. This space cannot be converted to the Minkowski space by any
coordinate transform. The indicatrix equation for this pseudo-Riemannian space
may be written in the form:

(ξ0)2 − (ξ1)2 − (ξ2)2 − (ξ3)2 =
1

κ2(x)
. (22)

Comparing (22) with the equation (18), one can notice, that the hypersurface,
given by (22), can be obtained from the hypersurface given by (18), via scaling
coordinate transform with the coefficient 1

κ(x)
. Thus, if we assign volume (19) to

the indicatrix (18), then to the indicatrix (22) we should assign the volume by

(Vind)eu =
const′

κ4(x)

√
−det

(
o
gij

) =
const′√−det (g(x)ij)

, (23)
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where
g(x)ij ≡ κ2(x)

o
gij . (24)

From the reasoning provided above, it follows that in the pseudo-Riemannian
space with the metric tensor g(x)ij and the signature (+,−,−,−) this is possible
to define the volume element by

dV = const ·
√
−det (g(x)ij) dx0dx1dx2dx3 , (25)

and this corresponds to the approach conventional for GRT[1] .
The problem (16) in pseudo-Riemannian spaces may be handled more rigor-

ously (however, this is outside the scope of this paper), but we will have to deal
with the spaces that are more general than pseudo-Riemannian spaces. This may
be explained on the example of Minkowski space. If instead of Minkowski space
with the metric function (17) we consider the Finsler space with the metric function

L(dx) =
√

(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 + q0dx0 (26)

and the constraint dx0 ≥ 0, where q0 > 0, then for this space the volume of the
indicatrix (Vind)eu will be a finite real number, depending on the parameter q0, such
that (Vind)eutends to ∞, as the parameter q0 vanishes.

Thus, we will assume that in any Finsler space, where the problem (16) takes
place, this problem is solvable. Then, this is possible to claim that if the metric
function of this space contains certain fields, the geometry of Finsler space yields
automatically the Lagrangian

L =
const

(Vind)eu

, (27)

and from this Lagrangian one can obtain the field equations.

Remark. Henceforth the constants which appear in the relations (11), (14),...,
(27) will be omitted, as these constants are not involved in the the field equations.

2 The spaces, conformally connected to Euclidean spaces

In the space conformally connected to n-dimensional Euclidean space, the
length element is given by

ds = κ(x) ·
√

(x1)2 + (x2)2 + ... + (xn)2 , (28)

where κ(x) > 0. As in this case the following relation holds,

√
det(gij) = κn(x) , (29)

the Lagrangian takes the form
L = κn(x) . (30)
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To construct the field equation with the help of this Lagrangian, it is necessary
to represent the scalar field κ(x) in terms of another field so that the lagrangian will
involve the derivatives of the new field. A method to achieve this goal is proposed
in [5], [6].

The generalized momenta in the space (28) are given by

pi = κ(x)
dxi

√
(x1)2 + (x2)2 + ... + (xn)2

, (31)

and the tangential equation of the indicatrix may be written in the form:

p2
1 + p2

2 + ... + p2
n − κ2(x) = 0 . (32)

Consider scalar function S(x), which in the space x1, x2, ..., xn. Let this function
define the normal congruence of geodesics: in classical mechanics this function is
called the ‘action as a function of coordinates’, and in the paper [5] the function
S(x) is called the World function. This function must satisfy the Hamilton-Jacobi
equation (

∂S

∂x1

)2

+

(
∂S

∂x2

)2

+ ... +

(
∂S

∂xn

)2

= κ2(x) . (33)

Thus,

L =

[(
∂S

∂x1

)2

+

(
∂S

∂x2

)2

+ ... +

(
∂S

∂xn

)2
]n

2

, (34)

and the field equation (4) takes the form:

∂

∂xi





∂S

∂xi

[(
∂S

∂x1

)2

+

(
∂S

∂x2

)2

+ ... +

(
∂S

∂xn

)2
]n

2
−1



 = 0 . (35)

Note, that for n > 2 this equation is a non-linear partial differential equation of
second order.

For the space, conformally connected to the 2-dimensional Euclidean plain
(x, y), the equation (35) may be written in the form

∂2S

∂x2
+

∂2S

∂y2
= 0 , (36)

i.e. the function S(x, y) satisfies the Laplace equation; therefore this function is a
component of the analytical function of complex variable. Thus,

κ(x, y) =

√(
∂S

∂x

)2

+

(
∂S

∂y

)2

(37)
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is the factor of the conformal transformation of the length element in the Euclidean
space

ds′ =
√

(x′2 + (y′2 = κ(x, y)
√

x2 + y2 (38)

for the conformal transformation

x′ = u(x, y) , y′ = ±v(x, y) , (39)

where the function S is one of the components of the analytical function u + iv of
complex variable x + iy.

Now, we will solve the equation (35) under the assumption that function S is
a function of radius only

r =
√

(x1)2 + (x2)2 + ... + (xn)2 . (40)

To find the solution, this will be more convenient, if volume element is represented
as a function of spherical coordinates. Then, after integration on all the angles, we
obtain

dVr = rn−1

∣∣∣∣
dS

dr

∣∣∣∣
n

dr ⇒ Lr = rn−1

∣∣∣∣
dS

dr

∣∣∣∣
n

. (41)

Then the field equation will take the form :

d

dr

[
rn−1

∣∣∣∣
dS

dr

∣∣∣∣
n−1

]
= 0 . (42)

Via integration of the last relation, we get

dS

dr
=

C

r
, S = C ln

r

r0

, (43)

where C 6= 0, r0 > 0 are real. Thus,

κ(x) =

∣∣∣∣
dS

dr

∣∣∣∣ =
|C|
r

. (44)

In this space the geodesics are given by the relations

ẋi =
dS

dxi
· λ(x) , (45)

where λ(x) 6= 0 is a function, ẋi is the parameter derivative of xi along the geodesic
τ . Set λ(x) = r, then the relation (45) yields

ẋi = xi . (46)

Let j > 1, then
dxj

dx1
=

xj

x1
⇒ xj = Cjx1 , (47)

thus, the geodesics in this space are straight lines, going through the origin with
the directing vector (1, C2, C3, ..., Cn).
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3 The spaces, conformally connected to pseudo-Euclidean spaces
with the signature (+,−,−, ...,−)

In the space, which is conformally connected to the n-dimensional pseudo-
Euclidean space with the signature (+,−,−, ...,−) the length element is given by

ds = κ(x) ·
√

(x0)2 − (x1)2 − ...− (xn−1)2 , (48)

where κ(x) > 0. As in this case the following relation holds

√
(−1)n−1det (gij) = κn(x) , (49)

the Lagrangian can be represented in the form

L = κn(x) . (50)

In order to construct the field equation from this Lagrangian, it is required to
express the scalar field κ(x) via another field so that, the Lagrangian will contain
the derivatives of the new field [5], [6].

The generalized momenta in the space (48) are given by:

p0 =
κ(x) dx0

√
(x0)2 − (x1)2 − ...− (xn−1)2

, pµ = − κ(x) dxµ

√
(x0)2 − (x1)2 − ...− (xn−1)2

, (51)

where µ = 1, 2, ..., (n− 1), and tangential equation of the indicatrix may be repre-
sented in the form:

p2
0 − p2

1 − ...− p2
n−1 − κ2(x) = 0 . (52)

The scalar function S(x), which in the space x0, x1, ..., xn−1 defines the normal
congruence of geodesics, must satisfy Hamilton-Jacobi equation

(
∂S

∂x0

)2

−
(

∂S

∂x1

)2

− ...−
(

∂S

∂xn−1

)2

= κ2(x) . (53)

Thus,

L =

[(
∂S

∂x0

)2

−
(

∂S

∂x1

)2

− ...−
(

∂S

∂xn−1

)2
]n

2

, (54)

and the field equation (4) takes the form:

∂

∂x0





∂S

∂x0

[(
∂S

∂x0

)2

−
(

∂S

∂x1

)2

− ...−
(

∂S

∂xn−1

)2
]n

2
−1



−

− ∂

∂xµ





∂S

∂xµ

[(
∂S

∂x0

)1

−
(

∂S

∂x2

)2

− ...−
(

∂S

∂xn−1

)2
]n

2
−1



 = 0 .

(55)
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Interestingly, that for n > 2 this equation is a non-linear partial differential equa-
tions of second order and this equation is satisfied if the function S satisfies the
eikonal equation

(
∂S

∂x0

)1

−
(

∂S

∂x2

)2

− ...−
(

∂S

∂xn−1

)2

= 0 .

For the field equation (55) to be the wave equation, the function S must simulta-
neously satisfy one more condition:

(
∂S

∂x0

)1

−
(

∂S

∂x2

)2

− ...−
(

∂S

∂xn−1

)2

= const .

For the space conformally connected with the 2-dimensional pseudo-Euclidean
plain (x, y), the relation (55) takes the form

∂2S

∂x2
− ∂2S

∂y2
= 0 , (56)

that is for the two-dimensional case the field equation (55) is a wave equation.

Now we will solve the equation (55) under the assumption that the function S
depends only on the interval

s =
√

(x0)2 − (x1)2 − ...− (xn−1)2 . (57)

For this we will consider the volume element, choosing as one of the variables the
interval s. In the process of integration on hyperbolic angles certain difficulties
may take place, which are similar to (16) and which can be resolved in the similar
way, thus

dVs = sn−1

∣∣∣∣
dS

ds

∣∣∣∣
n

ds ⇒ Ls = sn−1

∣∣∣∣
dS

ds

∣∣∣∣
n

, (58)

and the field equation takes the form:

d

ds

[
sn−1

∣∣∣∣
dS

ds

∣∣∣∣
n−1

]
= 0 . (59)

Integrating the last equality, we obtain

dS

ds
=

C

s
, S = C ln

s

s0

, (60)

where C 6= 0, s0 > 0 are real. Thus,

κ(x) =

∣∣∣∣
dS

ds

∣∣∣∣ =
|C|
s

. (61)
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The geodesics in this space are given by

ẋ0 =
dS

dx0
· λ(x) , ẋµ = − dS

dxµ
· λ(x) , (62)

where λ(x) 6= 0 is a function , ẋi is a derivative of xi with respect to the evolution

parameter τ , µ = 1, 2, ..., n− 1. Set λ(x) =
s2

|C| , then from (62) it follows that

ẋi = xi , (63)

or
dxµ

dx0
=

xµ

x0
⇒ xµ = Cµx0 , (64)

that is the geodesics (extremals) in this space are straight lines, ‘going’ through
the origin with the directing vector (1, C2, C3, ..., Cn). The interval will also change
linearly with respect to the coordinate x0,

s =
√

1− (C1)2 − ...− (Cn−1)2 · x0 , x0 > 0. (65)

As we will further use the space, which is conformally connected to the
Minkowski space, for construction of the cosmological equation, we will provide
certain formulae of this section for n = 4, using the metric tensor of Minkowski

space
o
gij:

Relation between the function S(x) and the factor κ(x):

o
g

ij ∂S

∂xi

∂S

∂xj
= κ2(x) , (66)

Lagrangian:

L =

(
o
g

ij ∂S

∂xi

∂S

∂xj

)2

, (67)

Field equation:
o
g

kl ∂

∂xk

[
∂S

∂xl

(
o
g

ij ∂S

∂xi

∂S

∂xj

)]
= 0 . (68)

4 Model cosmological equation in the space,
conformally connected to the Minkowski space

We will write the equation (68) under the assumption that the function S is of
the form

S(x0, r) = S0e
−γx0

ψ(r) , (69)

where r =
√

(x1)2 + (x2)2 + (x3)2, and γ , S0 are constant. This is much simpler
to obtain the field equation of this form, if in relations for volume element instead
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of spatial coordinates x1, x2, x3 the spherical coordinate system is used. After
integration on spherical angles (omitting the constant), we will obtain the following
relation for the Lagrangian

L = r2

[(
∂S

∂x0

)2

−
(

∂S

∂r

)2
]2

, (70)

and the field equation will take the form:

r2 ∂

∂x0

{
∂S

∂x0

[(
∂S

∂x0

)2

−
(

∂S

∂r

)2
]}

− ∂

∂r

{
r2∂S

∂r

[(
∂S

∂x0

)2

−
(

∂S

∂r

)2
]}

= 0 .

(71)
Substituting into the last relation the function S(x0, r) (69), we obtain

3γ2r2ψ

[
γ2ψ2 −

(
dψ

dr

)2
]
− d

dr

{
r2dψ

dr

[
γ2ψ2 −

(
dψ

dr

)2
]}

= 0 . (72)

Let define the dimensionless variable ξ ≡ γr, then the last equation may be rewrit-
ten in the from:

3ξ2ψ

[
ψ2 −

(
dψ

dξ

)2
]
− d

dξ

{
ξ2dψ

dξ

[
ψ2 −

(
dψ

dξ

)2
]}

= 0 . (73)

As this equation is homogeneous with respect to the unknown functionψ(ξ), we
will suppose the solution to be of the form

ψ(ξ) = ψ0 exp




ξ∫

0

ϕ(ξ)dξ


 , (74)

where ψ0 is a constant. This constant for construction of the function S is multiplied
by the constant S0, thus we will set ψ0 = 1. Substituting (74) into (73), we obtain

d

dξ

[
ξ2ϕ(1− ϕ2)

]− 3ξ2(1− ϕ2)2 = 0 , (75)

or

ξ(1− 3ϕ2)
dϕ

dξ
+ 2ϕ(1− ϕ2)− 3ξ(1− ϕ2)2 = 0 . (76)

There were no success in finding the analytical solution of the last equation.
For the domain ξ ¿ 1 we will find a solution in a form of power series

ϕ ' Aξ + Bξ2 + Cξ3 + O(ξ4) . (77)
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Substituting this expansion into equation (76), after grouping the terms, we will
obtain

ϕ ' ξ − 1

5
ξ3 + O(ξ4) . (78)

The sample bodies (stars) move along the geodesics (extremals) of the space
with the length element

ds = κ(x0, r)
√

(dx0)2 − (dr)2 (79)

and the tangential equation of indicatrix

p2
0 − p2

r = κ2(x0, r) . (80)

For the field S (69), (74) the scaling factor of conformal transformation may be
calculated as

κ(x0, r) =

√(
∂S

∂x0

)2

−
(

∂S

∂r

)2

= γ ·
√

1− ϕ2 · S(x0, r) . (81)

From the last relation, it follows that |ϕ| < 1. The motion equations in this case
will be of the form

ẋ0 =
∂S

∂x0
λ = −γSλ , ṙ = −∂S

∂r
λ = −γSϕ(γr)λ , (82)

where the dot represents the total derivative with respect to certain evolution
parameter τ , and an arbitrary function λ 6= 0. Then

dr

dx0
= ϕ(γr) ⇒ dr

dt
= cϕ(γr) . (83)

As |ϕ| < 1, then ∣∣∣∣
dr

dx0

∣∣∣∣ < 1 and

∣∣∣∣
dr

dt

∣∣∣∣ < c .

Let consider, the behavior of the velocity of the sample body in the domain ξ ¿ 1,
for this we substitute (78) into the obtained relation:

dr

dt
= cγ

(
1− 1

5
γ2r2

)
· r . (84)

If we denote the Hubble’s constant by H0, then according to the obtained relation
the Hubble law holds when γr < 1

10
, and H0 = cγ, and the tendence, how the

‘Hubble constant’ H(r) evolves initially as the distance from the center grows is of
the form:

dr

dt
= H(r) · r , H(r) = H0 ·

[
1− 1

5

(
H0

c

)2

· r2

]
. (85)
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I.e. in the domain ξ ¿ 1 this constant H(r) decreases as the distance from the
origin grows.

To provide any ideas about the size of the universe and the dependence H(r)
for all possible values of the variable r, this is required to analyze the solution ϕ(ξ)
of the equation (76), the solution which (as ξ → 0) takes the form (78). Neither
analytically, nor numerically we didnot succeed in this analysis, as approaching the
value ϕ = 1√

3
the behavior of the solution becomes quite complicated (unstable).

If we suppose the the solution of the equation (76) can be obtained and analyzed,
then general form of the quantity H(r) may be written in the following way:

H(r) = H0 ·
[

ϕ
(

H0

c
r
)

H0

c
r

]
. (86)

If we consider motion trajectories in the space x0, x1, x2, x3 with the World
function S (69), these trajectories will be given by the equations

dxµ

dx0
= ϕ(γr)

xµ

r
,

that is the motion will be along the rays from the origin, and this means that
the sample particle move rectilinearly, but certainly the motion will be still non-
uniform.

As the space with the length element (79) is a pseudo-Riemannian space with
the metric tensor

gij(x
0, r) = κ2(x0, r)· o

gij , (87)

where
o
gij is the metric tensor in the Minkowski space and

κ(x0, r) = γS
√

1− ϕ2 , (88)

then for this space this is possible to calculate the curvature tensor and its con-
tractions, and directly from the Einstein equations one may obtain the matter
energy-momentum tensor Tkm, which is involved in the Einstein equations and
which corresponds to the space with the metric tensor (87). Interestingly, that the
equations for the gravitational field, certainly, for this energy-momentum tensor
will hold automatically, but with the tensor Tkm this is not possible, in general, to
associate the laws of conservation of energy and momentum.

Let us introduce a new quantity, which can be employed quite usefully

a = ln(κ2/const) . (89)

Then, using the well-known classical formulae, we obtain the expressions for the
connectivity object:

Γi
kl =

1

2

(
∂a

∂xl
δi
k +

∂a

∂xk
δi
l−

o
g

is ∂a

∂xs

o
gkl

)
, (90)
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curvature tensor:

Ri
klm =

=
1

2

(
∂2a

∂xl∂xk
δi
m −

∂2a

∂xk∂xm
δi
l−

o
g

is ∂2a

∂xl∂xs

o
gkm +

o
g

is ∂2a

∂xm∂xs

o
gkl

)
+

1

4

(
∂a

∂xm

∂a

∂xk
δi
l −

∂a

∂xl

∂a

∂xk
δi
m−

o
g

ns ∂a

∂xn

∂a

∂xs
δi
l

o
gkm +

+
∂a

∂xl

o
gkm

o
g

is ∂a

∂xs
+

o
g

ns ∂a

∂xn

∂a

∂xs
δi
m

o
gkl − ∂a

∂xm

o
gkl

o
g

is ∂a

∂xs

)
,

(91)

Ricci tensor:

Rkm ≡ Rl
klm =

=
1

2

(
−2

∂2a

∂xk∂xm
− o

g
ns ∂2a

∂xn∂xs

o
gkm +

∂a

∂xk

∂a

∂xm
− o

g
ns ∂a

∂xn

∂a

∂xs

o
gkm

)
,

(92)

scalar curvature of the space:

R ≡ gkmRkm =
1

κ2

o
g

km

Rkm = − 3

κ2

(
2

o
g

km ∂2a

∂xk∂xm
+

o
g

km ∂a

∂xk

∂a

∂xm

)
, (93)

matter energy-momentum tensor:

Tkm =
c4

8πk

(
Rkm − 1

2
κ2

o
gkm R

)
, (94)

where k is the gravitation constant. Hence,

T ≡ gkmTkm =
1

κ2

o
g

km

Tkm = − c4

8πk
R . (95)

But using the ‘independence’ on the Einstain gravitation field equations, we
can calculate the full energy-momentum tensor T̂km. For the Lagrangian of the
field L (67) we obtain

T̂ k
m =

∂S

∂xm

∂L

∂ ∂S
∂xk

− δk
mL = 4

o
g

ks ∂S

∂xs

∂S

∂xm

(
o
g

rs ∂S

∂xr

∂S

∂xs

)
− δk

m

(
o
g

rs ∂S

∂xr

∂S

∂xs

)2

,

(96)
after contraction on 2 used indices, we get

T̂ k
k ≡ 0 . (97)

Finally, one may note that the tensors Tkm and T̂km are essentially different.
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5 The space, conformally connected
to 4-dimensional Berwald-Moore space

The length element in this space (in special isotropic basis) will have the form

ds = κ(ξ1, ξ2, ξ3, ξ4) 4
√

dξ1dξ2dξ3dξ4 . (98)

The generalized momenta will satisfy the relations

pi =
1

4
κ(ξ)

4
√

dξ1dξ2dξ3dξ4

dξi
. (99)

If η1, η2, η3, η4 are coordinates of tangent centroaffine space in the point
M(ξ1, ξ2, ξ3, ξ4) of the main space, then the indicatrix equation will have the form

η1η2η3η4 =
1

κ4(ξ)
, (100)

and the tangential equation of indicatrix will have e.g. the form,

p1p2p3p4 =
κ4(ξ)

44
. (101)

Then the function S, defines normal congruence of geodesics, and satisfies the
following non-linear partial differential equation

∂S

∂ξ1

∂S

∂ξ2

∂S

∂ξ3

∂S

∂ξ4
=

κ4(ξ)

44
. (102)

From the relation (100) we obtain that

(Vind)eu = const · 1

κ4
. (103)

Thus, the Lagrangian of the scalar field S will have the form:

L =
∂S

∂ξ1

∂S

∂ξ2

∂S

∂ξ3

∂S

∂ξ4
. (104)

Correspondingly, the field equation will take the form

∂

∂ξ1

(
∂S

∂ξ2

∂S

∂ξ3

∂S

∂ξ4

)
+

∂

∂ξ2

(
∂S

∂ξ1

∂S

∂ξ3

∂S

∂ξ4

)
+

∂

∂ξ3

(
∂S

∂ξ1

∂S

∂ξ2

∂S

∂ξ4

)
+

∂

∂ξ4

(
∂S

∂ξ1

∂S

∂ξ2

∂S

∂ξ3

)
= 0 .

(105)
Any function S, which depends on not all the coordinates ξ1, ξ2, ξ3, ξ4 satisfies this
equation.

Let the field S depend on only one variable

s = 4
√

ξ1ξ2ξ3ξ4 , (106)
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Substituting S(s) into the field equation (105) and using the formula

∂s

∂ξi
=

1

4

s

ξi
, (107)

we obtain
d

ds

(
s
dS

ds

)
= 0 . (108)

The same equation may be obtained easier, if the volume element

dV = L dξ1dξ2dξ3dξ4 , (109)

is written, as a function of variable s and three angular variables. After integration
of this element over the angles we obtain

dVs = s3

(
dS

ds

)4

ds . (110)

Via integration of the equation (108), we get

S(s) = S0 ln
s

s0

, (111)

where S0, s0 are constants of integration, and also the relation for the factor κ,

κ =
|A|
s

. (112)

This is quite interesting to compare the last two relations with the relations (43),
(44) and (60), (61).

Now we will find the trajectories of the motion of sample particles in the four-
dimensional Berwald-Moore space, if the function S, defining the congruence of
geodesics, has the form (111), i.e. the factor satisfies the relation (112). The
motion equations in this case will have the form

ξ̇i =

∂S

∂ξ1

∂S

∂ξ2

∂S

∂ξ3

∂S

∂ξ4

∂S

∂ξi

λ(ξ) , (113)

where λ(ξ) 6= 0 is a certain scalar function. Taking into consideration the relation
(107) and via appropriate selection of λ(ξ), motion equations may take a more
simple form

ξ̇i = ξi . (114)

Set the variable
x0 = ξ1 + ξ2 + ξ3 + ξ4 , (115)
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which in the four-dimensional Berwald-Moore plays the same role as the coordinate
x0 in the Minkowski space, then

dξi

dx0
=

ξi

x0
⇒ ξi = ξi

0 · x0 , (116)

where ξi
0 are constant. Thus, all the motion trajectories are straight lines, passing

through the origin, and the motion of sample bodies will be uniform and rectilinear,
with respect to the time variable x0.

Conclusion

The proposed new approach of the non-ambiguous construction of the field
Lagrangians basing on the metric function of the Finsler space requires that the
fields which are involved in the Lagrangian without their partial derivatives with
respect to coordinates, are expressed via other fields so that these partial derivatives
over coordinates are involved in the Lagrangian, otherwise, this is not possible
to obtain the field equations as partial differential equations. Thus, the ‘art’ of
Lagrangian construction is replaced with the ‘art’ of representation of physical
fields using other fields.

For n-dimensional Riemannian or pseudo-Riemannian spaces with the metric
tensor gij(x), the Lagrangian is given by

L =
√
|det(gij(x))| .

The metric tensor gij(x) may be represented, for example, in the following form:

gij(x) =
N∑

a=1

ε(a)

∂f(a)

∂xi

∂f(a)

∂xj
,

here ε(a) = ±1 are independent sign multiplicands, f(a)(x) are scalar functions, and
N ≥ n. If N < n, then det (gij(x)) = 0.
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A review of modern study of algebraic, geometric and differential properties of quater-
nionic (Q) numbers with their applications. Traditional and ”tensor” formulation of
Q-units with their possible representations are discussed; groups of Q-units transforma-
tions leaving Q-multiplication rule form-invariant are determined. A series of mathemat-
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Introduction

The discovery of quaternionic (Q) numbers dated by 1843 is usually attributed
to Hamilton [1, 2], but in the previous century Euler and Gauss made a contribution
to mathematics of Q-type objects; moreover Rodriguez offered multiplication rule
for elements of similar algebra [3–5]. Active opposition of Gibbs and Heaviside to
Hamilton’s disciples gave a start to the modern vector algebra, and later to vector
analysis, and quaternions practically ceased to be a tool of mathematical physics,
despite of exclusive nature of their algebra confirmed by Frobenius theorem. At
the beginning of 20 century last bastion of Q-numbers amateurs, ”Association for
the Promotion of the Study of Quaternions”, was ruined. The only reminiscence
of once famous hypercomplex numbers was the set of Pauli matrices. Later on
quaternions appeared incidentally as a mathematical mean for alternative descrip-
tion of already known physical models [6, 7] or due to surprising simplicity and
beauty they were used to solve rigid body cinematic problems [8]. An interest to
quaternionic numbers essentially increased in last two decades when a new genera-
tion of theoreticians started feeling in quaternions deep potential yet undiscovered
(e. g. [9 – 11]).

This work is an attempt to give more systematic overview of contemporary
state of Q-number mathematics, its applications to physical theories and possible
perspectives in this area. In the context some quite specific even surprising physical
models, but worth to pay attention to, are shortly discussed.
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The review arranged as follows. In section 1 general relations of the quater-
nionic algebra are briefly described in the traditional hamiltonian formulation as
well as in tensor-like format. Section 2 is devoted to description of structure of
three ”imaginary” quaternionic units. In section 3 the elements of differential
Q-geometry are given with examples of their mathematical application. Section
4 comprises Q-formulation of Newtonian mechanics in the rotating frames of ref-
erence. Quaternionic Relativity Theory with a number of cinematic relativistic
effects is found in section 5. Section 6 contains the list of ”Great Quaternion
Coincidences” and final discussion.

1. Algebra of quaternions

Traditional approach

According to Hamilton, a quaternion is a mathematical object of the form

Q ≡ a + bi + cj + dk,

where a, b, c, d are real numbers, a is a coefficient at real unit ”1”, and i, j,k –
three imaginary quaternion units. The multiplication rule for these units given by
Hamilton and often used in literature is

1i = i1 ≡ i, 1j = j1 ≡ j, 1k = k1 ≡ k,

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j

These very cumbersome equations mean, that Q-multiplication loses a commuta-
tivity.

Q1Q2 6= Q2Q1,

so that a notion of the right and the left multiplication appears, but it remains
associative.

(Q1Q2)Q3 = Q1(Q2Q3).

Two rather different algebraic parts are separated naturally in a quaternion, these
once could be denoted as scalar and vector:

scal Q = a, vect Q = bi + cj + dk.

Addition (subtraction) of quaternions is performed by components, scalar and vec-
tor parts are added (subtracted) separately. With respect to addition the Q-algebra
is commutative and associative.

Further step is quaternion conjugation introduced similarly to that of the com-
plex numbers

Q̄ ≡ scal Q− vect Q = a− bi− cj− dk,
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modulus of a Q-number is defined as

|Q| ≡
√

QQ̄ =
√

a2 + b2 + c2 + d2.

This permit to formulate a quaternionic division being as multiplication ”right”
and ”left”

QL =
Q1Q̄2

|Q2|2
, QR =

Q̄2Q1

|Q2|2
.

Definition of Q-modulus enhances the famous four squares identity

|Q1Q2|2 = |Q1|2 |Q2|2 .

Due to the properties mentioned above the Q-numbers form the algebra, which
belongs to the elite group of four the so-called exclusive – ”very good” – algebras:
of real, complex, quaternionic numbers and the octonions (Frobenious and Horwits
theorems of 1878–1898 [12]).

Special attention should be paid to Q-units representations. In terms of Hamil-
ton real unit is simply 1 while three imaginary units similarly to complex numbers
algebra are denoted as i, j, k. Later a simple 2×2 matrices representation of these
units was revealed

i = −i

(
0 1

1 0

)
, j = −i

(
0 −i

i 0

)
, k = −i

(
1 0

0 −1

)
.

This representation of course is not unique. Here is a simple example. If in the
above expressions imaginary unit i of complex numbers is represented as 2×2 with
real elements

i =

(
0 1

−1 0

)
,

then three vector Q-units turn out to be represented by real 4 × 4 matrices. The
procedure of the matrix rank duplication can obviously be continued further.

”Tensor” form and representations

If each Q-unit is endowed with its proper number (as components of a tensor)

(i, j,k) → (q1,q2,q3) = q, k, j, k, l, m, n, . . . = 1, 2, 3,

then quaternionic multiplication rule acquires compact form

1qk = qk1 = qk, qjqk = −δjk + εjknqn,

where δkn and εknj – 3-dimension (3D) symbols Kronecker and Levi-Chivita.
It is easy to show that a number of the Q-units representations even only by

2× 2 matrices is infinite. Indeed for any 2× 2 matrices with properties



406 Space-Time Structure. Algebra and Geometry

A =

(
a b

c −a

)
, B =

(
d e

f −d

)
, T rA = TrB = 0,

the first two Q-units can be constructed as follows

q1 =
A√

det A
, q2 =

B√
det B

,

while the third one is

q3 ≡ q1q2 =
AB√

det A det B
provided that Tr(AB) = 0.

The scalar unit 1 =

(
1 0

0 1

)
is always invariant.

Transformations of Q-units and invariancy of the multiplication rule

a. Spinor-type transformations

If U is an operator changing at once all the units, and there is an inverse
operator U−1 : UU−1 = E, then transformations

qk′ ≡ UqkU
−1 and 1′ ≡ U1U−1 = E1 = 1

retain the multiplication rule

1qk = qk1 = qk, qjqk = −δjk + εjknqn

form-invariant

qk′qn′ = UqkU
−1UqnU = UδknU

−1 + εknjUqjU
−1 = δkn + εknjqj′ .

Such operator can be represented for example by 2× 2 matrix

U =

(
a b

c d

)
, det U = 1,

or unimodular quaternion,

U =
a + d

2
+

√
1−

(
a + d

2

)2

q,

where

q ≡



√
1−

(
a + d

2

)2


−1 (

a−d
2

b

c −a−d
2

)
.
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In general this transformation contains 3 independent complex parameter (or 6
real ones), then U ∈ SL(2, C). In special case of only three real parameters, then
U ∈ SU(2).

b. Vector type transformations
Vector Q-units can be transformed by 3× 3 matrix Ok′n

qk′ = Ok′nqn.

The requirement of Q-multiplication form-invariance forces the transformation ma-
trix to be orthogonal and unimodular

Ok′nOj′n = δkn ⇒ O−1
nk′ = Ok′n, det O = 1.

This transformation in general has 6 independent real parameters, then
O ∈ SO(3, C). In the special case of three parameters O ∈ SO(3, R). Below
a variant of representation of the transformation matrix O is given with x, y, z
being arbitrary real or complex functions

O =




√
1− x2 − z2 −x

√
1−y2−z2+yz

√
1−x2−z2

1−z2

xy−z
√

1−x2−z2
√

1−y2−z2

1−z2

x
√

1−x2−z2
√

1−y2−z2−xyz

1−z2

−y
√

1−x2−z2−xz
√

1−y2−z2

1−z2

z y
√

1− y2 − z2




.

This matrix can be represented as a product of three irreducible multipliers

O =




√
1−x2−z2

1−z2 − x√
1−z2

0

x√
1−z2

√
1−x2−z2

1−z2 0

0 0 1







√
1− z2 0 −z

0 1 0

z 0
√

1− z2







1 0 0

0
√

1−y2−z2

1−z2 − y√
1−z2

0 y√
1−z2

√
1−y2−z2

1−z2




.

after substitutions z ≡ sin B, x ≡ − sin A cos B, y ≡ − sin Γ cos B, where A,B, Γ –
are complex ”angles”, it takes the form

O =




cosA sin A 0

− sinA cos A 0

0 0 1







cosB 0 − sin B

0 1 0

sinB 0 cosB







1 0 0

0 cos Γ sin Γ

0 − sin Γ cosΓ


 = OA

3 OB
2 OΓ

1 .

If the angles are real: A = α, B = β, Γ = γ, then this transformation is an ordinary
vector rotation consisting of three simple rotations around numbered orthogonal
axes: O ⇒ R, R = Rα

3 Rβ
2Rγ

1 . Correlation between related ”spinor” and ”vector”
transformations is easily determined:

Ok′n = −1

2
Tr(UqkU

−1qn), U =
1−Ok′nqkqn

2
√

1 + Omm′
.
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Q-geometry in three dimensional space

Hamilton was the first to note that triad of Q-units behaves as three strictly tied
unit vectors (with length i) initiating Cartesian coordinate system, somewhat exotic
because of its ”imaginarity”. Due to the fact the Q-triad in 3D-space (q1,q2,q3)
will be called ’quaternionic basis’ (Q-basis). Now Q-units transformations have
apparent geometrical sense of various rotations of the Q-basis. An example: a
simple rotation by real angle α around axis # 3

q′ = Rα
3q.

Notion of Q-basis helps to introduce 3D quaternionic vectors (Q-vectors), defined
as

a = akqk,

here all its components ak are real. The most important property of Q-vector – is
its invariancy with respect to vector transformations from the group SO(3,R)

a′ = ak′qk′ = ak′Rk′jqj = ajqj = a.

The projection of Q-vector onto arbitrary coordinate axis (represented by any dif-
ferent Q-unit) can be found in two ways. First, if at least one set of projections of
Q-vector and rotation matrices Rnk′ are known then projections of this vector on
rotated axis are immediately found

ak′ = anRnk′ .

The second approach is related to existence of internal structure of the Q-units; a
brief analysis of it is given in the next section.

2. Structure of quaternionic ”imaginary” units

Eigenfunctions of Q-units [13]

Each vector Q-unit can be thought of as operator, so eigenfunctions and eigen-
values problem can be formulated for it

qψ = λψ, ϕq = µϕ.

The solution of this problem are the eigenvalues (”imaginary length” of Q-unit
with division by parity)

λ = µ = ±i,

and two sets of eigenfunctions(one for each parity), possible given by columns ψ±

and rows ϕ±, being the functions of components q.
Here is an example explicit form of eigenfunction: for the Q-unit represented

by matrix

q = − i

T

(
a b

c −a

)
,
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where T ≡ a2 + bc 6= 0, b 6= 0, c 6= 0, its eigenfunctions are defined as

ϕ± = x
(

1 ± b
T±a

)
, ψ± = y

(
1

∓ c
T±a

)
,

where x, y are arbitrary complex factors.
The freedom of components, arising in the calculations is reduced by convenient

normalization condition
ϕ±ψ± = 1,

while the eigenfunctions orthogonality (by parity) is an inherited property

ϕ∓ψ± = 0.

One can construct tensor products of eigenfunctions and obtain 2× 2 matrices

C± ≡ ψ±ϕ±,

possessing a properties reciprocal with respect to the ones of vector q:

det C = 0, T r C = 1,

whereas
detq = 1, T r q = 0.

Matrix C is idempotent
Cn = C,

and can be expressed throw their own unit Q-vector

C± =
1± iq

2
.

When inversed this expression gives information about Q-unit internal structure

q = ±i(2C± − 1) = ±i(2ψ±ϕ± − 1),

which turns out to consist of a combination of its eigenfunctions and scalar units.
Since each Q-unit has its own eigenfunctions the Q-triad as a whole possesses

unique set of eigenfunctions {ϕ±(k), ψ
±
(k)}. There is an interesting algebraic obser-

vation concerning this set. Three Q-units are interrelated by obviously nonlinear
combination – multiplication e. g.

q3 = q1q2,

but it is easy to show that corresponding eigenfunctions depend on each other
linearly:

ϕ±(3) =
√∓iϕ±(1) ±

√
iϕ±(2), ψ±(3) =

√±iψ±(1) ±
√−iψ±(2).
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Q-eigenfunctions help to represent a spinor-type transformation of Q-units retain-
ing Q-multiplication invariant in the familiar form

ψ±(k′) = Uψ±(k), ϕ±(k′) = ϕ±(k)U
−1,

so that the eigenfunctions can be regarded as a set of specific spinor functions, al-
lowing in subject in general to SL(2C) transformations. Yet another mathematical
observation should be noted: from pairs of eigenfunctions, belonging to different
Q-units of one triad and having one parity, one can construct 24 scalar invariants
SL(2C) group; these invariants are real or complex numbers, e. g.:

σ+
12 ≡ ϕ+

(1)ψ
+
(2) =

√
− i

2
=

1− i

2
.

Quaternionic eigenfunctions as projectors

Eigenfunctions act on their own Q-basis as following

ϕ±(1)q1ψ
±
(1) = ±i, ϕ±(1)q2ψ

±
(1) = 0, ϕ±(1)q3ψ

±
(1) = 0,

or in general

ϕ±(k)qnψ
±
(k) = ±iδkn (no summation by k).

It looks like that eigenfunctions select a projection of the unit Q-vector, gen-
erating them. This idea is confirmed by an example of an action of eigenfunctions
of one Q-basis onto the vectors of the rotated Q-basis

ϕ±(k)qn′ψ
±
(k) = ϕ±(k)Rn′mqmψ±(k) = ±iRn′k = ±i cos ∠(qn′ ,qk) (no summation by k),

the result of the action is ’nearly’ projection of Q-basis q′ on q. It is convenient to
denote precise projection as

〈qn′〉k ≡ ∓iϕ±(k)qn′ψ
±
(k) = cos ∠(qn′ ,qk) (no summation by k).

It is now easy to formulate rule of calculation of projection of a Q-vector a
onto arbitrary direction, defined by vector qj (e. g. with help of eigenfunctions of
positive parity)

〈a〉+j ≡ −iak′ϕ
+
(j)qk′ψ

+
(j) = ak′Rk′j = aj (no summation by j).

Thus quaternionic eigenfunctions with their own interesting properties are more
fundamental mathematical objects then Q-units and too can serve as useful tool
for practical purposes such as computing projections of Q-vectors.
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4. Differential Q-geometry

Quaternionic connection

If vectors of Q-basis are smooth functions of parameters qk(Φξ) (index ξ enu-
merates parameters), then

dqk(Φ) = ωξ kjqjdΦξ,

where an object ωξ kj is called quaternionic connection. Q-connection is antisym-
metric in vector indices

ωξ kj + ωξ jk = 0,

and has the following number of independent components

N = Gp(p− 1)/2,

where G is an number of parameters and p = 3 – is a number of space dimensions.
If G = 6 [a case of group SO(3, C)], then N = 18; if G = 3 [a case of group
SO(3,R)], then N = 9. Q-connection can be calculated at least in three ways:

using vectors of Q-basis ωξ kn =

〈
∂qk

∂Φξ

〉+

n

,

using matrices U from the group SL(2C) (general case) and special representation
of constant Q-units qk̃ = −iσk, where σk – Pauli matrices

ωξ kn =

〈
U−1 ∂U

∂Φξ

qk̃ − qk̃U
∂U−1

∂Φξ

〉+

n

,

and, finally, using matrices O from SO(3, C) (in a general case)

ωξ kn =
∂Okj̃

∂Φξ

Onj̃.

All the formulae of course provide same result.
From the point of view of vector transformations a Q-connection is not a tensor.

If qk = Okp′qp′ , then transformed components of connection are expressed throw
original ones with addition of inhomogeneous term

ωξ kj = Okp′Ojn′ωξ p′n′ + Ojp′
∂Okp′

∂Φξ

.

In 3D space Q-connectivity has clear geometrical and physical treatment as move-
able Q-basis with behavior of Cartan 3-frame. Parameters of its ordinary rotations
can depend on spatial coordinates Φξ = Φξ(xk), then ∂nqk = Ωnkjqj, then compo-
nents of slightly modified Q-connection

Ωnkj ≡ ωξ kj∂nΦξ
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have a sense of Ricci rotation coefficients. Parameters can also depend on the length
of line of motion of the Q-basis or on the observer’s time. Then Φξ = Φξ(t), ∂tqk =
Ωkjqj, and components of Q-connection

Ωkj ≡ ωξ kj∂tΦξ

became generalized angular velocities of rotations of the frame.

The typical examples of Q-frames and Q-connection are

a) Frene frame. For the smooth curve xk̃(s) defined in constant basis the Frene
frame is represented by the triad qk, obeying the equations

d

ds
q1 = RI(s)q2,

d

ds
q2 = −RI(s)q1 + RII(s)q3,

d

ds
q3 = −RII(s)q2,

where the first and the second curvatures are

RI = Ω12, RII = Ω23.

b) Twisted straight line. For a given straight line x1̃ = u, x2̃ = x3̃ = 0, one can
construct a Q-basis associated with it so that one vector is tangent to the line. In
this case Q-connection is not zero and represented the only component describing
torsion (or rather twist) of the line about itself.

q1 = −i

(
1 0

0 −1

)
, q2 = −i

(
0 −ie−iγ(u)

ieiγ(u) 0

)
, Ω23 =

dγ

du
,

γ(u) is the angle, which is an arbitrary but smooth function of the line length.

Quaternionic spaces

Tangent Q-space [15]. It is known that on every N-dimensional differentiable
manifold UN with coordinates {yA} one can construct a tangent space TN with

coordinates {X(A)} so that dX(A) = g
(A)
B dyB, where g

(A)
B – Lame coefficients. By

an extra rotation one can construct a tangent Q-space T (U,q), with coordinates
{xk}, k = 1, 2, 3, which associated with Q-frame vectors.

dxk = hk(A)dX(A) = hk(A)g
(A)
B dyB,

where hk(A) are in general non-square matrices normalized by projectors of the
basic space onto 3D one or vice versa.

Proper quaternionic space itself U3 is defined as 3D-space, locally identical to
own tangent space T (U3,q). The Q-space has the following basic features. Its
Q-metric represented by vector part of the Q-multiplication rule qjqk = −δjk +
εjknqn is nonsymmetric, its antisymmetric part is Q-operator (matrix), so that
every point U3 has internal quaternionic structure. Q-connection U3 can be: (i)
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proper (metric) Ωnkj ≡ ωξkj∂nΦξ, for variable Q-basis it is always non zero, and
(ii) affine (non-metric), independent from Q-basis. Q-torsion does not vanish in
both cases, whereas Q-curvature rknab = ∂aΩbkn− ∂bΩakn + ΩajnΩbjk−ΩbjkΩajn for
the metric Q-connection identically equals zero, but can be present in the space of
affine Q-connection.

Once Q-space is introduced, there appears a new field of investigation of dif-
ferential manifolds and spaces. Thus in the preliminary classification of Q-spaces
based on presence and nature of curvature, torsion and non-metricity at least 10
different families can be distinguish [15]. In addition Q-spaces can be a nontrivial
background for classical and quantum theories and problems.

4. Newton mechanics in Q-basis

Dynamics equations in rotating frame [16]

The Q-basis endowed with clock becomes a classical (non-relativistic) reference
system. For an inertial observer the dynamic equations of classical mechanics can
be written in constant Q-basis

m
d2

dt2
xk̃qk̃ = Fk̃qk̃.

SO(3, R)-invariance of two Q-vectors, the radius-vector r ≡ xkqk and force
F ≡ Fkqk allow to represent these equations in Q-vector form

m
d2

dt2
(xkqk) = Fkqk, or mr̈ = F

In explicit form these equations possess enough complicated structure

m(
d2

dt2
xn + 2

d

dt
xkΩkn + xk

d

dt
Ωkn + xkΩkjΩjn) = Fn

which nevertheless can be simplified and interpreted from physical points of view.
Due to antisymmetry of the connection (generalized angular velocity)

Ωj ≡ Ωkn
1

2
εknj, Ωkn = Ωjεknj,

the dynamic equations can be rewritten in vector components

m(an + 2vkΩjεknj + xk
d

dt
Ωjεknj + xkΩjΩmεjkpεmpn) = Fn

or by conventional vector notation

m(~a + 2~Ω× ~v +~̇Ω× ~r + ~Ω× (~Ω× ~r)) = ~F .
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Among left hand side terms one easily recognizes 4 classical accelerations: linear,
Coriolis, angular and centripetal. However this traditional interpretation is good
only for simple rotation; in the case of combination of many Q-frame rotations
number of components of generalized accelerations highly increases, and the equa-
tions become much more complicated. However it is worth noting that derivation
of these equations for the most complicated rotations with the help of Q-basis and
Q-connection is extremely simple.

Samples of Q-formulation of problems of classical mechanics

’Chasing’ Q-basis – is a frame with one of its vectors, say q1 is always directed
to observed particle. Dynamic equations for this case are written in explicit form
in following manner

r̈ − r(Ω2
2 + Ω2

3) = F1/m,

2ṙΩ3 + rΩ̇3 + rΩ2Ω1 = F2/m,

2ṙΩ2 + rΩ̇2 + rΩ1Ω3 = −F3/m.

Components of Q-connection are defined as functions of angles of two rotations,
the first (an angle α) – around vector q3, the second (an angle β) – around q2

Ω1 = α̇ sin β, Ω2 = −β̇, Ω3 = α̇ cos β.

The chasing Q-basis approach is convenient to solve a number of mechanical prob-
lems related to rotations, some times very complicated, of observed objects and
systems of reference. Here is an illustration.

Rotating oscillator. One seeks for motion law r(t) of a harmonic oscillator
(mass m, spring elasticity k) which has a freedom of motion along rigid smooth rod
rotating in the plane around one of its ends (here one end of the spring is fixed)
with angular velocity ω; the equilibrium point is located at the distance l from the
rotation center, there is no gravity. Radial and tangent dynamic equations in the
chasing Q-basis (F is unknown rod reaction force)

r̈ − rω2 = − k

m
(r − l), 2ṙω =

1

m
F,

admit the following family of solutions:

(i) r(t) = r0 + v0t + at2

mass moves away from the center of rotation with quadratic (or linear) law,

(ii) r(t) = const + Aeiwt + Be−iwt, w ≡
√

k/m− ω2

here are three different situations depending on a relation of the quantities under
the square root:
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– r = const,
– harmonic oscillators,
– exponential motion away from the center of rotation.
It is interesting that the variants of rotating classical oscillator behavior with l =

0 are precisely similar to behavior of four known cosmological models of Einstein-
DeSitter-Friedman considered in the General Relativity.

5. Construction of Quaternionic Relativity

Hyperbolic rotations and biquaternions [17]

We noted above, that SO(3, C)-transformations of Q-units admit pure imagi-
nary parameters. In this case rotations become hyperbolical (H – from hyperbolic);

e.g. simple H-rotation q′ = Hψ
3 q is performed by matrix of the form

Hψ
3 =




coshψ −i sinψ 0

i sinψ coshψ 0

0 0 1


 ,

and 2× 2-matrices of Q-units representation are no longer hermitian:

q1′ = −i

(
0 eψ

e−ψ 0

)
.

This is the time to recall the notion of so called biquaternionic vectors (BQ).
BQ-vector is defined as Q-vector with complex components u = (ak + ibk)qk.
Obviously for vectors of this type the norm (or modulus) in general can not be
defined; but among all BQ-vectors there is a subset of ”good” elements with well
definable norm by u2 = b2 − a2. These vectors appear to be form-invariant with
respect to transformations of subgroup SO(2, 1) ⊂ SO(3, C), and in particular,
with respect to simple H-rotations q′ = Hqu = ukqk = uk′qk′ , but only when
reciprocally imaginary components akbk = 0 are orthogonal to each other.

Quaternionic Relativity

The made above observation allows to suggest a space-time BQ-vector ”inter-
val”

dz = (dxk + idtk)qk,

with specific properties:

(i) Temporal interval is defined by imaginary vector,
(ii) space-time of the model appears to have six-dimensional (6D),
(iii) vector of the displacement of the particle and vector of corresponding time

change must always be normal to each other dxkdtk = 0.
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In this case BQ-vector-interval is invariant under group SO(2, 1) ⊂ SO(3, C),
as well as of course its square (which differs from the square of norm only by sign)
dz2 = dt2 − dr2, the latter has precisely the same form as a space-time interval of
Special Relativity of Einstein. This 6D-model was initially named the Quaternionic
Relativity. Temporal and spatial variables symmetrically enter the expression of
BQ-vector-interval, and the Q-triad related to it describes relativistic system of
reference Σ ≡ (q1,q2,q3). Transition from one reference system to another is
performed with the help of ’rotational equations’ of the type Σ′ = OΣ with ma-
trix O from the group SO(2, 1) is a product of matrices of real and hyperbolic
rotations. So the theory could also be named (may be more correctly) ’Rotational
Relativity’. The meaning of a simple H-rotation is immediately revealed from first
line of equation Σ′ = Hψ

3 Σ in the explicit form

iq1′ = i cosh ψ(q1 + tanh ψq2).

If like in Special Relativity cosh ψ = dt/dt′, then

idt′q1′ = idt(q1 + V q2),

which describes motion of reference system Σ′ relative to Σ with velocity V along
direction q2. It is easy to show that SO(2, 1)-rotations of Q-reference system
enhance Lorenz coordinate transformations and therefore all cinematic effects of
Special Relativity.

It should be noted here that parameters of real and hyperbolic rotations can
be variable for instance dependent on observer’s time. This hints to expect of
the discussed theory a possibility to describe non-inertial motions. Analysis of
the rotational equations confirms the expectation. Well-known relativistic model
of reference system constantly accelerated with respect to the inertial one (hyper-
bolic motion), frequently found in literature and normally regarded with use of
assumption beyond frames of Special Relativity, in quaternionic theory is solved
naturally and fast not only from the inertial observer viewpoint, but from position
of accelerated frame too [18].

The kinematic problem of other non-inertial motion – relativistic circular mo-
tion – can be completely and precisely resolved by means of the rotation equation
Σ′ = H

ψ(t)
2 R

α(t)
1 Σ, where Σ′ is reference system rotating along the circle around the

immobile frame Σ. This problem also can be solved both from the point of view of
inertial observer, in this case the result has the form

t =

∫
dt′ cosh ψ(t′), α(t) =

1

R

∫
dt′ tanh ψ(t′),

atan(t) =
1

cosh2 ψ

dψ

dt
, anorm(t) = R

(
dα(t)

dt

)2

,

and from the point of view of the observer in the reference system arbitrary moving
along circular orbit.
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The solution of the problem of ”classical” Thomas precession in the framework
of Special Relativity also needs additional assumptions, while in the quaternionic
theory has a single line form – the first row of the matrix of rotation equation
Σ′′ = R

−α(t)
1 Hψ

2 R
α(t)
1 Σ, in this case of course correct value of precession frequency

is obtained

ωT = (1− cosh ψ) ≈ −1

2
ωV 2.

Moreover, the quaternionic theory of relativity appears to be able to describe
Thomas precession for the vectors moving along trajectories of general type. The
basic rotational equation in this case naturally generalized: Σ′′ = R−θ(t)Hψ(t)Rθ(t)Σ,
here θ(t) – an angle of instant rotation. Requirement that an axis of hyperbolic
rotation be normal to the plane formed by the radius-vector of observed frame and
its velocity vector, is also significant. In this case formula of variable frequency of
general Thomas precession has the form

ΩT =
d

dt
(θ − θ′).

An example of such Thomas precession is an apparent displacement of mercurial
perihelion, for which calculations give a value ∆ε = 2, 7′′/100 years.

Universal character of motion of the bodies (including non-inertial motions) in
the Quaternionic Relativity suggests seeking for new cinematic relativistic effects.
One is found in Solar System planets’ satellites motion. Relative velocity of the
Earth and other planets changes with time and sometimes achieves significant
value comparable somehow to value of the fundamental velocity. This can lead to
discrepancy between calculated and observed from the Earth cinematic magnitudes
characterizing cyclic processes on this planet or near it. In particular there must
be a deviation of the planetary satellite position. Such an angular difference is
surprisingly found to be linearly dependent upon the time of observation

∆ϕ ≈ ωVEVP

c2
t,

here ω is an angular velocity of satellite motion around the planet, V – are linear
velocities of the Earth and the planet around the sun. The magnitude of the effect
is the following for the closest to the Jupiter and ”the fasters” Jupiter satellite
∆ϕ ∼= 12′ for 100 terrestrial years; for the Mars satellite (Phobos) ∆ϕ ∼= 20′ for
100 terrestrial years [19]. Both values are big enough for the effect to be noticed
in prolonged and precise observations.

One can say that space-time model and kinematics of the Quaternionic Rel-
ativity are nowadays studied in enough details and can be used as an effective
mathematical tool for calculation of many relativistic effects. But respective rel-
ativistic dynamic has not been yet formulated, there are no quaternionic field
theory; Q-gravitation, electromagnetism, weak and strong interactions are still
remote projects. However, there is a hope that it is only beginning of a long way,
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and the theory will ”mature”. This hope is supported by observation of number
of remarkable ”Quaternionic Coincidences” forming a discrete mosaic of physical
and mathematical facts; probably one day it will turn into a logically consistent
picture providing new instruments and extending our insight of physical laws.

6. Remarkable ”quaternionic coincidences”

There are, at least, five such coincidences (all of them given below), noted by
different authors in various time.

1. The Maxwell equations as an conditions of the analyticity of functions of
quaternionic variable.

In 1937 year Fueter [20] noted, that Cauchy-Riemann ∂f/∂z∗ = 0 equations
defining the differentiability of complex variable function and modeling physically
a flat motion of liquid without sources and whirls, have the following quaternionic
analogue (

i
∂

∂t
− qk̃

∂

∂xk̃

)
H = 0, H = (Bñ + iEñ)qñ.

Surprising fact is that the equations of classic Maxwell electrodynamics in vacuum
prove to be corresponding physical model

div ~E = 0, div ~B = 0, rot ~E − ∂ ~B

dt
= 0, rot ~B +

∂ ~E

dt
= 0.

2. Classical mechanics in the rotating reference systems.

The compact form of Newton equations in quaternion frame is described above
in section 4. Finally it should be stressed that the form of dynamics equations
naturally arising and externally primitive

mr̈ = F

hides all possible combinations of rotations of reference systems or observed bodies.
Using differential quaternionic objects helps to easily obtain explicit form of the
equations whose elements have obvious physical meaning.

3. The quaternionic theory of relativity.

1:1 isomorphism of the Lorenz group of Special Relativity and the group of
invariance of quaternionic multiplication SO(3, C) leads to non-standard theory of
relativity with symmetric six-dimensional space-time. This theory significantly dif-
fers from Einstein Special Relativity in origin, model, possibilities and mathemat-
ical tools, but predicts absolutely similar cinematic effects. Invariance of specific
biquaternionic vector ”interval” dz = (dxkn + i dtk)qk under subgroup SO(2, 1)
with in general variable parameters admits calculation of relativistic effects for
non-inertial motion of reference systems.
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4. Pauli equations [21].

Consider the quantum particle with electric charge e, mass m, and generalized
momentum

Pk ≡ −i~
∂

∂xk

− e

c
Ak

in the simplest quaternionic space (all the parameters are constant, connection,
non-metricity, torsion and curvature equal to zero). Hamiltonian of such particle
in Q-metrics

H ≡ − 1

2m
PkPmqkqm

is the exact copy of Hamilton function of Pauli equation

H =
1

2m

(
~p− e

c
~A
)2

− e~
2mc

~B · ~σ,

and the spin term ”automatically” acquires a coefficient equal to Bohr magneton.

5. Yang-Mills field strength.

If one constructs a ”potential” vector in an arbitrary quaternionic space from
Q-connection components Ωamn (indices a, b, c enumerate coordinates of basic Q-
space, indices j, k, m, n enumerate vectors of tangent triad)

Aka ≡ 1

2
εkmnΩamn,

and similarly construct a ”field strength” vector

Fkab ≡ 1

2
εkmnrmnab,

from quaternionic curvature components

rknab = ∂aΩbkn − ∂bΩakn + ΩajnΩbjk − ΩbjkΩajn

then these two geometrical objects are interconnected in the similar manner as the
field strength and potential of the Yang-Mills field

Fkab ≡ ∂bAka − ∂aAkb + εkmnAmaAnb.

(formula) It should be stressed that for the Q-spaces with metric (not affine) con-
nection curvature (field strength) identically vanish.
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Discussion

Quaternionic numbers of course are first of all mathematical objects, so the
problem of development of their algebra, analysis and geometry is self-consistent.
But history of modern science states that once the geometry, in particular differ-
ential geometry, is discussed the presence of physics is unavoidable. There is a
known point of view that Einstein who suggested General Relativity was a pioneer
in geometrization of physics. But it is also known that quite earlier Maxwell for-
mulated his electrodynamics in terms of quaternions convenient for description of
’etheric tensions’ which were thought to represent field strength vectors. But since
that the geometrical language has not been utilized for many decades.

The aspects of quaternionic mathematics given in this review once again draw
attention to ’genetic relations’ between physics and geometry: from description of
frames rotations to quaternionic field structure phenomena in Pauli equations and
Yang-Mills theory.

Wide variety of possibilities provided by Q-approach and derived within it non-
traditional physical models, like six-dimensional space-time or mentioned above
coincidences may lead to opinion that quaternions are still a mathematical play,
something like ’lego’ elements, from which one can build many exotic constructions.

As a comment there are the following two observations.

1. Producing non-standard physical models Q-method nonetheless allows to
successfully solve physical problems thus being a useful tool for practical purposes.
A typical example: inherited exponential character of representation of simple
rotations helps to simply formulate summation of different rotations, including, of
course, imaginary rotations, describing relativistic boosts. Recall that in classical
mechanics summation of ordinary rotations is quite a task.

2. All physical quaternionic theories are not heuristically invented, but appear
naturally from fundamental mathematical lows, as though confirming Pythagorean
idea on ”world – number” dependence. Indeed, Q-algebra, the last associative
algebra, describes well physical quantities, all of them up to our knowledge being
associative with respect to multiplication: from observable kinematic and dynamic
one, to tensors and spinors incorporated in the theories. All this gives a hope that
further efforts in the research ”quaternions – physical laws” relations will once
grow into wide scientific programme. Yet another small, but persevering step in this
direction has been recently made, when the author of this review succeeded to found
an exact solution for relativistic oscillator problem in the framework Quaternionic
Relativity. Details of the solution will be published elsewhere.
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Introduction. The algebrodynamical field theory

Theoretical physics has arrived to the crucial point at which it should fully
reexamine the sense and the interrelations of the three fundamental entities: fields,
particles and space-time geometry. String theory offers a way to derive the low-
energy phenomenology from the unique physics at Plankian scale. However, it
doesn’t claim to find the origin of physical laws, the Code of Universe and is in
fact nothing but one more attempt to describe Nature (in a possibly the most
effective way) but not at all to understand it.

Twistor program of R. Penrose [1, 2] suggests an alternative to string theory
in the framework of which one can hope, in principle, to explain the origin of
basic physical entities. For this, one only assumes the existence of the primary
twistor space CP 3 which underlies the physical space-time and predetermines its
Minkowsky geometry and, to some extent, the set of physical fields.

The most interesting manifestation of twistor structure is its ability to reduce
the resolution of free massless (conformally invariant) equations (both linear and
nonlinear ones, specifically of the Yang-Mills type) either to explicit integration
in twistor space (the so called Penrose transform) or to resolution of purely alge-
braic problems (the Kerr theorem, the Ward construction etc. [2]). Making use of
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the Kerr theorem and of the Penrose’s “nonlinear graviton construction”, one can
also obtain, in a purely algebraic way, the whole set of the self-dual solutions to
(complex) Einstein equations.

However, general concept of twistor program as a unified field theory is not
at all clear or formulated up to now. Which equations are really fundamental,
in which way can the massive fields be described and in which way the particles’
spectrum can be obtained? And, finally, why precisely twistor, a rather refined
mathematical object, should be taken as a basis of fundamental physics?

In the interim, twistor structure arises quite naturally in the so called algebro-
dynamics of physical fields which has been developed in our works. From general
viewpoint, the paradigm of algebrodynamics can be thought of as a revive of Pi-
thagorean or Platonean ideas about “Numbers governing physical laws”. As the
only (!) postulate of algebrodynamics one admits the existence of a certain unique
and exceptional structure, of purely abstract (algebraic) nature, the internal prop-
erties of which completely determine both the geometry of physical space-time and
the dynamics of physical fields (the latters being also algebraic in nature).

In the most successful realization of algebrodynamics principal structure of
the “World algebra” has been introduced via generalization of complex analysis
to exceptional noncommutative algebras of quaternion (Q) type [15, 16, 17, 25,
22]. In particular, it was demonstrated that explicit account of noncommutativity
in the very definition of functions “differentiable” in Q inevitably results in the
non-linearity of the generalized Cauchy-Riemann equations (GCRE) which follow.
This makes it possible to regard the GCRE as fundamental dynamical equations of
interacting physical fields represented by (differentiable) functions of the algebraic
Q-type variable.

A wide class of such fields-functions exists only for the complex extension of
Q-algebra, i.e. for the algebra of complex quaternions B (biquaternions). Over
the B-algebra, the GCRE turn to be Lorentz invariant and acquire, moreover,
the gauge and the spinor structures. On this base a self-consistent and unified
algebrodynamical field theory has been constructed in our works [15, 16, 24, 25, 22,
26, 28, 17].

From the physical viewpoint, the most important property of GCRE is their
direct correspondence to a fundamental light-like structure. The latter manifests
itself in the fact that every (spinor) component S(x, y, z, t) ∈ C of the primary
B-field must satisfy the complex eikonal equation (CEE) [14, 15]

ηµν∂µS∂νS = (∂tS)2 − (∂xS)2 − (∂yS)2 − (∂zS)2 = 0, (1)

where ηµν = diag{1,−1,−1,−1} is the Minkowsky metric and ∂ stands for the
partial derivative by respective coordinate. The CEE (1) is Lorentz invariant,
nonlinear and plays the role similar to that of the Laplace equation in complex
analysis. Each solution to GCRE can be reconstructed from a set of (four or less)
solutions to CEE.
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In the meantime, in [17] the intrinsic twistor structure of CEE has been dis-
covered, and on its base the general solution of the nonlinear eikonal equation has
been obtained. It was proved that, in this respect, every CEE solution belongs to
one of two classes which both can be obtained from a twistor generating function
via a simple and purely algebraic procedure. This construction allows also for
definition of singular loci of the null geodesic congruences correspondent to the
eikonal field – the caustics. Just at the caustics – the envelopes of congruences
– the neighbouring rays intersect each other, and the associated physical fields
turn to infinity forming, thus, a unique particle-like object – a common source of
the fields and of the congruence itself. Thus, in the algebrodynamical theory the
particles can be considered as (spatially bounded) caustics of the primordial null
congruences.

On the other hand, null congruences naturally define the universal local “trans-
fer” of the basic twistor field with fundamental constant velocity “c” (in full analogy
with the transfer of field by an electromagnetic wave) and point thus to exceptional
role of the time coordinate in the algebrodynamical scheme and in twistor theory
in general. Existence of the “Flow of Time” becomes therein a direct consequence
of the existence of Lorentz invariant “aether” formed by the primordial light-like
congruence (“preLight”). In the paper, we underline the principal property of
multivaluedness of fundamental complex solution to CEE (“World solution”) and
of physical fields associated with it. As a result, at each space-time point one
has a superposition of a great number of rays which belong to locally distinct null
congruences, and the Time Flow turns to be multi-directional, i.e. consists of
a number of superposed “subflows” (linked globally by complex structure into a
unique physical “corpuscular-field” dualistic complex).

In section 2 we consider the twistor structure of CEE and the procedure of
algebraic construction of its two classes of solutions. A few simple illustrative
examples are presented. In section 3 we discuss the caustic structure of the CEE
solutions, in particular of spatially bounded type (particle-like singular objects),
and the properties of associated physical fields. In section 4, we introduce the
“World function” responsible for generation of the “World solution” to CEE and
discuss the related concept of multivaluedness of physical fields. Final section 5
is devoted to some general issues which bear on the nature of physical time. The
notions of the primordial light (“pre-Light”) and of the light-formed aether are
introduced, and the Time Flow is actually identified with the Flow of preLight. In-
trinsic structure of these fundamental flows is studied which relates to the property
of multivaluedness of the basic twistor field.

The article is an extended version of the preceding paper [41] and, as to descrip-
tion of physical picture of the World, continues our paper [60]. In order to simplify
the presentation, we avoid to apply the 2-spinor and the other refined mathematical
formalisms, for this refering a prepared reader to our recent papers [25, 22, 28, 17].
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The two classes of solutions to the complex eikonal equation

The eikonal equation describes the process of propagation of wave fronts (field
discontinuties) in any relativistic theory, in Maxwell electrodynamics in particu-
lar [4, 5]. Physical and mathematical problems related to the eikonal equation were
dealt with in a lot of works, see e.g. [6, 49, 8, 37, 11, 12].

The complex eikonal equation (CEE) arises naturally in problems of propa-
gation of restricted light beams [13] and in theory of congruences related to so-
lutions of Einstein or Einstein-Maxwell system of equations [14]. We, however,
interpret the complex eikonal, to the first turn, as a fundamental physical field
which describes, in particular, the interacting and “self-quantized” particle-like
objects formed by singularities of the CEE solutions. By this, the electromagnetic
and the other conventional physical fields can be associated with any solution
of the CEE; they are responsible for description of the process of interaction of
particles-singularities. Note that particle-like properties of field singularities re-
lated to the 5-dimensional real eikonal field have been studied in [9]; the concept
of particles as singularities of electromagnetic and eikonal fields has been inciden-
tically discussed by many authors, in particular by H. Bateman [6] af far as in
1915.

We start with a definition, together with Cartesian space-time coordinates
{t, x, y, z}, of the so called spinor or null coordinates {u, v, w, w̄} (the light velocity
is taken to be unity, c = 1)

u = t + z, v = t− z, w = x− iy, w̄ = x + iy (2)

which form the Hermitian 2× 2 matrix X = X+ of coordinates

X =

(
u w

w̄ v

)
(3)

In the representation using spinor coordinates the CEE (1) looks as follows:

∂uS∂vS − ∂wS∂w̄S = 0. (4)

The CEE possesses a remarkable functional invariance [15, 16]: for every S(X)
being its solution any (differentiable) function f(S(X)) is also a solution. The
eikonal equation is known also [6] to be invariant under transformations of the full
15-parameter conformal group of the Minkowsky space-time.

Let us take now an arbitrary homogeneous function Π of two pairs of complex
variables {ξ, τ}

Π = Π(ξ0, ξ1, τ
0, τ 1) (5)

which are linearly dependent at any space-time point via the so called incidence
relation

τ = Xξ ⇔ τ 0 = uξ0 + wξ1, τ 1 = w̄ξ0 + vξ1, (6)
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and which transform as 2-spinors under Lorentz rotations 1. The pair of 2-spinors
{ξ(X), τ(X)} linked through Eq.(3.8) is known as a (null projective) twistor of the
Minkowsky space-time [2].

Let us assume now that one of the components of the spinor ξ(X), say ξ0, is
not zero. Then, by virtue of homogeneity of the function Π, we can reduce the
number of its arguments to three projective twistor variables, namely to

Π = Π(G, τ 0, τ 1), G = ξ1/ξ0, τ 0 = u + wG, τ 1 = w̄ + vG (7)

Now we are in order to formulate the main result proved in our paper [17].

Theorem. Any (analytical) solution of CEE belongs, with respect to its twistor
structure, to one of two and only two classes and can be obtained from some generat-
ing twistor function of the form (7) via one of the two simple algebraical procedures
(described below).

To obtain the first class of solutions, let us simply resolve the algebraic equation
defined by the function (7)

Π(G, u + wG, w̄ + vG) = 0 (8)

with respect to the only unknown G. In this way we come to a complex field G(X)
which necessarily satisfies the CEE. Indeed, after substitution G = G(X) Eq.(8.2)
becomes an identity and, in particular, can be differentiated with respect to the
spinor coordinates u, v, w, w̄. Then we get

P∂uG = −Π0, P∂wG = −GΠ0, P∂w̄G = −Π1, P∂vG = −GΠ1, (9)

where Π0, Π1 are the partial derivatives of Π with respect to its twistor arguments
τ 0, τ 1 while P is its total derivative with respect to G,

P =
dΠ

dG
= ∂GΠ + wΠ0 + vΠ1 , (10)

which we thus far assume to be nonzero in the space-time domain considered.
Multiplying then Eqs. (9) we prove that G(X) satisfies the CEE in the form (4).
It is easy to check that arbitrary twistor function S = S(G, u + wG, w̄ + vG),
under substitution of the obtained G = G(X), also satisfies the CEE (owing to the
functional constraint (8.2) it depends in fact on only two of three twistor variables).

To obtain the second class of CEE solutions, we have from the very beginning
to differentiate the function Π with respect to G and only after this to resolve the
resulting algebraic equation

P =
dΠ

dG
= 0 (11)

1 To simplify the notation, we do not distinguish between the primed and unprimed spinor
indices. In the incidence relation (3.8) the standard factor “i” (imaginary unit) is omitted what
is admissible under the proper redefinition of the twistor norm
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with respect to G again. Now the function G(X) does not satisfy the CEE; however,
if we substitute it into (7) the quantity Π becomes an explicit function of space-time
coordinates and necessarily satisfies the CEE (as well as any function f(Π(X)) by
virtue of functional invariance of the CEE). Indeed, differentiating the function Π
with respect to the spinor coordinates we get

∂uΠ = Π0+P∂uG, ∂wΠ = GΠ0+P∂wG, ∂w̄Π = Π1+P∂w̄G, ∂vΠ = GΠ1+P∂vG, (12)

and, taking into account the generating condition (11), we immediately find that
the function Π itself obeys the CEE (4).

The functional condition (8.2) and, therefore, the CEE solutions of the first
class are in fact well known. Indeed, apart from the CEE, the field G(X), if it is
obtained by the resolution of Eq.(8.2), satisfies (as it is easily seen from Eqs.(9) for
derivatives), the over-determined system of differential constraints

∂uG = G∂wG, ∂w̄G = G∂vG (13)

which define the so called shear-free (null geodesic) congruences (SFC). By this,
algebraic Eq.(8.2) represents (in implicit form) general solution of Eqs.(7.3), i.e.
describes the whole set of SFC in the Minkowski space-time. This remarkable
statement proved in [18] is known as the Kerr theorem.

The second class of CEE solutions generated by algebraic constraint (11), to our
knowledge, hasn’t been considered in literature previously 2. It is known, however,
that condition (11) defines the singular locus for SFC, i.e. for the CEE solutions
obtained from the Kerr constraint (8.2). Precisely, condition (11) fixes the branch-
ing points of the principal complex field G(X) or, equivalently, – the space-time
points where Eq. (8.2) has multiple roots. As to the CEE solutions of second class
themselves, their branching points occur at the locus defined by another condition
which evidently follows from generating Eq. (11) and has form

Λ =
d2Π

dG2
= 0. (14)

The null congruences (especially the congruences with zero shear), as well as their
singularities and branching points, play crucial role in the algebrodynamical ap-
proach. They will be discussed below in more details. Here we only repeat that,
as it has been proved in [17],
the two simple generating procedures described above exhaust all the (analytical)
solutions to the CEE representing, thus, its general solution
(note only that for solutions with zero spinor component, ξ0 = 0, another gauge,
in compare with the one used above, should be choosed). The obtained result can
be thought of as a direct generalization of the Kerr theorem.

2 Study of solutions of the real eikonal equation by differentiation of generating functions
depending on coordinates as parameters is used in general theory of singularities of caustics and
wavefronts [11]
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To make the exposition more clear, we present below several examples of the
described construction.

1. Static solutions. Let the generating function Π depends on its twistor vari-
ables in the following way:

Π = Π(G,H), H = Gτ 0 − τ 1 = wG2 + 2zG− w̄, (15)

where z = (u − v)/2, and the time coordinate t = (u + v)/2 is, in this way,
eliminated. It is evident that the generating ansatz (15) covers the whole class of
static CEE solutions.

In [21, 14] it was proved that static solutions to the SFC equations (and,
therefore, static solutions to the CEE too) with spacially bounded singular locus
are exhausted, up to 3D translations and rotations, by the Kerr solution [18] which
follows from generating function of the form

Π = H + 2iaG = wG2 + 2z∗G− w̄, (z∗ = z + ia) (16)

with a real constant parameter a ∈ R. Explicitly resolving equation Π = 0 which
is quadratic in G we obtain the two “modes” of the field G(X)

G =
w̄

z∗ ± r∗
=

x + iy

z + ia±
√

x2 + y2 + (z + ia)2
(17)

which in the case a = 0 correspond to the ordinary stereographic projection S2 7→ C
from the North or the South pole respectively. It is easy to check that this solution
and also its twistor counterpartners

τ 0 = t + r∗, τ 1 = Gτ 0, (18)

satisfy the CEE (as well as any function of them). Correspondent SFC is in the case
a = 0 radial with a point singularity; in general case a 6= 0 the SFC is formed by the
rectilinear constituents of a system of hyperboloids and has a ring-like singularity
of a radius R = |a|. Using this SFC, a Riemannian metric (of the “Kerr-Schild
type”) and an electric field can be defined which satisfy together the electrovacuum
Einstein-Maxwell system. In the case a = 0 this is the Reissner-Nordström solution
with Coulomb electric field, in general case – the Kerr-Newman solution with three
characteristical parameters: the mass M , the electric charge Q and the angular
momentum (spin) Mca, – for which the field distribution possesses also the proper
magnetic moment Qa which corresponds to the gyromagnetic ratio specific for the
Dirac particle [45, 46]. In the algebrodynamical scheme, moreover, electric charge of
the point or the ring singularity is necessarily fixed in modulus, i.e. “elementary”
[15, 16, 28, 58] (see also [25] where a detailed discussion of this solution in the
framework of algebrodynamics can be found).

Now let us obtain, from the same generating function, a solution to CEE of
the second class. Differentiating Eq.(16) with respect to G and equating derivarive
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to zero, we get G = −z∗/w and, substituting this expression into Eq.(16), obtain
finally the following solution to CEE (which is univalued everywhere on 3D-space):

Π = −(r∗)2

w
= −x2 + y2 + (z + ia)2

x− iy
. (19)

It is instructive to note that equation Π = 0, being equivalent to two real-valued
constraints z = 0, x2 + y2 = a2, defines here the ring-like singularity for the Kerr
solution (17), as it should be in account of the theorem above presented (for this,
see also section 4).

Static solutions of the II class with spatially bounded singularities are not at
all exhausted by the solution (19). Consider, for example, solutions generated by
the functions

Π =
Gn

H
, n ∈ Z, n > 2. (20)

We’ll not write out correspondent solutions in explicit form and shall restrict our-
selves by examination of the spacial structure of their singularities which can be
obtained from the joint system of equations P = 0, Λ = 0, see Eqs. (11), (14).
Eliminating from the latter the unknown field G we find that singularities (branch-
ing points of the eikonal field) have again the ring-like form z = 0, x2 + y2 = R2

with radii equal to

Rn =
a(n− 1)√
n(n− 2)

(21)

The cases n = 1, 2 evidently need special consideration. For n = 1 equating to
zero derivative of the function G/H we find G = ±iw̄/ρ with ρ =

√
x2 + y2. This

brings us after substitution to the following solution of the CEE:

Π = (z + ia± i
√

x2 + y2)−1 (22)

which has the pole at the ring z = O, x2 + y2 = a2 but has a branching point only
on the origin r = 0, i.e. which under any a corresponds to the point singularity.

In the case n = 2 via analogous procedure we get G = w̄/z∗ and after substi-
tution come to the following solution of the CEE [17]:

Π =
w̄

r∗
=

x + iy

x2 + y2 + (z + ia)2
(23)

which is of the same structure as (the inverse of) the solution (19). As the latter,
it has no branching points on the real space-time slice while its pole corresponds
to the Kerr ring. Let us take for simplicity a = −1; then solution (23) can be
rewritten in the following familiar form:

Π = i
x + iy

2z + i(r2 − 1)
(24)
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which can be easily identified as the standard Hopf map. As the solution of the
CEE it has been studied in [22] and especially in the recent paper [23] where its
geometrical and topological nature has been examined in detail. We suspect also
that generalized Hopf maps considered therein relate (in the case m = 1) to the
CEE solutions generated by the functions (20) and, as the latters, has the ring
singularities correspondent to those represented by Eq.(21). However, this should
be verified by direct calculations.

2. Wave solutions. Consider also the class of generating functions dependent on
one of the two twistor variables τ 0, τ 1 only, say on τ 0:

Π = Π(G, τ 0) = Π(G, u + wG). (25)

Both classes of the CEE solutions obtained via functions (7.12) will then depend
on only two spinor coordinates u = t + z, w = x − iy. This means, in particular,
that the fields propagate along the Z-axis with fundamental (light) velocity c = 1.
A “photon-like” solution of this type, with singular locus spacially bounded in all
directions, was presented in [58].

Notice also that an example of the CEE solution with a considerably more
rich and realistic structure of singular locus is presented below in section 4 (see
also [58]).

Particles as caustics of the primordial light-like congruences

It’s well known that a null congruence of rays corresponds to any solution of the
eikonal equation; it is orthogonal to hypersurfaces of constant eikonal S = const
and directed along the 4-gradient vector ∂µS. Usually, these two structures define
the characteristics and bicharacteristics of a (linear) hyperbolic-type equation, e.g.
of the wave equation ¤Ψ = 0.

In the considered complex case, i.e. in the case of CEE, the hypersurfaces
of constant eikonal and the 4-gradient null congruences belong geometrically to
the complex extension CM4 of the Minkowski space-time which looks here quite
natural in account of the complex structure of the primary biquaternion algebra
B. The problem of physical sense of the additional (imaginary) dimensions is much
important and nontrivial, and we hope to discuss it in the forthcoming paper.

Here we use another interesting property: existence of a null geodesic congru-
ence defined on a real space-time for every of the complex-valued solutions to CEE.
This remarkable property follows directly from the twistor structure inherent to
CEE. Indeed, according to the theorem above-presented, any of the CEE solutions
(both of the I and the II classes) is fully determined by a (null projective) twistor
field {ξ(X), τ(X)} (in the choosed gauge one has ξ0 = 1; ξ1 = G(x)) subject to the
incidence relation (3.8). This latter “Penrose equation” can be explicitly resolved
with respect to the space coordinates {xa, a = 1, 2, 3} as follows:

xa =
=(τ+σξ)

ξ+ξ
− ξ+σξ

ξ+ξ
t , (26)
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with {σa} being the Pauli matrices and the time t remaining a free parameter.
Eq.(26) manifests that the primordial spinor field ξ(X) reproduces its value along
the 3D rays formed by the unit “director vector”

~n =
ξ+~σξ

ξ+ξ
, ~n2 = 1 , (27)

and propagates along these locally defined directions with fundamental constant
velocity c = 1. In the choosed gauge we have for Cartesian components of the
director vector (27)

~n =
1

(1 + GG∗)
{(G + G∗),−i(G−G∗), (1−GG∗)}, (28)

the two its real degrees of freedom being in one-to-one correspondence with the
two components of the complex function G(X).

Thus, for every solution of the CEE the space is foliated by a congruence of
rectilinear light rays, i.e by a null geodesic 3 congruence (NGC). Notice that the
director vector obeys the geodesic equation [60]

∂t~n + (~n~∇)~n = 0 . (29)

The basic field G(X) of the NGC can be always extracted from one of the two
algebraic constraints (8.2) or (11) which at any space-time point possess, as a rule,
not one but rather a finite (or even infinite) set of different solutions. Suppose
that generating function Π is irreducible, i.e. can’t be factorized into a number
of twistor functions of the same structure (otherwise, we should make a choice in
favour of one of the multiplies). Then a generic solution of the constraints will be
nothing but a multivalued complex function G(X). Choose locally (in the vicinity
of a particular point X) one of the continious branches of this function. Then a
particular NGC and a set of physical fields can be associated with this branch, i.e.
with one of the “modes” of the multivalued field distribution.

Specifically, for any of the I class CEE solutions the spinor F(AB) of electro-
magnetic field can be defined explicitly in terms of twistor variables of the solu-
tion [22, 28, 58]:

F(AB) =
1

P

{
ΠAB − d

dG

(
ΠAΠB

P

)}
. (30)

where ΠA, ΠAB are the first and the second order derivatives of the generating
function Π with respect to its two twistor arguments τ 0, τ 1. For every branch
of the solution G(X) this field locally satisfies Maxwell homogeneous (“vacuum”)
equations. Moreover, as it has been demonstrated in [16, 24, 22], a complex-valued
SL(2,C) Yang-Mills field and a curvature field (of some effective Riemannian met-
ric) can be also defined through only the same principal function G(X) for any of
the CEE solution of the first class.

3 On the flat Minkowsky background the geodesics are evidently rectilinear
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Consider now analytical continuation of the function G(X) up to one of its
branching points which corresponds to a multiple root of Eq.(8.2) (or, alternatively,
of Eq.(11) for solutions of the II class). At this point P = 0, and the strength of
electromagnetic field (30) turns to infinity. The same holds for the other associated
fields, for curvature field 4 in particular [21]. Thus, the locus of branching points
(which can be 0-, 1- or even 2-dimensional, see section 4) manifests itself as a
common source of a number of physical fields and can be identified (at least, in the
case when it is bounded in 3-space) as a unique particle-like object.

Such formations are capable of much nontrivial evolution simulating physical
interactions or even mutual transmutations represented by bifurcations of the field
singularities (see, e. g., the example in section 4). They possess also a realistic set
of “quantum numbers” including a self-quantized electric charge and a Dirac-type
gyromagnetic ratio (equal to that for a spin 1/2 fermion) [45, 46, 25]. Numerous
examples of such solutions and their singularities can be found in our works [24,
25, 26, 22].

On the other hand, for the light-like congruences – NGC – associated with
CEE solutions via the guiding vector (28) the locus of branching points coincides
with that of the principal G-field and represents the familiar caustic structure, i.e.
the envelope of the system of rays at which the neighbouring rays intersect each
other (“focusize”). From this viewpoint, within the algebrodynamical theory the
“particles” are nothing but the caustics of null rectilinear congruences associated
with the CEE solutions.

The World function and the multivalued physical fields

At this point we have to decide which of the two types of the CEE solutions
can be in principle taken in our scheme as a representative for description of the
Universe structure as a whole. As a “World solution” we choose a CEE solution
of the first class because a lot of peculiar geometrical structures and physical fields
can be associated with any of them [16, 25, 22]. Such a solution can be obtained
algebraically from the Kerr functional constraint (8.2) and a generating twistor
“World function” Π which is exceptional with respect to its internal properties;
geometrically it gives rise to an NGC with a special property – zero shear [2, 3].

Moreover, a conjugated CEE solution of the II class turns then also to be
involved into play since it defines a characteristic hypersurface of the (I class)
“World solution”. In fact, this is determined as a solution of the joint algebraic
system of Eqs.(8.2),(11). Precisely, if we resolve Eq.(11) with respect to G and
substitute the result into (8.2), equation Π(G(X)) = 0 would define then the
singular locus (the characteristic hypersurface) of the World solution. On the
other hand, the function Π(G(X)) would necessarily satisfy the CEE representing
its II class solution in account of the theorem presented in section 2. Thus,

4 Associated Yang-Mills fields possess, generically, additional string-like singularities
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the eikonal field here carries out two different functions being a fundamental phys-
ical field (as a CEE solution of the I class) and, at the same time, a characteristic
field (as a solution of the II class) which describes the locus of branching points of
the basic field (i.e., the discontinuties of its derivatives).

Let us conjecture now that the World function Π is an irreducible polynomial of
a very high but finite order 5 so that Eq.(8.2) is an algebraic (not a transcendental)
one. Note that in this case Eq.(8.2) defines an algebraic surface in the projective
twistor space CP 3.

The World solution consists then of a finite number of modes – branches of
multivalued complex G-field. A finite number of null directions (represented in
3-space by the director vector (28)) and an equal number of locally distinct NGC
would exist then at every point.

Any pair of these congruences at some fixed moment of time will, generically,
has an envelope consisting of a number of connected one-dimensional components-
caustics 6. Just these spacial structures (in the case they are bounded in 3-space)
represent here the “particles” of generic type. Other types of particle-like structures
are formed at the focal points of three or more NGC where Eq. (8.2) has a root
of higher multiplicity. Formations of the latter type would, of course, meet rather
rarely, and their stability is problematic. One can speculate on their possible
relation to particle’s excitations – resonances.

Nonetheless, we can model both types of particles-caustics in a simple example
based on generating twistor function of the form [58]

Π = G2(τ 0)2 + (τ 1)2 − b2G2 = 0, b = const ∈ R , (31)

which leads to the 4-th order polynomial equation for the G-field. At initial moment
of time t = 0, as it can be obtained analytically, the singular locus consists of a
pair of point singularities (with opposite and equal in modulus “elementary” electric
charges) and of a neutral 2-surface (ellipsoidal cocoon) covering the charges (see [58]
for more details). The latter corresponds to the intersection of all of the 4 modes of
the multivalued solution while each of the point charges is formed by intersection of
a particular pair of (locally radial, Coulomb-like) congruences [58]. Time evolution
of the solution and of its singularities is very peculiar: for instance, at t = b/

√
2 the

point singularities cancel themselves at the origin r = 0 simulating thus the process
of annihilation of elementary particles. Moreover, this process is accompanied by
emission of the singular light-like wavefront represented by another 2-dimensional
component of connection of the caustic structure.

5 This conjecture is, in fact, not at all necessary. Indeed, one can easily imagine that the
World function leads to the Kerr Eq.(8.2) which possesses an infinite number of roots for
complex-valued field function G(X) at any space-time point X

6 In fact, the caustics of generic type are determined by one complex condition Π(G(X)) = 0
(i.e., by two real equations) on three coordinates and, at a fixed moment of time t = t0, correspond
to a number of one-dimensional curves (“strings”)
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Thus, we see that the multivalued fields are quite necessary for to ensure
the self-consistent structure and evolution of a complicated (realistic) system of
particles-singularities. One only should not be confused by such, much unusual,
property of the principal G-field and, especially, by multivalued nature of the other
associated fields including the electromagnetic one.

Indeed, in convinient classical theories, the fields are in fact only a tool which
serves for adequate description of particle dynamics (including the account of re-
tardation etc.) and for nothing else. In nonlinear theories, as well as in our algebro-
dynamical scheme, the fields are moreover responsible for creation and structure of
particles themselves, as regular solitons or singularities of fields respectively. In the
first, more familiar case we, apparently, should consider the fields to be univalued.
The same situation occurs in the framework of quantum mechanics where the
quantization rules often follow from the requirement for the wave function to be
univalued.

However, as we have seen above, in the algebrodynamical construction the
field distributions must not necessarily be univalued! On the other hand, acception
of fields’ multivaluedness does not at all prevent to obtain the discrete spectrum
of characteristics in a full analogy with quantum mechanics. For example, the
requirement of univaluedness of a particular, locally choosed mode of the
principal G-field and of the associated electromagnetic field (far from the branching
points of the first and, consequently, from the infinities of the second!) leads to the
general property of quantization of electric charge of singularities in the framework
of algebrodynamical theory [28, 58].

As to the process of “measurement” of the field strength, say, of electromagnetic
field, it directly relates to only the measurements of particles’ accelerations, currents
etc., and only after the measurements the results are translated into conventional
field language. However, this is not at all necessary (in recall, e.g, of the Wheeler-
Feynman electrodynamics and of numerous “action-at-a-distance” approaches [31,
32]). In fact, “we never deal with fields but only with particles” (F. Dyson).

In particular, on the classical (nonstochastic) level we can deal, effectively,
with the mean value of the set of field modes at a point; similar concept based on
purely quantum considerations has been recently developed in the works [33]. In
our scheme, the true role of the multivalued field will become clear only after the
spectrum and the effective mechanics of particles-singularities will be obtained in
a general and explicit form.

We hope that a sort of psychological barrier for acception of general idea of the
field multivaluedness will be get over as it was with possible multidimensionality
of physical space-time. The advocated concept seems indeed very natural and
attractive. In the purely mathematical framework, multivalued solutions of PDEs
are the most common in comparison with the familiar δ-type distributions [34, 8].
From physical viewpoint, this makes it possible to naturally define a dualistic
“corpuscular-field” complex of a very rich structure which, actually, gathers all
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the particles in the Universe into a unique object. The caustics-singularities are
well-defined themselves and undergo a collective self-consistent motion free of any
ambiguity or divergence (the latters can arise here only in result of incorrect descrip-
tion of the evolution process and can be removed, if arise, on quite legal grounds,
contrary, say, to the renormalization procedure in the quantum field theory). Note
also that recently accomplished universal local classification of singularities of dif-
ferentiable maps, in particular of caustics and wavefronts [11], can explicitly bear on
the characteristics of elementary particles if the latters are treated in the framework
of the algebrodynamical theory.

As to the principal problem of the choice of a particular representative of the
generating World function Π of the Universe we are ready to offer an interesting
candidature being in hope to discuss it elsewhere.

The light-formed relativistic aether and the nature of time

Light-like congruences (NGC) are the basic elements of the picture of physical
world which arises in the algebrodynamical scheme and, to some extent, in twistor
theory in general. The rays of the NGC densely fill the space and consist of a great
number of branches – components superposed at each space point and propagating
in different directions with constant in modulus and universal (for any branch of
multivalued solution, any point and any system of reference) fundamental velocity.
There is nothing in the Universe except this primordial light flow (“pre-Light Flow”)
because the whole Matter is born by pre-Light and from pre-Light at the caustic
regions of “condensation” of the pre-light rays.

In a sense, one can speak here about an exceptional form of relativistic aether
which is formed by a flow of pre-Light. Such an exceptional form of the World
aether has nothing in common with old models of the light-carrying aether which
had been considered as a sort of elastic medium. Here, the light-formed aether
consists of structureless “light elements” and is, obviously, in full correspondence
with special theory of relativity7.

At the same time, notions of the aether formed by pre-Light and of the mat-
ter formed by its “thickenings” evoke numerous associations with the Bible and
with ancient Eastern philosophy. Certainly, there were teologists, philosophers or
mystics who were brought to imagine a similar picture of the World. However, in
the framework of successive physical theory this picture becomes more truthworthy
and, to our knowledge, has not been yet discussed in literature8.

On the other hand, existence of the primordial light-formed aether and man-

7 At present, it seems rather strange that A. Einstein didn’t come himself to the concept of
relativistic aether so consonant with the ideas of STR and with his favourite Mach principle.
Surprisingly, R. Penrose also overlooked this opportunity which follows naturally from his twistor
theory

8 Similar in some aspects ideas have been advocated in the works [36, 37, 38]. Note, in
particular, the concept of the “radiant particle” offered by L. S. Shikhobalov [35]
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ifestation of universal property of local “transfer” of the aether – generating field
G(X) with constant fundamental velocity c = 1 points to different status of space
and time coordinates and offers a new approach to the problem of physical time
as a whole. By this, it is noteworthy that since in 1908 H. Minkowski has joined
space and time into a unique 4-dimensional continuum, no further understanding
of the nature of time has been achieved in fact. Moreover, this synthesis has
“shaded” the principal distinction of space and time entities and clarified none of
such problems as (micro/macro)irreversibility, (in)homogeneity and (non)locality
of time, its dependence on material processes etc.

In the interim, the key problem of Time can be formulated in a rather simple
way. Subjectively, we perceive time as a continious intrinsic motion, a latent flow.
Everybody comprehends in a moment, as the ancient Greeks did, what is meant
by the “River of Time”, the “Flow of Time”. As a rule, we consider this intrinsic
motion to be independent on our will and on material processes and uniform: not
for nothing, in physics the flow of time is modelled by the uniform motion of,
say, the record tape etc. Moreover, under variations in time one does not only
observe the conservation of a particular set of integral quantities (which is widely
used in the orthodox physics) but perceives subjectively the complete repetition,
reproduction of the local states of any system; that’s why for measurements of
time itself we use clocks whose principle of operation is based on reproducible,
periodical processes. In other words, whereas one has much ambiguous and diverse
distributions of spacial positions of physical bodies, all they and we all have always
one and the same monotonically increasing time coordinate, i.e. are in a common
and permanent motion together with the “Time River”.

Surprisingly, almost all these considerations are absent in the structure of theo-
retical physics and, in particular, in relativity theory. To bring into correspondence
the results of calculations with practice (e. g. for the Cauchy problem etc.) one
chooses a “time orthogonal hypersurface”, i. e. quite ambiguously fixes the unity of
the present moment of time, of the moment “now”, perceived subjectively by every-
body; however, there are no intrinsic reasons for this choice in the very structure
of theoretical physics, including the STR.

At least partially, such a situation is caused by the following. The notion
of everywhere existing, eternal Flow of Time immediately leads to the prob-
lem of its (material? pre-material?) carrier. In this connection, the works of
N. A. Kozy’rev [39] should be marked, of course, in which the concept of the “ac-
tive” Flow of Time influencing directly the material processes has been proposed.
To our opinion, however, there are no reliable physical grounds at present which
confirm the Kozy’rev’s ideas, and no mechanism of “interaction” of this exotic
form of matter with the ordinary ones. As to the algebrodynamical paradigm, the
Time Flow is non-material therein: it does not interact or influence the Matter at
all but just forms it. In distinction from the Kozy’rev’s concept, we do not deal
here with various material entities only one of them being the Time itself: on the
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contrary, here we have one triply-unique entity – preLight-Time-Matter. Note that
more close the approach turns to be to the concept of “Time-generating Flows”
developed by A. P. Levich [40].

On the other hand, under consideration of the problem of the carrier of the
Time Flow, we inevitably return back to the notion of some form of the World
aether which has been exiled from physics after the triumph of Einstein’s theory.
To do without aether, none Flow of Time can be successively included into the
structure of theoretical physics and none subjectively perceived properties of time
can be precisely formulated and described.

However, in a paradoxical way, just the STR with its postulate of the invariance
of light velocity justifies the introduction of the dynamical Lorentz invariant aether
formed by the light-like congruences as the primary element of physical World.
Specifically, the Time Flow can be naturally identified now with the Flow of pri-
mordial Light (pre-Light), and the “River of Time” turns to be nothing but the
“River of Light”. Moreover, it is the universality of light velocity which explains
our subjective perception of uniformity and homogeneity of Time Flow.

There is, however, another, the most striking and unexpected feature of the
introduced concept of physical time. The Time Flow manifests here itself as super-
position of a great number of distinctly directed and locally independent components
– “subflows”. At any point of 3-dimensional space there exists a (finite) set of
directions: each mode of the primordial multivalued field G(X) defines one of
these directions and propagates (reproduces its value) along it forming thus one
of constituents of the (globally unique) Flow of pre-Light identical to the Flow of
Time.

One can conjecture that just by virtue of the local multivaluedness we are not
capable of to perceive the particular local direction of the Time Flow. Apart from
this, it is natural to assume that in the tremendously complicated structure of the
World solution a stochastic component is necessarily present, particularly in the
structure of the primordial Light-Time Flow. This results in chaotic variations of
local directions of the light-like congruences which are certainly inaccessible for
perception. On the other hand, it is the existence of (constant in modulus and
the same for all of the branches of the multivalued World solution) fundamental
propagation velocity of the pre-Light rays which makes it possible to feel the Flow
of Time in general and to subjectively regard it as uniform and homogeneous in
particular.

Conclusion

Thus, we have examined the realization of the algebrodynamical approach in
which, as a base of unified physical theory, the only structure of a purely abstract
nature is choosed, namely the algebra of complex quaternions and the general-
ized CR-equations – the conditions of differentiability in this algebra. Very the
same structure can be successively expressed, in fact, on a number of equivalent
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geometrical languages (of covariantly constant fields, twistor geometry, shear-free
congruences etc.).

Primary GCR-equations result directly in the field of complex eikonal which
is regarded as a fundamental physical field (alternative in a sense to the linear
fields of quantum mechanics). In its turn, the eikonal field is here closely related
to the fundamental 2-spinor and twistor fields, on whose language, in particular,
the general solution of the complex eikonal equation is formulated. Through the
eikonal field also the other ones are defined, namely the electromagnetic and Yang-
Mills fields. Singularities of the eikonal and of correspondent null congruences are
considered as particle-like formations (“self-quantized” and effectively interacting).

In result, physical picture of the World which arises as a consequence of the
only algebraic structure appears to be very beautiful and unexpected. As its basic
elements it contains the primordial light flow – “pre-Light” – and the relativistic
aether formed by the latter, multivalued physical fields and prelight-born matter
(consisting of particles-caustics formed by the superposition of individual branches
of the unique pre-light congruence in the points of their “focusization”).

As very natural and deep seems to be the here arising connection between the
existence of universal velocity (velocity of “light”) and of the time flow; connection
which permits to understand, in a sense, the origin of the Time itself. Time is
nothing but the primordial Light; these two entities are undividible. On the other
hand, there is nothing in the World except the preLight Flow which gives rise to all
the “dense” Matter in the Universe.

Acknowledgements

The author is grateful to D. G. Pavlov for his invitation to contribute into the
new and actual journal “Hypercomplex numbers in physics and geometry”, and to
participate in competition of scientific works on related topics. I am also greatly
indebted to A.P. Levich and to the participants of scientific seminar on the study
of time phenomenon supervised by him. Much fruitful were my conversations with
V. I. Zharikov, V. I. Zhuravlev, J.A. Rizcallah, V.N. Trishin, V. P. Troitsky, V. P.
Tsarev and other my colleguaes to whom I am deeply grateful for their long-termed
friendship and support. I indeed beleive that tremendous building of conteprorary
physics can be completely reconstructed to a “new design” which is much simple,
the “only possible” (J.A. Wheeler) and which brings us nearer to the true Project
in accord to which our World has been created once upon a time.
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1 On the commutative and non-commutative analysis
and the algebrodynamics

History of discovery and investigation of exceptional algebras like quaternions
or octonions, as well as of numerous attempts to apply them for “explanation
of the structure of the World”, is highly dramatic and full of still unjustified
hopes [1, 6]. Bibliography on applications of quaternions in theoretical and math-
ematical physics during only XX century runs to thousands of articles [3]. Con-
siderable part of them is devoted to the problem of construction of quaternionic
analysis which in respect of the richness of internal properties and applications
can be comparable with complex analysis. However, in opinion of the majority of
contemporary mathematicians, this problem has not get its solution till now [4].

Meanwhile, the commutative analysis, that is, the analysis for functions taking
values in some associative commutative algebra of finite dimension n ≥ 2 (not
necessarily with division), has been constructed by G. Sheffers as far as at the end
of XIX century [5] quite in analogy with the complex analysis. At present it is used,
in particular, in the conception of polynumbers and related Finsler geometries devel-
oping in the works of D.G. Pavlov and its group [6, 7]. Generalization of this version
of analysis to superalgebras has been realized in the works of Yu. S. Vladimirov and
I.V. Volovich [8].

Principal distinction of non-commutative and commutative cases has been
noted by A. Sudbery [9]: non-commutativity obliterates the difference between
an initial q and “conjugated” q∗ elements of algebra, making it possible to express
them through each other using only constant basic elements (“units”) of algebra.
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In particular, for the algebra of Hamilton’s quaternions Q for any q ∈ Q one gets
(see [6], p.121):

q∗ ≡ −1

2
(q + I ∗ q ∗ I + J ∗ q ∗ J + K ∗ q ∗K), (1.1)

where I, J,K are the three “imaginary” units of the quaternion algebra. That is
why definition, in analogy with the complex case, of a “quaternionic analytical”
(“quaternionic holomorphic”) function as that independent on the quaternionic
conjugated argument, appears here to be senseless.

On the other hand, natural definition of the “right” (“left”) derivative F ′(Z)
of a quaternionic function F (Z), F : Q 7→ Q:

F ′ = dF ∗ dZ−1 (F ′ = dZ−1 ∗ dF ) (1.2)

is also unproductive, since the requirement of existence and uniqueness of the limit
(1.2) (that is, of its independence on the path of convergence to zero of the incre-
ment dZ in the E4-space of the algebra Q) leads to a considerably over-determined
system of PDE’s which appears to be compatible only for the trivial case of a linear
function (for details see, e.g., [10]). There exist also additional considerations which
convince oneself in the difficulty of construction of quaternionic (and, generally, of
non-commutative) analysis (see, e.g., [11]).

Nonetheless, numerous attempts to bypass these difficulties have been under-
taken of which most known is the conception of Fueter [9, 11, 12]. In many ar-
ticles conditions of “quaternionic analyticity” (or their biquaternionic extension)
have been formally written down in the form of a linear system of equation of
Maxwell-like type (together with correspondent wave equation as an expected gen-
eralization of the 2D Laplace equation of complex analysis). All these attempts,
however, cannot, perhaps, be considered as a successive version of quaternionic
analysis. As to the more complicated problem of construction of non-associative
analysis, say, over the algebra of octonions, none approaches to its solution are seen
till now at all (nevertheless, see [10], section 10).

Let us return now to the case of commutative analysis. Modern exposition
of the above presented approach of Sheffers may be found, e.g., in the monograph
[13]. Therein, instead of definition of (invariant) derivative one exploits the require-
ment to represent the differential of a function of algebraic variable in an invariant
“component-less” form. This makes it possible to expand the approach to all the
(finite-dimensional) associative commutative algebras A including those with null
divisors, in particular to the algebras of double and dual numbers.

Specifically, let F (Z) be an A-valued function F : A 7→ A of algebraic variable
Z ∈ A. Sheffers formulated condition of its differentiability in A as that of pro-
portionality of linear parts of increments (differentials) dZ, dF of the independent
variable and the function respectively:

dF = H(Z) ∗ dZ, (1.3)
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where H ∈ A and (∗) denotes the operation of multiplication in A. For algebras
with division condition (1.3) is evidently equivalent to that of existence and “path-
independence” of the ratio of increments, i.e. of the derivative H(Z) = dF ∗dZ−1 ≡
F ′(Z) and, in the particular case of the algebra of complex numbers C, immediately
leads to the Cauchy-Riemann equations. In general case linear PDE’s connecting
partial derivatives of the components of F (Z) follow from (1.3) after elimination
of the components of H(Z) and are completely analogous to the CR equations for
the functions of complex variable. As a whole, the commutative analysis created
by Sheffers in many aspects reproduces the 2D complex one, so that a wide class
of A-differentiable functions obeying condition (1.3) and containing, in particular,
arbitrary polynoms of A-variable can be constructed.

Nonetheless, the transition from commutative case to the non-commutative
associative algebras of quaternion type seems rather fascinating since those algebras
A, unlike the commutative ones, possess a wide group of continuous symmetries
represented by internal automorphisms

q 7→ a ∗ q ∗ a−1, a ∈ A,∀q ∈ A, (1.4)

preserving the multiplication law in A. For algebra Q the automorphism group is
known to be 2:1 isomorphic to the group of 3D rotations SO(3) so that the excep-
tional group of Hamilton’s quaternions may be treated as the algebra of Euclidean
physical space E3. Its extension to the field of complex numbers – the algebra of bi-
quaternions B – makes it possible to ensure the transition to the 4D space-time and
to write down all the basic equations of relativistic field theory in a very compact
and beautiful form (see, e.g., [14]). Finally, the version of (bi)quaternionic analysis
earlier suggested by the author and exposed in the article below, made it possible to
obtain a nonlinear Lorentz-invariant generalization of the Cauchy-Riemann equa-
tions and to built only on this base a self-consistent field-particle theory – the so
called algebrodynamics. This article is devoted to presentation of this (nonlinear)
version of non-commutative analysis and its realization in the framework of the
algebrodynamical approach.

2 Quaternionic differentiability and conformal mappings

Correct way to generalize the approach of Sheffers to quaternion-like algebras
consists, perhaps, in explicit account of the property of non-commutativity of the
algebras like Q in the very definition of a differentiable function of Q-variable.
Specifically, we note that in the right-hand part of the expression (1.3) one finds
an invariant A-valued differential 1-form of the most general type which can be
constructed using only operations in the algebra A. According to these consider-
ations, in the case of non-commutative (but still associative) algebra A, condition
(1.3) may be naturally modified for the following condition of A-differentiability of
a function F (Z) (see [10, 23] and references therein):

dF = L(Z) ∗ dZ ∗R(Z). (2.1)



444 Space-Time Structure. Algebra and Geometry

Here L,R : A 7→ A are two the so called semi-derivative functions of F (Z), left
and right respectively. For a given F (Z) that satisfies (2.1) they are defined non-
uniquely, up to a transformation L → αL, R → α−1R in which the function
α(Z) takes values in the centre (commutative subalgebra) of the algebra A. Thus,
according to this definition, problem of determination of functions differentiable in
a non-commutative associative algebra A is the problem of enumeration of all the
triples of functions {F (Z), L(Z), R(Z)} which satisfy the condition (2.1) (up to the
above mentioned α-equivalence of the semi-derivatives).

For commutative algebras condition (2.1) reduces itself again to (1.3) where now
the “derivative” H(Z) is formed from “semi-derivatives” as H(Z) = L(Z) ∗R(Z).
On the other hand, if in the general non-commutative case one takes, say, R(Z) = E
(by this expecting the existence of the unity element E in the algebra A considered),
then he returns back to the condition (1.3) with H(Z) = L(Z). However, as it was
already noticed, at least for quaternion-like algebras the latter condition are too
rigid, since it can be satisfied only by linear functions of the form F = A ∗ Z + B
with A,B being some constant elements of algebra at study (see, e.g., [9, 15]).

In general case condition of A-differentiability (2.1) defines a wider class of
functions. In particular, for the algebra of Hamilton’s quaternions Q condition
(2.1) appears to be algebraically equivalent to the condition of conformity of the
mapping Z 7→ F (Z) in the Euclidean space E4 [25, 26, 24]. Indeed, taking the
quaternionic norm N2(q) = q2

0 + q2
1 + q2

2 + q2
3 of the elements in left- and right-hand

parts of the relation (2.1) and using then the property of multiplicativity of norms

N2(p ∗ q) = N2(p)N2(q), ∀p, q ∈ Q, (2.2)

one obtains:

ds
2 ≡ N2(dF ) = N2(L ∗R)N2(dZ) ≡ Λ(Z)ds2, (2.3)

so that any Q-differentiable function indeed defines some conformal mapping ds 7→
ds in E4 with the scale factor Λ(Z) = N2(L∗R). Let us notice that in this respect
condition (2.1) can be again regarded as a natural generalization of the conditions
of complex holomorphy.

However, it is well known (the so called Liouville theorem, see, e.g., [16]), that
in E4-space conformal mappings form a finite 15-parametric group, in contrast to
the infinite-dimensional group of conformal mappings on a complex plane which
are realized by analytical functions of conformal variable. Each of these conformal
mappings in E4 corresponds to some Q-differentiable function obeying condition
(2.1). Namely, for inversion F (Z) = Z−1 one has dF = −Z−1 ∗ dZ ∗ Z−1, i.e.
expression of the form like (2.1). Analogously, one can verify corresponding state-
ment for other independent conformal mappings in E4: translations, rotations and
dilatation – as well as for arbitrary their sequences. In other words, transformations
defined by Q-differentiable functions form the group isomorphic to the conformal
group of E4.
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Thus, for exceptional algebra with division Q the class of Q-differentiable func-
tions defined by the condition (2.1) turns, as before, to be too narrow for appli-
cations in fundamental physics for the purpose, say, that such functions could be
considered in the capacity of fundamental fields.

3 Biquaternionic differentiability and the equation of C-eikonal

Below we restrict ourselves by the case of the full N × N matrix algebras
A = Mat(N) over R or C (when N = 2 we have the isomorphism of the full matrix
algebra Mat(2,C) ∼= B to that of biquaternions). For the equivalent of quaternionic
norm – the determinant of the matrix of differentials dF in the left-hand part of
(2.1) – we get:

det ‖dF‖ = det ‖L(Z) ∗R(Z)‖ det ‖dZ‖ ≡ λ(Z) det ‖dZ‖. (3.1)

In the case when both matrices L,R are invertible, so that λ(Z) 6= 0, condition
(3.1) defines some conformal mapping with the scale factor λ(Z) of the infinitesi-
mal (complex or real indefinite) “metric” represented by determinant in (3.1). In
particular, for the algebra B we deal with conformal mappings in the complexified
Minkowski space CM.

The most interesting, however, seems to be the case when det L = 0 (or, analo-
gously, det R = 0); under this condition the scale factor λ(Z) = 0, and the relation
(3.1) defines a mapping of the full vector space of A into the subspace of its elements
– null divisors (into the complex “light-like cone” in the case of algebra B). Such
mappings may be named degenerate conformal mappings. They constitute an im-
portant and wide class: in the context of algebrodynamical theory presented further
in the article just these mappings (and corresponding differentiable A-functions) are
identified with physical fields. In particular, under complexification of quaternions
the class of differentiable functions and related mappings considerably extends.

In the N ×N matrix representation condition of differentiability (2.1) in com-
ponent notation takes the form (A,B, ... = 1, ...N):

∇ABFCD = LCARBD (3.2)

where ∇AB corresponds to the operator of differentiation with respect
to coordinates ZAB. For some fixed pair of indices C,D denoting
FCD ≡ Σ, LCA ≡ φA, RBD ≡ ψB one gets instead of (3.2):

∇AB Σ = φAψB. (3.3)

Determinant of the matrix of semi-derivatives in the right-hand part of the equa-
tion, by virtue of the factorized structure, is identically null. Consequently, one
gets the equation:

det ‖∇ABΣ‖ = 0, (3.4)
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which is necessarily satisfied by any matrix component FCD ≡ Σ ∈ R or C of any
function F (Z) differentiable in A.

Equation (3.4) represents itself a nonlinear analog of the Laplace equation
from complex analysis, and here nonlinearity arises as a direct consequence of the
account of non-commutativity of algebra in the very definition of A-differentiable
functions (2.1). In the case of biquaternion algebra B equation (3.4) is nothing else
but the equation of complex 4-eikonal. Indeed, introducing for brevity the following
notations for coordinates in matrix representation:

Z00 = u, Z11 = v, Z01 = w, Z10 = p, (3.5)

and computing the determinant (3.4), we come to the equation:

(∇uΣ)(∇vΣ)− (∇wΣ)(∇vΣ) = 0, (3.6)

which in the (complex) Cartesian coordinates z0 = (u+v)/2, z3 = (u−v)/2, z1 =
(w + p)/2, z2 = i(w − p)/2 takes the familiar form of eikonal equation:

(
∂Σ

∂z0
)2 − (

∂Σ

∂z1
)2 − (

∂Σ

∂z2
)2 − (

∂Σ

∂z3
)2 = 0. (3.7)

In accord with results of our paper [17] (see also [18]), general solution of the
complex eikonal equation (CEE) consists of two different classes both of which can
be obtained in an algebraic way with the help of arbitrary (complex analytical)
functions of (projective) twistor variable. Specifically, let us choose in the formula
(3.2) for the 4-gradient of complex eikonal one of the 2-spinors, say, ψ = {ψB} and
define then the 2-spinor τ = {τA} incident to it by means of the Klein-Penrose
correspondence [19]

τ = Zψ, ↔ τA = ZABψB. (3.8)

A couple of spinors {ψB, τA} connected by the incidence relation (3.8) we shall call
the (projective) twistor of complex Minkowski space CM.

Indeed, equation (3.8) as well as the spinor ψ itself in equation (3.2) are defined
up to a multiplication to a nonzero complex scalar; therefore, only three complex
ratios of twistor components are essentially defined. Let, for example, the spinor
component ψ0 is not equal to zero; then, making use of the projective equivalence,
one can choose the twistor gauge of the form ψ0 = 1 and to get for the above ratios:

ψ1 = G, τ 0 = wG + u, τ 1 = vG + p. (3.9)

Now let us choose an arbitrary function Π of three complex arguments – compo-
nents of the projective twistor

Π(ψ1, τ
0, τ 1) ≡ Π(G,wG + u, vG + p) (3.10)

Resolving the equation Π = 0 with respect to the unknown G(u, v, w, p), we ob-
tain some solution of the CEE (of the I class). Further, resolving now equation
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dΠ/dG = 0 with respect to G again and substituting the solution into the initial
function Π, we come to a “conjugated” solution of the CEE Π(u, v, w, p) (of the
II class). According to the results of the paper [17], these two classes exhaust all
(almost everywhere analytical) solutions of the CEE (see [17, 18] for details). For
further needs let us mention only that, for any generating (“World”) function Π,
solution of the joint system Π = 0, dΠ/dG = 0 defines the structure of singular
set Π(u, v, w, p) = 0 – the locus of branching points of the eikonal function G (Π)
itself and, correspondingly – of the poles of its 4-gradient. Resolving of this alge-
braic system makes it possible, sometimes even without explicit expression of the
eikonal function itself, to determine the structure of its singularities (which may be
extremely complicated). Corresponding examples are presented in [18, 20, 27, 31].

4 Global symmetries and splitting of the equation
of A-differentiability

Let us return now back to examine the conditions of A-differentiability (2.1)
in general non-commutative case of the matrix algebra Mat(N,C). It is easy to
demonstrate that this fundamental relation preserves its form under the following
transformations:

Z 7→ PZQ−1, F (Z) 7→ SF (Z)T−1, L(Z) 7→ SL(Z)P−1, R(Z) 7→ QR(Z)T−1, (4.1)

where P, Q, S, T are four constant invertible and, in general, distinct matrices N×N
(here and below the symbol of matrix multiplication will be omitted for simplicity).
Digressing from dilatations (generally, with different scale factors for coordinates
Z and functions F (Z)), we shall further on consider determinants of all matrices
equal to unity so that P, Q, S, T ∈ SL(2,C).

In the particular case of equality of the entire matrices one gets the internal
automorphisms of the algebra at study which leaves invariant both the trace and
the determinant of matrices. When N = 2, i.e. in the case of biquaternion algebra
B, determinant has the structure of the quadratic C-valued form:

det ‖Z‖ = (z0)2 − (z1)2 − (z2)2 − (z3)2 (4.2)

Thus, in account of invariance of the trace z0, automorphisms represent themselves
the rotations of 3-dimensional complex space C3; the automorphism group Aut(B)
is 2:1 isomorphic to the group of complex rotations SO(3,C). In general case
(N > 2) automorphisms look like linear transformations which keep invariant the
trace and holomorphic Finsler-like “metrical” form of the N -th order, defined by
the structure of matrix determinant.

For simplicity restricting below ourselves by the case N = 2, let us consider
general symmetries of the conditions of biquaternionic differentiability (4.1). The
coordinate transformations

Z 7→ PZQ−1, P, Q ∈ SL(2,C), (4.3)
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evidently represent themselves the 6-parametrical rotations of the full vector space
of algebra C4 which leave invariant the holomorphic “metric” (4.2). These trans-
formations form the group 2:1 isomorphic to the group SO(4,C). By this, the law
of transformations of the semi-derivatives L(Z), R(Z) and the function F (Z) itself
remains, according to (4.1), partially indefinite due to existing voluntarism in the
choice of two other matrices S, T ∈ SL(2,C). This situation is, of course, related
to a very wide symmetry group of the conditions of B-differentiability (2.1).

Indeed, one can set, in particular, S = Q, T = P considering thus symmetries
of the form

Z 7→ PZQ−1, F (Z) 7→ QF (Z)P−1 L(Z) 7→ QL(Z)P−1, R(Z) 7→ QR(Z)P−1, (4.4)

under which all the “fields” L(Z), R(Z), F (Z) behave themselves as (covariant)
vectors realizing in this way vector representation of the group SO(4,C). However,
for the same fields another type of transformations preserving the form of basic
equations (2.1) is possible. Specifically, let us set the matrices S, T equal to the
unit matrix; them we come to the symmetry transformations of the form

Z 7→ PZQ−1, F (Z) 7→ F (Z) L(Z) 7→ L(Z)P−1, R(Z) 7→ QR(Z), (4.5)

so that under these the principal function F (Z) behaves itself as a SO(4,C)-scalar,
whereas the semi-derivatives L(Z), R(Z) – as a complex of two independently trans-
forming columns (raws), i.e. as the SO(4,C)-spinors!

Thus, in the considered case one has a unique situation when one and the
same “physical field” can be transformed according to a number of independent
representations of the “complex Lorentz group” SO(4,C) manifesting itself at the
same as a vector, a couple of spinors or a number of scalars.

The most general symmetries (4.1) form (in the 4:1 ratio) the 12C-parametrical
group SO(4,C)× SO(4,C) which one can imagine himself as the product of coor-
dinate and internal groups. However, in respect to the transformations of “fields”,
representation of the full group cannot be uniquely decomposed into representations
of each of constituents.

Indeed, matrices S, T can in a unique way be represented in the form S =
ΛQ, T = ΠP through some new matrices Λ, Π ∈ SL(2,C). By this, the field
transformations under general symmetries (4.1) take the form:

Z 7→ PZQ−1, F 7→ Λ(QFP−1)Π−1, L 7→ Λ(QLP−1), R 7→ (QRP−1)Π−1, (4.6)

and acquire the following natural interpretation: with respect to the group of
“coordinate” transformations SO(4,C)coord all of the fields L(Z), R(Z), F (Z) are
(covariant) vectors; at the same time, with respect to the internal “isotopic”
group SO(4,C)int each of semi-derivatives L(Z), R(Z) behave itself as a couple of
isospinors whereas the basic field F (Z) is an isovector. However, this interpretation
though suitable is not at all the only possible as we have seen above.
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Let us notice also that the coordinate space Z can be reduced to the space of
unitary matrices (Hamilton’s quaternions) or to the space of Hermitian matrices
for which the above introduced rectilinear coordinates zµ turn to be real and the
invariant form (4.2) represents the Minkowski metric. By this, requirement of
preservation of the introduced condition (of unitary, Hermitian etc. structure)
imposes restrictions on the admissible general symmetry transformations (4.1) so
that the symmetry group reduces to a smaller one. All such situations including
admissible transformations of “fields” (which generally remain complex-valued)
can be easily examined. In particular, on the Hermitian coordinate subspace the
algebrodynamical field theory based on the conditions of B-differentiability (2.1) will
be automatically Lorentz invariant. This case will be discussed in details below.

To conclude the discussion of symmetries, let us note that linear transforma-
tions (4.1) that contain the SO(4,C)-rotations and the dilatation do not exhaust
the whole group of symmetries of the B-differentiability conditions (2.1) which are
also evidently invariant under the 4C translations as well as under the inversions
in this space, so that the full group of symmetries includes into itself at least the
15C-parametrical group of conformal mappings of the 4D complex space equipped
with holomorphic metric (4.2).

Now, in accord with the wide group of their symmetries, conditions of
B-differentiability admit various forms of “splitting”, i.e. of their reduction to
simpler systems of equations. By this, of course, symmetry group of the reduced
system will be smaller than initial one. The most important example of the proce-
dure is the row (column) splitting of the matrix of basic function F (Z) [23].

Specifically, let us denote the two columns of this matrix as F = {η1, η2} and
the columns of the right semi-derivative as R = {ξ1, ξ2}. ’hen one reduces the
initial matrix system to that of the following two equations of the same type:

dηa = Φ ∗ dZ ∗ ξa, a = 1, 2 (4.7)

and solution of the full system may be build as an arbitrary composition of some
two solutions of systems like (4.7) with the same matrix “field” Φ(Z) (of left
semi-derivative). Reduced system (4.7) is form-invariant, in particular, under the
following transformations of variables:

Z 7→ QZP−1, ξ 7→ Pξ, Φ 7→ PΦQ−1, η 7→ Pη, (4.8)

during which the quantities Φ(Z) transform themselves as a complex 4-vector and
the “fields” η(Z), ξ(Z) – as the SL(2,C)-spinors 1.

Reduction of the full system of equations of B-differentiability to a simpler
system of the form (4.7) for two spinors (basic and additional) and one 4-vector
may be called the spinor splitting of the primary system of equations (2.1).

1 It is obvious that transformations (4.8) do not exhaust all the symmetries of each of the
systems of equations (4.7) which result from general symmetry transformations (4.1), and are
exhibited here only as an example of these
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The main class of solutions of the full system (2.1) can in fact be restored from
an arbitrary solution of only one of the spinor systems (4.7). For this, it is sufficient
simply to nullify, say, the spinors η2 and ξ2 or to regard them proportional to the
initial spinors, i.e. to set:

η2 = kη1, ξ2 = kξ1 (4.9)

with arbitrary constant complex factor of proportionality k ∈ C. By this, the
right semi-derivative will represent itself a degenerate matrix, det R(Z) = 0, and
the principal matrix function will differ from a degenerate one to an arbitrary
constant matrix C: F (Z) = C + H(Z), det H(Z) = 0. We note that the factor of
proportionality k cannot depend on coordinates Z in a nontrivial way what may
be easily proved in account of the identical form of the “field” Φ(Z) for both spinor
systems (see [21]).

The degenerate case that corresponds to the degenerate conformal mappings
(see section 3) is in general the only physically nontrivial one. Indeed, in the
non-degenerate case correspondent to the canonical conformal mappings in C the
field strengths of gauge fields associated with B-differentiable functions identically
turn to zero [10, 23, 22]. On the other hand, when the matrix of, say, the right
semi-derivative is degenerate, its two columns are proportional at a point and, by
virtue of constancy of the factor k, – globally. Thus, we have shown that physically
nontrivial solutions of basic equations of B-differentiability (2.1) all correspond to
the case of degenerate matrices and can be all obtained from the solutions of
fundamental spinor system

dη = ΦdZξ (4.10)

with the help of trivial completion of the spinors ξ(Z), η(Z) to full matrices with
zero determinant (by this, any of the spinors can be multiplied to an arbitrary
complex number).

5 General solution of fundamental spinor system

As the complex eikonal equation (CEE) for individual components of the prin-
cipal spinor η(Z), general solution of fundamental spinor system (FSS) (”“) (4.10)
consists of two different classes and is obtained by analogy with general solution
of the CEE itself (section 3). Here we shall only announce its structure (full proof
will be given elsewhere).

Solutions of FSS of the I class

Let us define the twistor of the space C4

W = {ξ, κ} ≡ {ξ, Zξ}, (5.1)

built on a spinor ξ(Z) which satisfies the FSS (4.10) together with some corre-
sponding functions η(Z), Φ(Z). Let three its projective components be functionally
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independent; then one may also consider as functionally independent all four its
components

{ξA, κA = ZABξB}. (5.2)

By this, it may be shown that components of the principal spinor, on the contrary,
are functionally dependent and may be considered as dependent on coordinates
only through the components of the twistor (5.2):

ηA(Z) = ηA(σ), σ(Z) = σ(ξ, κ) ≡ σ(ξ(Z), Zξ(Z)). (5.3)

The choice of generating function σ(ξ, κ) as well as of the functional dependence
on it of the components of principal spinor ηA(σ) may be quite arbitrary (certainly,
if one provides necessary smoothness conditions).

It appears that dependence on coordinates of the components of spinor ξA(Z)
can be by this determined from the solution of algebraic system of two equations
of the form:

dσ

dξB

= 0. (5.4)

Substituting after this the solution ξ(Z) into (5.3), one obtains expression of the
principal spinor η(Z). By this, the “field” matrix ΦAB is degenerate and equal to

ΦAB =
dηA

dσ

∂σ

∂κB
. (5.5)

Thus, any differentiable function of twistor variable σ(ξ, κ) gives rise to a class
of equivalent (with respect to functional dependence of the components of spinor
ηA) solutions to FSS. These solutions are in evident correspondence to the CEE
solutions of the I class described in section 3.

Solutions of FSS of the II class

Let now three projective twistor components (5.1) be functionally dependent;
then, again with account of arbitrariness of the choice of the fourth component
of general twistor, one may consider that there exist two functional constraints
between its components (5.2) of the form

Π(D)(ξA, κA) = Π(D)(ξA, ZABξB) = 0, (D) = 1, 2. (5.6)

Resolving this system of algebraic equations, one can find the explicit form of the
spinor ξB(Z). Differentiating equations (5.6) with respect to coordinates, one can
show (for details see [17]) that the components of ξ satisfy differential equations
of the form

∇ABξC =

[
−∂Π(D)

∂κA
Q−1

(D)C

]
ξB ≡ ΨCAξB, (5.7)
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where the notation ΨCA for quantities in square brackets is introduced and Q−1
(D)C

– for the matrix, inverse to

Q(D)C :=
dΠ(D)

dξC

. (5.8)

In invariant Pfaffian form system of equations (5.7) may be written down as follows:

dξ = ΨdZξ. (5.9)

Under identification of the principal and additional spinors η(Z) ≡ ξ(Z) and the
function Ψ(Z) with the “field” Φ(Z) (i.e. with left semi-derivative “field”), this
system is evidently itself a solution of FSS correspondent to generating twistor
functions (5.6).

Actually, this case is of especial significance for further applications of biquater-
nionic analysis in algebrodynamical framework; in preceding articles the system
(5.9) and corresponding full matrix system

dF = ΨdZF, (5.10)

in which F (Z) is a degenerate (det F = 0) biquaternionic field constructed by means
of two proportional spinors ξ(Z), has been called the generating system of equations
(GSE). Indeed, as we shall see later on, any solution of the GSE naturally gives
rise to a solution of free equations of Maxwell, Yang-Mills and other fundamental
(massless) equations of relativistic fields. We note that from mathematical point
of view the GSE represents itself a special case of the B-differentiability condi-
tions under which the right semi-derivative R(Z) is identified with the principal
biquaternionic “field” F (Z).

Let us present now the general form of the FSS solutions of II class that cor-
responds to some arbitrary composition of the two generating twistor functions
Π(D)(ξA, κA). From these, resolving the algebraic equations (5.6) for the spinor
ξ(Z) and computing the quantities Ψ(Z) by means of formulas (5.7),(5.8), one
obtains a complete solution to the GSE (5.9). By this, it turns out that the
components of principal spinor η(Z) may be arbitrary (and generally different)
functions of twistor components (5.2):

ηA(Z) = ηA(ξ, κ) ≡ ηA(ξ(Z), Zξ(Z)). (5.11)

Let us note also that by virtue of the constraints (5.6) only two of these twistor
components are actually independent. Finally, corresponding expression for the
“field” Φ(Z) is obtained from the already found solution of GSE {Ψ(Z), ξ(Z)} and
arbitrarily chosen dependence of components of the principal spinor (5.11) in the
following way:

Φ(Z) = (MΨ(Z) + N(E + ZΨ(Z)), M := ‖∂η

∂ξ
‖, N := ‖∂η

∂κ
‖, (5.12)
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where E represents again the 2 × 2 unit matrix. As the result, one obtains that
any pair of independent functions of twistor variable Π(D)(W) ≡ Π(D)(ξA, κA) gives
rise to a class of equivalent (in respect of the arbitrariness of mutual dependence
of the components of the principal spinor ηA(W)) solutions of the FSS. Certainly,
this class corresponds to the II class of solutions to CEE described in section 3.

Thus, we come to the general solution of FSS (4.10). Indeed, since from the
three projective components of principal twistor (5.1) either all three or only two are
functionally independent 2, any solution to FSS belongs either to the first or to the
second class. That is why any (almost everywhere analytical) solution to FSS may
be obtained from some generating function of twistor variable (I class) or from a pair
of such functions (II class) through the above described purely algebraic procedure.
In compare with general solution to the complex eikonal equation described earlier
in section 3 (in a fixed gauge) and in articles [17, 18], in the case of FSS there exists
an additional arbitrariness of the choice (of dependence on twistor variables) of the
components of the principal spinor which may be either functionally connected (for
the I class solutions) or independent (for solutions of the II class).

Such arbitrariness may be naturally eliminated if one chooses as fundamental
the generating system of equations (5.9) or corresponding full-matrix system (5.10).
All solutions of the latter belong already to the second class of the FSS solutions
and are completely determined by the choice of a pair of generating functions of
twistor variable (5.6) (or, under fixing of gauge for projective twistor (see below)
– even by a sole generating “World” function). Therefore, we proceed now to
the detailed examination of properties and solutions of this universal system of
equations.

6 Biquaternionic differentiability and the gauge fields

In the algebrodynamics, conditions of biquaternionic differentiability (2.1) and,
particularly, principal case of them – the generating system of equations (5.9),
(5.10) – are considered as the unique primary equations of physical fields identified
with differentiable B-functions. By this, in order to guarantee the theory to be
relativistic invariant, one has to restrict the complex coordinates Z to the subspace
of Hermitian matrices Z 7→ X = X+ with the Minkowski metric det X = (x0)2 −
(x1)2 − (x2)2 − (x3)2. The GSE (5.9) takes then the following form:

dξ = ΨdXξ (6.1)

and preserves it (including the Hermitian structure of coordinate matrix) under
the following symmetry transformations:

X 7→ P+XP, ξ 7→ P−1ξ, Ψ 7→ P−1Ψ(P+)−1, (6.2)

2 Statement that at least two components of a generic twistor are always independent is proved,
for example, in monograph [22]
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where the quantities ξ(Z) and Ψ(Z) behave themselves as an SL(2,C)-spinor and a
complex 4-vector respectively. Of course, there exists also a more general symmetry
group (6.1), namely, the conformal group of Minkowski space, and just this fact
predetermines the existence of twistor structure introduced above.

It should be noted, however, that the property of Hermitiance represents itself
some superfluous requirement which is not motivated by the internal structure of
initial algebra of biquaternions. In the last section we shall demonstrate in which
way the structure of Minkowski space is actually encoded in the structure of the
full vector space C4 of the B-algebra. In account of this circumstance, in this and
subsequent sections we preserve, as a rule, the holomorphic structure of theory
dealing, as before, with complex coordinates Z = {zµ} and, correspondingly, –
with GSE in its previous form (5.9), (5.10). When only theory acquires an explicit
physical interpretation, we accomplish transition to the real coordinates {xµ} or, in
other words, – to the Hermitian matrix of Minkowski space coordinates X = X+.

Let us recall now that the GSE (5.9) is over-determined (8 differential equations
for 6 unknown functions). Therefore, some conditions of compatibility (integrabil-
ity etc.) must be fulfilled which let to obtain from (5.9) some restrictions on both
the spinor ξ(Z) and the vector field Ψ(Z). However, before we start to consider
these, it is necessary to examine the gauge nature of the field Ψ(Z) that turns to
be essentially distinct form generally accepted one. Let us also note that further
in this and subsequent sections we follow mostly the exposition of the discussed
questions presented in [22, 26].

It is easy to see that well known from the field theory gauge U(1)-
transformations of the form

ξ 7→ exp iα(X)ξ, Ψ 7→ Ψ− i∇ ln α, α ∈ R (6.3)

or their natural complexification, do not leave the GSE form-invariant. Nonethe-
less, in our papers [23, 22] it was shown that this system possesses the so called
“weak” (or “restricted”) gauge symmetry under which the gauge parameter α de-
pends on coordinates implicitly, only through the components of the transformed
spinor ξ(Z) itself and the spinor κ(Z) = Zξ(Z) twistor-conjugated to it:

α = α(W) = α(ξ, κ) ≡ α(ξ(Z), Zξ(Z)). (6.4)

Such transformations that correspond to the projective transformations of twistor
components, form a group which is a (proper) subgroup of the full gauge group
C (the latter being the complexification of U(1)) [22]). By this, the quantities
Ψ(Z) transform gradient-wise, that is, behave themselves as the potentials of some
gauge field. As we shall see below, this field may be naturally associated with
(complexified) electromagnetic field.

Indeed, the GSE (5.9) can be considered as the condition for the spinor ξ(Z)
to be covariantly constant (absolutely parallel) with respect to the B-valued differ-
ential 1-form of effective connection:

Ω = ΨdZ. (6.5)
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Interestingly, in the 4-vector representation the B-connection (6.5) gives rise to the
affine connection of the form [10, 23]:

Γµ
νρ = δµ

ν Ψρ + δµ
ρ Ψν − ηρνΨ

µ − iεµ
.νρλΨ

λ, (6.6)

that defines actually the effective complex Weyl-Cartan geometry. In such B-
induced geometry the non-metricity Weyl vector and the vector of the pseudotrace
of the skew-symmetric torsion are proportional to each other and are expressed
both through the components of the principal gauge field Ψ(Z) 3.

Making now use of the definition (6.5), let us rewrite the initial GSE (5.9) in
the form

dξ = Ωξ (6.7)

Dynamics of the connection Ω(Z) may be obtained through external differentiation
of (6.7) that results in the condition of integrability of the form

Rξ ≡ (dΩ− Ω ∧ Ω)ξ = 0, (6.8)

where (in parentheses) a curvature 2-form R appears. Since the spinor ξ is not
arbitrary but subject to (6.7), conditions of integrability (6.8) do not result in
the zero value of curvature 4. Quite remarkably, instead of trivial “zero curvature”
requirement, integrability conditions (6.8) result in the self-duality of curvature [10,
23].

In order to demonstrate this, let us note that for connection of the type (6.5)
the curvature R is of the following, rather special form:

R = (dΨ−ΨdZΨ) ∧ dZ ≡ π ∧ dZ, (6.9)

in which a novel B-valued 1-form π arises, with components

πAC = πACBDdZBD = (∇BDΨAC −ΨABΨCD)dZBD. (6.10)

Now the integrability conditions (6.8) take the form (π ∧ dZ)ξ = 0, or, in matrix
representation:

πACBDdZBD ∧ dZCEξE = 0.

With account of the symmetry properties of 2-spinors from the last relation one
obtains:

π C
A C(BξE) = 0,

3 Absolutely parallel fields in the framework of Weyl geometry free of torsion have been studied
in [31]; their properties are closely related to the symmetries of Weyl manifolds [32]. For real
connections of such type relations between the non-metrical and torsion parts were the object of
consideration in [29]

4 At this point our approach considerably differs from that accepted in the works of Buch-
dahl [33], Penrose [34] or Plebanski [35] who conjectured that integrability conditions resembling
(6.8) should be fulfilled for arbitrary spinor field (or for a wide class of solutions to the so called
“exact” systems of field equations)
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so that for any nontrivial solution ξ(Z) one has:

π C
A CB ≡ ∇CBΨ C

A + ΨBCΨ C
A = 0. (6.11)

Further, making use of the standard procedure and decomposing the curvature
(6.9) into self- and antiself-dual parts one finds that equations (6.11) represent
themselves just the conditions for the self-dual part of curvature to vanish. By
this, another antiself-dual its part R̄ has the form:

R̄ D
A (BC) = ∇C

(BΨAC) −ΨC
(BΨAC) (6.12)

and satisfies the additional integrability conditions R̄ξ = 0 (later in the article we
do not make use of these conditions).

Thus, though the curvature 2-form (6.9) of the connection 1-form (6.5) is not
(anti)self-dual by itself (i.e. (anti)self-dual in the “strong” sense), it necessarily
becomes antiself-dual on the solutions to GSE. For this reason this property of the
effective curvature of GSE has been called weak (anti)self-duality [39].

From physical viewpoint, expression (6.12) defines the field strength of some
matrix gauge field; in particular, its diagonal part

FBC = R̄ A
A (BC) = ∇A

(BΦAC) (6.13)

corresponds to the strength of (complexified) electromagnetic field whereas the
trace-tree part (6.12) defines the strength of a complex field of the Yang-Mills
type 5. Indeed, in account of the Bianchi identities

dR ≡ Ω ∧R−R ∧ Ω, (6.14)

self-duality of curvature R + iR∗ = 0 immediately implies the fulfillment of free
Maxwell equations for diagonal (electromagnetic) part of the 2-form F = Tr(R) =
R A

A :

dF ∗ = 0 = dF ≡ 0, (6.15)

as well as of Yang-Mills equations for trace-free part of curvature form F B
A =

R B
A − 1

2
Fδ B

A .
By this, though the electromagnetic 2-form F is, generally speaking, C-valued,

by virtue of its self-duality it is reduced to the real 2-form F connected with F in
the following way:

F = F− iF∗. (6.16)

5 In fact, here introduced field is not exactly what is generally accepted as the Yang-Mills one
with the gauge group SL(2,C) if one takes in account the restricted (weak) gauge symmetry.
However, the form of gauge equations is completely identical to that generally accepted. Restric-
tions take place only with respect to the class of the admissible solutions and their transformations
into each other under the action of the “weak” gauge group
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Certainly, for this form homogeneous Maxwell equations are satisfied too so that the
number of independent degrees of freedom turns to be equal to that for the ordinary
real electromagnetic field. In explicit form for C-valued strengths of “electric”
~E and “magnetic” ~H fields one has from (symmetric part of) the integrability
conditions (6.11):

~E + i ~H = 0, (6.17)

from where one gets =( ~H) = R ( ~E), =( ~E) = −R ( ~H) so that a pair {R ( ~E), R ( ~H)}
represents the R-valued electromagnetic field subject to Maxwell equations. In
addition, from (skew symmetric with respect to the spinor indices part of) equations
(6.11) one obtains the following “inhomogeneous Lorentz condition” [10, 23] for
the C-valued electromagnetic potentials Aµ ↔ ΦAD:

∂µA
µ + 2AµA

µ = 0, (6.18)

which must also hold identically on the solutions of GSE. Certainly, condition
(6.18) is not gauge invariant by itself, in the accepted “strong” sense; nonetheless,
it is invariant with respect to the “weak” gauge transformations (6.4), under the
requirement that the transformed potentials (together with some corresponding
spinor field ξ(Z)) really satisfy the GSE.

As to the Yang-Mills fields, they can be here always expressed through the
strengths of electromagnetic field and the spinor ξA itself and, therefore, cannot
be considered as independent. Note that separately the real and imaginary parts
of the trace-less component of the curvature F B

A will no longer satisfy free Yang-
Mills equations by virtue of non-linearity of the latters. That is why here the
Yang-Mills fields are essentially complex-valued. Other properties and peculiarities
of the Yang-Mills fields arising in the framework of algebrodynamical approach can
be found, say, in [23].

7 Null shear-free congruences associated with GSE

Let us now consider restrictions on the principal spinor ξA arising through
elimination of the gauge fields of potentials from the GSE (5.9). For this purpose,
let us write out the given Pfaffian system of differential equations in components:

∇BAξC = ΨCBξA. (7.1)

Multiplying the latter by the orthogonal spinor ξA with account of skew-symmetry
of the spinor norm ξAξA = 0 we get:

ξA∇BAξC = 0, (7.2)

i.e. the system of nonlinear equations for the components of the spinor ξ(Z). Let us
note that under the restriction of complex coordinates to the Minkowski subspace
M, as a consequence of (7.2), one obtains a (well known in the framework of GTR)
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system of equations for the principal spinor of the so called shear-free null (geodesic)
congruence (SFC) of 4-dimensional rectilinear “rays”:

ξBξC∇ABξC = 0. (7.3)

At this point we must warn the reader that here and below, in contrast to the
generally accepted formalism, we make no difference between the primed and un-
primed spinor indices under the restriction of coordinates to M. This is made to
preserve as much as possible the notations specific for the full complex space and
surely will not lead to any misunderstanding.

In our articles [22, 56] it was shown that initial system (7.2) differs from the
SFC system (7.3) only in a more rigid fixing of the gauge of the principal spinor ξ,
and is completely equivalent to the latter in what is related to the ratio of spinor’s
components. In particular, general solution of the SFC system (and, therefore, –
complete description of all such congruence on the background of Minkowski space
M) is explicitly related to its twistor structure and is represented by the famous
Kerr theorem [40, 19] in the form of implicit algebraic equation:

Π(ξ, κ) = Π(ξ, Zξ) = 0, (7.4)

where Π is an arbitrary homogeneous function of twistor arguments. From the
constraint (7.4) the ratio of spinor components may be found which only is defined
by the SFC system of equations (7.3). Analogously, the more rigid system of
equations for the principal spinor of GSE (7.2) has, as it has been shown earlier
(section 4), general solution (5.6) in the form of two equations that contain some
arbitrary and independent twistor functions Π(D)(ξ, κ). From these equations now
both spinor components ξ(Z) can be defined altogether.

It is well known that, in order to draw geometrically on M a SFC, one has to
define, via the principal spinor ξ(Z), the field of a (real-valued) null 4-vector kµ(X)
tangent to the (rectilinear) rays of the congruence as follows:

kµ(X) = ξ+σµξ, σµ = {E, σa}, (7.5)

where {σa}, a = 1, 2, 3 are the Pauli matrices and E – the unit 2× 2-matrix.
It is well known that, from the resolving of the condition of spinor incidence

(3.8) restricted to M,
κ = Xξ, (7.6)

with respect to the space-time points X, it follows [19] that twistor field {ξ, κ}
together with the SFC tangent vector kµ is transported in parallel along rectilinear
null directions defined by the vector itself. By this, as a parameter of transportation
along the rays one may choose the time coordinate itself [60, 18, 61].

Let us note now that for physical applications only projective components of
the GSE twistor are of importance that are defined, say, by the ratio of spinor
components ξ1/ξ0 = G and equal then to

κ0 = wG + u, κ1 = vG + p, (7.7)
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where u, v, w, p are the complex matrix coordinates (3.5) two of which (u, v) become
real under the restriction to M whereas the two others (w, p) become complex-
conjugated. By this, both systems (7.2) and (7.3) for fundamental spinor field G
turn to be equivalent to a pair of PDE’s of the following form:

∇wG = G∇uG, ∇vG = G∇pG, (7.8)

General analytical solution of equations (7.8) for function G(X) now follows im-
mediately from the gauge invariant its representation (5.6) in the form of a unique
algebraic equation 6

Π(G, κ0, κ1) = Π(G,wG + u, vG + p) = 0, (7.9)

that implicitly defines the function G(X). Here Π is an arbitrary holomorphic
function of three complex twistor variables. Equation (7.9) expresses itself the
fact of functional dependence of the three components {G, κ0, κ1} of the projective
twistor W associated with solutions to GSE. For the SFC equations (7.3) this
equation is well known representing the Kerr theorem in a fixed gauge.

Let us notice now that solutions of (7.8) are defined almost everywhere except
the branching points of the G(X)-function that correspond to multiple roots of the
Kerr equation (7.9) and are defined by the condition of the form:

P :=
dΠ

dG
= 0. (7.10)

Now, multiplying the two equations (7.8) one can verify once more the fact of
fulfillment of the complex 4-eikonal equation for the field G(X) in the form:

∇uG∇vG−∇wG∇pG = 0, (7.11)

On the other hand, differentiating these equations one can check that G(X) satisfies
also the linear wave (d’Alembert) equation [41, 39, 56]

utG ≡ (∇u∇v −∇w∇p)G = 0. (7.12)

We mention also that in account of (7.11) any C2-function λ(G) is also harmonic
on the solutions of GSE:

utλ(G) = 0. (7.13)

Further, making use of the expression (5.7) for potentials ΨAB and taking in
account equation (7.11), we can express the strengths of electromagnetic field (6.13)
through the second order derivatives of ln G:

F00 = ∇u∇p ln G, F11 = ∇v∇w ln G, F01 = ∇w∇p ln G, (7.14)

6 It may be compared with general solution of the complex eikonal equation of the II class, see
section 3
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so that the fulfillment of free Maxwell equations for the strengths (7.14) follows
directly from the wave equation (7.13) for λ = ln G. Now, differentiating twice
the identity (7.9) with respect to the coordinates {u, v, w, p}, we obtain a very
important (and having none analogues in literature) representation of the strengths
of electromagnetic field (7.14) through the twistor variables [22, 26]:

FAB =
1

P

(
ΠAB − d

dG
(
ΠAΠB

P
)

)
, (7.15)

where the function P is defined by (7.10) and {ΠA, ΠAB}, A, B = 0, 1 denote the
(first and second order) derivatives of the function Π with respect to its twistor
arguments κ0, κ1. Below we shall return back to this compact expression of the
strengths of the associated electromagnetic field.

Close connections between the GSE and SFC equations gives us an opportunity
to introduce one more geometrophysical structure – an effective Riemannian metric.
Indeed, it is well known [40, 42] that it is possible to deform the flat space-time
metric ηµν into a metric gµν of the Kerr-Schild type:

gµν = ηµν + hkµkν (7.16)

so that all the defining characteristics of the SFC – geodesity, twist and shear-free
property – are preserved under such a deformation. Here h is some scalar function
of coordinates, and the null (with respect to both the flat and deformed metrics)
congruence k(X) defined in (7.5) has the following projective invariant form:

k = du + Ḡdw + Gdw̄ + GḠdv, (7.17)

where as Ḡ the quantity complex conjugated to G is denoted.
Let us turn now to the results of classical paper [40] in which it has been proved

that metric (7.16) satisfies the electrovacuum Einstein-Maxwell system of equations
for functions G obtained as the solutions of the Kerr algebraic equation (7.9) with
linear with respect to the twistor arguments κ0, κ1 generating functions Π :

Π = ϕ + (qG + s)κ1 − (pG + q̄)κ0. (7.18)

Here ϕ = ϕ(G) is an arbitrary analytical function of the complex variable G, s,
p are real and q – complex constants. Not going in details, we note that accord-
ing to the results of paper [40] scalar function h in (7.16) is defined, up to an
arbitrary constant, by initial generating function Π and another function Ψ(G)
independent on ϕ(G) and related to the electromagnetic field of the solution of
Einstein-Maxwell system. Such fields are defined in the curved space with metric
(7.16) and are, generally, different from those arising in our approach and satisfying
Maxwell equations on the flat space-time background 7. Nonetheless, for the most

7 At the same time both these types of fields are, generally, different also from the fields which
may be defined for any SFC through the twistor Penrose transform, see, e.g., [19], chapter 6
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physically interesting solutions like those of Reissner-Nördstrem or Kerr-Newman
expressions for both these fields are nearly identical differing only in respect that
in our approach electric charge is fixed in absolute value by existing “master”
structure of GSE (see section 8 below).

It was also shown in [40, 41] that singularities of curvature of the effective
Kerr-Schild metric (7.16) are defined just by the condition (7.10). On the other
hand, it follows from expression (7.15) that the same equation P = 0 defines the
locus of singular points of associated electromagnetic field. The very same condition
may be checked to define singularities of the Yang-Mills (YM) field associated with
solutions of GSE 8.

Thus, to any solution of the GSE it can be naturally put in correspondence
some electromagnetic, complex YM and curvature (effective gravitational) fields.
These satisfy respectively the free (complexified) equations of Maxwell, Yang-Mills
and, at least in the basic stationary case – the electrovacuum Einstein-Maxwell
system 9. Singularities of all these fields are defined by one and the same condition
(7.10) and completely coincide in space and time. This remarkable fact makes it
possible, in the framework of algebrodynamical approach based on the GSE, to
consider particles as common singularities of all the associated fields. We shall
develop this conception in the subsequent section.

8 Singular “particle-like” solutions of GSE with
self-quantized electric charge

We present here a brief review of the main classes of solutions of the GSE
and of the associated Maxwell equations known for the present. All these can be
obtained through the choice of a generating function Π with subsequent resolving of
algebraic Kerr equation (7.8) and calculation of derivatives. If one restricts himself
by the simplest case of solutions that can be obtained in explicit form, he has to
consider only functions Π quadratic in twistor arguments (linear functions lead to
solutions with zero field strengths (7.14)) of associated electromagnetic field.

Fundamental static solution is generated by the function Π of the form

Π = Gκ0 − κ1 + 2ia ≡ G(wG + u)− (vG + p) + 2ia, (8.1)

(a = Const ∈ R) which does not contain the time coordinate. Equating the
function to zero and resolving the quadratic equation with respect to the unknown
G one gets (under restriction of coordinates to the real Minkowski space):

G =
p

(z + ia)± r∗
≡ x + iy

(z + ia)±
√

x2 + y2 + (z + ia)2
. (8.2)

8Additional singularities of the YM field strengths correspond to poles of function G(X) [21, 22]
9 Correspondence between shear-free null congruences and gauge fields has been studied for

the case of a curved (algebraically special) space-time background in our paper [57]
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Electromagnetic field (7.14) corresponding to the above solution,

~E − i ~H = ± ~r∗
4(r∗)3/2

; ( ~E + i ~H = 0), (8.3)

where ~r∗ = {x, y, z+ ia}, possesses the singular locus in the form of a ring of radius
a, the only possible value of electric charge q = ±1/4 (in the dimensionless units
used) and a dipole magnetic and quadruple electric moments equal respectively to
qa and qa2 [39, 56]. It one digresses from the restrictions on charge, the electromag-
netic field (8.3) together with the Riemannian metric (7.16) corresponding to the
SFC (7.17), precisely reproduces the field and metrics of the Kerr-Newman solution
(in the coordinates used in [40]). In the particular case, when a = 0, solution (8.2)
corresponds to the stereographic projection S2 → C and the fields turn into the
Coulomb electric field and the Reissner-Nördstrem metric.

Self-quantization of electric charge is a fundamental property of the GSE solu-
tions discovered in [10, 23]. This property follows from the self-duality conditions
(6.17) which, together with the property of gauge invariance of GSE, leads to the
restriction q = N/4, N ∈ Z on the admissible values of electric charge of the
field associated with any solution of GSE 10. This property has both topological
and purely dynamical reasons, the latters being connected to the over-determined
structure of the GSE. Proof of general theorem on charge quantization in the
framework of algebrodynamics is presented in the articles [26, 58].

By this, it is necessary to mention that, in contrast to some other, purely
topological approaches to the problem of the charge quantization [43, 44], in the
context of the GSE the charge of fundamental static solution (8.2) can possess only
a unit in modulus value and, consequently, can be naturally treated as elementary
charge. Together with the known property of the Kerr-Newman solution to have
the gyromagnetic ratio g = 2, equal to that for the Dirac particle [45], appearance
of elementary charge in the theory justifies the numerous attempts to interpret the
ring singularity of fundamental solution (8.2) in capacity of the classical model of
electron. Such attempts have been undertaken, say, in the models of Lopes [46],
Israel [47] or Burinskii [48] based exclusively on the properties of the solutions of
Einstein-Maxwell system 11.

According to the general theorem proved in [41] (see also [48]), all static solu-
tions of the SFC equations (and, consequently, – of the GSE) for which the singular
locus is bounded in 3D-space (below we call them particle-like solutions [27]) reduce

10 In the B-electrodynamics invariant with respect to the so called duality transformations actu-
ally not electric but the effective magneto-electric charge is physically significant and quantized,
and the problem of magnetic monopole gets a natural solution [58]

11 However, recently in our work [59] it has been proved that the Kerr congruence is unstable
in the “Arnold’s sense”, i.e. with respect to a small alteration of parameters of the generating
function (8.1) under which the static singular Kerr ring transforms into the ring uniformly ex-
panding and “irradiates to infinity”. Resolving of the instability problem requires, perhaps, the
transition to a novel “causal Minkowski geometry with phase”, see discussion in section 9 below
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themselves (up to the 3D rotations and translations) to the Kerr solution (8.2). If,
however, one would remove requirement on a solution to be static and leave the
class of functions (7.18) considered in [40], he can find a lot of time-dependent
“particle-like” solutions with bounded singularities of different dimensions, tempo-
ral dynamics and spatial shapes.

In particular, the axisymmetric solution of the particle-like type generating by
the function

Π = κ0κ1 + b2G2 = 0, b = Const, (8.4)

has been found in [39, 21]. For real-valued b it describes two point-like singularities
with elementary unlike charges +1/4, −1/4 accomplishing a counter hyperbolic
motion (i.e., uniformly accelerated). Electromagnetic field for such solution

Eρ = ±8b2ρz

∆3/2
, Ez = ∓4b2M

∆3/2
, Hϕ = ±8b2ρt

∆3/2
, (8.5)

corresponds to that of the well known Born solution. By this, the following nota-
tions are used:

ρ2 = x2 + y2, s2 = t2 − z2, M = s2 + ρ2 + b2, ∆ = M2 − 4s2ρ2,

and the field singularities are defined by the condition ∆ = 0. For purely imaginary
b = ia, a ∈ R initially, at t = 0, one has an electrically neutral ring-like singularity
of radius a which in the course of time turns into an expanding torus. After the
time passed t = |a| singular locus transforms itself into a self-intersecting torus
represented at Fig.1.

t=0

t>|a|

Figure 1: The shape of singular locus for electromagnetic field (8.5) of electrically neutral
solution (8.4) at initial (t = 0) and final (t > |a|) instants
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Let us here mention also the particle-like solution whose singular locus is 8-
shaped at initial moment, and the wave-like solution with a helix-like singularity
[27]. The latter (corresponding to the generating function more complicated than
the quadratic one) represents itself an analogue of electromagnetic wave in the
algebrodynamical context.

If one gives up the condition for generating function to be quadratic, he comes
to a wider class of the GSE solutions and corresponding solutions of Maxwell
equations with extremely complicated structure of singular locus. In particular,
in [18, 20, 61] a solution of such type has been presented which describes the
process of annihilation of a pair of oppositely charged point-like singularities. We
have also found therein a solution with a “photon-like” singularity (in the form of
a pair of crossed rings) moving uniformly and rectilinearly with the speed of light.

Thus, in a purely algebraic way a wide class of explicitly or implicitly given
solutions of free Maxwell equations with complicated and combined structure of
point-like or extended singularities has been obtained. Considerable part of these
solutions has not been known previously, and even their very existence has not been
discussing. These solutions are well defined everywhere except the points at which
the electromagnetic field strength turns to infinity. Locus of these singular points
(at a given instant) may be 0-, 1- and even 2-dimensional (as it takes place for
the case of the torus-like singularity (8.5)); moreover, it may dynamically change
its dimension (say, for the same solution (8.5)). However, for solutions of general
type, free of any type of symmetry, this singular locus is always one-dimensional
and consists of a number of closed or infinite curves (“strings”) [20]. For solutions
of particle-like type singular locus is bounded in the 3D physical space.

Despite the initial “vacuumness” of gauge equations arising from the structure
of GSE, the field singularities define spatial distribution and temporal dynamics of
an effective field source at the points of whose location the property of analyticity
of solutions becomes broken. Therefore, in contrast to the ordinary approach where
an initially posed source defines electromagnetic field in surrounding space, in here
presented conception, on the contrary, almost everywhere analytical field subject to
free Maxwell (Yang-Mills) equations predetermines itself the location of its singular
sources. The considered solutions are well defined in the whole infinite space-time
except at a singular set of zero measure. They are obtained algebraically from an
arbitrary generating function and do not require any initial or boundary conditions.

Moreover, it appears to be impossible, generally, to reduce this singular locus
to a standard description covering it by a family of δ-like distributions, owing to
essential multi-valuedness of charged solutions of the Kerr type. Nonetheless, the
whole set of “quantum numbers”, the shape and dynamics of such singularities are
correctly defined and quite nontrivial, this being related to the so called hidden
nonlinearity [51, 43] of Maxwell (and Yang-Mills) equations in the framework of
algebrodynamics, that is, to their secondariness with respect to nonlinear structure
of the primary GSE (as integrability conditions of the latter).
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It is just the presence of “master” equations – the GSE – that ensures the
existence of a number of “selection rules” even for solutions of linear Maxwell
equations, restrictions on admissible values of electric charge among them, and
results also in the breakdown of the superposition principle (since, say, a sum
of solutions satisfies the linear Maxwell equations but quite not necessarily – the
primary GSE itself!)

The over-determined primary GSE is, generally, not also invariant with respect
to the spatial reflections (and, perhaps, – to the time reversal) [23]. These in-
variances are restored only at the level of consequences, integrability conditions of
these primary equations, namely – at the level of Maxwell, Yang-Mills and like
equations. Such situation seems to be unique for the field theory and, on the other
hand, is completely adequate for the observed physical reality and seems to be much
perspective in this respect to describe the P-violation and the time irreversibility.

A more detailed discussion of the status of singular particle-like solutions in
algebrodynamics the reader can find in our works [23, 27, 58, 18].

9 B-induced complex space-time geometry
and the ensemble of dublicons

A beautiful representation of the solutions of SFC equations (and, consequently,
– of our biquaternion-induced GSE) has been suggested in the works of E.T. New-
man et al. [49, 52, 53] and developed later in the article [50] and in a series of
subsequent works of A. Ya. Burinskii and of E.T. Newman with collaborators. In
this representation one considers a “virtual” point-like charge “moving” along an
arbitrary curve {zµ(τ)}, τ ∈ C in the complexification of Minkowski space CM. In
this case the “trace” of the complex null (“light-like”) cone of the “moving” charge
on the real Minkowski “slice” of complex space M forms there a null congruence
of rays which appears always to be shear-free.

The Kerr congruence represents itself only a simplest example of such repre-
sentation (its generating point source is “at rest” at some place of “imaginary”
subspace of CM supplementary to M). The above presented solutions of GSE
and corresponding SFC can all be obtained from such Newman’s representation.
On the other hand, these examples demonstrate that for such “complexified”
Lienard-Wiehert fields the structure of singular locus can be very complicated and
consists, generally, of a great number of one-dimensional curves – strings.

In the algebrodynamical context complexified Minkowski space CM arises un-
avoidably as the full vector space of the biquaternion algebra B. At the same
time, the above used procedure of restriction of coordinates to the real space-time
M looks artificial and motivated only via physical considerations. Indeed, this
subspace does not even form a subalgebra in B and is invariant neither under the
B-automorphisms nor under the full group of symmetry transformations (4.1).

On the other hand, the group of B-automorphisms SO(3,C) consists of 6 real
parameters and is 2:1 isomorphic to the Lorentz group SO(3, 1). One does not know
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any other group with properties like these. Quite reasonably, the algebra B and its
symmetry group SO(3,C) have been used in the works of A. P. Yefremov [54] for
construction of the so called quaternionic theory of relativity in context of which
the invariant subspace C3 has been considered in capacity of the primordial space-
time with three space-like and three time-like coordinates. In order to reduce
three-dimensional time to physical one-dimensional, some additional requirements
of orthogonality have been imposed.

From the author’s viewpoint, such “exotic” interpretation of the properties of
biquaternion algebra is quite unnecessary. The matter is that its invariant subspace
C3 can be in a natural way mapped into the “causal” domain of the physical
Minkowski space-time equipped with additional internal fibre-like variables [55].
Specifically, the principal invariant of initial complex space

σ = (z1)
2 + (z2)

2 + (z3)
2 (9.1)

can be separated into a non-compact “modulus-like” and compact “phase-like”
parts. It is just the first part represented by the real-valued nonnegative invariant

S2 := σσ∗ ≥ 0, (9.2)

that predetermines the observable “spatially extended” physical macro-geometry.
whereas the second “phase” part of invariant σ is perceived as defining the internal
geometry of the “fibre”. By this, the most important result of the above cited
paper consists in the fact that the positively definite (or null) SO(3,C)-invariant
(9.2) can be identically represented in the form of Minkowski-like interval:

S2 = σσ∗ ≡ T 2 − | ~X|2, (9.3)

where the real-valued quantities

T := (~z · ~z∗), ~X := i[~z × ~z∗] (9.4)

under SO(3,C)-rotations transform themselves as time and space coordinates of
Minkowski space under the Lorentz-like transformations do. In definition (9.4)
parentheses and square brackets denote the scalar and vector product of 3D (com-
plex) vectors respectively.

Thus, one can really consider the algebra of biquaternions B as the space-time
algebra, and the Minkowski geometry is induced by this via the quadratic mapping
of complex coordinates of the invariant subspace C3 of the full vector space of
B into the internal, “causal” domain of the light cone of M including its null
boundary. In this connection, apart of the positively definite Minkowski interval
(!) (9.3) there arises another phase invariant of Lorentz transformations (precisely,
of SO(3,C)-rotations) that might turn to be closely related to universal quantum
properties of matter and to manifestations of quantum interference in particular.
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In accord to the here discussed notions, the “true” primordial dynamics of
matter-like formations (singularities, solitons etc.) takes place just in the initial
complex space whereas the observable, “shadow-like” dynamics – in the “causal
Minkowski space-time” it induces. Such approach makes it possible, in particular,
to successfully realize the beautiful old idea of Wheeler-Feynman about “reproduc-
tion of electrons from one sole electron-germ”.

Specifically, let the point particle, in accord with the Newman’s representation,
“moves” in CM along a “trajectory” {zµ(τ)}, τ ∈ C of general (sufficiently com-
plicated) form. Then it can be shown [61] that any position of this particle will
be strictly correlated with other its positions on its own Worldline. Precisely, this
correlation is established through equal values of fundamental twistor field of the
null (complex) congruence generated by the particle-source and, correspondingly,
– through the equation of complex null cone.

The situation strongly resembles the known procedure for the Lienard-Wiehert
fields in the framework of classical electrodynamics. However, in contrast to the
case of real space-time, in complex space the “light-like cone equation” always have
a considerable (if not infinite) countable number of roots. Consequently, a particle
will “see” and “receive signals” “from itself” at different its locations on a unique
trajectory. The arising set of identical but differently located and moving particles
has been named in our paper [61] the ensemble of duplicons.

Apart of the idea of duplicons, a problem of complex time unavoidably arises in
the context of complex dynamics which turns to be related to general conception
of physical time in the algebrodynamical paradigm [60, 18, 61]. Specifically, to
each of the GSE solutions there corresponds some shear-free null congruence of
rays (section 7). This can be considered as the basic element of the pattern of the
World arising in the algebrodynamics, namely, – as a flow of primordial light, the
so called Prelight flow [60, 18]. In this connection, the whole “matter” represented
in the theory by particle-like singular formations of associated fields appears as a
set of caustics or focal lines of the fundamental Prelight flow.

Returning now back to the problem of time, let us note that on the real space-
time M the time coordinate plays the role of the parameter along the rays of
fundamental congruence so that the defining property of time in this approach is
the property of reproduction, of preservation of the primordial twistor field that
takes place along the congruence rays (the “rays of time”).

Speaking figuratively, in the presented theory time manifests itself as an auto-
morphism of the primary field. However, the electromagnetic and other associated
fields expressible via the derivatives of fundamental twistor field are, of course,
not preserved along the rays as well as the caustics-particles themselves. Just this
circumstance defines another fundamental function of time that is related to the
motion and variability of different forms of physical matter.

Situation drastically changes in complex space CM where the twistor field is
defined up to a pair of arbitrary complex parameters and remains constant along
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the 2D complex planes [19, 61]. If, however, one requires in addition the property
of preservation of the “matter-like” structure of caustics, then only one complex
parameter remains free which thus can be interpreted as complex time [61]. Under
this situation, however, there remains indefinite the succession of the occurrences
of events (of the “states” of the Universe), and in absence of any grounds for its
fixing it is the most natural to regard the alterations of complex time as completely
random (casual). Then the arising for the ensemble of duplicons stochasticity can,
apparently, be closely connected with quantum uncertainty and quantum theory
in the Feynman formulation in general. However, we are only coming to find the
correct realization of these ideas.

10 Conclusion

In this article we did not regard as our principal goal to present a novel field
model or a powerful algebraic method to obtain new complicated solutions of gener-
ally known equations of classical field theory. Instead we here attempted to succes-
sively reveal the properties of differentiable (analytical) functions of biquaternionic
variable, that is, to develop a novel version of noncommutative analysis. Nonethe-
less, general conditions of B-differentiability [10, 23, 24] reduce themselves to the
generating system of equations (5.9) which possesses an innate gauge and 2-spinor
(twistor) structures and shows remarkable connections with the structures and
language generally accepted in the formalism of relativistic field theory.

Essentially, it is sufficient to formulate only three principle conjectures in order
to physically interpret the initially abstract mathematical scheme:

1) on the space-time as a (real or invariant complex) subspace of vector space of
B-algebra,

2) on physical fields as differentiable functions of B-variable,

3) on particles as (bounded in 3-space) singularities of strengths (curvatures) of
the gauge and metrical fields directly associated with the primary B-differentiable
functions-fields.

From the physical viewpoint, the GSE may be considered as a rather specific
system of field equations (nonlinear, non-Lagrangian, over-determined) for an effec-
tively coupling 2-spinor and electromagnetic (Yang-Mills) fields so that equations
for both are not postulated but follow directly from integrability conditions or
“contractions” of the GSE itself.

Twistor structure also arises in a quite natural, “dynamical” way in the course
of integration of GSE and makes it possible to obtain the whole set of its solutions as
well as those of equations for associated gauge fields in a perfectly simple algebraic
way12.

12 Note that in the Penrose’s twistor approach [19, 30] in order to obtain the solutions of
wave-like (massless) equations it is sufficient to carry out an integration in twistor space; as to
the presented scheme, even such integration is redundant therein
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Particularly, from algebraic Kerr equation (7.9) a wide class of exact solutions
of linear Maxwell equations with spatially extended yet bounded structure of sin-
gularities can be directly obtained. In this connection, condition (7.10) plays the
role of the equation of motion for these particle-like formations and, at the same
time, defines their characteristics (“quantum numbers”) and spatial distribution,
realizing thus the Einstein’s conception of super-causality [38].

In consequence of breakdown of the superposition principle for solutions of
“master” equations – the GSE – temporal evolution of such particle-like objects
simulates the process of physical interaction whereas dynamical reconstructions
(bifurcations) of the structure of singular locus can be treated as transmutations
of particles, in particular, as emission / absorption processes. All these processes
obviously manifest close relationship to the theory of singularities of differentiable
mappings and the catastrophe theory [36].

We also hope that at least a number of remarkable properties of the GSE can
be interesting in the general context of field theory. Let us note here, in particular:
1) an opportunity to extend the class of physically important gauge field models
with account of the “weak” gauge symmetry (6.4) discovered for GSE or using
exceptional connections (6.5),(6.6) of the Weyl-Cartan type;
2) a natural opportunity to obtain proper “selection rules” for electric charge, spin
and other physical characteristics starting from an over-determined system of field
equations of the GSE type;
3) complete algebraization of the primary PDE’s for fundamental fields possessing
twistor structure;
4) possibility to define the spatial distribution and the law of evolution of the field
singularities without explicit resolving of field equations themselves (using instead
algebraic method of elimination of the principal field G(X) from the joint system
of equations (7.9), (7.10)).

One may imagine himself at least three possible points of view on the meaning
of algebraic structures presented in this article and on the fundamental GSE in
particular: as on a beautiful mathematical “toy”, on a powerful method to obtain
the solutions of the familiar field equations or, finally, as on a fundamental dynam-
ical system of equations primary with respect to generally accepted Lagrangian
structures. In this connection, the construction of classical dynamics on the base of
over-determined systems like GSE requires also quite new methods of quantization.
On the other hand, at this point one can try to explain quantum properties as a
whole via, say, the stochastic behaviour of an ensemble of particle-like field objects
(dublicons, solitons, etc.) or invoking other yet purely classical and algebraic in
nature methods and ideas.

In any case, in order to find a correct approach to quantization and explana-
tion of quantum properties of matter in general, it is necessary at the beginning to
carefully study the properties of classical solutions on the background of ordinary
Minkowski space-time and over the “phase extension of the Minkowski geometry”
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directly induced by the internal properties of the B-algebra and briefly considered
in the last section. We think that just the underlying complex geometry can actu-
ally turn to be the true pregeometry of physical space-time and, moreover, to be
responsible for universal quantum properties of matter and quantum uncertainty
in particular (in general context of an initially classical and deterministic theory).

To conclude, the already discovered properties of the B-differentiable functions-
fields and numerous geometrophysical structures they give rise to, looks like so
unusually and, on the other hand, to such a great extent correlate with models and
mathematical formalism of theoretical physics that force ourselves to ponder over
possible numerical origin of fundamental laws of nature [60, 62] and to turn again,
at a modern mathematical and physical level of comprehension, to the ancient
philosophy of Pythagor, Plato and their followers.

* * *
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This paper formulates main results of the geometry of Finslerian 4-spinors. First,
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Finsler geometry. Also, is formulated the procedure of dimensional reduction which allows
to rewrite the expression of the Finslerian length of a 16-vector in terms of 4-dimensional
geometric objects, and is described the corresponding isometry group.
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1 Introduction

In the works [1, 2], hyperspinors and their basic properties were considered.
The same mathematical objects were independently studied under the name of
N -component spinors in the papers [3, 4]. Finally, in the work [5], the general
algebraic theory of Finslerian N-spinors was constructed. The last term is more
suitable because it reflects the close connection between hyperspinors and Finslerian
geometry.

This paper is devoted to formulating the main facts of the geometry of Fins-
lerian 4-spinors. We show that twistors of R. Penrose [6] are a special case of
Finslerian 4-spinors and can be associated not only with pseudo-Euclidean geom-
etry, but also with Finslerian one. After deducing the expression for the length
of a vector in the 16-dimensional Finslerian space, we describe the corresponding
isometry group. We also formulate the procedure of dimensional reduction which
allows us to rewrite the expression for the Finslerian length of a 16-vector in terms
of 4-dimensional geometric objects.

2 The geometry of Finslerian 4-spinors

Let C4 be the vector space of 4-component columns of complex numbers with
respect to the standard matrix operations of addition and multiplication by ele-
ments of the field C. Let us consider the antisymmetric 4-linear form

[ξ, η, λ, µ] = εabcd ξaηbλcµd, (1)

where ξ, η, λ, µ ∈ C4, εabcd is the Levi-Civita symbol with the ordinary normaliza-
tion ε1234 = 1, the indices a, b, c, d run independently from 1 to 4, and ξa, ηb, λc,
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µd ∈ C. Here and in the following formulas, the summation is taken over all the
repeating indices.

The space C4 equipped with the form (1) is called the space of Finslerian
4-spinors. The complex number [ξ, η, λ, µ] is respectively called the symplectic
scalar 4-product of the Finslerian 4-spinors ξ, η, λ, and µ.

Since (1) is the determinant

[ξ, η, λ, µ] =

∣∣∣∣∣∣∣∣∣∣

ξ1 η1 λ1 µ1

ξ2 η2 λ2 µ2

ξ3 η3 λ3 µ3

ξ4 η4 λ4 µ4

∣∣∣∣∣∣∣∣∣∣

(2)

with the columns ξ, η, λ, µ, the symplectic scalar 4-product [ξ, η, λ, µ] vanishes if
and only if the Finslerian 4-spinors ξ, η, λ, and µ are linearly dependent [7]. In
particular, [ξ, ξ, ξ, ξ] = 0 for any ξ ∈ C4.

Let us find isometries of the space of Finslerian 4-spinors, i.e., the linear trans-
formations

ξ′ = Dξ ⇐⇒ ξ′a = da
bξ

b (D = ‖da
b‖; da

b ∈ C; a, b = 1, 4) (3)

which preserve the symplectic scalar 4-product:

[ξ′, η′, λ′, µ′] = [ξ, η, λ, µ] for any ξ, η, λ, µ ∈ C4. (4)

Substituting (3) and the similar expressions for η′, λ′, µ′ into the condition (4), we
obtain

[ξ, η, λ, µ] det D = [ξ, η, λ, µ] (5)

with regard to (2). Due to arbitrariness of ξ, η, λ, µ ∈ C4, the equation (5) implies
det D = 1. Thus, the isometries of the space of Finslerian 4-spinors form the group
SL(4,C).

If to equip C4 with the additional geometric structure, then the space of Fins-
lerian 4-spinors becomes the twistor space. Namely, let us consider Hermitian form

〈ξ, η〉 = ξ1η1 + ξ2η2 − ξ3η3 − ξ4η4, (6)

where ξ, η ∈ C4 and the over-lines denote complex conjugating. The complex
number 〈ξ, η〉 is usually called the pseudounitary scalar product of ξ and η. With
respect to the scalar product (6), C4 is the twistor space [6]. It is evident that the
transformations (3), which preserve the forms (1) and (6) simultaneously, make up
the so-called twistor group SU(2, 2) ⊂ SL(4,C). In this sense, twistors are a special
case of Finslerian 4-spinors.

Let us consider the subspace of the vector space C4 ⊗ C4 which consists of
Hermitian tensors. This subspace is isomorphic to the 16-dimensional real vector
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space Herm(4) = {X | X = X+} of all Hermitian 4 × 4 matrices with complex
elements. Here, the cross denotes Hermitian conjugating.

As a basis of the space Herm(4), we choose the following linearly independent
matrices

τ0 =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




, τ1 =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0




, τ2 =




0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0




, τ3 =




1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0




,

τ4 =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0




, τ5 =




0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0




, τ6 =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0




, τ7 =




0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0




,

τ8 =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




, τ9 =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0




, τ10 =




0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0




, τ11 =




0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0




,

τ12 =




0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0




, τ13 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0




, τ14 =




0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0




, τ15 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




. (7)

Then, for any X ∈ Herm(4), we have the expansion

X = XAτA (A = 0, 15), (8)

where XA ∈ R are components of the 16-vector X with respect to the basis (7).
Along with the matrices (7), we introduce another set of the Hermitian 4 × 4
matrices: τB = τB (B 6= 8, 15), τ 8 = 2τ8, τ 15 = 2τ15. Under such a choice of the
matrices, the remarkable relations

Tr(τAτB) = 2δA
B (A,B = 0, 15) (9)

are fulfilled. Here, δA
B is the Kronecker symbol. Because of (8) and (9),

XA =
1

2
Tr(τAX). (10)

Let us equip Herm(4) with the structure of the Finslerian space. To this end,
we define the length |X| of the 16-vector X ∈ Herm(4) in the following way:
|X| ≡ 4

√
det X. Computing the determinant of (8), we obtain the expression for

|X|4 in the basis (7):

|X|4 = GABCDXAXBXCXD =
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= X15
{
[(X0)2 − (X1)2 − (X2)2 − (X3)2]X8−

− [(X4)2 + (X5)2 + (X6)2 + (X7)2]X0 + 2[X4X6 + X5X7]X1+

+ 2[X5X6 −X4X7]X2 + [(X4)2 + (X5)2 − (X6)2 − (X7)2]X3
}−

− [(X0)2 − (X1)2 − (X2)2 − (X3)2][(X13)2 + (X14)2]+

+ [(X4)2 + (X5)2][(X11)2 + (X12)2] + [(X6)2 + (X7)2]×
× [(X9)2 + (X10)2]−X0X8[(X9)2 + (X10)2 + (X11)2 + (X12)2]+

+ X3X8[(X9)2 + (X10)2 − (X11)2 − (X12)2] + 2
{
[X0 −X3]×

× [X4X9X13 + X4X10X14 −X5X9X14 + X5X10X13]+

+ [X0 + X3][X6X11X13 + X6X12X14 −X7X11X14 + X7X12X13]

−X1[X4X11X13 + X4X12X14 −X5X11X14 + X5X12X13 + X6X9X13

+ X6X10X14 −X7X9X14 + X7X10X13 −X8X9X11 −X8X10X12]

−X2[X4X11X14 −X4X12X13 + X5X11X13 + X5X12X14 −X6X9X14+

+ X6X10X13 −X7X9X13 −X7X10X14 + X8X9X12 −X8X10X11]

−X4[X6X9X11 + X6X10X12 + X7X9X12 −X7X10X11]

+ X5[X6X9X12 −X6X10X11 −X7X9X11 −X7X10X12]
}
. (11)

Here, GABCD are components of the covariant symmetric tensor on Herm(4). Thus,
the Finslerian length of the 16-vector X ∈ Herm(4) in the basis (7) is the form of
degree 4 with respect to its components (10). It should be noted that the form
(11) is indefinite, i.e., the cases |X|4 > 0, |X|4 < 0 or |X|4 = 0 are possible. Since
|X|4 = det X, we have |X|4 = 0 if and only if det X = 0.

Any linear transformation (3) of the space of Finslerian 4-spinors induces the
transformation

X ′ = DXD+ ⇐⇒ X ′aḃ = da
cd

ḃ
ėX

cė (X ′ = ‖X ′aḃ‖; X = ‖Xcė‖) (12)

in Herm(4). Here, all the indices run from 1 to 4 and X ∈ Herm(4). It is evident
that the transformation (12) has the following properties:

1. If X = X+, then X ′ = X ′+.
2. The transformation (12) is linear with respect to X.
3. If det D = 1, then det X ′ = det X for any X ∈ Herm(4).

Since |X| = 4
√

det X, the last property means that the linear transformation (12)
with D ∈ SL(4,C) is a Finslerian isometry of the space Herm(4), i.e., |X ′| = |X|.
It is clear that all such isometries form a group. We will give the explicit matrix
description of this group in the basis (7).

Let us substitute the expansions X ′ = X ′AτA and X = XBτB into (12). We
then multiply the resulting equality by τA from the left, compute its trace, and use
the relations (9). As a result, we obtain

X ′A = L(D)A
BXB (A,B = 0, 15), (13)
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where

L(D)A
B =

1

2
Tr(τADτBD+) (14)

are elements of the matrix of the linear transformation (12) in the basis (7).
It should be noted that L(D)A

B ∈ R. Thus, for any D ∈ SL(4,C), the trans-
formation (13)–(14) preserves the form (11) so that GABCDX ′AX ′BX ′CX ′D =
= GABCDXAXBXCXD.

Since the group SL(2,C) ⊂ SL(4,C) is locally isomorphic to the group
O↑

+(1, 3) [8], it is interesting to consider the transformation (13)–(14) with
D ∈ SL(2,C), i.e., from the point of view of a “4-dimensional observer”. This will
allow us to represent the expression (11) for the Finslerian length of the 16-vector
X completely in the 4-dimensional form.

Let

D2 =




d1
1 d1

2 0 0

d2
1 d2

2 0 0

0 0 1 0

0 0 0 1




, det D2 = 1 (dâ
b̂
∈ C; â, b̂ = 1, 2). (15)

The matrices (15) form a subgroup of SL(4,C) which is isomorphic to the group
SL(2,C). Let us substitute the matrix D2 from (15) into (14) instead of D. Direct
computations show that

L(D2)00 =
1
2
(d1

1d
1
1 + d1

2d
1
2 + d2

1d
2
1 + d2

2d
2
2), L(D2)01 =

1
2
(d1

1d
1
2 + d2

1d
2
2 + d1

2d
1
1 + d2

2d
2
1),

L(D2)02 =
i

2
(d1

2d
1
1 + d2

2d
2
1 − d1

1d
1
2 − d2

1d
2
2), L(D2)03 =

1
2
(d1

1d
1
1 + d2

1d
2
1 − d1

2d
1
2 − d2

2d
2
2),

L(D2)10 =
1
2
(d1

1d
2
1 + d2

1d
1
1 + d1

2d
2
2 + d2

2d
1
2), L(D2)11 =

1
2
(d1

1d
2
2 + d2

1d
1
2 + d1

2d
2
1 + d2

2d
1
1),

L(D2)12 =
i

2
(d1

2d
2
1 + d2

2d
1
1 − d1

1d
2
2 − d2

1d
1
2), L(D2)13 =

1
2
(d1

1d
2
1 + d2

1d
1
1 − d1

2d
2
2 − d2

2d
1
2),

L(D2)20 =
i

2
(d1

1d
2
1 − d2

1d
1
1 + d1

2d
2
2 − d2

2d
1
2), L(D2)21 =

i

2
(d1

1d
2
2 − d2

1d
1
2 + d1

2d
2
1 − d2

2d
1
1),

L(D2)22 =
1
2
(d1

1d
2
2 + d2

2d
1
1 − d1

2d
2
1 − d2

1d
1
2), L(D2)23 =

i

2
(d1

1d
2
1 − d2

1d
1
1 − d1

2d
2
2 + d2

2d
1
2),
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(d1

1d
1
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1d
2
1 + d1

2d
1
2 − d2

2d
2
2), L(D2)31 =

1
2
(d1

1d
1
2 − d2

1d
2
2 + d1

2d
1
1 − d2

2d
2
1),

L(D2)32 =
i

2
(d1

2d
1
1 − d2

2d
2
1 − d1

1d
1
2 + d2

1d
2
2), L(D2)33 =

1
2
(d1

1d
1
1 − d1

2d
1
2 − d2

1d
2
1 + d2

2d
2
2),

L(D2)3+i
3+j = L(D2)8+i

8+j = M(D2)i
j (i, j = 1, 4), where (16)

M(D2)11 =
1
2
(d1

1 + d1
1), M(D2)31 =

1
2
(d2

1 + d2
1), M(D2)12 =

i

2
(d1

1 − d1
1),

M(D2)32 =
i

2
(d2

1 − d2
1), M(D2)13 =

1
2
(d1

2 + d1
2), M(D2)33 =

1
2
(d2

2 + d2
2),

M(D2)14 =
i

2
(d1

2 − d1
2), M(D2)34 =

i

2
(d2

2 − d2
2), M(D2)21 =

i

2
(d1

1 − d1
1),
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M(D2)41 =
i

2
(d2

1 − d2
1), M(D2)22 =

1
2
(d1

1 + d1
1), M(D2)42 =

1
2
(d2

1 + d2
1),

M(D2)23 =
i

2
(d1

2 − d1
2), M(D2)43 =

i

2
(d2

2 − d2
2), M(D2)24 =

1
2
(d1

2 + d1
2),

M(D2)44 =
1
2
(d2

2 + d2
2), (17)

L(D2)
8
8 = L(D2)

13
13 = L(D2)

14
14 = L(D2)

15
15 = 1, while the other elements of the

matrix of the transformation X ′A = L(D2)
A
BXB vanish. Thus, for D = D2, the

Finslerian isometry (13) has the form

X ′α = L(D2)
α
βXβ (α, β = 0, 3),

θ′i = M(D2)
i
jθ

j (i, j = 1, 4),

X ′8 = X8,

ϑ′i = M(D2)
i
jϑ

j (i, j = 1, 4),

X ′13 = X13, X ′14 = X14, X ′15 = X15, (18)

where L(D2)
α
β , M(D2)

i
j are given by (16)–(17) and the notation θi = X3+i, ϑj =

X8+j is used.
It was shown in the paper [5] that (16) and (17) are the elements of the matrices

of the transformations for a Lorentz 4-vector and a Majorana 4-spinor respectively.
Therefore, the result (18) asserts that, for D = D2, the 16-vector XA splits into
the Lorentz 4-vector Xα, the Majorana 4-spinors θi, ϑj, and the Lorentz 4-scalars
X8, X13, X14, X15.

This is the essence of the procedure of dimensional reduction allowing to display
the “4-dimensional structure” of 16-dimensional expressions. Let us apply this
procedure to the cumbersome formula (11) for the Finslerian length of the 16-vector
XA. Taking into consideration (18), we obtain

|X|4 = X15[X8gµνX
µXν − gµνX

µθγνθ]−
− [(X13)2 + (X14)2]gµνX

µXν −X8gµνX
µϑγνϑ+

+ 2X13gµνX
µθγνϑ + 2X14gµνX

µθγ5γνϑ + 1
2
gµνθγ

µθ ϑγνϑ, (19)

where µ, ν = 0, 3, ‖gµν‖ = diag (1,−1,−1,−1) is the matrix of components of the
Minkowski metric tensor in a pseudoorthonormal basis,

γ0 =




0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0




, γ1 =




i 0 0 0

0 −i 0 0

0 0 −i 0

0 0 0 i




, γ2 =




0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0




,

γ3 =




0 0 −i 0

0 0 0 i

−i 0 0 0

0 i 0 0




, γ5 = γ0γ1γ2γ3 =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0






480 Space-Time Structure. Algebra and Geometry

are the Dirac matrices in the Majorana representation [5], θ, ϑ ∈ R4 are
4-component columns of real numbers, and θ = θ>γ0, ϑ = ϑ>γ0 (> means
the matrix transposition). Thus, the expression (11) is written in the compact
4-dimensional form (19).

Conclusion

Summarizing, we make some remarks concerning the obtained results.
First of all, we should note the dual nature of twistors. Those are spinors of the

6-dimensional pseudo-Euclidean space with two time-like dimensions [6]. On the
other hand, as it was shown in this paper, twistors are a special case of Finslerian
4-spinors of the 16-dimensional vector space equipped with the metric form (11).

In addition, the paper contains the explicit description of isometries of the above
16-dimensional Finslerian space and the procedure of dimensional reduction which
allows us to write (11) in the 4-dimensional form (19). The latter is important
because it demonstrates the correspondence of our constructions to the standard
relativistic theory on the level of geometry.

The author is grateful to Yu. S. Vladimirov, S.V. Bolokhov, and A.V. Pilipenko
for helpful discussions of obtained results.

References

[1] D. Finkelstein. Hyperspin and hyperspace. Physical Review Letters 56, 1532–1533
(1986).

[2] D. Finkelstein, S. R. Finkelstein, C. Holm. Hyperspin manifolds. International Journal
of Theoretical Physics 25, 441–463 (1986).

[3] Yu. S. Vladimirov, A.V. Solov’yov. Physical structure of rang (4, 4; b) and 3-compo-
nents spinors. “Systemology and methodological problems of information-logic sys-
tems”. – Novosibirsk: Institute of mathematics SD AS USSR, 1990. – Computative
systems, vyp. 135, 44–66 (in Russian).

[4] A. V. Solov’yov. On theory of binary physical structures of rang (5, 5; b) and above.
“Systemology and methodological problems of information-logic systems”. – Novosi-
birsk: Institute of mathematics SD AS USSR, 1990. – Computative systems, vyp. 135,
67–77 (in Russian).

[5] A. V. Solov’yov and Yu. S. Vladimirov. Finslerian N -spinors: Algebra. International
Journal of Theoretical Physics 40, 1511–1523 (2001).

[6] R. Penrose and W. Rindler, Spinors and space-time. Spinor and twistor methods in
space-time geometry. Cambridge University Press, 1986.

[7] A. I. Kostrikin, Introduction in algebra. – Physmatlit, M., 1994 (in Russian).
[8] M. M. Postnikov, Lecures on Geometry. II Semester. Linear algebra. — Nauka, M.,

1986 (in Russian).



P.D. Suharevsky To the question on quartic geometry 481

To the Question on Quartic Geometry
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Emerging from A. D. Saharov’s ideas on Universe and applications to modern Cosmol-
ogy, are provided arguments for employing quartic symmetric forms as metric tensors.
A non-associative algebra of anti-commuting 4-order matrices whose squares are the
anti-commuting Pauli and Dirac matrices, is built. Further, are determined the equa-
tions of motion, which are quartic analogues of the Dirac equations; using the introduced
quadratic spinors, is derived the associated to the motion Lagrangian. As well, are de-
fined the infinite-dimensional extension of quaternions and their matrix representations,
a prerequisite for solving problems in the multilinear background.

MSC: 11R16, 70S99.

Sakharov multisheet models of the Universe and ”Big bang”

In 70–80s of the past century academician of the USSR Academy of Sciences
Andrey Dmitrievich Sakharov, the well-known nuclear physicist, who made the
determining contribution to the creation of the world first thermonuclear bomb,
published a number of articles about ”multisheet models of the Universe” [1].
The articles discussed ”pulsing” and ”oscillating” cosmologic models, which for a
long time attracted attention of the scientists. Sakharov proposed the term ”The
multisheet model of the Universe” in 1969. He considered it ”more expressive, more
appropriate to the emotional and philosophic meaning of the immense picture of
multiple repetitions of cycles of existence”. It is possible but not known for sure
that he had some another deep understanding on the term connected with sheets of
the Riemann surface, which appear as a result of integration of the quadric interval.

In 1970 his first preprint ”The multisheet model of the Universe” was published
[2]. In the preprint in his proof of the hypothesis of the multisheet structure of
the Universe Sakharov referred to the ideas of astrophysicist I. D. Novikov [3] on
”cross-linking” during a gravitation collapse of two four-dimensional spaces, one
of which is in the state of compression while the other is in the state of dilatation.
Sakharov considered an infinite sequence of such coupled linked spaces, which he
called sheets. His second prime assumption was the use of the extreme case of the
Freedman model of the Universe with the metrics:

ds2 = dt2 − {a(t)}2(dx2 + dy2 + dz2) (1)

and the law of variation of the scale: a(t) ∼| t |2/3. Taking into account that
the singularity of the metrics (1) at t → ∞ is the growth of arbitrarily small
agitations of density in unlimited number of times, in [2] the conclusion is made on
the possibility of gravitation collapses at ∆ε/ε ∼ 1, where ε is the average density
of energy including energy of gravitation nature. In the case when the Universe
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full of the dust ε ∼ 1/a3. Sakharov in [2] thinks that the so-called ”premature”
collapses in the compressing world earlier discussed in [4, 5], which correspond to
anticollapses of inhibited nuclei in the expanding world, are the same physical
processes.

Recently the hypothesis of Caldwell, Kamionkovsky and Weinberg, Phantom
Energy and Cosmic Doomsday [6], has been actively discussed in literature. It
proves that existence of the dark energy in the Universe, which at the values of the
characteristic parameter (”quintessence”) w ≡ p/ε in the interval −1 < w < −1/3
leads to observable accelerated expansion of the Universe (ε ∼ 1/a3(1+w)), in the
case of w < −1 will lead to the rip of the Universe within a finite period. This
catastrophe of the Universe got the special name ”Big Rip”. It is easy to notice
that this process is in the essence similar to the case Sakharov discussed for the
fluctuations of the Freedman Universe at t →∞ in [2] and his subsequent articles
listed in [1]. The difference is only in the time of the beginning of the catastrophe.
Therefore one may suppose that Big Rip will not lead to destruction of the Universe
but to linking of its two sheets and flowing of the matter to the other sheet with
subsequent compression of the Universe and possible turn of the time arrow. As
far as according to Sakharov at t < 0 the static laws with time reversal act there is
no paradox of inversion in his model. Hence the ideas of the multisheet structure
of the Universe again become topical.

We note that Sakharov in fact determined the coupled sheets of the Universe
as far as he used the quadric metrics. Because of the recent discussion of multi-
dimensional models of the Universe a consideration of spaces with Finsler metrics
presents great interest. Due to various reasons the preference is given to spaces
with quartic metrics sometimes called the quadraspaces [7]. It is interesting that as
noted by one of the most initiative authors of articles on the theme [8] among the
explored spaces with quadric metrics the spaces with two dimensions are marked
out as far as according to the theorem of Liuvill [9] for the two-dimensional case the
range of transformations attributed to as conformal is significantly larger, which
leads to significant diversity of analytic functions of the complex variable, each of
them having the corresponding conformal map on the Euclidean plane. Therefore
the quadric metrics is the most adequate for the spaces with two but not with four
dimensions. The natural question arises (and the corresponding answer suggests
itself): which metrics is the most adequate to spaces with four dimensions?

Before answering the question let’s note basing on the work [10] from digest
[7] that from the purely mathematical point of view the dimension four appears
the most complex as far as additional d− 4 dimensionalities grant new freedom of
action. For example, as it is noted in [10] at dimensionality ≥ 5, when self-crossing
of complexes inside manifolds appear, they may be eliminated by small stir. While
in small dimensionalities it is impossible.

According to the opinion of the author of work [10] ”the dimensionality four
from the topological point of view is the only dimensionality, where such different
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techniques come across and the questions emerge that do not correspond at first
glance. Solution of many of them will require development of even more surprising
techniques of algebra, geometry and topology”.

Considering the above notes (the last of them is the most inspiring) let’s assume
that for four dimensions the most adequate should be the quartic metrics. In this
case the idea of Sakharov multisheet models of the Universe will change. As it will
be shown below this won’t be a sequence of linked (or pasted together) in pair’s
sheets of four-dimensional spaces, but a more complex cyclical construction with a
replace of four sheets of the four-dimensional spaces.

Axiomatically basing quartic geometry

Let’s discuss some mathematic ideas that confirm these suppositions. First
of all we will advert to the axiomatic construction of the differential-geometric
manifold, which allows exploration of the physical structure of space basing on the
first principals.

As it is known there are three main directions of classical geometry construction
on the whole, which in principal may be adapted to construction of geometry on
the small cases:

The first direction origins from the famous book of David Gilbert, The Bases of
Geometry [11], which was written in the end of the 19th century. This was the most
comprehensive axiomatic construction of Euclidean geometry. In this construction
it was static as in the Euclid’s treatise, Principia, which had appeared about 300
years B. C. After abandoning the axiom about parallel lines one may transform it
into hyperbolic geometry of Lobachevsky but it is impossible to generalize it to
elliptic geometry of Riemann.

The second direction is the vectorial construction of geometry, which was for
the first time demonstrated in the well-known book of Herman Veil, Space. Time.
Matter. (1918) [12]. The great role of the vectorial space in modern theoretical
research and ease of axiom generalization to tensor analysis make this direction
very attractive.

The third direction is geometry construction on the basis of the symmetry
concept, which was demonstrated by Frederik Bachman in the post-war years and
completed by publication of a monograph in 1959 [13]. The importance of the
group theory in modern physics and especially of the group of movement and
the possibility to transform the axiom system into both hyperbolic and elliptic
geometry promote this direction to the leading position in the sphere of construction
of axiomatic geometry between classic approaches.

However as it is noted in the foreword of the book’s editor [13] I.M. Yaglom
the system of the Bachman axioms is not full unlike the Gilbert’s axiomatic. This
does not reduce in principal its scientific value but stimulates further development.
In particular it says nothing about congruence, order and continuity, which have
further use in group relations, as well as about speed of mapping.
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Taking into account that congruence is included in the concept of the group
of movement while lack of relations and axioms of order and continuity allows
including elliptic geometry into consideration one may regard it as some compen-
sation of imperfection of the Bachman’s axiom system. However there is nothing to
compensate the lack of an axiom about the speed of mapping, which impairs under-
standing of physical processes and the problem of geometrization of real motions
on the whole.

In this connection let’s consider the two statements, which seem to represent
axioms [14] forming the basis of the physical (material) geometry. Here the term
”physical (material) geometry” will mean an abstract object, which along with
spatial relations has attributes described by equations and fields, which are spe-
cific for real physical bodies. From the above listed directions of the axiomatic
construction of geometry follows that such understanding of geometry meets the
historical trend.

(I) The axiom of mapping (measurement). In the physical geometry there
exists such a parameter of mapping (measurement) τ , that the speed of mapping
ds/dτ = const, where ds is the infinitely small interval between two points (events).
The parameter τ allows making uniform marking of the grid chart in the differential-
geometric manifold.

This axiom defines existence of the speed of movement in a differential-
continuous form (or mapping of symmetries according to Bachman). Though the
Bachman’s axiom system has no concept of differential continuity it tolerates this
concept trough the group theory. However in the group theory and hence in the
Bachman’s axiomatics motions mean only purely geometric mutually single-valued
maps of ensembles of object’s points and lines on themselves keeping the relations
of incidence (attachment) and order and transforming segments and angles into
congruent (identically equal) segments and angles. This allows avoiding the need
to answer on, for example, the paradox (aporria) of Zenon, ”Achilles and a Tor-
toise”, about inconsistency of some attributes of motion but it is inadequate from
the point of view of physical understanding of processes.

At the same time in fact at any speed of real movement (constant or variable)
the parameter τ may be defined as far as it is not set by any prior conditions.
On the other hand if linking the parameter τ with the parameter of time of real
movement t the axiom of mapping transforms into the postulate about existence of
some constant speed of real movement - lack of forces in physical geometry. Unlike
the axiom this postulate may get broken in connection with slow evolution of the
scale of physical geometry. But it allows constructing a theory, which geometrizes
the observed movements using in general case the differential interval of the m-th
degree of Finsler geometry, e.g. using the algorithm:

ds = cdτ = [gµν...εdxµdxν . . . dxε]1/m = [gµν...εdxµ/dt dxν/dt . . . dxε/dt]1/mdt. (2)

In principal constructions of differential intervals of Finsler geometry may be of
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less complex form. Specifically at m = 4 string, membrane and hyper membrane
objects may be easy introduced in the form:

(ds′)4 = g1µνγξdxµdxνdxγdλξ + g2µνγξdxµdxνdσγξ+

+ g3µνγξdxµdυνγξ + g4µνγξdσµνdσγξ + g5µνγξdωµνγξ. (3)

as well as objects with m < 4, including square intervals, which may have domi-
nating weight at speeds of movement less than a half of the light speed.

(II) The axiom of hardness (ordering). The elements of physical geometry
possess hardness (ordering), i.e. noncondensability and single-valued sequence of
objects, relative to which measurement is conducted.

Axiom (II) generalizes and adds Bachman axiom of hardness on a plane, which
states: if h is a beam coming from point A and S is a half-plane limited by the line
carrying beam h while h′ is a beam coming from point A′ and S ′ is a half-plane
limited by the line carrying beam h′ then there exist no two different movements
which would transform A into A′, h into h′ and S into S ′.

Axiom (II) means that in n-dimensional geometry after carrying out n − 1
random shifts (transforms) keeping the interval ds constant the n-th transform may
be defined by elements of geometry itself. The counter images of such elements in
two-dimensional geometry are a ruler and compasses. For example, the problem
of cube rooting using a ruler and compasses comes to angle trisecting. In plane
geometry it has no solution. However using three-dimensional analogs of a ruler
and compasses (there may be several modifications of them) the problem of angle
trisecting is solved elementary.

Indeed, let’s choose a piece of a plane of a wedge form with the angle at the
vertex equal to α, turn it into a cone and glue the borders (Fig. 1a, 1b). Let’s also
choose the analog of compasses in the form of a tripod with the central bar and
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the guide frame of an equilateral triangle (Fig. 1c) and put the cone on it fixing it
at the vertex.

Pulling the frame by the central bar in the direction of the vertex of the solid
angle let’s achieve tight abutment of the cone’s material to the legs of the compasses
such a way that the cone transforms into a pyramid. The angle at the vertex of
the pyramid on each bound will be precisely equal to α/3.

One of the effects of axiom (II) as it is seen from further consideration is ambi-
guity of the n-th transform, which does not result from the Bachman axioms. The
general effect of axioms (I) and (II) for physical geometry of n = 4 + k dimensions
appears the limitation on introduction of the differential form of the m-th order by
the value m ≤ 4.

Introduction of these axioms corresponds with the general idea on the need of
physics axiomatization and the wish to understand the fundamental principles of
outward things. It is natural that axiomatics becomes constructive if it does not
lead up a blind alley or overcomplicates the problem. For example introduction of
the differential form:

dsm = gµν...εdxµdxν . . . dxε, (4)

where µν . . . ε ∈ {1, 2, . . . , n}, n = m + k, k ≥ 0, corresponds with the conception
about physical structures underlying burbakanization of physics in the spirit of
Kulakov and Vladimirov [15, 16], which was fundamentally developed in the work of
the second author [21], i.e. setting as source concepts the relations between different
objects – here between ds and dxµ, dxν , . . . , dxε - through gµν...ε. To achieve full
source concept about this physical structure one should define relations for each of
these objects.

Taking this into account let’s define relations between one of the objects, for
example dxµ, and other objects by means of solving the algebraic equation of degree
m at fixed values of ds, dxν , . . ., dxε.

As it is known such algebraic equation at m ≤ 4 is solved in radicals. Let’s
discuss the consequence of such solution.

First of all it meets the requirement of hardness, i.e. axiom (II). Indeed, it is
known that at m = 1 or 2 the solution of an algebraic equation is found by the
use of a ruler and compasses. If m = 3 then (using the Cardano method) after
reducing the source cubic equation to the form y3 + py + q = 0 and replacement
y0 ≡ α + β, where y0 is the root of the modified cubic equation, it reduces to a
quadratic, the roots of which are the values α3 and β3. The latter is also solved at
a plane by means of a ruler and compasses. The cubic roots of the values α3 and
β3 are solved by the use of three-dimensional analogs of compasses and a ruler as
it was shown above. A similar situation appears in solution of a quartic equation
m = 4 by Ferrari method. Therefore solution of an algebraic equation for each
object of this physical structure at m ≤ 4 meets geometric formulation.

Second, this solution is ambiguous. Multiple-valued function of a complex
variable expressing this solution at m ≤ 4 corresponds with Galua group [17]. In
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other words, Galua group underlies geometrization of physical structures at m ≤ 4.
Third, a random function, which may be expressed in radicals, can be defined

at continuity along any continuous curve C not passing through the points, in
which this function is not defined. If at the same time the curve C does not pass
through the points of bifurcation and ambiguity it is defined at continuity along
the curve C unambiguously [18]. I.e. this function possesses the valuable feature
of monodromy.

Fourth, for any function expressed in radicals one may construct a Rie-
mann surface. In this case it will be m-sheeted (m ≤ 4) for each object
ds, dxµ, dxν , . . . , dxε, µν . . . ε ∈ {1, 2, . . . , n}, n = m + k, k ≥ 0. Following
group transforms at keeping ds the Riemann surfaces for each individual object
from n transfer one into another forming a single Riemann hypersurface with four
n-dimensional hypersheets. It is evident that these properties remain at transition
from geometry on the small to geometry on the whole.

Therefore turning back to the ideas of the multisheet Universe one may identify
at m = 2, n = 4 the Riemann hypersurface of four dimensions as two sheets (two
four-dimensional spaces) of the Sakharov’s multisheet model of the Universe. Then
at m = 4, n = 4 + k, k ≥ 0 one easy gets the generalization of the Sakharov’s
two-sheet model to the four-sheet Riemann hypersurface of n dimensions, which by
analogy may be called a fragment of the four-sheet cyclic structure of the Universe
(or simply the four-sheet model of the Universe if not assuming its doubling).

In other words the ground is enough to consider differential forms with m ≤
4, n ≥ m as the basis for geometrization of physical structures, which one can’t
say about differential forms with m ≥ 5.

Particular case of quartic generalization of the Dirac equations

Let’s turn to the simplest (canonic) differential form of the fourth order:

ds4 = gµνγεdxµdxνdxγdxε ⇒ ds4 = dx4
1 + dx4

2 + dx4
3 + dx4

4 (5)

and solve a problem for the characteristic constant of the quartic differentiation
operator in such plane Finsler geometry:

(∂4
1 + ∂4

2 + ∂4
3 + ∂4

4)ψ = m4ψ, (6)

This operator is marked out in such a kind that its dimensionality and the order
of derivation are congruent and equal to 4 while the dimensionality 4 is marked out
by nature itself. Some grounds of why it is so result from the above consideration.

Is it possible to find such a root of the fourth order from the quartic differen-
tiation operator that

(Mi∂i)
4 = (γi∂

2
i )

2 =
∑

i

∂4
i , (7)

where γi are the gamma-matrices of Dirac or their generalization and
∑
i

is the sum

at the i index?
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It is easy to show that there exist no anti-commutation matrices of
any order with ordinary rules of multiplication, the square of which is
also an anti-commutation matrix. Indeed, if MiMj = −MjMi, then
M2

i M2
j = MiMiMjMj = MiMjMjMi = M2

j M2
i . More complex combinations with

mixing of commutation and anti-commutation matrices also give no result.
However this obstacle appears because in quartic geometry one should use

more complex mathematic instruments. Therefore let’s introduce quartic matrices
generalizing Pauli matrices and Dirac matrices with special rules of multiplication.
Namely, at first using ordinary rules let’s multiply four-square matrices on one
hyper-bound of the quart and then using constants of structure that define the rules
of multiplication on orthogonal hyper-bounds reduce the rest of indices of matrix
elements. By the very definition algebra of these matrices will be nonassociative.

Let’s denote the quartic matrix generalizing the Pauli matrix σi
a
b as ζi

a
b
c
d,

where in this case the index i(j, k) is connected with the index of the coordinate,
the left pair of indices (superscript a and subscript b) are the indices of the two-
dimensional matrix elements on the hyper-bound, while the right pair (superscript
c and subscript d) are the indices on the orthogonal hyper-bounds (in the third
and the fourth dimensions respectively). The indices a, b, c and d pass the values
1 and 2. It is natural that further both the left pair and the right pair of indices
may be denoted by other Latin letters. The sense of the innovation is that after
multiplication of anti-commutation matrices on one hyper-bound they won’t be
anti-commutation on it but they may be re-defined in such a way that they become
anti-commutation on other orthogonal hyper-bounds of the quart.

Let’s give the following values for the elements of matrices ζ1 and ζ2 (ζi
a
b
c
d :≡

σi
a
b(σi

c
d)

1/2) :

ζ1
a
b
1
1 = ζ1

a
b
2
2 = 0 , ζ1

a
b
1
2 = σ1

a
b , ζ1

a
b
2
1 = σ1

a
b , (8a)

ζ2
a
b
1
1 = ζ2

a
b
2
2 = 0 , ζ2

a
b
1
2 = (−i)1/2σ2

a
b , ζ2

a
b
2
1 = (i)1/2σ2

a
b . (8b)

It is evident that matrices ζ1 and ζ2 are hermitian conjugate, i.e. ζ+
i = ζi .

As a result of multiplication of the elements of the quartic matrices ζ1 and ζ2

we receive:

ζ1
a
b
2
1 ζ2

b
c
1
2 = ζ1

a
b
1
2 ζ2

b
c
1
2 = (−i)1/2σ1

a
b σ2

b
c = (i)1/2σ3

a
c ; (9a)

ζ1
a
b
2
1 ζ2

b
c
2
1 = ζ1

a
b
1
2 ζ2

b
c
2
1 = (i)1/2σ1

a
b σ2

b
c = (−i)1/2σ3

a
c . (9b)

At ordinary multiplication of the matrices one had to keep the second member
of (9b) and the first member of (9a) while the two residuary members one had to
cast aside. On the contrary, in the proposed algebra one retains the first member
of (9b) and the second of (9a) while ignoring the members that are retained at
ordinary way of matrices multiplication.

According to the new rules of multiplication at squaring of the quartic matrix ζ1

the members (ζ1
a
b
1
2)

2 = Ia
b and (ζ1

a
b
2
1)

2 = Ia
b are preserved. While at squaring
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of the matrix ζ2 the members (ζ2
a
b
1
2)

2 = −iIa
b and (ζ2

a
b
2
1)

2 = iIa
b are preserved.

If placing the results of squaring of the matrices ζ1 and ζ2 on one hyper-bound
according to the right pair of indices of the members situated in parenthesis and
reducing unitary matrices we get the two required matrices σ1 and σ2.

At the same time this order of placing the results of squaring is unsuitable for
getting the third Pauli matrix at multiplication in (9a) and (9b). In order to get
the matrix σ3 multiplied by virtual value i after squaring the respective members
from (9a) and (9b) of these results one has to put the member ζ1

a
b
1
2ζ2

b
c
1
2 into the

cell (1
1) while ζ1

a
b
2
1 ζ2

b
c
2
1 into (2

2), where the right pair of indices is indicated in
parenthesis, and at squaring keep in the same cells. However in a two-dimensional
space this operation is excess so it is not used below.

As far as (ζ1
a
b
1
2ζ2

b
c
1
2)

2 = iIa
c , and (ζ1

a
b
2
1ζ2

b
c
2
1)

2 = −iIa
c , multiplication of

the squares of the matrices ζ1,2 will correspond with the algebra of Pauli matri-
ces. It is natural that multiplication of matrices i on a unitary matrix I does not
change position of their elements. Hence the squares of the matrices ζ1,2 produce
homomorphism of the group SU(2) on the quartic space.

In order to formalize this rule of multiplication of matrices ζ1,2 and to ”forget”
about the considerations connected with finding grounds for the innovation let’s
introduce the matrix of constants of structure (or operator) F := F k

d
c
f

e
m . Note

that all indices of this matrix are connected only with the right pair of indices of
the quartic matrix. The elements of this matrix are equal to 1 when k = c = e, d =
f = m, m 6= k; in other cases they are equal to zero. They are called structure
because they locate the elements of the results of multiplication of matrices ζ1 and
ζ2 in proper cells.

Such multiplication of matrices ζi and ζj may be written in the following form:

(ζiζj)
ak

gm = F k
d
c
f

e
m ζi

a
b
c
d ζj

b
g
e
f . (10)

However one may simply remember the rule of reduction of the right indices at
multiplication of quartic matrices, which will be used below at keeping the sign of
the operator F .

It is also convenient to present the operator F in the form of the product of
two four-symbol matrices:

F = ΦLΦR := ΦL
k
d
c
rΦR

r
f

e
m , (11)

the elements of which are equal to 1, when ΦL: k = r = c, d 6= k, , ΦR: m = f, r =
e, m 6= r and equal to 0 in other cases.

The quartic spinor will naturally have two superscripts in this approach, i.e.
ψ : = ψab. Then the member with the partial derivative by the i-th coordinate in
the matrix form for the direct and the hermitian conjugate spinor may be written
in the following form:

ΦRζi ∂iψ := ΦR
r
f

e
m ζibg

e
f ∂iψ

gm ≡ ARi
r
g
b
m ∂iψ

gm (12a)

∂jψ
+ ζjΦL := ∂jψ

∗
ka ζj

a
b
c
d ΦL

k
d
c
r ≡ ∂jψ

∗
ka ALj

k
b
a
r . (12b)
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Generalization of this algebra on the quartic four-dimensional space presents
no complexity.

Indeed, let’s choose presentation of anti-commutation four-row matrices in the
form:

γk = iσkτ2, γ4 = τ1, γ5 = −iτ3, (13)

where τ1, τ2, τ3 are the Pauli matrices, which instead of units contain unit two-row
matrices, and let’s write sixteen-row analogs of matrices ζi the following way:

Zµ
a
b
c
d = γµ

a
b(γµ

c
d)

1/2, (14)

where Greek indices µ and Latin indices a, b, c and d pass the values 1, 2, 3 and 4.
It is easy to ascertain that through introducing a matrix of constants of struc-

ture F , the same as in the two-dimensional case but with Latin indices passing the
values 1, 2, 3 and 4, we also get similar algebra of anti-commutation matrices, which
transform after the turn on the quart in four Dirac matrices in presentation (13).
The elements of these matrices are equal to 1 at k = c = e, d = f = m, m = 5− k.
For matrices ΦL we respectively have k = r = c, d = 5 − k, for ΦR have
m = f, r = e, m = f = 5 − e and f = e ± 2. The rest of the values are equal to
zero. Instead of the matrices ALi and ARj we respectively get the matrices:

BLµ := BLµj
k
b
a
r = Zµ

a
b
c
d ΦL

k
d
c
r and BRν := BRν

r
g
b
m = ΦR

r
f

e
m Zν

b
g
e
f (15a,b)

Then the generalization of the Dirac equation in quartic geometry is:

iBRµ∂µψ − (m4)1/4ψ = 0 (16a)

and its conjugate:

i∂µψBLµ + (m4)1/4ψ = 0, where (16b)

ψ := ψ+Γ4 ≡ ψ∗abΓ4
b
c, (17)

while Γ4 is the Dirac matrix γ4 with units replaced by four-row unit matrices I,
indices b and c evidently belong to the right pair of indices. Then the spinor quartic
Lagrangian has the form:

L4 = (i/2)[ψBRµ∂µψ − ∂µψBLµψ]− (m4)1/4ψψ. (18)

Therefore the problem of getting the root of the forth order from the differential
operator

∑
i

∂i
4 may be solved in the form:

∑
µ

∂µ
4 = (γµ∂µ

2)(γν∂ν
2) = [(Zµ∂µ)F (Zν∂ν)][(Zα∂α)F (Zβ∂β)], where F = ΦLΦR.

(19)
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At this non-associative property of multiplication is necessary only in the right part
of the equation (19).

As far as (m4)1/4 = (±,±i) m, then the theory constructed with the use of such
algebra should describe particles, antiparticles, pseudo-particles and antipseudo-
particles. Moreover, gravitation interaction of two pseudo-particles leads to anti-
gravitation, which in global scale may lead to observed acceleration of enlargement
of the Universe, which in alternative ([19], [20]) may be interpreted as accelerated
reduction of the scale of length and time in the area surrounding the observer as well
as coherent with this reduction changes of fundamental physical constants. Both
alternatives lead to the collapse of the Universe with subsequent rip or flowing to
another sheet of the hyper-Riemann surface. Coalescence of pseudo-particles and
antipseudo-particles leads to birth of antiparticles. Vice versa, antiparticles may
decay into pseudo- and antipseudo-particles, which should contribute to baryon
asymmetry and dark matter of the Universe.

Naturally that all above-mentioned effects as a whole must have an experimen-
tal or observed in cosmic phenomena verification, which are able become apparent
solely attached to very high energy or extraordinary small mass.

If for instance a differential form for flying along coordinate x1 particle have
air:

ds4 = (dx4)4 + (dx1)4 − [(dx4)2 + (dx1)2)]a2, (20)

where a2 - too small but a finite value, dx4 = icdt, after dividing each part of
the equality (20) by a2 attached to dx1 < cdt practically always first and second
members in (20) one may disregard and use metric of Minkowski space-time.

Then the size ds2/a will be fan analogue of the interval. The quartic metric
begins become apparent solely attached to condition:

2|(dx4)2|/a2 + (dx1)2/(dx4)2 = 2(c2/a2)dt2 + β2 ≥ 1, where β ≡ v/c (21)

Consequently, observable metric effects expects really very small. But they will be
able to play important role in understanding physical picture of the universe and
in a development of the modern physical theory.

Polinions

Unfortunately, having considered higher the task appears solely a particular
case of all totality problems, arose attached to attempts to discover worker instru-
ments for researchies in the quartic space. It is obvious in particular from the arti-
cles, publishes in the magazine ”Hipercomplex numbers in geometry and physics”
references on that one cited in this article, in particular. In order to somewhat
undo knot these problems we shall bring introduction in some new mathematical
apparatus as author hope suitable for investigations in cubic and quartic n-measure
space.
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It is found handy introduce infinite extension of algebra the quaternions in wich
commutation correlations for components of vector part looks the following image:

qjqi = exp{2πi/m}qiqj, (22)

where m ∈ {N} – the power of the differential form interval determining metric;
indexes i, j{1, . . . , n}, i < j, qi = qi(m). By that accomplishes equality:

(qi∂i)
m =

∑
i

∂i
m (23)

Let us name these quantities qi(m) by polinions. Building the matrix repre-
sentation for the polinions with the commutation correlations (22) is found not
trivial even attached to m = 3 and 4. Indeed, so as for any two matrices with
usual rules of multiplication Sp(MiMj) = Sp(MjMi), then for satisfaction (22)
both members this equality must be equal zero. With another side as easy prove
for attempts representation of polinions by Pauli matrices, with are exact matrix
representation of usual quatenions, for existence matrix representation unit qi

m = I
and for formation of group transformation (qi ◦ qj = qk, qi, qj, qk ∈ G) under m = 3
and 4 the conditions Sp(MiMj) 6= 0 and Sp(Mi) 6= 0 are necessary (if m = 2 this
demand do not).

However solution of the task is found unexpectedly simple for non-associative
algebra with taking into account offered above algorithm for special case extracted
root fourth power from quartic canonical differential which permit generalization at
any value m. Indeed, let us consider generalization of Pauli matrices in appearance:

σ1(m) →
(

0 1

1 0

)
; σ2(m) →

(
0 (−i)2/m

(i)2/m 0

)
; σ3(m) →

(
1 0

0 (−1)2/m

)
; (24)

Then if multiplication of matrices hold as such Riemann surface, when unit may
factorize at the multipliers:

1 = 12/m12/m = (−1)2/m(−1)2/m = (i)2/m(−i)2/m, (25)

that, generally speaking, do not coincide (for example by m = 4) with usual algebra
of complex numbers, then fulfill of the condition (22).

It already stand for that we pass on to non-associative algebra multiply firstly
numbers being in parentheses and solely after raise the result to the fractional
power. The sheets of Riemann surface are gluing together attached to arguments
0 and 2π. For all that evidently generalized Pauli matrices by such non-associative
multiply satisfies some analogue unimodular group SU(2) with following commu-
tation correlations:

σi(m)σj(m) = (i)1/mεijkσk(m). (26)

For all that under the modulus of vector σixi need understand value
(σi(m)xi(m))1/m.
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Apparently non-associative and so irreversibility time characteristically for cu-
bic an quartic spaces and also for one large dimenshions. That by the way take off
question about paradox of turning time in the Sakharov multisheet models Universe
attached to it generalization at the cubic and the quartic geometries.
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The applicability of Einstein’s relativity theory on galactic scale and the role of
geometry for the solution of the problems of observational astrophysics are discussed.
The theory of the zero order effect to study the geometrical properties of space-time in
experiment is given.

”I will try to escape discussing questions that though providing mathematicians with the
possibility to reveal their skills, will not be helpful in broadening our field of knowledge”

J. C. Maxwell ”Treatise on Electricity”

The problem of measurement and its interpretation starts to play specific role,
since there is no possibility to perform a measurement in such a way
that the current state of the system and the prediction of its behavior

become simultaneously known with the desired accuracy.
On the W. Heisenberg’s Uncertainty principle.

MSC2000: 83C99, 83D05.

Introduction

The declinations of the planets’ orbits from ideal circles experimentally discov-
ered by I. Kepler in XVII century posed a dilemma. Either the laws of Nature and
Mathematics were not identical, and the mathematical harmony did not rule the
Universe, or our knowledge was not complete not only in Science but in Mathe-
matics as well.

In the end of XVIII century C. Gauss became the first who approached the
problem of the applicability of the Euclidean geometry to the World in a construc-
tive way. He measured the sum of the interior angles of the triangle in situ directly.
The vortices of the triangle were at the peaks of the surrounding mountains. Gauss
did not find any deviation in the geometry of the world and Euclidean geometry
within the accuracy of his measurements.

In the beginning of the XIX century N. Lobachevsky considered and evaluated
the principal possibilities of the astronomical measurements, and this inevitably
lead him to the construction of the first non-Euclidean geometry.
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In the middle of the XIX c. W. Clifford proclaimed and successively defended
his idea that no physical phenomenon can be experimentally distinguished from
the corresponding change of the geometrical curvature of the World.

Following these ideas A. Einstein in the beginning of XX c. reduced the general
but qualitative Clifford’s statement to the more narrow but quantitative theory.
He demanded the general covariance of physical laws, postulated the invariance
of the light speed and the equivalence principle and produced a theory according
to which the unavoidable gravitation could not be distinguished from the geomet-
rical properties of space-time. In his fundamental paper Einstein considered the
space-time described by Riemann-Minkowski geometry, predicted the effects that
could be experimentally observed in this case and gave the calculation of them.
The experiments revealed the good correlation with the calculation, and geometry
became the full right part of physical theory. On the macro level, it made the
Newton theory of Solar system gravity more precise. On the micro level, the Dirac
theory was introduced into quantum mechanics. On mega level, the cosmology
obtained the expanding Universe theory and the accompanying circumstances.

When we discuss the experimental data that have to be compared with the
theory, we should mention the scale. There are three such scales in astrophysics:
Solar system, galaxy and all the observable Universe. The known achievements of
the general relativity theory (GRT) based on the introduction of the new (Riemann)
geometry provided the link between the laboratory physics and the first of these
scales. In the end of the XX c. there appeared the astrophysical data that can not
be explained by the theory without new notions like dark matter or dark energy or
without the modification of the foundations of the theory including the geometry
of space-time. When choosing the new geometry one should start with the analysis
of the problems appearing already on the galactic scale.

Suggesting the physical effect demonstrating the geometrical properties of
space-time, one should pay attention to the fact that the static spherically sym-
metric solutions of the gravity equations both for Riemann geometry and for its
generalization, Finsler geometry, give the same observable predictions. The effect
that could be used for such investigation is the gravitational radiation, i.e. grav-
itational waves (GW). The existence of the GW predicted by the GRT has an
indirect experimental support – the change of the orbital period in some double
star systems [1]. For the different geometries of space-time the GW would possess
different properties. But though there are several physical effects that could be used
to investigate these properties, the problem of the direct observation of the GW is
not solved up to now. This is due to the utmost smallness of the perturbation that
the GW produce on any of the known physical effects already in the first order of
magnitude. Since the GW are waves, we can use the resonance phenomena that
could appear not in the first order of the perturbation theory as it was suggested
in various approaches up to now but in the zero order.
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The further material is organized as follows. We consider the metrical approach
to the gravitation theory to be valid. Since the geometry appears to be closely
connected to the mass distribution, let us first give some results of the recent
astrophysical observations and discuss their possible interpretations. Then we will
point out some additional details concerning the space-time geometry apart from
those that follow from the experimental data. Then the theory of the optic-metrical
parametric resonance (OMPR) will be discussed and its results and interpretations
for various cases will be analyzed. Finally, the examples of the astrophysical sys-
tems suitable for the observations are given.

1. Experimental data and its interpretation

The results of the astrophysical observations are the following. On the galactic
scale, the rotation curves, i.e. the dependencies of the stars orbital velocities on
their distances to the galaxies’ centers were measured for some galaxies [2–5]. On
the Universe scale, the GRT effect of the gravitational lensing on the galactic
clusters is found. This supports the Einstein idea about the link between the
metric and gravity, but the result is several times larger than the GRT prediction.
The acceleration of the Universe expansion is ascertained [6-7], and this leads to
the notion of the dark energy.

The review of the theoretical results is given in [8]. According to the Intro-
duction let us give a brief list of the results and ideas concerning only the galactic
scale phenomena. To illustrate them let us give a figure from [5], Fig. 1. The
experimental points obtained when measuring the orbital velocities, v, of stars of
the spiral galaxies vis. their distances to the centers of those galaxies, R, can be
described by the empirical formula [9]

v2 =
β∗c2N∗

R
+

γ∗c2N∗R
2

+
γ0c

2R

2
, (1)

where c is the light speed, N∗ is the number of stars in the galaxy (usually about
1011), β∗ for the Sun is β∗ = MSG

c2
= 1.48 · 105 cm (MS is the Solar mass, G is

the gravity constant), γ∗ and γ0 are universal parameters γ∗ = 5.42 · 10−41 cm−1,
γ0 = 3.06 · 10−30 cm−1.

All the three parameters become of the same order at the border of a galaxy,
while the result of the Newton theory as well as the Schwarzschild’s solution of the
GRT equations predict only the decrease of the velocity corresponding to the first
term in Eq. (1). The calculations were performed with regard to the exponential
distribution of stars in a galaxy. To provide the observed motion of the gleaming
stars, the existence of additional matter interacting with the stars gravitationally
is suggested. The mass of this matter must be thrice as much as the mass of the
visible stars, it must be located at the periphery of a galaxy and it neither emits,
nor absorbs the electromagnetic radiation. In this paper it is essential to underline
that the same effects take place for the clusters of galaxies too [8], that is on a
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Figure 1: [4] Orbital velocities (km/s) as functions of R/R0, where R0 is a character-
istic scale for each galaxy. Dashed line is the Newtonian potential (coinciding with the
Schwarzschild’s solution), produced by the observable gleaming matter with regard to
the exponential distribution of stars inside the galaxy.

Universe scale. That is why it is desirable to have the same explanation for both
scales and not involve additional reasons.

The efforts of the theoreticians aimed at the solution of the problem have two
directions. The first is the construction of a theory of the hypothetical elementary
particles forming the dark matter. The second suggests modifying the existing
theory of space-time and gravitation in such a way that there is no need for the extra
type of matter. For any change of the theory the natural test is the preservation of
the existing phenomenology, particularly, Newton gravity law for the Solar system
scale and two other GRT effects following from the Schwarzschild’s solution.

Let us now briefly mention some approaches belonging to the second direction.

I. The most straightforward approach is the successive complication of the
quadratic expression for the Einstein-Hilbert action

SEH = − c3

16πG

∫
d4x(−g)1/2Rα

α (2)

with account to the metric terms of the higher orders. For example [10],

SW1 = − c3

16πG

∫
d4x(−g)1/2(Rα

α)2 (2a)
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or

SW2 = − c3

16πG

∫
d4x(−g)1/2Rαβ

αβ (2b) .

The corrections due to Eqs. (2.a) or (2.b) must give a negligibly small contribution
to the Schwarzschild’s solution. Besides, already this approach makes it possible
to regard the cosmological constant in a way Einstein tried to do it himself.

II. Another natural approach is the introduction of an additional macroscopic
gravitational field, S, usually the scalar one. Fort example [11]

SBD = − c3

16πG

∫
d4x(−g)1/2

(
SRα

α − w
S; µS

; µ

S

)
, (3)

where w is a constant.

III. The third approach is the increase of the number of the space-time dimen-
sions with the subsequent transfer to the Planck’s scale of lengths. The correspond-
ing works began from [12] and then lead to the mathematically developed modern
theories of strings [13] and then of branes [14].

Let us now mention the approaches providing not only the specification of
the already existing structures in order to get the solution that is closer to the
observations, but the approaches aimed at the revision of the structures themselves
presumably giving the same result.

IV. The classical foundation can be also revised. The MOND phenomenological
approach (MOdified Newton Dynamics) was suggested in [15] to introduce the new
world constant with the dimension of an acceleration

µ
( a

a0

)
~a = ~f or ~a = ν

( f

a0

)
~f . (4)

It was suggested to find such functions µ(x) or ν(x) and such value of a0 that
they match the classical result for the Solar system scale and give Eq.(1) for the
galaxy scale. The relativistic generalization of MOND was performed in [16] where
the scalar field ψ was introduced to give an additional term to the expression of
Einstein-Hilbert action in the form

S(ψ) = − 1

8πGL2

∫
d4x(−g)1/2f(L2gαβψ; αψ; β), (5)

(f is a scalar function, L is constant). After that the MOND theory can not be
regarded as a pure phenomenology. Naturally, this approach gives a good fit for
the observed rotation curves described by Eq. (1).

In fact, it does not matter if we speak about the dark matter or a scalar
field in the gravitation theory, or about the ether in electrodynamics - in both
cases the object of discussion acts on observable bodies but can not be detected
itself. But the same can be said about the geometry of the world. The principal
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idea of relativity stemming from Lobachevsky’s work and formulated by Einstein
is that one should not oppose gravitation and geometry but regard them in the
non-separable connection.

V. The geometry of space-time can be also modified. The rejection of symmetry
in metric’s indices [17, 18] can also lead to the suitable description of the rotation
curves while dark matter is not needed.

VI. Already in 1918 G.Weyl stepped aside from the Riemannian geometry sug-
gested by Einstein in order to unify gravitation and electromagnetism with the
help of metrics. He suggested the transformations of the following form

gµν(x) → e2α(x)gµν(x) (a)

Aµ(x) → Aµ(x)− e∂µα(x) (b)
(6)

Here the gravitation and electromagnetism are united by the common function
α(x), and this leads to the new – Weylian – geometry. The equations that can be
obtained in this approach do not give the regular Einstein equations; nevertheless,
they contain the Schwarzschild’s solution for the Solar system scale. Weyl called
Eq.(6.1) the gauge transformation, i.e. dependent on scale, but later this term was
adopted by the other fields of physics mainly for the cases when the exponent was
imaginary. In gravitation theory such transformations are now called conformal.

VII. The further evolution of these ideas lead to the theories of conformal grav-
itation where the metrics has an additional symmetry, corresponding to Eq. (6.1),
the electromagnetic variables are not involved and this means that the geometry
remains Riemannian. Formally such approach is analogous to I, but the choice of
coefficients in Eqs. (2.a) and (2.b) is specific. The Einstein equations that appear
in this approach are [20]

4αgW
µν = 4αg(2C

µλνκ
; λ; κ − CµλνκRλκ) = T µν , (7)

where αg is a dimensionless constant, Cµλνκ is the so called Weyl tensor which
doesn’t change with transformations Eq. (6.1). Then they change [20]

W µν(x) → e−6α(x)W µν(x)

T µν(x) → e−6α(x)T µν(x),

transform the coordinates with the use of a certain function B(r) and introduce
the source function f(r). As a result the stationary version of Eq. (7) gives the
Poisson equation but not of the second order as usual, but of the fourth order

∇4B(r) = f(r). (8)

If there is a spherical symmetry, the Eq. (8) has an exact solution. And this solution
not only contains the term corresponding to the Newton-Schwarzschild’s solution
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but also the terms corresponding to Eq. (1).

B(r > R) = −g00 = 1− 2β

r
+ γr

2β =
1

6

R∫

0

dr′r′4f(r′); γ =
1

2

R∫

0

dr′r′2f(r′)
(9)

Solid lines on Fig. 1 correspond to the results of the conformal gravitation
approach to the galactic rotation curves. The fits are good. The described approach
does not need the introduction of the additional (dark) matter, i.e. the additional
scalar field. Instead it uses another choice of the scalar function when formulation
of the variation principle. This preserves the Riemannian geometry of space-time
but leads to the Einstein equation of the form of Eq. (7) which by the way does not
have the structure of the wave equation for the empty space. This means that the
GW do not exist, and the effect described in [1] which coincide with the prediction
of the traditional GRT within accuracy of 2% must be explained in some other way.

The material discussed in this Section suggests the following conclusion. The
successful modifications of the theory that correlate with the experimental data
point at the possible existence of the additional terms in the gravitation law, their
role depending on the chosen scale. Preserving Riemannian geometry one has to
chose one of the following:

• either to search for an additional - dark - matter, located at the periphery of a
galaxy;

• or to describe the gravitation on the scale of a galaxy using another scalar when
formulating the variation principle for the action.

2. Finslerian geometry of the anisotropic space-time

Apart from the scale, one has to pay attention to another important thing. The
data present on Fig. 1 and those analogous to them do mainly concern the spiral
galaxies that have expressed (space) anisotropy. But the notion of an isotropy
could be regarded in a broader sense. The generalization of the GRT for the
anisotropic space-time in which, for example, the light speed varies and depends on
the direction, was performed in [21] where the theory is based on Finsler geometry.
The metrics in Finsler geometry depends not only on the coordinate of a point (xα)
as in Riemannian geometry, but on a certain tangent vector too, (ẋα) = dxα

dt
(t is

a parameter). Usually [22] this metrics is presented as

gµν(x, ẋ) =
1

2

∂2F 2(x, ẋ)

∂ẋµ∂ẋν
, (10)

where F (x, ẋ) is a smooth, scalar, homogeneous of the first order, positive function

with determinant det |∂2F 2(x,ẋ)
∂ẋµ∂ẋν | 6= 0. One of the principal results obtained in [21] is
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the proof that the analogues of Einstein equation in Finsler case (for various met-
rics) have Schwarzschild’s solutions. It is also shown that within the same accuracy
of measurements performed in the Solar system, it is impossible to distinguish these
solutions from those of the GRT. Two other effects (the light bending when passing
close to the Sun and the red shift) are present both in Riemann and Finsler cases
though for different reasons. That is why these rffects can’t be used to make a
justified choice of geometry to describe the real space-time.

Finsler geometry can be involved into the traditional approach by the use of a
special metrics in tangent space. This metrics consists of two parts one of which
can depend not only on the coordinate but on the vector direction as well. If one
performs a conformal transformation with the ”horizontal” part, the corresponding
corrections of the ”vertical” part would affect the Einstein equations. In this case
they present a system of equations for the corresponding tensors [23].

There are several additional reasons to turn to a special case of Finsler geometry
- to the spaces with the Berwald-Moor metrics which corresponds to

F (y) = 4
√

y1y2y3y4. (11)

In [24–26] it is shown that the well-known (physical) problem of the sponta-
neous symmetry break in the fermion-antifermion condensate corresponds to the
(geometrical) partial or complete isotropy break of the space-time if its metrics can
be described as

ds′ = (dx0 − dx1 − dx2 − dx3)
(1+r1+r2+r3)/4(dx0 − dx1 + dx2 + dx3)

(1+r1−r2−r3)/4

·(dx0 + dx1 − dx2 + dx3)
(1−r1+r2−r3)/4(dx0 + dx1 + dx2 − dx3)

(1−r1−r2+r3)/4,
(12)

Here the non-dimensional parameters ri characterize the rate of anisotropy. If we
take the simplest case ri = 0 and introduce the new coordinates ξi = Aijxj, where

Aij =




1 −1 −1 −1

1 −1 1 1

1 1 −1 1

1 1 1 −1




, (13)

then, the interval (12) takes the form

ds′ = dsBM = 4
√

dξ1dξ2dξ3dξ4 . (11a)

The difference of this approach from the standard theory is the following: the spon-
taneous symmetry break is accompanied not by the appearance of the cosmological
constant, but by the appearance of the space-time anisotropy.

The similar expression for the metrics which factually uses the notion of a
volume was used in [27] to construct the theory of gravitation. In [28] independently
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of [21] there was obtained the conclusion that it is impossible to observe the effects
pointing at the difference in metrical properties between Riemann space-time and
Finsler space-time on the Solar system scale.

In [29] and the subsequent series of papers the Berwald-Moor metrics is
connected with the fundamental mathematical properties of the little known
number-like object – hyper complex numbers H4. The use of the H4 or other
algebra of the kind might lead to the change in the description of phenomena not
only in mega scale but on a micro scale of quantum phenomena, and this has a
ring with the ideas [30].

It should be underlined that though there are certain promising perspectives
in the theory dealing with Finsler geometry, the connection of this direction with
observations is insufficient. Moreover, the experiment that could make it possible
to judge upon the geometrical properties of space-time has not been suggested up
to now.

3. Optic-metrical parametric resonance

As it was mentioned in the previous Section, the experiments dealing with
static case don’t suite, that’s why the GW were suggested as a proper effect to
study the space-time geometrical properties. But all the methods suggested up
to now to detect the GW (eighteen in number [31]) deal with the registration of
the GW effects as the first order perturbations. For the Solar system it means
the accuracy of 10−24 which is not yet achieved in spite of long lasting efforts and
expensive projects. And even in case of success, the extremely small value of the
supposed effect would give a small confidence in the results while the problems of
registering and processing would be hard to overcome if one intends to use this
effect for further investigations.

Let us take the semi-classical model to describe the interaction between the
atom and the electromagnetic field which is well known in theoretical spectroscopy
[32]. We are going to apply it to describe the action of the GW on the atom of a
space maser.

Let us first regard a two-level atom in the monochromatic quasi-resonant strong
field with frequency, Ω, which is close to the atomic frequency ω. ”Strong” field
means that the stimulated transitions dominate. This system is described in terms
of the density matrix on the one hand, and the field is described classically, on the
other hand. As a result we get a system of Bloch equations for the density matrix
components

d

dt
ρ22 = −γρ22 + 2iα1 cos(Ωt− k1y)(ρ21 − ρ12)

[ ∂

∂t
+ v

∂

∂y

]
ρ12 = −(γ12 + iω)ρ12 − 2iα1 cos(Ωt− k1y)(ρ22 − ρ11)

ρ22 + ρ11 = 1

(14)
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Here ρ22, ρ11 are the level populations; ρ12, ρ21 are the polarization terms; γ, γ12

are the longitudinal and transversal decay rates (if the lower level is the ground
one, then γ12 = γ/2); α1 = µE

~ is the Rabi parameter proportional to the intensity
of the electromagnetic wave (EMW); µ is the dipole momentum; E is the electric
stress; ~ = 1.05 · 10−27 erg·s is Planck’s constatnt; k1 is the wave vector of the
EMW; v is the component of the atom velocity along the Oy-axis; γ ¿ α1 is the
condition of the strong field.

In the series of papers [33–36] the phenomenon of the optic-mechanical para-
metric resonance was theoretically investigated. If a component of the velocity of
such a two-level atom parallel to the wave-vector of the field varies periodically
with time at frequency related to the Rabi frequency, then the scattered radia-
tion obtains the so called non-stationary component at the frequency close to the
frequency of the atomic transition. In other words, the signal at this frequency
will be periodically amplified and attenuated with the frequency of the mechanical
oscillations of the atom. This effect is due to the redistribution of the energy
between the frequencies due to the parametric resonance. In regular observations
this signal can’t be registered because of the time averaging, but if a special device
known in spectroscopy as a gate detector is used, or the signal is registered in time
domain and then processed in a special way, then the non-stationary component
can be detected and measured. It turns out that the amplitude of such signal is
comparable to the height of the regular peak characterizing the interaction between
the atom and the resonant field. That is this signal is large.

Turning to the investigation of the astrophysical system, we see that the sources
of the monochromatic EMW are known in space. These are the space masers whose
atoms are in the ground states and the transitions take place from the metastable
levels, i.e. in this case they fit the two-level model. The saturated space masers
realize the conditions of the strong field. On the other hand, we can suppose
that there exists the reason due to which the distance and consequently the atom
velocity component in the direction at the detector on the Earth would periodically
change. This reason is the action of the periodical GW emitted by a pulsar located
as shown on Fig. 2.

Figure 2:
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The GW acts on the atomic levels, on the EMW of the maser and on the
atom location. In [37] it was shown that the first effect is negligibly small in
comparison with the other two. The action of the GW on the monochromatic
EMW is accounted for when solving the eikonal equation

gik ∂ψ

∂yi

∂ψ

∂yk
= 0 . (15)

The law of the atomic motion must be obtained from the solution of the geodesic
equation

d2xi

ds2
+ Γi

kl

dxk

ds

dxl

ds
= 0, (16)

(and not from the solution of the geodesic declination equation as in the corre-
sponding calculations for the relative displacement of the parts of the laboratory
set up). Equations (14-16) describe the behavior of the two-level atom of the
saturated space maser in the field of the GW. Solving them and demanding the
conditions of the parametric resonance to be fulfilled, we can calculate the signal.
This effect is of the zero order and its detection on the Earth is possible with the
help of the already existing radio telescopes that are able to detect the space maser
signal.

Such experiment can be used to investigate the space-time geometrical prop-
erties in the following way. The theoretical expressions that must be compared to
the experiment results should be obtained with the help of the various suggestions
about the space-time geometry. The suggestion that gives the best fit with the ex-
perimental results will correspond to the geometrical properties of real space-time.

4. Isotropic perturbation of the Minkowsky metrics

Let us consider the geometry to be Riemannian and use the regular Einstein
equations in the approximation of the weak field far from masses gik = g(0)ik + hik.
The corrections to the metric tensor of the flat space-time suffice the wave equation.
In the simplest case for the plane waves it has the form

(
∂2

∂x2
− 1

c2

∂2

∂t2

)
hk

i = 0 . (17)

The solution can be naturally taken as [38]

hk
i = Re[Ak

i exp(ikαxα)] , (17a)

that suffice the equation if kαkα = 0, i.e. kα is a light-like vector. That is why the
metric tensor can be written as

gik =




1 0 0 0

0 −1 0 0

0 0 −1 + h cos D
c (x0 − x1) 0

0 0 0 −1− h cos D
c (x0 − x1)




(18)
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where h is the dimensionless amplitude of the GW (h ¿ 1), D is the frequency of
the GW.

Solving Eq. (15) with regard to Eq. (18), we see that the GW leads to the phase
modulation of the EMW. Since h is small, the latter can be presented [39] as a
superposition

E(t) = E cos(Ωt− ky) + E
ω

4D
h
[
cos((Ω−D)t− ky)− cos

(
(Ω + D)t− ky

)]
. (19)

The solution of Eq.(16) with regard to the Eq.(18) gives [37]

y(t) ∼ h
c

D
sin(Dt + kgx), (20)

where kg is the wave vector of the GW. The expression Eq. (20) gives the following
formula for the component of the atomic velocity in the direction of the Earth

v = v0 + v1 cos Dt

v1 = hc
(21)

Substituting Eq. (21) and Eq. (19) into Eq. (14), we get

d

dt
ρ22 = −γρ22 + 2i[α1 cos(Ωt− ky) + α2 cos((Ω−D)t− ky)−

−α2 cos((Ω + D)t− ky)](ρ21 − ρ12)

d

dt
ρ12 = −(γ12 + iω)ρ12 − 2i[α1 cos(Ωt− k1y) + α2 cos((Ω−D)t− ky)−

−α2 cos((Ω + D)t− ky)](ρ22 − ρ11)

ρ22 + ρ11 = 1

(22)

where α2 = ωh
4D

α1, and where the relation (21) was taken into account in the
expression for the full time derivative d

dt
= ∂

∂t
+ kv. The system (22) can be solved

by the asymptotic expansion method. If certain conditions on the parameters are
fulfilled, we can speak of the optic-metrical parametric resonance (OMPR). These
conditions formulated in [37, 39] have the form:

• The EMW is spectroscopically strong

γ

α1

= Γε; Γ = O(1); ε ¿ 1 . (22.1)

• The amplitude condition of the OMPR related to the trichromatic field

α2

α1

=
ωh

4D
= aε; a = O(1); ε ¿ 1 . (22.2)
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• The amplitude condition of the OMPR related to the periodic change of the
atomic velocity

kv1

α1

=
ωh

α1

= κε; κ = O(1); ε ¿ 1 . (22.3)

• The frequency condition of the OMPR

(ω − Ω + kv0)
2 + 4α1

2 = D2 + O(ε) ⇒ D ∼ 2α1 . (22.4)

If the conditions (22.1–22.4) are fulfilled, then solving Eqs. (22) by the asymp-
totic expansion method for the small parameter, ε, we get the principal term of
the expansion for Im(ρ21) which characterizes the scattered energy flow. At the
frequency shifted by D from the central peak, the flow is proportional to ε0 and
has the form

Im(ρ21) ∼ α1

D
cos 2Dt + O(ε). (23)

The negative values correspond to the amplification, the positive values correspond
to the attenuation of the energy flow at the mentioned frequency due to the re-
distribution of the energy of the maser radiation in the conditions of the OMPR.
Similarly to [33–36], in the regular observations of the space maser signal it is im-
possible to observe the non-stationary component because of the time averaging,
but the use of the gate detector, or the appropriate processing of the signal in the
time domain would provide the observable OMPR signal. This result means that
the GW whose existence follows from the GRT and is indirectly supported in [1]
could be observed in the direct way with the help of the OMPR based method.
More detailed discussion and the analysis of the feasibility of the OMPR conditions
for the real astrophysical systems are given in [37, 39]. Here we will only mention
that if this type of a signal is detected in the process of purposeful observations,
the reason for it can be undoubtedly identified as the GW.

If the GW emitted by the pulsars and the short-period doubles do exist, the
OMPR based method can become the foundation of the gravitational astronomy
for the inner region of the Milky Way disk. Appendix 1 contains the coordinates
of the astrophysical systems suitable for observations both for the galactic vicinity
of the Sun and for the periphery of our galaxy (see pulsar 3) which also belongs to
the class of spiral galaxies.

But it could happen that the signal in the proposed experiment would be absent
or would differ from the predicted one for some of the observation points. This will
mean that some essential factors were not taken into account. And the space-time
geometrical properties are among these factors.
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5. Anisotropic perturbation of the Minkowsky metrics

All the calculations leading to Eq.(17) could be repeated, if we change the
expression for the metrics to

gij(x) → gij(x, ẋ) = ηij(x) + hij(x, ẋ), (24)

where
ηij(x) = η(0)

ij(x) (25)

is the Minkowsky metrics for the flat space, hij(x, ẋ) is a small perturbation such
that hk

i(x, ẋ) = η(0)kjhij(x, ẋ). The structure of Einstein equations will remain the
same and the perturbation will still suffice the wave equation similar to Eq. (17).
But the expression Eq. (17.1) will look like

hk
i(x, ẋ) = Re

[
Ak

i(ẋ) exp(ikαxα)
]
. (26)

This means that the amplitude of the GW will vary in various directions of their
propagation. From the point of view of observations based on the OMPR method
this difference can not be observed directly since the effect is of the zero order. But
it will reveal itself in the indirect way, for example, the conditions of the OMPR
will be sufficed at different distances in different directions from one and the same
GW source. Then the conditions (22.2) and (22.3) will transform to the following

• The amplitude condition of the OMPR related to the trichromatic field

α2ζ1(ẋ)

α1

= ζ1(ẋ)
ωh

4D
= aζ1(ẋ)ε; a = O(1); ε ¿ 1 . (27)

• The amplitude condition of the OMPR related to the periodic change of the
atomic velocity

kv1ζ2(ẋ)

α1

= ζ2(ẋ)
ωh

α1

= κζ2(ẋ)ε; κ = O(1); ε ¿ 1 , (28)

Here the functions ζ1(ẋ), ζ2(ẋ) are related to the expressions for the amplitudes,
Ak

i(ẋ), of the GW.

6. Investigations of the space-time properties
with the help of the OMPR effect

In this Section we will analyze the possible results of the OMPR based exper-
iment with regard to the problems mentioned in Sections 1 and 2. It was found
[37, 39] that the distances between the GW sources (pulsars or doubles) and space
masers are not small but are of interstellar scale. This means that one and the
same GW source could affect several masers. Such a source is a kind of a beacon
with the frequency now known to the eight decimal digits, while this or that maser



S.V. Siparov Theory of the zero order effect suitable to investigate the space-time...509

is a receiver. The Milky Way scale experiment should be performed in the following
way. Let us chose the GW sources in various places of our galaxy and regard several
masers together with each of them paying attention to the conditions (22.1–22.4).
Then we will try to detect the OMPR signal according to the method described in
[39] for the GW sources closer to the inner part of the galaxy (IPG) and for the
GW sources closer to the periphery part of the galaxy (PPG). One may check that
these experiments can give only nine possible outcomes that will have the meanings
given below.

1.

I P

All 0 0

Some − −
⇐⇒

I P

0 0 R

− − F

Result: no OMPR signal for all the masers corresponding to the IPG GW sources,
no OMPR signal for all the masers corresponding to the PPG GW sources. In-
terpretation: no gravitational waves (and no possibility for the GW astronomy)
→ Einstein equations for the empty space don’t have the structure of the wave
equation → no need for dark matter → Riemannian geometry suits. Problems:
choice of the scalar in the variation principle, interpretation of the results in [1].

2.

I P

All 1 0

Some − −
⇐⇒

I P

1 0 R

− − F

Result: OMPR signal is present for all the masers corresponding to the IPG GW
sources, no OMPR signal for all the masers corresponding to the PPG GW sources.
Interpretation: scale dependence (possibly, conformal gravity outside the galaxy),
Riemannian geometry suits, GRT in the IPG where GW astronomy is possible.

3.

I P

All 0 1

Some − −
⇐⇒

I P

0 1 R

− − F

Result: no OMPR signal for all the masers corresponding to the IPG GW sources,
OMPR signal is present for all the masers corresponding to the PPG GW sources.
Interpretation: scale dependence (possibly, conformal gravity in the IPG), Rie-
mannian geometry suits, GRT outside the galaxy where GW astronomy is possible.

4.

I P

All 1 1

Some − −
⇐⇒

I P

1 1 R

− − F
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Result: OMPR signal is present for all the masers corresponding to the IPG GW
sources, OMPR signal is present for all the masers corresponding to the PPG
GW sources. Interpretation: Riemannian geometry suits, GRT works and GW
astronomy is possible. Problems: dark matter problem.

The rest corresponds to the situation when we have to use Eqs.(27, 28) instead
of Eqs.(22.2, 22.3), that is only some of the selected masers behave as they should
when the OMPR conditions are fulfilled. This will point at the anisotropy effects
mentioned in Section 5.

5.

I P

All − −
Some 1 1

⇐⇒
I P

− − R

1 1 F

Result: OMPR signal is present for some of the masers corresponding to the IPG
GW sources, OMPR signal is present for some of the masers corresponding to the
PPG GW sources. Interpretation: Finslerian geometry suits, GW astronomy is
possible. Problems: dark matter problem.

6.

I P

All − −
Some 1 0

⇐⇒
I P

− − R

1 0 F

Result: OMPR signal is present for some of the masers corresponding to the IPG
GW sources, no OMPR signal for all the masers corresponding to the PPG GW
sources. Interpretation: scale dependence (possibly, conformal gravity outside the
galaxy), Finslerian geometry suits in the IPG where GW astronomy is possible.

7.

I P

All − −
Some 0 1

⇐⇒
I P

− − R

0 1 F

Result: no OMPR signal for all the masers corresponding to the IPG GW sources,
OMPR signal is present for some of the masers corresponding to the PPG GW
sources. Interpretation: scale dependence (possibly, conformal gravity in the IPG),
Finslerian geometry suits in the PPG where GW astronomy is possible.

8.

I P

All 1 0

Some − 1

⇐⇒
I P

1 0 R

0 1 F
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Result: OMPR signal is present for all the masers corresponding to the IPG GW
sources, OMPR signal is present for some of the masers corresponding to the PPG
GW sources. Interpretation: Riemannian geometry suits in the IPG, Finslerian
geometry suits in the PPG, GW astronomy is possible. Problems: dark matter
problem.

9.

I P

All 0 1

Some 1 −
⇐⇒

I P

0 1 R

1 0 F

Result: OMPR signal is present for some of the masers corresponding to the IPG
GW sources, OMPR signal is present for all the masers corresponding to the PPG
GW sources. Interpretation: Finslerian geometry suits in the IPG, Riemannian
geometry suits in the PPG, GW astronomy is possible. Problems: dark matter
problem.

The coordinates of the pairs of masers corresponding to the GW sources located
both in the IPG (pulsar 6) and in the PPG (pulsar 7) are given in Appendix 2.

If in the observations we find that the situations 5–9 are realized, then the
systematic observations interpreted with the help of expression (26) could give
function in the expression for the metrics corresponding to Eq. (10)

gij(x, ẋ) = η(0)
ij(x)+hij(x, ẋ) = η(0)

ij(x)+
1
2

∂2F 2(x, ẋ)
∂ẋk∂ẋj

= η(0)
ij(x)+ η(0)

kj(x)hk
i(x, ẋ).

(29)
Thus, if the space-time anisotropy takes place on the galactic scale, then its quan-
titative characteristic could be obtained in OMPR based experiment.

7. Berwald-Moor metrics

The natural continuation of this approach is the consideration of the situation
when the space-time anisotropy is not a small correction as in the previous Section
but is described by Finsler geometry. In accord with the experimental approach
dealing with the GW described above, one should again use the small linear correc-
tion for the empty space, but the unperturbed metrics now is not the Minkowsky
one, but some Finsler space metrics

gij(x, ẋ) = hij(x, ẋ) + χij(x, ẋ). (30)

It seems appealing to choose the Berwald-Moor metrics for the unperturbed met-
rics. To speak about the OMPR effect, one should find out explicitly if the GW
are possible in such a space-time and write down the corresponding correction to
the metrics; then also find out how the description of the electromagnetic processes
(16, 19) change and write down the geodesics equation.

One could expect that the structure of Einstein equations remains that of the
wave equation and, thus, the GW would be possible though maybe become more
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complicated. The geodesics equation seems also to become more complicated,
but its solution will still present a technical problem. But the description of the
electromagnetic processes and the description of the GW-EMW interaction will
present a different kind of a problem.

An essential feature discovered and underlined in [21] is the following: the
notion of simultaneity which is the base of any relativistic theory might belong not
to the causal structure but to the structure of Lagrangean. This remark causes a
profound methodological problem. The choice of Riemann geometry for the descrip-
tion of space-time is closely connected with the invariance of Maxwell equations
– the foundation of the majority of experiments. It was this fact that Einstein
considered while formulating the relativity principle and while constructing the
SRT. Rejecting Riemann geometry, we reject the Maxwell equations’ invariance,
and this means the appearance of the terms that have the metric origin. These
we will have to interpret in frames of the known phenomenology. The analogous
problem was posed in the end of [40]. The situation becomes even more compli-
cated, if we consider the relation between the gravitation and electromagnetism
both for classical GRT effects such as light bending and gravitational red shift and
for the direct transformation of gravity and electromagnetism into each other [41].
Finally, we see that the transfer to Finsler geometry demands a detailed physical
consideration.

Conclusion

The goal of this paper was to suggest an experiment suitable for the investiga-
tion of the space-time geometrical properties and to give the corresponding theory.
The physical effect underlying such experiment is the optic-metrical parametric
resonance described in Sections 3-5 and in papers [37, 39]. The possible results of
the OMPR based observations analyzed in Section 6 could give an answer to the
question which geometry suits best for the description of the physical space-time.
Moreover, these results could also be used to choose the direction of the further
fundamental research. If it turns out that Riemann geometry is suitable in the
galaxy scale, then astrophysics will confront either the problem of the choice of the
variation principle scalar lying in the base of the axiomatic theory, or the problem
of the dark matter which has to be solved in frames of the elementary particles
theory (and corresponding experiment). In the last case the GW astronomy can
appear and be developed. If it turns out that the geometry must be modified and,
for example, must become Finsler one, then instead of the mentioned problems
the foundations of the electrodynamics must be carefully examined, and this might
have far going consequences on all the levels from quantum mechanics to cosmology.
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Appendix 1

Coordinates and parameters of the astrophysical systems suitable for the OMPR
based detection of the GW [42–43]

Name RaJ DecJ d (pc) D (Hz)

1. Pulsar J1022+1001 10:22:58.006 +10◦01′52.8′′ 300 60.7794489280

Maser AF Leo 11:25:16.4 +15◦25′22′′ 270

2. Pulsar B0656+14 06:59:48.134 +14◦14′21.5′′ 290 2.59813685751

Maser U ORI 05:52:51.0 +20◦10′06.0′′ 280

3. Pulsar J0538+2817 05:38:25.0632 +28◦17′9.07′′ 1770 6.9852763480

Maser HH 4 05:37:21.8 +23◦49′24.0′′ 1700

4. Pulsar B0031-07 00:34:08.86 −07◦21′53.4′′ 720 1.0605004987

Maser U CET 02:31:19.6 −13◦22′02.0′′ 660

5. Double RXJ0806.3+1527 08:06.3 +15◦27′ 100 0.00311526

Maser RT Vir 13:00:06.1 +05◦27′14′′ 120

Appendix 2

Coordinates and parameters of the astrophysical systems suitable for the OMPR
based detection of the GW (space-time anisotropy test) [42-43]

Name RaJ DecJ d (pc) D (Hz)

6. Pulsar J1908+0734 19:08:17.01 +07◦34′14.36′′ 580 4.70914721426

Maser-1 IRC+10365 18:34:59.0 +10◦23′00.0′′ 500

Maser-2 RT AQL 19:35:36.0 +11◦36′18.0′′ 530

7. Pulsar J0205+6449 02:05:37.92 +64◦49′42.8′′ 3200 15.223855772

Maser-1 IRAS00117+6412 00:11:44.6 +64◦12′04.0′′ 3170

Maser-2 W3 (1) 02:21:40.8 +61◦53′26.0′′ 3180
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The present investigation is dedicated to study of physical basis of macroscopic
fluctuations effect [1]. In particular experimental investigation of possible influence of
rapidly spinning massive body on distribution function of the α-decay rate fluctuations
was carried out. Possible anisotropy of such influence was tested. The paper also con-
tains fundamentals of the macroscopic fluctuations effect, method of experimental data
processing and short review of phenomenology collected during more than fifty-years
history of the macroscopic fluctuation effect investigations.

1 Fundamentals of macroscopic fluctuations effect.
Method of experimental data processing

To understand the essence of macroscopic fluctuation effect let us consider a
simple example. Suppose an electrical direct-current circuit. Also suppose that we
provide a set of consecutive measurements of the current value, every time with
more and more sensitive device. Then, at some point during such measurements we
will be able to see that measured value (which was a constant at the beginning) is
subjected to some fluctuations. Apparently obtaining fluctuations is possible this
way in practically any process. Time series of fluctuations obtained in different
processes are basic raw data for investigation of macroscopic fluctuations effect.
Below we consider a method of experimental data processing, which is the basis
for further investigations of macroscopic fluctuations effect.

This method can be divided into two stages. The first one is illustrated at the
Fig. 1. Here Fig. 1A presents initial time series of fluctuations of some process.
These initial time series are divided onto short intervals ordinarily of 30–60 points
in length, Fig. 1B. For every such interval a histogram (distribution function of
fluctuating values) is calculated, Fig. 1C. After this we smooth every histogram
by w-points rectangular windows, Fig. 1D. The most often value of w is w = 4.
As a result of the first stage of procedures applied to initial time series, Fig. 1A,
we obtain a set of smoothed histograms, Fig. 1D. These histograms are subject of
subsequent data processing procedure illustrated by Fig. 2 where the result of the
second stage of data processing is presented.
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Figure 1: Processing of initial time series. The method of smoothed histograms set
obtaining.

Figure 2: Initial set of smoothed histograms and pairs of similar histograms.

Upper part of Fig. 2 gives an example of n = 20 histograms set, which serves
as initial material for the process of visual comparison of histogram pairs by an
expert. This set is obtained in the same way as the set at Fig. 1D. Every histogram
of this set is compared with all other histograms of this set, or some other. In case
when we compare histograms in the same set we need n(n − 1)/2 comparisons of
histogram pairs. In case when we compare histograms between different sets we
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need n2 comparisons. For set displayed in Fig. 2 we need 190 comparisons. Lower
part of Fig. 2 presents 10 pairs histograms, which were found similar by expert.

It is possible to see from Fig. 2 that the process of histogram comparison by ex-
pert consists of evaluation of similarity of shape for histogram pairs. The process of
expert histogram comparison is very sensitive to peculiarities of histograms shape.
Usually the results of expert comparisons cannot be repeated by traditional meth-
ods of correlation analysis, spectral analysis, or using different measures of similar-
ity, etc. [2]. Multiple attempts to create algorithm for automatic comparisons of
histograms made clear that complete or partial automation of the process of expert
histogram comparison is possible only using complex algorithms simulating some
aspects of human perception, especially its whole nature.

Figure 3: An example of distribution of similar histograms by intervals between them
for the set of histograms presented on the fig. 2A.

The end of the second stage is construction of distribution of number of similar
histograms on time intervals between them. An example of such distribution for
the set of histograms at Fig. 2 is presented at Fig. 3. Interval ∆ is duration of
time between each two histograms in time series. Expert estimation of similarity of
histograms in pair is ”1” or ”0” value (”yes” or ”no”). If histograms are similar,
then similarity is equal to ”1”, in opposite case similarity is equal to ”0”. For
example, the set of n = 20 histograms presented in Fig. 2 have n −∆ = 15 pairs
of histograms separated by interval ∆ = 5. From all of them only pairs #2–#7
and #7–#12 are similar by expert’s opinion. Consequently in the distribution,
based on the set of histograms presented in Fig. 2, number of similar histograms
for interval ∆ = 5 will be equal N = 2.

Construction of interval distribution graph completes processing of experimen-
tal data by expert. On the basis of this distribution all main properties of macro-
scopic fluctuations effect are obtained. Following chapter gives a short revue of
phenomenology of the effect.

2 Basic phenomenology of Macroscopic Fluctuations Effect.

The most general result of many-years investigations of macroscopic fluctua-
tions effect is a proof of non-randomness of fine structure of histograms shapes built
on the base of short samples of time series of fluctuations of different processes of
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any nature – from biochemical reactions and noises in gravitational antenna to fluc-
tuations in α-decay rate. Below we consider basic phenomenology of macroscopic
fluctuations effect.

1. The Near Zone Effect

The Near Zone Effect consists in higher probability of meeting similar pair of
histograms in the nearest (neighboring) non-overlapping segments of time series of
the results of measurements, Fig. 4 a). The effect leads to the notion of ’life-time’
of histogram’s definite shape. But at the present day it is not possible to point
out time interval during which the shape of histogram is still invariable. The Near
Zone Effect was tested for time intervals from several hours to seconds. Physical
meaning of such a fractality needs further investigations [1–3].

2. Universal Nature of Macroscopic Fluctuations Effect

Universal nature of Macroscopic Fluctuations Effect means that the effect is
invariant in relation to the qualitative nature of the fluctuation process. The facts of
similarity of fine structure of histogram’s shape in processes with energies differing
in many orders (for example, energy of α-decay rate fluctuations and energy of
noise in gravitational antenna differ approximately in 40 orders) mean that physical
nature of this similarity is non-energetic. All above mentioned also represents a
quite common reason of histogram’s similarity [1, 2, 4].

3. Periodical Manifestations of Macroscopic Fluctuations Effect

Important evidence of non-randomness of histogram’s shape is a regular char-
acter of its changes with time. This regularity manifests itself in the following
phenomena.

3.1. Near-daily periods of changes in histograms shape similarity. They consist
of two well-resolvable sidereal (1436 min) and solar (1440 min) periods. Existence
of the periods means dependence of histograms shape on the rotations of the Earth
around its axis.
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Figure 4: a) Example of Near Zone Effect and daily period [6], b) splitting of daily period
on solar and star periods [7]. X-axis – time intervals between pairs of similar histograms,
a) – hours, b) – minutes; Y-axis – number of similar histogram pairs found by expert.

3.2. Near-27-days periods of changes in histograms shape similarity. The pe-
riods probably mean dependence of histograms shape on the relative position of
Earth, Moon, Sun and, probably, the planets [7].

3.3. Yearly periods of changes in histograms shape similarity. They consist of
solar (365 solar days) and sidereal (365 solar days, 6 hours, 9 minutes) periods [8].

All above-mentioned periods mean dependence of histograms shape on the rota-
tions of the Earth around its axis and movements of the Earth along its circumsolar
orbit.

4. Local-Time Effect

Dependence of histogram’s shape on the rotations of the Earth around its axis
manifests itself in the local-time effect. The effect consists in synchronous changes
of histogram’s shape similarity for different geographical locations at the same
local time. It was tested many times for different geographical locations around
the Globe. It was found that the effect works for maximally possible distances
(about 15000 km) between the places of measurements. For some cases absolute-
time synchronism (synchronous changes of histogram’s shape similarity for different
geographical locations at the same moments) can be observable.

Fig. 5 presents two intervals distributions constructed on the base of time
series of α-decay rate fluctuations of 239Pu. The time series were obtained in
Moscow region, (Pushchino, latitude 54◦50′ North and longitude 37◦38′ East) and
in Antarctica (Novolazarevskaja station, latitude 70◦02′ South and longitude 11◦35′

West). The distance between the points of measurements is about 14500 km and
difference in local time is 103 min.

Left side of fig. 5 presents interval distribution, which illustrates the effect of
histogram similarity by absolute time. Right side of fig. 5 presents the effect of sim-
ilarity by local time. It can be seen that local time effect appears more clearly [1, 2].
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Figure 5: Synchronous changes of histogram’s shape similarity in different geographi-
cal locations. Left intervals distribution presents the effect of histogram similarity by
absolute time, right distribution presents similarity by local time.

5. Disappearance of daily periods for measurements
near the North Pole

The dependence of histogram’s shape on the Earth rotation around its axis is
also revealed in disappearance of daily periods in measurements conducted close to
the North Pole. Such measurements were carried out at the latitude 82◦ North in
2000. Near-daily periods disappeared for histograms in 15-minute and 60-minute
length. But for 1-minute histograms the periods were found. For such histograms
a local-time effect was also found [7].

Above-mentioned results lead to necessity of measurements as close as possi-
ble to the North Pole. Impossibility of such measurements stimulates us to start
measurements with collimators cutting out a stream of α-particles at radioactive
decay of 239Pu. Results of these experiments radically change our understanding
of macroscopic fluctuations effect [9].

6. Motionless collimator directed at the Polar Star

Measurements were taken with the collimator of α-particles directed at the
Polar Star. For these measurements the near-daily periods and near zone effect
was not observed. The measurements were made in Pushchino at latitude 54◦

North, but the effect was as would be expected at latitude 90◦ North, i.e. at the
North Pole. This indicates the dependence of histograms shape on the direction in
space. Such a dependence in its turn leads to the conclusion about anisotropy of
space itself [7, 9].
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7. Motionless collimators directed to the East and to the West

The conclusion about anisotropy of space was confirmed by measurements with
two collimators. One of them was directed to the East; the other one to the West.
In those experiments two important effects were discovered.

7.1. The histograms registered in the experiments with the East-directed col-
limator are similar to histograms from West-directed collimator with delay of 718
min, i.e. half of the sidereal day.

7.2. No similar histograms were observed in the simultaneous measurements
with the East and West collimators. Without collimators, it is highly probable
for similar histograms to appear at the same place and time. This space-time
synchronism disappears when α-particles streaming in the opposite directions are
counted.

These results are in agreement with the concept that the histogram shape
depends on the direction of the α-particle emission i.e. with the concept of space
anisotropy [10].

8. Experiments with the rotating collimators

Figure 6: Interval distribution obtained on the base of 60-min histograms constructed
from measurements of α-decay rate fluctuations of collimated 239Pu source.

Experiments with rotating collimators were a natural development of above-
mentioned investigations [11].

8.1. Collimator rotating counter-clockwise scans coelosphere with the period
equal to number of collimator rotations plus one rotation made by Earth itself. The
dependence of the probability of appearance similar histograms on the number of
collimator rotations per day was studied. Just as expected, the probability jumps
with periods equal to 1440 min divided by the number of collimator rotations
per day plus 1. Examination of experimental data at 1, 2, 3, 4, 5, 6, 7, 11 and 23
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rotations per day reveals periods equal to 12, 8, 6 etc. hours. The analysis of 1-min
histograms shows that each of these periods has two extremes: ”sidereal” and
”solar”. These results indicate that the histogram pattern is indeed determined
by direction of α-particle emission [11]. An example of 6-hours period obtained
with 60-min histograms at three counter-clockwise rotations of collimator per day
is presented in fig. 6.

8.2 For collimator, which made 1 clockwise rotation per day, the rotation of the
Earth was compensated (α-particles always emitted in the direction of the same
region of the coelosphere) and, correspondingly, the daily periods disappeared. This
result was completely analogous to the results of measurements near the North Pole
and measurements with the immobile collimator directed towards the Polar Star
[10].

8.3 With the collimator placed at the ecliptic plane, directed toward the Sun
and making 1 clockwise rotation per day, α-particles are constantly emitted in the
direction of the Sun. As it was expected, the near-daily periods, both solar and
sidereal, disappeared in such conditions.

9. Characteristic histogram’s shapes at new Moon and solar eclipses

All the results presented above have probabilistic character and were obtained
by the evaluation of tens of thousands of histogram pairs in every experiment.
A completely different approach is used in the search for characteristic histogram
shapes in the periods of the new Moon and solar eclipses. In these cases the
histogram’s shape is examined at a certain predetermined moment of new Moon
or solar eclipse. In such a way it was discovered that at the moment of the new
Moon, a certain characteristic histogram appears practically simultaneously at dif-
ferent longitudes and latitudes – all over the Earth. This characteristic histogram
corresponds to a time segment of 0.5–1.0 min [12]. When the solar eclipse reaches
maximum (as a rule, this moment does not coincide with the time of the new
Moon), a specific histogram also appears; however, it has a different shape. Such
specific shapes emerge not only at the moments of the new Moon or solar eclipses,
though the probability of their appearance at these very moments at different places
and on different dates (months, years) is extremely low. These specific histogram’s
shapes neither relate to tidal effects nor depend on position on the Earth’s surface,
where the Moon’s shadow falls during the eclipse or the new Moon.

10. Characteristic histograms shapes at rise and set of Sun and Moon

The shape of histograms is determined by a complex set of cosmo-physical
factors. As it follows from the existence of the near-27-day periods, amongst these
factors may be the relative positions and states of the Sun, the Moon and the Earth.
We repeatedly observed similar histograms during the risings and settings of the
Sun and the Moon. A very large volume of work has been carried out. Yet we have
not found a histogram shape, which would be characteristic for those instants. A
review and analysis of the corresponding results will be given in a special paper.
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11. Mirror symmetry of histograms

Very often (up to 30%) shape of histograms in the similar pair has ”mirror”
symmetry. This means an existence of left and right shapes. This phenomenon
possibly signifies that chirality is an immanence property of space-time [1].

3 The possible nature of the Macroscopic Fluctuations Effect.
Idea of the present investigation

Above-mentioned properties #3 –#4 of the macroscopic fluctuations effect
pointed out the dependence of the effect phenomenology on the space position of
the Earth, Moon, and the Sun and property #2, which states independence of the
phenomenology from qualitative nature of fluctuating process, lead to supposition
that phenomenology can be determined by only a such common factor as space-time
heterogeneity. The space-time heterogeneity can be connected with gravitational
interaction. On the other hand, properties #5 – #8 indicating space anisotropy of
acting agent and property #9 – synchronous arising of similar histograms shapes
in different geographical locations at certain moments in dynamics of Sun, Earth,
and Moon leads to conclusion about wave nature of acting agent.

To sum up we can suppose that acting agent determining above-mentioned
properties of macroscopic fluctuations have gravity-wave nature. According to
this, shape of histograms, can be sensitive to gravitational wave influence. This is
the base idea of experiment, which is presented at fig. 7.

4 Experimental setup

At fig. 7 simplified diagram of experimental setup on detecting gravitational
wave influence on the shape of α-decay rate histograms is presented. The left
side of the diagram schematically presents generator of gravitational influence. A
centrifuge K70 (”JANETZKI”) symmetrically loaded with two bottles of water was
used as such generator. The weight of every bottle was 1.5 kg.

Gravitational radiation of the generator, schematically presented by parallel
arrows, influences on two-channel registration system, showed as Ch. 1 and Ch. 2.
The system consists of two recorders of α-decay rate from 239Pu-sources. Average
α-decay rate for Ch. 1 is 272 decays per second and 174 decays per second for Ch.
2. The recorders lie in the plane of centrifuge rotor and are placed at a distance
of 1.5 m from its axle. For every recorder the angle ϕ between wave vector of
generating gravitational wave and direction of α-particles emitting is different. For
Ch. 1-recorder the angle is ϕ = 180◦ and for Ch. 2 ϕ = 90◦. In view of wave
nature of expected influence it must be angle-sensitive. So, recorders Ch. 1 and
Ch. 2 must be of different sensitivity to generate wave influence. Values of α-decay
rate per second from every channel and speed of rotation of centrifuge rotor were
registered by a special computer system.

Experiments were carried out as 5-minute cycles of running and turning off the
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Figure 7: Simplified diagram of experimental setup on detecting gravitational wave
influence on the shape of α-decay rate histograms.

centrifuge. So, period of influence was equal to 10 min. The rotation speed of
running centrifuge rotor was 3000 revolutions per minute. The rotor of turning off
centrifuge at the end of 5-minute cycle keeps the rotation speed about 300 rpm.

5 Simulation of expected results

Fig. 8 a) shows idealized diagram presenting change of rotation speed of cen-
trifuge rotor with time. We expect, that all histograms constructed from pieces
of time series corresponding to running centrifuge are similar between themselves,
but non-similar to histograms constructed from pieces of time series corresponding
to turning off centrifuge. In the same way all histograms constructed from pieces of
time series corresponding to turning off centrifuge are similar between themselves,
but non-similar to histograms constructed from pieces of time series corresponding
to running centrifuge.

Figure 8: Idealized diagram of rotation speed of centrifuge rotor with time, a); expected
interval distribution, b).

Above supposition allows us to calculate expected interval distribution, fig. 8
b). As it can be seen at fig. 8 b) interval distribution for experimental record of
fixed length consists of finite number of decreasing peaks repeating with period,
which equal to period of centrifuge alternating.
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Figure 9: An example of experimental record of α-decay rate fluctuations obtained from
239Pu-source (Ch. 1, series No. 4), a; and corresponding distribution function, b.

6 Experimental results

According to above described method five series of measurements were carried
out. An example of experimental record No. 4 obtained from Ch. 1-recorder is
given at fig. 9 a). This graph presents a piece in 2500 sec length of time series
in 26400 one-second measurements. Fig. 9 b) presents distribution function for
this time series. As it is possible to see from fig. 9 a) and fig. 9 b) time series of
α-decay rate fluctuations and its distribution function are typical for this process.
Absence of any peculiarities in the presented time series and the distribution func-
tion are expected and is evidence of good quality of experimental registration. As
it was noted at the beginning, traditional methods of time series processing are not
sensitive to macroscopic fluctuations effect manifestations.

Figure 10: An example of interval distribution (Ch. 1, series No. 4), a);
and corresponding density function of power spectrum, b).
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According to the methods described in first chapter, on the base of obtained
experimental records five sets of 0.5-min histograms were constructed. Expert
tested the pairs of histograms from every set for similarity. Typical example of
interval distribution constructed on the base of result of expert comparison (Ch.
1, series No. 4) is presented at fig. 10 a).

As it is possible to see from fig. 10 the interval distribution consists of quite
distinct periodic peaks. The period of peak repetition is 5 min. Fig. 10 b) presents
spectral power density corresponding to the interval distribution. As it can be
expected from interval distribution the spectrum has distinct 5-minute peak. Ap-
pearance of the 5-minute period is quite unexpected from the point of view of above
developed model. The meaning of the period will be considered below.

Figure 11: An Example of interval distribution for Ch. 1 (*) and Ch. 2 (◦)
(series No. 4), a); and corresponding densities of power spectrum, b).

For convenience in fig. 11 a) interval distributions for Ch. 1 (marked by
asterisks) and Ch. 2 (marked by little circles) are given. As it is possible to see,
periodical pattern typical for Ch. 1 is absent in Ch. 2. Fig. 11 b) presents spectral
power densities corresponding to interval distributions in fig. 11 a). It is clear
that 5-minute peak is absent for Ch.2 spectrum. This result validates supposition
that registration system is angle-sensitive in relation to generated influence. At
the same time for some cases spectrum for Ch. 2 contains 2.5 ÷ 3- minute peak,
which can also be seen in fig. 11 b). The physical nature of this peak and its
correspondence to centrifuge dynamic is unknown.

7 Acceleration modes

Results, illustrated above by data for series No. 4 were also obtained for other
series. This allows us to make a statement about sensitivity of histogram’s shape
to influence of rotating centrifuge rotor. This influence reveals itself by higher
probability of meeting similar pair of histograms with period, which equals 5 min.
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Figure 12: Simplified diagram for centrifuge rotor acceleration and braking.

Appearance of 5-minute period instead of 10-minute one indicates that his-
tograms shape is sensitive not to rotation speed of centrifuge rotor, as it was sug-
gested in the model presented at fig. 8, but to its accelerations. Fig. 12 illustrates
this supposition. Here gray rectangles mark intervals of acceleration and braking
of centrifuge rotor. Every period includes two such intervals. If histograms shape
is sensitive to accelerations, we will obtain double frequency, i.e. 5-minute period
instead of 10-minute one. Interval distribution in this case will be the same as
presented in fig. 8 b) but with 5-minute peaks period, which is observed in interval
distribution obtained from experimental data.

Figure 13: Upper graph: tests record of three acceleration-braking periods of rotation
speed of centrifuge rotor; lower graph: derivative of rotation speed (acceleration), pre-
sented at the upper graph.

Experiments with rotation speed of centrifuge rotor confirm this supposition.
The upper graph in fig. 13 presents test record of three acceleration / braking
periods of rotation speed of centrifuge rotor. The lower graph in fig. 13 presents
derivative of rotation speed, which corresponds to rotor accelerations. Narrow
peaks in this graph correspond to acceleration mode. We suppose that histograms
of α-decay fluctuations, which correspond to acceleration modes in centrifuge op-
erations determine 5-minute period observable in above described experiments.
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8 Discussion

In favor of the supposition that acceleration modes can define the shape of
histograms we shall consider works [13, 14]. These works used a registration system
providing acceleration modes, which are in some way complementary to such modes
in our works. This registration system used as a sensor rapidly spinning massive
body with artificially created acceleration mode by means of special braking pulse.
Duration of the pulse is 18-30% of rotation period [13]. Registering parameter of
the system is angular velocity of spinning body. It turned out, that such a system
is sensitive to the same events, which are noted in properties No. 9 and No. 10 of
macroscopic fluctuation effect phenomenology [14]. All this events have a relation
to certain extrema in the velocity of change of the space-time position of the Sun,
the Earth and the Moon; in this respect, the situation can be considered as a regime
with acceleration and thus, it can determine the form of histograms describing the
fluctuations in various processes.

As the second example of experimental investigation, where acceleration modes
play an important role, we will consider work [15]. In this work a pair of generator
with identical crystal oscillators was used as a registration system. The genera-
tors were placed in such a way that the positions of the crystals were orthogonal.
Registering parameter of this system is relative change of resonant frequencies of
crystals of the generators. Authors named this parameter as T-signal. A study
of daily changes of T-signal shows its anisotropy with extrema at local noon and
midnight. Authors note non-electromagnetic nature of T-signal, and its biological
activity. The T-signal changes were considered as consequence of gravitation waves
emission of the Sun.

It is possible to note the general moments typical for works [13–15] and exper-
iment considered in the present work. The first important feature is presence of
”acceleration modes” in the registering system, allowing distinguishing some di-
rection in space. In our experiments it is set by a direction of outgoing α-particles,
in [13–14] – by the moment of breaking impulse, in [15] – by a perpendicular to a
plane of the crystal plate oscillations.

”Acceleration modes”, causing anisotropic properties of registering system at
the same time make it sensitive to the same ”acceleration modes” which are exter-
nal in relation to it and, presumably, are connected with gravity-wave radiation.

Summarizing we shall note, that as a result of the present experimental inves-
tigation influence of quickly rotating massive body on the shape of fine structure
of constructed upon small samples distribution functions of fluctuations of α-decay
rate, appearing in higher probability of similarity of shape of the histograms for the
moments corresponding to ”acceleration modes” is fixed. The influence possesses
anisotropic properties and, presumably, has the gravity-wave nature.

The authors are grateful to N.V. Udaltsova for valuable help in preparation of
text of the paper.
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Local-Time Effect on Small Space-Time Scale
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The existence of the local time effect was studied for different places of measurement
located at different positions on Earth at various distances ranging from hundreds of
kilometers up to the largest possible ones. The paper studies the existence of the local
time effect for relatively small distances between the places of measurements. The dis-
tribution of time intervals in the neighborhood of the local time peak was studied, and
the splitting of the peak was evidentiated.

1 Introduction

The present work was carried out as further investigations of macroscopic fluc-
tuations phenomena [1 – 4]. The local time effect, which is the main subject of this
paper, is synchronous in local time appearance of pairs of histograms with similar
fine structure constructed on the base of measurements of fluctuations in processes
of different nature fulfilled in different geographical locations. The effect points
out on the dependence of fine structure of the histograms on the Earth rotations
around its axis and around the Sun. The existence of local time effect was studied
for different distances between places of measurement from hundred kilometers up
to highest possible on the Earth distances (∼ 15000 km). The goal of the present
work is the investigations of the existence of the local time effect for relatively small
distances between places of measurements.

The main problem of experimental investigations of local-time effect at the
small space distances is resolution enhancement of the macroscopic fluctuations
method. As a rule all above-mentioned investigations of local-time effect were
carried out by using α-decay rate fluctuations of 239Pu source. But such source
of fluctuations becomes uselessness for distances in tens of kilometers or less when
histograms duration must be about one second or less. By this reason in the
present work we refuse α-decay sources of fluctuations. As such a source was chosen
noise generated by germanium semiconductor diode. Such source gives noise signal
with frequency band up to tens of megahertz and because of this satisfies the
requirements of present investigations.

To check convenience of selected noise source for local-time effect investigations
it was tested on distances for which existence of the effect was proved [5]. In
cited work was shown appropriateness of semiconductor noise diode for studies of
local-time effect.
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2 Investigation of local-time effect for longitudinal distance between
locations of measurements in 15 km

First series of synchronous measurements were carried out in Pushchino (Lat.
54◦50.037′ North, Lon. 37◦37.589′ East) and Bolshevik (Lat. (54◦54.165′ North,
Lon. 37◦21.910′ East). Longitudinal difference α between places of measurements
is α = 15.679′. This value of α corresponds to difference of local time ∆t = 62.7
sec and longitudinal distance ∆l, equal ∆l = 15 km.

Fluctuations from noise generator were digitized with sampling frequency equal
to 44100 Hz. In this way in Pushchino and Bolshevik were obtained 10-minute time
series. From this initial time series with three different steps (pointed in second
line of Table 1) were extracted single measurements and obtained three time series
with frequency pointed in third line of Table 1. On the base of this time series
in a standard way [1–3] were constructed three sets of histograms. All histograms
were constructed using sample length pointed in fourth line of Table 1. Number
of histograms per second and durations of histogram for every set are given in the
fifth and sixth line of Table 1 correspondingly.

Table 1. Parameters used for calculating sets of 1-, 0.2-, and 0.02-sec histograms.

1 Sampling frequency, Hz 44100 44100 44100

2 Step, points 735 147 14

3 Frequency of histogram time series, Hz 60 300 3150

4 Histogram sample length, points 60 60 63

5 Histograms per 1 sec 1 5 50

6 Duration of histogram, sec 1 0.2 0.02

Fig. 1 presents intervals distribution obtained after expert comparisons of
1-sec histogram sets. The distribution has a peak, which corresponds to time
interval equal to 63 ± 1 sec. Taking into account accuracy of synchronization of
measurements beginning (0.1 – 0.2 sec) and duration of histograms one can consider
this peak to be corresponding with good accuracy to local time difference ∆t = 62.7
sec between places of measurements.

Local time peak ordinary obtained on the interval distributions is very sharp
and consists of 1–2 histograms [1–3] i.e. is practically structureless. Peak on the
Fig. 1 a) also can be considered as structureless. This fact leads us to the problem
of further investigating of structure of local time peak.

The fact that all sets of histograms were obtained on the base of the same initial
time series enables enhancement of time resolution of the method of investigation.
Using of 0.2-sec histograms set (forth column of Table 1) increase resolution in
five times and allows more detailed investigations of local-time peak structure.
Since the positions of the peak on the intervals distribution (Fig. 1) are known it is
possible to select their neighborhood by means of 60 sec relative shift of initial time
series and prepare after this 0.2-sec histograms set for further expert comparison.
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a)

b)

Intervals distribution obtained in result of expert comparisons for 0.2-sec his-
tograms set is presented on Fig. 1b). One can see that maximum similarity of
histograms shape is observed for pairs of histograms separated by interval in 63?0.2
sec. This value is the same as for 1-sec histograms intervals distribution, but in
latter case it is defined with accuracy in 0.2 sec.

It’s easy to see from intervals distribution, Fig. 1b), that after 5-times enhance-
ment of resolution the distribution has single sharp peak again. So, change of time
scale in this case doesn’t lead to change of intervals distribution. This means that
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Figure 1: Intervals distributions obtained after expert comparisons of 1-sec (a), 0.2-sec
(b), and 0.002-sec (c) histogram sets. Y-axis presents number of histograms, which were
found similar; X-axis – time interval between pairs of histograms, sec.

we must enhance time resolution again to study the local time peak. We can do
this by using of 0.02-sec histograms (third line of Table 1).

Intervals distribution for case of 0.002-sec histograms is presented on the Fig.
1c). Unlike to intervals distributions on the Fig. 1a) and Fig. 1b) distribution on
the Fig. 1c) consists of two distinct peaks. The first peak corresponds to local
time difference equal 62.98 ± 0.002 sec, the second one to 63.16 ± 0.002 sec. The
difference between the peaks is ∆t′ = 0.18± 0.002 sec.

Splitting of local-time peak on the Fig 1 c) is similar to splitting of daily period
on two peaks with periods, which equal to solar and sidereal days [6–8]. This fact
will be discussed below.

3 Investigation of local-time effect for longitudinal distance
between locations of measurements from 6 km to 0.5 km.
Mobile experiment

Above presented experiment demonstrates the existence of local-time effect for
longitudinal distance between locations of measurements in 15 km and splitting
of local-time peak corresponding to the distance. It is natural to investigate the
question: which is the minimal distance of local time effect existence? Next step
in this direction is the experiment presented below.
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Table 2. Locations of mobile measurement system and corresponding parameters.

# Locations of mobile measurement system α ∆t, sec ∆l, km ∆t′, sec

1 Lat. 54◦48.16′ N, Lon. 37◦43.54′ E 5.95′ 23.8 6 0.066

2 Lat. 54◦49.28′ N, Lon. 37◦41.44′ E 3.85′ 15.4 3.9 0.043

3 Lat. 54◦50.126′ N, Lon. 37◦39.21′ E 1.618′ 6.47 1.6 0.018

4 Lat. 54◦49.989′ N, Lon. 37◦38.13′ E 0.538′ 2.152 0.5 0.006

In the experiment two measurement systems were used: stationary with loca-
tion in Pushchino (Lat. 54◦50.037′ N, Lon. 37◦37.589′ E) and mobile one. Four
series of measurements were carried out. Locations of mobile measurement system
for every series of measurements are given in second column of Table 2. Angular
longitudinal difference of locations of measurements, α, is presented in third column
of the table. Local time difference ∆t and longitudinal difference of locations of
measurements ∆l, are given in fourth and fifth columns of Table 2 correspondingly.
Last column gives splitting value of local-time peak, ∆t′.

Method of experimental data processing was the same as for experiment pre-
sented in second section of the paper. Was found that within accuracy of exper-
iment the local time value ∆t and the local-time peak splitting value ∆t′ can be
observed.

4 Discussions

Local-time effect as pointed in [1], is linked to rotatory movement of Earth. The
simplest explanation of the fact can be following. Due to the rotatory movement
of the Earth after time ∆t measurement system No. 2 appears in the same places
where was system No. 1. The same places cause the same shape of fine structure
of histograms. Actually such explanation is incorrect because of orbital motion
of Earth, which noticeably exceeds rotatory movements. Therefore measurement
system No. 2 cannot appear in the same places where was system No. 1. But if we
consider two directions defined by center of Earth and two points of measurement
then after time ∆t measurement system No. 2 take the same directions in the
space as system No. 1 before. From this it follows that similarity of histograms
shapes in some way is connected with the same space directions. This supposition
also agrees with experimental results presented in [9–10].

Four-minute splitting of daily period of repetition of histograms shape on solar
and stellar sub-periods [3] is the evidence of existence of two preferential directions:
to the Sun and to the coelosphere. Really after time interval equal 1436 min the
Earth makes one complete revolution and measurement system plane has the same
direction in the space as one stellar day before. After four minutes from this
moment measurement system plane will be directed to the Sun. This is the cause
of solar-day period – 1440 min.
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Let us suppose that splitting described in the present paper has the same
nature as splitting of daily period. Then from daily period splitting ∆T , which
equal ∆T = 4 min its possible to obtain proportionality coefficient k:

k =
240 sec

86400 sec
≈ 2.78 · 10−3. (1)

Longitudinal difference between places of measurements presented in second section
is ∆t ≈ 62.7 sec and we can calculate splitting of local-time peak for this value of
∆t:

∆t′ = k∆t = 62.7× 2.78 · 10−3 ≈ 0.17 sec. (2)

As it is easy to see from Fig. 1c) splitting of local-time peak is equal to
0.18 ± 0.02 sec. This value agrees with estimation (2). Values of splitting of the
local-time peak, which are presented in last column of Table 2 also were calculated
by help of formula (2). Experiment described in third section shows good agreement
of the values with experimentally obtained.

This result allows us to consider sub-peaks of local-time peak as stellar and solar
and suppose that in this case the cause of splitting is the same as for daily-period
splitting.

Speaking about preferential directions we implicitly supposed that measure-
ment system is directional and because of this can resolve these directions. Such
supposition is quit reasonable for the case of daily period splitting but for splitting
of local-time peak observed on the small distances becomes problematic since an
angle, which must be resolved by the measurement system is neglible. Most likely
that in this case we deal with space-time fluctuations, which in some way are
connected with preferential directions to the Sun and coelosphire. In other words
we can speak about sharp anisotropy of near-earth space-time.

Results obtained in the present work prove possibility of local-time effect in-
vestigation on small space scale up to 0.5 km. Farther decreasing of this scale is
our immediate task. In the same time sub-peaks obtained as result of splitting of
local-time peak also consist of one-two histograms, so are structureless. This fact
poses a problem of more detailed investigations of local-time peak structure.

Authors grateful to Dr. Hartmut Muller, V. P. Tikhonov and M.N. Kon-
drashova for valuable discussions and financial support.
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