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It is shown that the World function can be regarded as a link between the qualitatively different
geometries with one and the same congruence of the world lines (geodesics). If the space in which
the World function is defined is a polynumber space, then the hypothesis of the analyticity of
the vector field of the generalized velocities of the world lines lead to the strict limitations on
the structure of the World function. Main result: Minkowskian space and polynumber space
correspond to the same physical World.

1 Introduction

The idea that everything happening in the physical world is governed by a single scalar
function has originated long ago and can hardly be attributed to any scientist or even to
a group of scientists. It is this function that will be called the World function here. For
example, H. Weyl [1] uses the term ”World function” when discussing the Mie theory. It is
not definitely clear what to choose as a World function. G. Mie in his theory (a field theory)
suggested to choose the Lagrangian of the field, i.e. to take the density of the Lagrange
function as a World function. In this paper the field equations and the field theories will
not be discussed.

For the observer using the classical mechanics and Finsler geometry, it is sufficient to
know how all the material points move, in other words it is sufficient to know the congruence
of the world lines in the space-time. In Finsler geometry such a congruence is a normal
congruence of the geodesics [2], i.e. there exists such a scalar function, S, the level surfaces
of which are transversal to the given congruence of geodesics. In classical mechanics such
function is usually called ’action as a function of coordinates’. In this paper it is this finction,
S, that will be considered the World function.

So, let us adopt that in the coordinate space x1, x2, ..., xn the scalar function S(x) corres-
ponding to the notion of action as a fuction of coordinates x1, x2, ..., xn in classical mechanics
plays a role of the World function. Taken as it is, the scalar function, S, can not define
the field of velocities and, therefore, can not define a congruence of geodesics each of which
corresponds to an observer or to a material particle. One needs an additional procedure, ϕ̃,
providing the possibility to pass from the covariant ’vectors’ to the contravariant ’vectors’.
In any Finsler geometry, Φn, there is such a procedure. Thus, the pair {S; ϕ̃} as well as the
pair {S; Φn} defines the congruence of the world lines for all the points of the space, that is
defines the evolution of this space.

Let x0, x1, x2, x3 be the Minkowskian space with the length element defined as

ds = mc
√

(x0)2 − (x1)2 − (x2)2 − (x3)2 ≡ mc

√
o
gij xixj , (1)

where the factor mc – optional from the geometric point of view – provides a better possi-
bility to give a physical interpretation of the geometrical objects; m and c are the rest mass
of the particle and the light velocity in vacuum. The tangent equation of the indicatrix in
such a space can be written as follows
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(p0)
2 − (p1)

2 − (p2)
2 − (p3)

2 = (mc)2 . (2)

Then, S(x0, x1, x2, x3), the action as a function of coordinates in the Minkowski space must
suffice the Hamilton-Jacoby equation

(
dS

dx0

)2

−
(

dS

dx1

)2

−
(

dS

dx2

)2

−
(

dS

dx3

)2

= (mc)2 . (3)

Let us now take an arbitrary function S̃ which suffice
(

dS̃

dx0

)2

−
(

dS̃

dx1

)2

−
(

dS̃

dx2

)2

−
(

dS̃

dx3

)2

> 0 . (4)

and substitute it into (3). The result is that the function S̃ is a solution of the Hamilton-
Jacoby equation which corresponds to the Finsler geometry with the length element

ds̃ = κ(x) ·mc
√

(x0)2 − (x1)2 − (x2)2 − (x3)2 (5)

and the tangent equation of the indicatrix

(p0)
2 − (p1)

2 − (p2)
2 − (p3)

2 = κ(x)2 · (mc)2 , (6)

where

κ(x) ≡ 1

mc

√√√√
(

dS̃

dx0

)2

−
(

dS̃

dx1

)2

−
(

dS̃

dx2

)2

−
(

dS̃

dx3

)2

. (7)

Notice, that if the length elements of two geometries, ds, ds̃, defined in the same coor-
dinate space x1, x2, ..., xn are related as

ds̃ = κ(x)ds , (8)

where k(x) > 0 is an arbitrary function of a point, then these two geometries are called
conformly connected [2]. The geometry ds̃ differs from the geometry ds in such a way
that in every infinitely small vicinity of every point of space, x1, x2, ..., xn, there is a scale
transformation while the extension-contraction coefficient, κ(x), depends on the point.

Thus, we see that if we know the arbitrary scalar function, S̃, sufficing (4) in the flat
Minkowski space (1), then we know the World function in the space given by (5) which is
conformly connected to the Minkowski space. Therefore, the world lines equations in space
(5) can be written as:

ẋi =
o
g

ij dS̃

dxj
λ(x, y) , (9)

where ẋi ≡ dxi

dτ
is a derivative over τ (evolution parameter) along the world line, and

λ(x, y) > 0 is an arbitrary function.
All the above said is true (with regard to the obvious changes of notation in formulas) for

the Euclidean or for pseudo Euclidean geometry of the arbitrary dimension n, but only for
n = 2 one could correlate a system of the associative commutative non-degenerate numbers
(correspondingly, complex numbers, C2, and hyperbolic numbers, H2), to the Euclidean or
to pseudo Euclidean space.

In this approach the form of the World function is not limited by anything but (4). To
make the form of the World function concrete for the polynumber space, Pn, one could use
the analyticity condition - the condition giving a relation between the World function and
the analytical functions of the polynumber variable, Pn. In this paper this is done in the
form of Hypotheses I, II. The other realizations are also possible.
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1.1 Complex plane

Hypothesis IC2 : Components of the vector field that produces the world lines corres-
ponding to the given World function, are the components of the analytical function of the
complex variable.

According to this Hypothesis

λ(x, y) · ∂S̃

∂x
= u , λ(x, y) · ∂S̃

∂y
= v , (10)

where F (z) = u(x, y) + iv(x, y) is an analytical function of the complex variable z = x + iy.
Then the Cauchi-Riemann relations give the following partial differential equations for the
World function S̃:

∂

∂x
λ(x, y)

∂S̃

∂x
=

∂

∂y
λ(x, y)

∂S̃

∂y
,

∂

∂y
λ(x, y)

∂S̃

∂x
= − ∂

∂x
λ(x, y)

∂S̃

∂y
. (11)

If λ(x, y) ≡ 1, then the equations (11) simplify:

∂2S̃

∂x2
− ∂2S̃

∂y2
= 0 ,

∂2S̃

∂x∂y
= 0 . (12)

The general solution of this system of equations is

S̃ =
A

2
(x2 + y2) + a1x + a2y + b , (13)

where A, a1, a2, b are real numbers. Notice, that if A 6= 0, then function S̃ is not a component
of the analytical function of complex variable.

Hypothesis IIC2 : The components of the vector field that produces the world lines corres-
ponding to the given World function, are the components of the function of complex variable
conjugate to the analytical function of complex variable.

Then according to this hypothesis

λ(x, y) · ∂S̃

∂x
= u , λ(x, y) · ∂S̃

∂y
= −v , (14)

where F (z) = u(x, y) + iv(x, y) is an analytical function of complex variable z = x + iy.
The Cauchi-Riemann relations give the following partial differential equations for the World
function S̃:

∂

∂x
λ(x, y)

∂S̃

∂x
= − ∂

∂y
λ(x, y)

∂S̃

∂y
,

∂

∂y
λ(x, y)

∂S̃

∂x
=

∂

∂x
λ(x, y)

∂S̃

∂y
. (15)

If λ(x, y) ≡ 1, then the equations (15) simplify and give a single partial differential
equation:

∂2S̃

∂x2
+

∂2S̃

∂y2
= 0 . (16)

Thus, provided the Hypothesis IIC2 is true and λ(x, y) ≡ 1, the function S̃ is a component
of the analytical function of the complex variable, and the corresponding geometry which is
conformly connected to the Euclidean plane can be obtained with the help of the conformal
transformation of the Euclidean plane.
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1.2 Hyperbolic plane

The metric tensor for the hyperbolic plane has the form

o
gij= diag(1,−1) , (17)

and the Cauchi-Riemann relations for the analytical functions F (z) = u(x, y) + jv(x, y) of
the variable H2 3 z = x + jy, j2 = 1 can be written as:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
=

∂v

∂x
. (18)

Hypothesis IH2 : Components of the vector field that produces the world lines corres-
ponding to the given World function, are the components of the analytical function of the
variable H2.

According to this hypothesis and in analogy to (9) for n = 2, one gets

λ(x, y) · ∂S̃

∂x
= u , λ(x, y) · ∂S̃

∂y
= −v , (19)

where F (z) = u(x, y) + iv(x, y) is an analytical function of the variable H2 3 z = x + jy.
Then the Cauchi-Riemann relations give the following partial differential equations for the
World function, S̃:

∂

∂x
λ(x, y)

∂S̃

∂x
= − ∂

∂y
λ(x, y)

∂S̃

∂y
,

∂

∂y
λ(x, y)

∂S̃

∂x
= − ∂

∂x
λ(x, y)

∂S̃

∂y
. (20)

If λ(x, y) ≡ 1, then the equations (20) simplify:

∂2S̃

∂x2
+

∂2S̃

∂y2
= 0 ,

∂2S̃

∂x∂y
= 0 . (21)

The general solution of this system of equations is

S̃ =
A

2
(x2 − y2) + a1x + a2y + b , (22)

where A, a1, a2, b are real numbers. Notice, that if A 6= 0, function S̃ is not a component of
the analytical function of variable H2.

Hypothesis IIH2: The components of the vector field that produces the world lines cor-
responding to the given World function, are the components of the function of variable
H2 conjugate to the analytical function of the variable H2.

According to this hypothesis

λ(x, y) · ∂S̃

∂x
= u , λ(x, y) · ∂S̃

∂y
= v , (23)

where F (z) = u(x, y) + jv(x, y) is an analytical function of the variable H2 3 z = x + iy.
Then the Cauchi-Riemann relations give the following partial differential equations for the
World function S̃:

∂

∂x
λ(x, y)

∂S̃

∂x
=

∂

∂y
λ(x, y)

∂S̃

∂y
,

∂

∂y
λ(x, y)

∂S̃

∂x
=

∂

∂x
λ(x, y)

∂S̃

∂y
. (24)
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If λ(x, y) ≡ 1, then the equations (24) simplify and give a single partial differential
equation:

∂2S̃

∂x2
− ∂2S̃

∂y2
= 0 . (25)

Thus, provided the Hypothesis IIH2 is true and λ(x, y) ≡ 1, the function S̃ is a component
of the analytical function of the variable H2, and the corresponding geometry which is
conformly connected to the hyperbolic plane can be obtained with the help of the conformal
transformation of the hyperbolic plane.

2 Polynumbers Pn

Let us regard a system of the non-degenerate n-numbers Pn. The corresponding coor-
dinate space, x1, x2, ..., xn, is a Finsler metric space with the length element

ds = mc
n

√
o
gi1i2...in dxi1dxi2 ...dxin , (26)

o
gi1i2...in is a metric tensor that does not depend on point. The Finsler spaces of this kind
have been studied in mathematical literature for a long time (see, for example, [3] - [6]),
but the fact that all the polynumber spaces are just the Finsler spaces of this type was
discovered not long ago in [7], [8] and the subsequent papers of the same authors.

The components of the generalized momentum in the geometry (26) can be calculated
according to the formulas:

pi = mc

o
gij2...jn dxj2 ...dxjn

(
o
gi1i2...in dxi1dxi2 ...dxin

)n−1
n

. (27)

Finsler geometry with the length element (26) will be called resolvable if the tangent
equation for the indicatrix can be written as

o
g

i1i2...in
pi1pi2 ...pin = µn(mc)n , (28)

where µ > 0 is a constant. For the Riemannian or pseudo Riemannian geometry the
re solvability means that the determinant of the metric tensor is not equal to zero. It
seems that the Finsler geometry in the space of the non-degenerate polynumbers is always
resolvable, but this statement demands the strict proof.

As it can be seen from expressions (26) - (28), tensors
o
gi1i2...in ,

o
g

i1i2...in
must suffice the

following relation of the resolvable Finsler geometry

o
g

j1j2...jn ×
× o

gj1i2...in dxi2 ...dxin
o
gj2k2...kn dxk2 ...dxkn ...

o
gjnm2...mn dxm2 ...dxmn =

= µn
(

o
gi1i2...in dxi1dxi2 ...dxin

)n−1

.

(29)

Action as a function of coordinates in geometry (26) suffices the Hamilton-Jacoby equa-
tion:

o
g

j1j2...jn ∂S̃

∂xj1

∂S̃

∂xj2
...

∂S̃

∂xjn
= µn(mc)n . (30)



6 Garas’ko G. I. On the World function and the relation between geometries

Let us regard an arbitrary World function, S̃(x1, x2, ..., xn), with the only condition

o
g

j1j2...jn ∂S̃

∂xj1

∂S̃

∂xj2
...

∂S̃

∂xjn
> 0 , (31)

Then function S̃(x) is the action for the geometry conformly connected to geometry (26)
with the length element

ds̃ = κ(x) ·mc
n

√
o
gi1i2...in xi1xi2 ...xin , (32)

where κ(x) > 0 is the extension–contraction coefficient which varies from point to point of
the coordinate space

κ(x) =
1

µ ·mc

n

√
o
g

j1j2...jn ∂S̃

∂xj1

∂S̃

∂xj2
...

∂S̃

∂xjn
, (33)

and the World function, S̃, is the solution of the Hamilton-Jacoby equation of the following
form:

o
g

j1j2...jn ∂S̃

∂xj1

∂S̃

∂xj2
...

∂S̃

∂xjn
= κ(x)n · µn(mc)n . (34)

The field of velocities that defines the congruence of the world lines can be expressed by
the World function, S̃, by the formula

ẋi =
o
g

ij2...jn ∂S̃

∂xj2
...

∂S̃

∂xjn
· λ(x)n−1 , (35)

where λ(x) > 0 is an arbitrary scalar function.
The algebra of polynumbers Pn 3 X = x1e1 + x2e2 + ... + xnen is completely defined by

the multiplication rule for the basis elements:

eiej = pk
ijek (36)

that is by the number tensor, pk
ij. Notice, that the polynumbers, Pn, are called

non-degenerate if

det(qij) 6= 0 , qij ≡ pk
impm

kj . (37)

In this case one can construct tensor qij. If εi are the coefficients of the expansion of the
unity 1 ∈ Pn in the basis ei, then the Cauchi-Riemann relation for the analytical function
F (X) = f(x)iei of the variable Pn can be written in the following form:

∂f i

∂xk
− pk

ijε
m ∂f j

∂xm
= 0 . (38)

Hypothesis IPn : Components of the vector field that produces the world lines corres-
ponding to the given World function, are the components of the analytical function of the
variable Pn.

If F (X) = f(x)iei is an analytical function of the variable Pn, then this hypothesis leads
to the expression:

f i(x1, x2, ..., xn) =
o
g

ij2...jn ∂S̃

∂xj2
...

∂S̃

∂xjn
· λ(x)n−1 . (39)
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Substituting these components of the analytical function expressed by the World function
into the Cauchi-Riemann relations, we get such a system of partial differential equations
that if Hypothesis IPn is fulfilled, then the World function suffices this system.

Hypothesis IIP2 : Components of the vector field that produces the world lines corres-
ponding to the given World function, are the components of the function of the variable Pn

conjugate to the analytical function of the same variable with the help of a special unary
operation.

Let us define the unary operation X̄ = Y acting on the set Pn 3 X, Y in the following
way:

yi =
o
g

ij2...jn

qj2m2 ...qjnmnxm2 ...xmn . (40)

For complex numbers C2 and hyperbolic numbers H2 such a unary operation is a regular
conjugation, while on the polynumber set H4 (and Hn) this operation coincides with the
operation of normal conjugation [9] within the accuracy of a number factor. The unary
operation (40) can be generalized for (n − 1) arguments, it will remain symmetrical due
to its definition. To distinguish such a unary operation and a corresponding (n − 1)-ary
operation from other conjugations in the polynumber algebras, let us call such an operation
symmetrical conjugation.

Comparing formulas (35) and (40) and changing xi to f i, we see that the realization of
the Hypothesis IIP2 leads to the relations

qijf
j =

∂S̃

∂xi
λ(x) , (41)

or

f i = qij ∂S̃

∂xj
λ(x) , (42)

that is the quantities qij ∂S̃
∂xj λ(x) are the components of the analytical function of the variable

Pn.
Let us show that one and the same pair {World function; congruence of the world lines}

can be realized in various Finsler geometries.
We introduce the notation

gij(x) =

[
1

κ(x) · µ · cm
]n−2

o
g

ijj3...jn ∂S̃

∂xj3
...

∂S̃

∂xjn
. (43)

Let det(gij(x)) 6= 0, then we can construct the twice covariant tensor gij(x). Let us regard
the pseudo Riemannian geometry with the length element

ds′ = κ(x) · µ · cm
√

gijdxidxj . (44)

The tangent equation of the indicatrix in such a geometry is

gijpipj = κ(x)2 · µ2 · (cm)2 , (45)

and the Hamilton-Jacoby equation for the action S ′(x) is

gij ∂S ′

∂xi

∂S ′

∂xj
= κ(x)2 · µ2 · (cm)2 . (46)

Substitute the expression (43) into this equation and get

o
g

j1j2j3...jn ∂S ′

∂xj1

∂S ′

∂xj2

∂S̃

∂xj3
...

∂S̃

∂xjn
= κ(x)n · µn(mc)n . (47)
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Thus, we see that the function S ′ = S̃ is the solution of the equation (46), that is function
S̃ remains the World function in the geometry (44).

The field of velocities in the geometry (44) is defined by the formula

ẋi = gij ∂S̃

∂xj
· λ′(x) , (48)

where λ′(x) > 0 is a scalar function. Substitute the expression (43) into this equation

λ′(x) = κ(x)n−2 · µn−2 · (cm)n−2 · λ(x)n−1 (49)

and get the formula

ẋi =
o
g

ij2...jn ∂S̃

∂xj2
...

∂S̃

∂xjn
· λ(x)n−1, (50)

which coincides with the formula (35).
So, one and the same pair {World function; congruence of the world lines} can be

realized in the qualitatively different geometries.
One can use metric tensor gi1i2...im(xi1xi2 ...xin) to obtain metric tensor with less num-

ber of indices, r < m. To do this one should contract some indices with vector or
tensor contravariant fields (see, for example, [3] - [6]). The speculations given above
show that the best method of contraction for polynumber spaces Pn is the following:
gi1i2...ir(x

i1xi2 ...xin) = a(x) · gi1i2...im(xi1xi2 ...xin)f
ir+1

(1) f
ir+2

(2) ...f im
(m−r) , where a(x) is some sca-

lar function and f i
(A) are the components of the analytical functions of variable Pn or the

components of some conjugated functions to the analytical functions of the same variable.

3 Hypercomplex numbers H4

Notice, that the system of hypercomplex numbers H4 is isomorphic to the algebra of
real square diagonal matrices 4 × 4. The corresponding coordinate space is the metric
Finsler space with Berwald-Moor metric. In H4 there is a special basis, e1, e2, e3, e4, with
the following multiplication rule

eiej = pk
ijek , pk

ij =

{
1 , i = j = k ,

0 ,
(51)

The components of tensors qij (37), qij in this basis give a unity matrix:

(qij) = (qij) = diag(1, 1, 1, 1) . (52)

The length element in the H4 space in the special basis (51) is

ds = mc
4
√

dx1dx2dx3dx4 ≡ mc
4

√
o
gijkm dxidxjdxkdxm , (53)

where
o
gijkm=

{
1
24

, for alldifferent i, j, k, m

0 , else .
(54)

The components of the generalized momentum are defined by the formula

pi =
mc

4
·

4
√

dx1dx2dx3dx4

dxi
, (55)
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and the tangent equation of the indicatrix is

p1p2p3p4 =
(mc

4

)4

, (56)

or in the covariant form
o
g

ijkm

pipjpkpm =
(mc

4

)4

, (57)

For the special basis used above, we have

(
o
g

ijkm)
=

(
o
gijkm

)
. (58)

Action as a function of coordinates in the H4 space suffices the equation

o
g

ijkm ∂S̃

∂xi

∂S̃

∂xj

∂S̃

∂xk

∂S̃

∂xm
=

(mc

4

)4

, (59)

or
∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
=

(mc

4

)4

. (60)

Substitute into (60) some World function, S̃(x), that suffices the only condition

∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
> 0 , (61)

and get

∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
= κ(x)4 ·

(mc

4

)4

, (62)

This means that the function, S̃(x), is a World function in the geometry which is conformly
connected to the Berwald-Moor geometry (53), which is a geometry with the length element

ds = κ(x) ·mc
4
√

dx1dx2dx3dx4 , (63)

The extension-contraction coefficient is given by

κ(x) =
4

mc

4

√
∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
. (64)

In this geometry the field of velocities defining the congruence of the world lines is

ẋi =
∂S̃
∂x1

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x4

∂S̃
∂xi

· λ(x)3 , (65)

where λ(x) > 0 is a scalar function.
Hypothesis IH4 : Components of the vector field that produces the world lines corres-

ponding to the given World function, are the components of the analytical function of the
variable H4.

In the special basis in question an arbitrary analytical function of the variable H4 has
the form

F (X) = f 1(x1)e1 + f 2(x2)e2 + f 3(x3)e3 + f 4(x4)e4 , (66)
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where f i are the arbitrary functions of a single real variable. That is why the Hypothesis
IH4 leads to the demand

f i(xi−) =
∂S̃
∂x1

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x4

∂S̃
∂xi

· λ(x)3 . (67)

Multipliing the expressions (67) with different indices and performing some transformations,
one gets

∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4
=

3
√

f 1f 2f 3f 4

λ4
(68)

and
∂S̃

∂xi
=

3
√

f 1f 2f 3f 4

λf i
. (69)

Using the commutativity of the partial derivatives

∂

∂xj

∂S̃

∂xi
=

∂

∂xi

∂S̃

∂xj
(70)

we get the system of six differential equations for λ(x). Writing down one of them for i = 1,
j = 2, one gets:

3(f 1)2 ∂λ

∂x1
− 3(f 2)2 ∂λ

∂x2
= λ(f 1 − f 2) . (71)

If λ = const, then f i = f j = const, which means that S̃ is a following linear function of
coordinates:

S̃ = a
(
x1 + x2 + x3 + x4

)
+ b , (72)

where a, b are constants.
If λ 6= const and f i 6= 0, then we introduce the following notation for the indefinite

integrals

I i =

xi∫
dxi−

(f i−)2
, J i =

xi∫
dxi−

3f i−
, (73)

and the equation (71) and its analogues give

λ(x1, x2, x3, x4) = exp
(
W (I1 + I2 + I3 + I4) + J1 + J2 + J3 + J4

)
, (74)

where W is an arbitrary function of a single real variable. The World function, S̃, can be
obtained with the help of a line integral of the second kind for an arbitrary path in the H4

space. This path connects the fixed point with the point M(x1, x2, x3, x4).

The expressions (69), (73) and (74) mean that the derivatives ∂S̃
∂xi are not the compo-

nents of the analytical function of the variables H4 or their linear combinations. The only
exception takes place when all these derivarives are equal and equal to a constant a (72).
The same can be stated for the function, S̃, if we exclude the linear dependence (72). But
for every analytical function, F (X), with f i 6= 0, there is a corresponding World function,
S̃, that can be expressed with the help of the squares of the components of F (X), while the
corresponding field of velocities defining the world lines is an analytical function, F (X), of
variables H4.

Hypothesis IIH4 : Components of the vector field that produces the world lines corres-
ponding to the given World function, are the components of the function of the variable H4

symmetrically conjugate to the analytical function of the same variable.
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According to (52), (54), (58) the symmetrical conjugation (40) in the H4 space coincide
with the normal conjugation [9], and in the mentioned special basis the expression (40)
becomes

yi =
x1x2x3x4

xi
. (75)

Taking into acount this formula and the expression (65) as a consequence of the Hypothesis
II, one gets

f 1f 2f 3f 4

f i
=

∂S̃
∂x1

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x4

∂S̃
∂xi

· λ(x)3 , (76)

or

f i(xi−) =
∂S̃

∂xi
· λ(x) . (77)

If λ = const, then

S̃ =
1

4

(
f̃ 1(x1−) + f̃ 2(x2−) + f̃ 3(x3−) + f̃ 4(x4−)

)
, (78)

where f̃ i(xi−) is a function of a single real variable xi− . Within the accuracy of a number
factor, these functions are the primitives of the components f i(xi−) of the initial analytical
functions F (X). The properties of the polynumbers H4 provide the formal coincidence of
the scalar function, S̃, (78), with the component of the analytical function

F̃ (X) = f̃ i(xi−)ei (79)

for the unity element in the basis 1, j, k, jk; j2 = k2 = (jk)2 = 1:

1 = e1 + e2 + e3 + e4 , j = e1 + e2 − e3 − e4 ,

k = e1 − e2 + e3 − e4 , jk = e1 − e2 − e3 + e4 .

}
(80)

Let λ 6= const, then the expression (77) gives the system of six equations to define
function λ(x):

f i ∂λ

∂xj
= f j ∂λ

∂xi
(81)

The general solution of this system is

λ(x) = Λ
(
f̃ 1(x1−) + f̃ 2(x2−) + f̃ 3(x3−) + f̃ 4(x4−)

)
, (82)

where Λ is a function of a single real variable, and f̃ i(xi−) are the primitives of the compo-
nents f i(xi−) of the initial analytical function F (X).

The World function S̃ can be obtained with the help of a line integral of the second kind
for an arbitrary path in the H4 space. This path connects the fixed point with the point
M(x1, x2, x3, x4).

In general case, the derivatives ∂S̃
∂xi are not the components of the analytical function of

the variable H4 or their linear combinations. The same can be stated for function S̃. But
for every analytical function F (X) there is a corresponding World function, S̃, that can be
expressed with the help of the squares of the components of F (X), while the correspon-
ding field of velocities defining the world lines is symmetrically conjugate to the analytical
function F (X) of variables H4.
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Let us suggest that we know the World function in the space (63) which is conformly
connected to the Berwald-Moor space. Let us regard tensor

gij(x) =
1

κ(x)2 · µ2 · (mc)2

o
g

ijkm ∂S̃

∂xk

∂S̃

∂xm
, (83)

in which µ = 1/4 according to (57). Let det(gij(x)) 6= 0, then in the same coordinate space,
x1, x2, x3, x4, one can define the pseudo Riemannian geometry with the length element

ds′ = κ(x) · µ ·mc
√

gijdxidxj (84)

and the tangent equation for the indicatrix

gijp′ip
′
j = κ(x)2 · µ2 · (mc)2 . (85)

The Hamilton-Jacoby equation for the action, S ′, is

gij ∂S ′

∂xi

∂S ′

∂xj
= κ(x)2 · µ2 · (mc)2 , (86)

and the field of velocities defining the congruence of the world lines has the form

ẋi = gij ∂S ′

∂xj
λ′(x) , (87)

where λ′(x) is a scalar function. Substituting the expression for gij (83) into the last two
formulas, one can see that the solution of the equation (86) is the World function S ′ = S̃,
and the congruences of the world lines in the spaces (63) and (84) coincide.

Let us regard tensor

Gij(x) =
o
g

ijkm ∂S̃

∂xk

∂S̃

∂xm
, (88)

which coincides with tensor gij (83) within the accuracy of a number factor. In the matrix
form

(
Gij(x)

)
=

1

12




0 ∂S̃
∂x3

∂S̃
∂x4

∂S̃
∂x2

∂S̃
∂x4

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x3

∂S̃
∂x4 0 ∂S̃

∂x1
∂S̃
∂x4

∂S̃
∂x1

∂S̃
∂x3

∂S̃
∂x2

∂S̃
∂x4

∂S̃
∂x1

∂S̃
∂x4 0 ∂S̃

∂x1
∂S̃
∂x2

∂S̃
∂x2

∂S̃
∂x3

∂S̃
∂x1

∂S̃
∂x3

∂S̃
∂x1

∂S̃
∂x2 0




. (89)

Since

det
(
Gij

)
= − 3

124

(
∂S̃

∂x1

∂S̃

∂x2

∂S̃

∂x3

∂S̃

∂x4

)2

6= 0 , (90)

due to the inequality (61), one can construct tensor Gij, and, thus, construct tensor gij.
The basis, e1, e2, e3, e4, used in this Section is not the physical basis commonly used.

So, let us pass to the basis (80), though not for the general case but for the simplest World
function

S̃ =
1

4

(
x1 + x2 + x3 + x4

)
+ const , (91)

which in the basis (80) has the form

S̃ = x0 + const , (92)
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where x0 is the coordinate of the unity element in the basis (80). In this case matrix (Gij)
takes the form

(
Gij(x)

)
=

1

12 · 42




0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0




. (93)

To obtain matrix (Gij) of tensor Gij in the new basis (80), that is matrix
(
Gi′j′

)
, one should

multiply the matrix (Gij) (with regard to the fact that the transition matrix is symmetrical)
from the left and from the right by the matrix reverse to the transition matrix. The result
is

(
Gi′j′(x)

)
=

1

44




1 0 0 0

0 −1
3

0 0

0 0 −1
3

0

0 0 0 −1
3




. (94)

Thus, the World function (91) in space H4 corresponds to the pseudo Euclidean geometry
with the signature (1,−1,−1,−1).

Conclusion

All the above said means that the relation between the World function, S̃, defined in a
polynumber space Pn, and the analytical functions of the variable Pn can be postulated in
various forms.

The most strong limitations on the form of the World function, S̃, are given by Hypothesis
I: Components of the vector field that produces the world lines corresponding to the given
World function, are the components of the analytical function of the variable Pn.

Less strong though strong enough limitations on the form of the World function, S̃,
are given by Hypothesis II: Components of the vector field that produces the world lines
corresponding to the given World function, are the components of the function of the variable
Pn symetrically conjugate to the analytical function of the same variable.

It seems that Hypothesis II is more closely linked to Physics.
Although the approach used to describe the World with the help of a World function

demands some operation of the ”index rising” for the covariant tensors (and this opera-
tion can be always realized for a fixed geometry), the all-sufficient pair {World function;
congruence of the world lines} can correspond to qualitatively different geometries.

In this paper it is shown that Finsler space H4 with the Berwald-Moor metric corresponds
to the Minkowski space.

Finally, regarding the physical World as the congruence of the world lines in the four
dimensional space-time, we conclude that the geometry is not a fixed notion. One can pass
from one geometry to another depending on the problems of interest, and with this not
only the congruence of the world lines, i.e. World itself, will be conserved, but the World
function also.

Thus Minkowskian space and polynumber space H4 correspond to the same physical
World.
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