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In the framework of vector bundles endowed with (h, v)−metrics several physical models for
relativity are presented. A characteristic of these models is that the vertical part is provided
by the flag-Finsler Berwald-Moor (fFBM) metric, while the horizontal part is specialized to the
conformal and to Synge-relativistic optics metrics. As well, the particular case of h−Riemannian
v−fFBM metric of Riemann-Minkowski type is examined, considering as nonlinear connection
both the trivial canonical connection, and the one induced by the Lagrangian of electrodynamics.
For all these models, basic properties are described and the extended Einstein and Maxwell
equations are determined.
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1 Introduction

The recent attempts of modeling relativity based on metrical structures include
two notable trends: one originates in the theory of bundles endowed with Ehresmann
connection (e.g. via osculating structures and their duals, R. Miron [7–10]) and one
based on a palette of physical models relying on the Berwald-Moor metric (D.G. Pavlov,
G.S. Asanov [1, 12, 13]). The present work proposes several relativistic models of Miron
type which emerge naturally from this metric. The basic geometric structure is an
(h, v)−metric on a vector bundle (in particular the tangent bundle of a Space-Time),
where the horizontal part is of Generalized Lagrange type ( [8]) and the vertical one is
of Finslerian Berwald-Moor type. For these models (h−conformal, h-relativistic optic,
h−electromagnetic and h−classical Riemannian) the GR formalism is developed, and the
Einstein and relativistic Maxwell equations are described.

2 The flag-Finsler Berwald-Moor metric

Let M be a 4-dimensional differential manifold of class C∞, TM its tangent bundle
and (xi, ya) the coordinates in a local chart on TM . If F : TM → R, F = F (y) is a
Finsler function, we denote by

h∗ab =
1

2

∂2F 2

∂ya∂yb
, a, b = 1, 4,

the associated metric tensor. For F (y) = 4
√
|y1y2y3y4|, Pavlov has studied the "4-

pseudoscalar product" related to the Berwald-Moor metric ( [13])

(X, Y, Z, T ) = GabcdX
aY bZcT d, (2.1)

where

Gabcd =
1

4!

∂4L
∂ya∂yb∂yc∂yd

, (2.2)



Гиперкомплексные числа в геометрии и физике, 2 (4), 2005 115

and L = F 4. We denote

〈X, Y 〉 =
1

F 2
(X, Y, y, y, ), X, Y ∈ X (M), (2.3)

where y = ya
∂

∂ya
is the Liouville vector field ( [9]), the vector fields X, Y being considered

at some x ∈M . Then 〈 , 〉 is a pseudo-scalar product; locally we have

〈X, Y 〉 =
1

F 2
GabcdX

aY bycyd =
Gab00

F 2
XaY b, (2.4)

where the null index represents transvection with y. The coefficients of the scalar product
(2.4) are hence

hab =
Gab00

F 2
=

1

12F 2

∂2F 4

∂ya∂yb
, (2.5)

providing a tensor which coincides with the one ỹ(4)
ij proposed by Lebedev ( [6]). Then,

hab is a 2-covariant tensor field, and (M,h) thus becomes a generalized Lagrange space.
Its absolute energy, E = haby

ayb, is

E =
Gab00

F 2
yayb =

1

4F 2

∂F 4

∂yb
yb =

F 4

F 2
= F 2,

this is, E = F 2. The Lagrange metric associated to h is exactly

1

2

∂2E
∂ya∂yb

=
1

2

∂2F 2

∂ya∂yb
= h∗ab,

and taking into account that F is a Finsler function, h∗ is nondegenerate and of constant
signature, which shows that (M, E = F 2) is a Lagrange space. From the homogeneity of
F it also follows that

1

2

∂E
∂ya

= haby
b. (2.6)

Consequently, we can state

Theorem 1. The space (M,h) with h given by (2.5) is a generalized Lagrange space
with regular metric. The associated Lagrange metric h∗ab coincides with the Finsler metric
generated by F and the two metrics provide the same energy,

E = F 2 = haby
ayb = h∗aby

ayb.

Remark. The considerations above hold true for an arbitrary Finsler space whose
fundamental function is of locally Minkowski type.

3 A Riemann-locally Minkovski model

Let TM be endowed with a nonlinear connection N with coefficients Na
i = Na

i(x, y)
and let {

δi =
δ

δxi
, ∂̇a =

∂

∂ya

∣∣∣∣ i, a = 1, 4

}

denote the corresponding adapted basis, where

δ

δxi
=

∂

∂xi
−N b

i

∂

∂yb
, i = 1, 4.
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We also denote the dual basis by {dxi, δya | i, a = 1, 4}, with δya = dya + Na
jdx

j . If
D is a linear d-connection on TM ( [9]), then it is described by its adapted coefficients
DΓ(N) = {Li jk, Labk, Ci

jc, C
a
bc}, where:

Dδkδj = Li jkδi, Dδk ∂̇b = Labk∂̇a,

D∂̇c
δj = Ci

jcδi, D∂̇c
∂̇b = Ca

bc∂̇a.

We shall further denote by | and | the h− and v− covariant derivatives induced by D
respectively.

As well, the torsion T of the linear connection D has the adapted components

hT (δk, δj) = T ijkδi, vT (δk, δj) = Ra
jk∂̇a,

hT (∂̇c, δj) = Ci
jcδi, vT (∂̇c, δj) = P a

jc∂̇a,

hT (∂̇c, ∂̇b) = 0, vT (∂̇c, ∂̇b) = Sabc∂̇a,

while the adapted components of the curvature R are

R(δl, δk)δj = Ri
jklδi, R(δl, δk)∂̇b = Ra

bkl∂̇a,

R(∂̇c, δk)δj = P i
jkcδi, R(∂̇c, δk)∂̇b = P a

bkc∂̇a,

R(∂̇c, ∂̇b)δj = Sijbcδi, R(∂̇d, ∂̇c)∂̇b = Sabcd∂̇a.

Now, let us consider on TM the following Riemann-locally Minkovski (h, v)−metric:

G = gij(x)dx
i ⊗ dxj + hab(y)δy

a ⊗ δyb, (3.1)

which we shall use in our further considerations. Together with N , this metric produces
the canonical metrical d−connection CΓ(N) ( [9]),





Li jk =
1

2
gih
(
δghj
δxk

+
δghk
δxj

− δgjk
δxh

)
,

Labk =
∂Na

k

∂yb
+

1

2
hac
(
δhbc
δxk

− ∂Nd
k

∂yb
hdc −

∂Nd
k

∂yc
hbd

)
,

Ci
jc =

1

2
gih

∂gjh
∂yc

,

Ca
bc =

1

2
had
(
∂hdb
∂yc

+
∂hdc
∂yb

− ∂hbc
∂yd

)
.

(3.2)

For h given in (2.5), the (h, v)−metric G given in (3.1) is v-regular, which implies that
the coefficients of the canonical (Kern [4, 9]) nonlinear connection Ñ vanish,

N i
a(x, y) = 0, i, a = 1, 4. (3.3)

The canonical metrical linear d-connection CΓ(Ñ) associated to G, is given by ( [9])

Li jk = γijk, L
a
bk = 0, Ci

jc = 0, Ca
bc =

1

2
had
(
∂hdb
∂yc

+
∂hdc
∂yb

− ∂hbc
∂yd

)
,

where γijk denote the Christoffel symbols of g. It is worth mentioning that, for the canonic
d-linear connection in the Kern case (3.3), the torsion vanishes,

T ijk = 0, Ra
jk = 0, Ci

jc = 0, P a
jb = 0, Sabc = 0.
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4 Locally v-Minkovskian metrics

In general, an (h, v)−metric

G = gij(x, y)dx
i ⊗ dxj + hab(x, y)δy

a ⊗ δyb (4.1)

which has the property that in the neghborhood of any point (x, y) ∈ TM there exists a
local map in which h(x, y) = h(y), is called v-locally Minkovski. A known result provides
consequences specific to this case, as follows

Theorem 2. ( [9]) If G is a v-locally Minkovski metric and h = h(y) is weakly regular,
then the Kern nonlinear connection Ñ and the canonic linear d-connection D (3.2) given
by CΓ(Ñ) = {Li jk, Labk, Ci

jc, C
a
bc} obey the properties

1. Na
j = 0, Li jk = {ijk}, Labk = 0;

2. T ijk = 0, Sabc = 0, Ra
jk = 0, P a

jb = 0.

3. Ra
b jk = 0, P a

b kc = 0,

where {i jk} are the Christoffel symbols corresponding to g = g(x, y).

Remark 1. In our case, the following consequences hold true:

1. The equality Na
j = 0 yields

δ

δxi
=

∂

∂xi
.

2. The torsion of the canonic linear d-connection has a single non-vanishing component,
namely the coefficient P i

jc = Ci
jc of hT (∂̇c, δj).

3. Ca
bc are the Christoffel symbols of second kind associated to hab = hab(y) and they

depend on y only.

We shall assume further that h = h(y) is the metric (2.5) from [3]; this satisfies

hab =
1

12E
∂2E2

∂ya∂yb
.

In this case, the deflection tensor fields attached to the nonlinear connection above are

Da
j = ya |j =

∂ya

∂xj
+ ybLabj = 0, dab = ya|b = δab + ycCa

cb.

From the definition of Ca
cb, (since h is 0−homogeneous in y), it follows that

ycCa
cb =

1

2
had
(
∂hbd
∂yc

+
∂hdc
∂yb

− ∂hbc
∂yd

)
yc =

1

2
had
(
∂hdc
∂yb

− ∂hbc
∂yd

)
yc.

Taking into account the particular form (2.5) of h, and taking into account the
homogeneity of E , we get by deriving the product w.r.t. yb that

∂hdc
∂yb

yc =
1

12
yc

∂

∂yb

(
1

E
∂2E2

∂yc∂yd

)
= − 1

2E
∂E
∂yb

∂E
∂yd

+ 2hbd,

is a geometric object symmetrical in the indices b and d, whence

ycCa
cb = 0 ⇒ dab = δab.
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Hence, the canonic linear d-connection is of Cartan type ( [9]) and the deflection tensors
are

Dij = 0, dab = hab,

where the indices were raised/lowered using the corresponding parts of the (h, v)−metric.
We obtain subsequently that the electromagnetic tensors identically vanish,






Fij =
1

2
(Dij −Dji) = 0,

fab =
1

2
(dab − dba) = 0.

and, since D is of Cartan type, we have ( [9])

Sad bcy
d = Sabc = 0, ydRa

d jk = Ra
jk = 0, ydP a

d kc = P a
kc = 0.

5 Einstein equations for the Riemann-locally Minkovski model

The curvatures of the canonical metrical linear d-connection associated to G in (3.1)
with (2.5) are, according to [9],





R i
j kh = r i

j kh, R
a
b kh = 0, P i

j kc = 0, P a
b kc = 0, S i

j bc = 0,

Sab cd =
∂Ca

bc

∂yd
− ∂Ca

bd

∂yc
+ Cf

bcC
a
fd − Cf

bdC
a
fc,

(5.1)

where rij kh are the components of the curvature tensor of the horizontal metric. Taking
into account the relations (5.1), it follows, as in [9], that the Einstein equations of the
canonical metrical linear d-connection CΓ(Ñ) (3.2)-(3.3) can be written as





rij −
1

2
(r + S)gij = THij ,

TM1

bj = 0, TM2

jb = 0,

Sab −
1

2
(r + S)hab = T Vab,

(5.2)

where rij denotes the Ricci tensor rij = r h
i jh attached to the Riemannian metric g, Sab

is the Ricci tensor attached to the vertical metric hab, r is the scalar curvature of rijkl
and Tαβ are the components of the energy-momentum tensor field. If it is to compare
(5.2) with the (classical) Einstein equations of the Riemannian manifold (M, g), we have
to notice in the h-part of the above equations the "perturbation"introduced by the term

−1

2
Sgij. According to [9], the energy conservation law is identically satisfied by CΓ(Ñ).

6 The electrodynamic case

If we consider the Lagrangian of electrodynamics ( [10]),

L0(x, y) = mcγij(x)y
iyj +

2e

m
Ai(x)y

i, (6.1)

where γij is a Lorentz metric tensor, Ai(x) is a covector field and m, c, e are physical
constants, then, the attached Lagrange metric tensor is

gij =
1

2

∂2L

∂yi∂yj
= mcγij.
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On the other hand, from the variational problem associated to 6.1, there arises a nonlinear
connection N̂ , whose coefficients are given by ( [10])

Na
j = γajb(x)y

b −
◦

F
a
j , (6.2)

where F is the electromagnetic field

◦

F
i
j =

e

2m
gik(Aj;k − Ak;j),

the symbol ”; ” denotes the covariant derivative defined by means of the Christoffel
symbols γijk(x) of the Lorentz metric tensor γij, and we denoted for simplicity,
γajb = δai δ

k
b γ

i
jk.

If we consider now TM endowed with the (h, v)-metric

G = gij(x)dx
i ⊗ dxj + hab(y)δy

a ⊗ δyb,

then the canonical metrical linear d−connection CΓ(N̂) associated to G is given by




L̂i jk = γijk,

L̂abk = γabk −
1

2
hac(Nd

k

∂hbc
∂yd

+ γdkbhdc + γdkchbd),

Ĉi
jc = 0, Ca

bc =
1

2
had
(
∂hdb
∂yc

+
∂hdc
∂yb

− ∂hbc
∂yd

)
.

By direct computation, one obtains that this time, the torsions of CΓ(N̂) are

T ijk = 0, Ci
jc = 0, Sabc = 0,

while P a
jb and Ra

jk do not vanish. Its curvatures are

R i
j kh = r i

j kh, R
a
b kh, P i

j kc = 0, P a
b kc, S i

j bc = 0, Sab cd,

where the expression of Sab cd is similar to that one in the previous section. The Ricci
tensor has the properties

Rij = rij,
2

P jb = P h
j hb = 0.

The Einstein equations take the particular form





rij −
1

2
(r + S)gij =

h

T ij,

1

T bj =
1

P bj ,
2

T jb = 0,

Sab −
1

2
(r + S)hab =

v

T ab,

while the energy conservation law writes as:




(
rij −

1

2
rδij

)

|i

+
1

P a
j|a = 0,

(
Sab −

1

2
Sδab

)
|a = 0,
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where rij = gihrhj, Sab = hacScb,
1

P a
j = hac

2

P cj.

We shall study further two particular cases of v-locally Minkowski metrics, by
preserving h = h(y) from (2.5) and particularizing g = g(x, y). In these cases the results
in Section 4 still hold true, and the nonlinear connection used throughover is according
to Theorem 2, the trivial one.

7 The relativistic Miron-Kawaguchi optic h−metric case

Let γij = γij(x) be a Riemannian metric on M . We denote

yi = γijy
j, ‖y‖2 = γijy

iyj.

We consider now the metric G from (4.1), in which the h−metric is given by

gij = γij + c−2yiyj,

where c is a nonzero real constant. The coefficients Ci
jd of the linear d−connection are

Ci
jd =

1

2
gih

∂gjh
∂yd

=
gih

2c2
(γjdyh + γhdyj),

and Ca
bc = Ca

bc(y) are determined in [3].

From the theorem above, it results that the Ricci tensor field has the components

Rij = Rh
i jh,

1

P bj = P a
b ka = 0,

2

P jb = P h
j hb, Sbc = Sab ca.

The Einstein equations write then




Rij −
1

2
(R + S)gij =

h

T ij ,

1

T bj = 0,
2

T jb = −
2

P jb,

Sab −
1

2
(R + S)hab =

v

T ab,

and the energy conservation law is described by the system of PDEs




(
Ri

j −
1

2
Rδij

)

|i

= 0,

(
Sab −

1

2
(R + S)δab

)
|a −

2

P i
b|i = 0,

where Ri
j = gihRhj , S

a
b = hacScb,

2

P i
b = gij

2

P jb.

The first equality from above is identically satisfied (see [8]), since it coincides with
the horizontal part of the energy conservation law for the canonical linear d−connection
of the generalized Lagrange space (M, g) (which is infered straightforward by the Bianchi
identity).
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8 The h−conformal metric case

In the h−conformal metric case, i.e. for the horizontal metric given by

gij(x, y) = e2σ(x,y)γij(x),

the coefficients Li jk are given by ( [2])

Li jk = γijk + δijσk + δikσj − γjkσ
i,

where σi = γilσl, γijk are the Christoffel symbols of γij(x) and for h given by (2.5) we

have σk =
δσ

δxk
=

∂σ

∂xk
. Obviously, Labk and Ca

bc are as in Theorem 2 and Remark 1. By

direct computation, we get

Ci
jc =

1

2
gih

∂gjh
∂yc

= δij σ̇c,

where σ̇c denotes the derivative of σ w.r.t. y : σ̇c =
∂σ

∂yc
. As well, the torsion components

vanish, except P i
jc = Ci

jc and the curvature components are





Ri
j kl, R

a
b jk = 0, P i

j kc, P
a
b kc = 0, Sab cd.

Sij bc =
∂Ci

jb

∂yc
−
∂Ci

jc

∂yb
+ Ch

jbC
i
hc − Ch

jcC
i
hb = 0

P i
j kb = δikσjb − γjkγ

ilσlb,

where σjb =
∂2σ

∂xj∂yb
, σlb =

∂2σ

∂xl∂yb
. The Ricci tensor has the properties:

1

P bj = P a
b ka = 0

and
2

P jb = P h
j hb = δhhσjb − γjhγ

hlσlb = 4σjb − δljσlb = 3σjb.

Then the Einstein equations are




Rij −
1

2
(R + S)gij =

h

T ij ,

1

T bj = 0,
2

T jb = −3σjb,

Sab −
1

2
(R + S)hab =

v

T ab.

Taking into account that S = S(y), the conservation law is described by





(
Ri

j −
1

2
Rδij

)

|i

= 0,

(
Sab −

1

2
(R + S)δab

)
|a − 3σjb|j = 0,

where the first equality is identically satisfied.
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