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The space of the associative commutative hyper complex numbers, H4, is a 4-dimensional
metric Finsler space with the Berwald-Moor metric. It provides the possibility to construct the
tensor fields on the base of the analytical functions of the H4 variable and also in case when this
analyticity is broken. Here we suggest a way to construct the metric tensor of a 4-dimensional
pseudo Riemannian space (space-time) using as a base the 4-contravariant tensor of the tangent
indicatrix equation of the Berwald-Moor space and the World function. The Berwald-Moor space
appears to be closely related to the Minkowski space. The break of the analyticity of the World
function leads to the non-trivial curving of the 4-dimensional space-time and, particularly, to the
Newtonian potential in the non-relativistic limit.

1 Introduction

The fascinating beauty of the theory of the functions of complex variable reveals itself,
for example, in the harmony of the algebraic fractals on the Euclidian plane. It makes many
researches look for the analogous number systems, the elements of which could be correlated
not to the points on the plane but to the points of the 4-dimensional space-time. In case
of the success of such a search, we could really trust the famous Pythagoras saying ’all the
existing is number’. On this way, the interesting results were obtained for quaternions [1],
biquaternions [2-4], octaves [5] and so forth. Nevertheless, none of these number system
theories can be compared even to the theory of the relatively simple 2-component complex
numbers. The main reason for this seems to be the lack of the commutativity (and sometimes
even of the associativity) of the multiplication in these algebras. Although the authors of
this paper realize the conceptual bases of all the variety of algebras, the commutativity of
the multiplication is the integral property of all the principal number systems that contain
natural, integer, rational, real and complex numbers. Finally, the commutativity and the
associativity of the multiplication are among the axioms of arithmetic which presents the
foundation of mathematics, and it would be strange if the algebraic system which is the
most natural for our real world does not correspond to the rules of regular counting.

One of the systems free from this drawback is the algebra of the commutative and
associative hyper complex numbers, related to the direct sum of the four real algebras,
which will be denoted as H4. The algebra of these numbers is isomorphic to the algebra
of the 4-dimensional square real diagonal matrices, and the corresponding space is a linear
Finsler space with the Berwald-Moor metric (the last fact was proved by the authors in [6]).
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It should be mentioned that Finsler space with the Berwald-Moor metric has been known
and partially investigated for a long time [7–8].

One of the main properties of this space is the existence of such a range of the parameters
that the 3-dimensional distances (from the point of view of the observer who uses the radar
method to measure them [9]) correspond to the positively defined metric function the limit
of which is the quadratic form [10]. In other words, the 3-dimensional world observed
by an ”H4 inhabitant” is Euclidian within certain accuracy. Moreover, when one passes
to the relativistic velocities, the 4-dimensional intervals between the H4 events present
the Minkowski space correlations [11]. All this makes possible to suggest that the H4

space and the corresponding Finsler geometry can be used as a mathematical model of the
real space-time, and maybe this model would be even more productive than the pseudo
Riemannian constructions prevailing in Physics now.

Any hyper complex algebra is completely defined by the multiplication rule for the
elements of a certain fixed basis. In the H4 number system there is a special – isotropic –
basis e1, e2, e3, e4, such that

eiej = pk
ijek pk

ij =

{
1 , if i = j = k ,

0 , else .
(1)

Any analytical function in this basis can be given as

F (X) = f 1(ξ1)e1 + f 2(ξ2)e2 + f 3(ξ3)e3 + f 4(ξ4)e4 , (2)

where
H4 3 X = ξ1e1 + ξ2e2 + ξ3e3 + ξ4e4 , (3)

and f i are four arbitrary smooth functions of a single real variable.
In H4 there is one more – orthogonal – selected basis 1, j, k, jk, which is related to the

isotropic basis by the following formulas

1 = e1 + e2 + e3 + e4 ,

j = e1 + e2 − e3 − e4 ,

k = e1 − e2 + e3 − e4 ,

jk = e1 − e2 − e3 + e4 ,





(4)

where 1 is the unity of algebra, and the corresponding component of the analytical function
of the H4 variable is defined by the formula

u =
1

4

[
f 1(ξ1) + f 2(ξ2) + f 3(ξ3) + f 4(ξ4)

]
. (5)

If X is a radius vector, then the coordinate space ξ1, ξ2, ξ3, ξ4 is a Berwald-Moor space
with the length element

ds = 4
√

dξ1dξ2dξ3dξ4 ≡ 4

√
gijkldξidξjdξkdξl , (6)

where

gijkl =





1
4!

, (i 6= j 6= k 6= l),

0 , (else).

(7)
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For this geometry the tangent indicatrix equation is

gijklpipjpkpl − 1 = 0 , (8)

where

gijkl =





44

4!
, (i 6= j 6= k 6= l),

0 , (else),

(9)

pi =
gijkldξjdξkdξl

(gmrstdξmdξrdξsdξt)3/4
(10)

are the components of the generalized momentum or generalized momenta.
If we have tensors pk

ij, gijkl, gijkl and vector fields of the analytical functions F(A)(X) of
the H4 variables, we could construct the metric tensors in the 4-dimensional space-time in
many ways. For example,

gij(ξ) = gijklf
k
(1)f

l
(2) , (11)

Now one can investigate the obtained Riemannian geometry. The main drawback of this
approach is the variety of the ways to construct it.

It is known [12] that if the tangent indicatrix equation is defined as

Φ(p; ξ) = 0 , (12)

then the geodesics will be the solutions of the canonical system of differential equations

ξ̇i =
∂Φ

∂pi

· λ(p; ξ) , ṗi = −∂Φ

∂ξi
· λ(p; ξ) , (13)

λ(p; ξ) 6= 0 is an arbitrary smooth function, and a dot above ξi and pi means the derivation
by the evolution parameter, τ .

2 Construction of the metric function of the pseudo Riemannian space

Let us regard a space which is conformally connected to the H4 space, that is to the
space with the length element

ds′ = κ(ξ) · 4

√
gijkldξidξjdξkdξl , (14)

where κ(ξ) > 0 is a scalar function which is a contraction-extension coefficient depending
on the point.

Let there be a normal congruence of geodesics (world lines). Then there is a scalar
function S(ξ) (see, e.g. [12]) such that its level hyper surfaces are transversal to this normal
congruence of the world lines and this function is a solution of the equation

gijkl ∂S

∂ξi

∂S

∂ξj

∂S

∂ξk

∂S

∂ξl
= κ(ξ)4 , (15)

while the generalized momenta along this congruence of the world lines are related to S(ξ)
by

pi =
∂S

∂ξi
, (16)
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The equations for the world lines obtain the form

ξ̇i = gijkl ∂S

∂ξj

∂S

∂ξk

∂S

∂ξl
· λ(ξ) , (17)

were λ(ξ) 6= 0.
In Physics the function S(ξ) is called ”action as a function of coordinates” and (15) is

known as the Hamilton-Jacoby equation. In [10] the function S(ξ) was called the World
function.

If there is a congruence of the world lines, then the evolution of every point in space
is known, particularly, the velocity field is known, but the energy characteristics of the
material objects (observers) corresponding to a given world line are not known. The knowl-
edge of the World function S(ξ) makes it possible to calculate the generalized momenta pi,
corresponding to the energy characteristics, and the invariant energy characteristic, κ(ξ),
which has also the meaning of the local contraction-extension coefficient of the plane H4

space.
So, if our world view is the classical mechanics, then any pair out of the three: World

function, congruence of the world lines, Finsler geometry - gives us the complete knowledge
of the World.

Let us construct a twice contravariant tensor gij(?) in the following way:

gij(ξ) =
1

κ(ξ)4
· gijkl ∂S

∂ξk

∂S

∂ξl
. (18)

Since

det(gij(ξ)) = − 44

33κ(ξ)8
6= 0 , (19)

then everywhere where the geometry (14) is defined, one can construct a tensor gij(ξ) such
that

gik(ξ)gkj(ξ) = δi
j , (20)

gij(ξ) = 4 ·




−2
(

∂S
∂ξ1

)2
∂S
∂ξ1

∂S
∂ξ2

∂S
∂ξ1

∂S
∂ξ3

∂S
∂ξ1

∂S
∂ξ4

∂S
∂ξ1

∂S
∂ξ2 −2

(
∂S
∂ξ2

)2
∂S
∂ξ2

∂S
∂ξ3

∂S
∂ξ2

∂S
∂ξ4

∂S
∂ξ1

∂S
∂ξ3

∂S
∂ξ2

∂S
∂ξ3 −2

(
∂S
∂ξ3

)2
∂S
∂ξ3

∂S
∂ξ4

∂S
∂ξ1

∂S
∂ξ4

∂S
∂ξ2

∂S
∂ξ4

∂S
∂ξ3

∂S
∂ξ4 −2

(
∂S
∂ξ4

)2




. (21)

No doubt that in the same coordinate space ξ1, ξ2, ξ3, ξ4 such tensor gij(ξ) defines a
Riemannian or pseudo Riemannian geometry with the length element

ds′′ =
√

gij(ξ)dξidξj . (22)

The construction of tensor gij(ξ) leads directly to the conclusion: the change of geometry
(14) to the geometry (22) does not lead to the change of the initial congruence of the world
lines and corresponding World function S(ξ).

Therefore, in our concept one and the same World, i.e. the pair {World function;
congruence of the world lines}, corresponds to a whole class of related but qualitatively
different Finsler geometries.
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3 Analyticity condition and the Minkowski space

Let the World function S(ξ) be the (unity) component of an analytical function of the
H4 variable in the orthogonal basis (4), that is

S(ξ) =
1

4

[
f 1(ξ1) + f 2(ξ2) + f 3(ξ3) + f 4(ξ4)

]
. (23)

Then

gijkl ∂S

∂ξi

∂S

∂ξj

∂S

∂ξk

∂S

∂ξl
=

∂f 1(ξ1)

∂ξ1

∂f 2(ξ2)

∂ξ2

∂f 3(ξ3)

∂ξ3

∂f 4(ξ4)

∂ξ4
= κ(ξ)4 > 0 , (24)

and this leads to the limitation on the functions, fi:

∂f 1(ξ1)

∂ξ1

∂f 2(ξ2)

∂ξ2

∂f 3(ξ3)

∂ξ3

∂f 4(ξ4)

∂ξ4
> 0 . (25)

It follows from (24) that the space with the length element (14) can be obtained from
the space with the length element (6) with the help of the conformal transformation, which
means that the condition of the analyticity of the World function can be treated in a sense
as the condition of the conformal symmetry.

Let us construct tensor gij(ξ) following the algorithm developed in the previous section.
It turns out that in a region where functions f i have no singularities there will always be
such a coordinate system x0, x1, x2, x3 in which the length element ds′′ has a form

ds′′ =
√

(x0)2 − (x1)2 − (x3)2 − (x3)2 . (26)

Let us express the coordinates x0, x1, x2, x3 in terms of the initial coordinates
ξ1, ξ2, ξ3, ξ4:

x0 =
1

4

(
f 1(ξ1) + f 2(ξ2) + f 3(ξ3) + f 4(ξ4)

)
,

x1 =

√
3

4

(
f 1(ξ1) + f 2(ξ2)− f 3(ξ3)− f 4(ξ4)

)
,

x2 =

√
3

4

(
f 1(ξ1)− f 2(ξ2) + f 3(ξ3)− f 4(ξ4)

)
,

x3 =

√
3

4

(
f 1(ξ1)− f 2(ξ2)− f 3(ξ3) + f 4(ξ4)

)
.





(27)

Therefore, to obtain the non-trivial curving of the space-time one should use the World
functions with the broken conformal symmetry.

4 Newtonian potential

Let us show that there are World functions that lead to the non-trivial pseudo Rieman-
nian 4-dimensional spaces. Let us regard a function

S(ξ) =
1

4

(
ξ1 + ξ2 + ξ3 + ξ4

)
+ α · ψ(%) , (28)

where α is the parameter characterizing the break of the analyticity of the World function
(the break of the conformal symmetry in the H4 space), ψ is an arbitrary function of a single
argument

% =
√

(y1)2 + (y2)2 + (y3)2 , (29)
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and y0, y1, y2, y3 are the coordinates in the orthogonal basis 1, j, k, jk:

y0 =
1

4
(ξ1 + ξ2 + ξ3 + ξ4) ,

y1 =
1

4
(ξ1 + ξ2 − ξ3 − ξ4) ,

y2 =
1

4
(ξ1 − ξ2 + ξ3 − ξ4) ,

y3 =
1

4
(ξ1 − ξ2 − ξ3 + ξ4) .





(30)

Then the derivatives of the World functions over the coordinates ξi can be expressed in the
following way:

∂S

∂ξ1
=

1

4

[
1 +

α

%

dψ

d%

(
y1 + y2 + y3

)]
,

∂S

∂ξ2
=

1

4

[
1 +

α

%

dψ

d%

(
y1 − y2 − y3

)]
,

∂S

∂ξ3
=

1

4

[
1 +

α

%

dψ

d%

(−y1 + y2 − y3
)]

,

∂S

∂ξ4
=

1

4

[
1 +

α

%

dψ

d%

(−y1 − y2 + y3
)]

.





(31)

Let us calculate the components of the metric tensor in coordinates y0, y1, y2, y3 using
the invariance of the square of the length element

gij(ξ)dξidξj = g̃ij(y)dyidyj (32)

Grouping the terms, one gets

g̃00 = 1− 3α2

(
dψ

d%

)2

, g̃ββ− = −3

{
1 + α2

(
dψ

d%

)2 [
1− 4(yα)2

3ρ2

]}
, (33)

2 ˜g0β = −4

[
α

dψ

d%

yβ

%
+ 3α2

(
dψ

d%

)2

· y1y2y3

yβ%2

]
, (34)

2g̃βγ = −4

[
3α

dψ

d%

yδ

%
+ α2

(
dψ

d%

)2

· yβyγ

%2

]
, (35)

where β, γ, δ, = 1, 2, 3; β ≡ β− but no summation is performed here; in the last formula all
the indices β, γ, δ are different.

If α = 0, then
(g̃ij) = diag(1,−3,−3,−3) . (36)

This means that the real physical coordinates x0, x1, x2, x3 of the space-time are expressed
by the coordinates y0, y1, y2, y3 in the following way

x0 = y0 , xβ =
√

3 · yβ . (37)

Let us pass to the physical coordinates x0, x1, x2, x3:

g̃ij(y)dyidyj = ḡij(x)dxidxj , (38)
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where

ḡ00 = g̃00 , ḡ0β =
1√
3
· g̃0β , ḡβγ =

1

3
· g̃βγ . (39)

Let us denote
r =

√
(x1)2 + (x2)2 + (x3)2 ≡

√
3 · % , (40)

Then

ḡ00 = 1− 9α2

(
dψ

dr

)2

, ḡββ− = −
{

1 + 3α2

(
dψ

dr

)2 [
1− 4(xα)2

3r2

]}
, (41)

2 ¯g0β = −4

[
α

dψ

dr

xβ

r
+ 3

√
3α2

(
dψ

dr

)2

· x1x2x3

xβr2

]
, (42)

2ḡβγ = −4

[√
3α

dψ

dr

xδ

r
+ α2

(
dψ

dr

)2

· xβxγ

r2

]
. (43)

The metric tensor ḡij(x) = ḡij(x
1, x2, x3) depends only on the space coordinates

x1, x2, x3, and this corresponds to the stationary gravitational field, stationary Universe.
The probe particle of mass m moves along the geodesic of the pseudo Riemannian space
with metric tensor ḡij(x

1, x2, x3).
Let a particle move in a fixed frame and have velocity much less than the light velocity,

c:
dxβ

dt
= vβ , |vβ| ¿ c , (44)

The gravitational fields are weak, that is the condition |vβ| << 1 remains valid for all
the time of the particle motion. Let us obtain the Lagrange function, L, to describe such
non-relativistic motion of the probe particle in the weak gravity field. To do this, develop
the right hand side of the expression

L = −mc ·
√

ḡij(x1, x2, x3)dxidxj

dt
(45)

Within the accuracy of
(

v
c

)2

L = −mc2√ḡ00 ·
√

1 +
1

ḡ00

(
2ḡ0β

vβ

c
+ ḡβγ

vβvγ

c2

)
, (46)

L ' −mc2√ḡ00 ·
{

1 +
1

2ḡ00

(
2ḡ0β

vβ

c
+ ḡβγ

vβvγ

c2

)
− 1

8ḡ2
00

(
2ḡ0β

vβ

c

)2
}

. (47)

Opening the brackets in the right hand side, we get an additive term which is the full time
derivative of a certain function f(r), it depends linearly on the velocity components and,
thus, it can be omitted. Leaving the same designation for the Lagrange function, we get

L ' −mc2√ḡ00 ·
{

1 +
1

2ḡ00

· ḡβγ
vβvγ

c2
− 1

8ḡ2
00

(
2ḡ0β

vβ

c

)2
}

. (48)

Our goal is the Lagrange function of the form

L =
m~v2

2
− U(~x) , (49)
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where U(~x) is the potential energy of the probe particle, ~x ≡ (x1, x2, x3), ~v ≡
(v1, v2, v3), r2 = ~x 2, ~v 2 = (v1)2 + (v2)2 + (v3)2 ≡ v2. To reach it we have to make some
assumptions about the correlation between the parameter, α and light velocity:

α =
ν

c
, when c →∞ α → 0 . (50)

Besides, let α be of the same order (or smaller) with the relation
∣∣∣v
c

∣∣∣. Then leaving only

the terms that don’t disappear at c →∞ in the (48), one gets

L ' −mc2 + mc2 9

2

ν2

c2

(
dψ

dr

)2

+ m · v1v1 + v2v2 + v3v3

2
. (51)

Since (−mc2) is a full time derivative of function (−mc2 · t), we omit it and get

L ' m~v2

2
+

9mν2

2

(
dψ

dr

)2

. (52)

Let a mass M be motionless in the frame origin, and then the potential energy of the
probe particle with mass m located at x1, x2, x3 is equal to

U(r) = −γ
mM

r
, (53)

where γ is the gravitational constant. Comparing (49) and (52), we get the equation for
ψ(r):

9mν2

2

(
dψ

dr

)2

= γ
mM

r
⇒ dψ

dr
= ±

√
2γM

3ν

1

r1/2
. (54)

Therefore,

ψ(r) = ±2
√

2γM

3ν
· r1/2 + ψ0 (ψ0 = const). (55)

Finally, the World function is equal to

S = x0 ± 2
√

2γM

3c
· r1/2 + C0 (C0 = const), (56)

When it performs a conformal transformation of the length element of the plane Berwald-
Moor space, it induces a pseudo Riemannian geometry in the Minkowski space. For a
non-relativistic probe particle of mass m, this geometry gives the motion equations for the
Kepler problem for the point mass M located in the origin of the space frame.

The more complicated World function, maybe also leading to the stationary Universe,
has the form

S(ξ) =
1

4

(
ξ1 + ξ2 + ξ3 + ξ4

)
[1 + α1 · ψ1(%)] + α2 · ψ2(%) , (57)

where αA are the parameters of the analyticity break of the World function (parameters of
the conformal symmetry break in the H4 space), ψA are the arbitrary functions of single
argument % (29), (30).

Conclusion

The results obtained in this paper point at the deep correlation between the Einstein
geometries and Finsler spaces with Berwald-Moor metric. We managed to find the concrete
Finsler space with the Berwald-Moor metric which in the limit appeared to be related to
the curved pseudo Riemannian space with the Newtonian gravitational potential. This fact
points at the principal possibility to built more interesting constructions, particularly, such
Finsler spaces whose limit cases would be the known relativistic solutions.
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