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In the framework of vector bundles endowed with (h,v)—metrics several physical models for
relativity are presented. A characteristic of these models is that the vertical part is provided
by the flag-Finsler Berwald-Moor (fFBM) metric, while the horizontal part is specialized to the
conformal and to Synge-relativistic optics metrics. As well, the particular case of h—Riemannian
v—fFBM metric of Riemann-Minkowski type is examined, considering as nonlinear connection
both the trivial canonical connection, and the one induced by the Lagrangian of electrodynamics.
For all these models, basic properties are described and the extended Einstein and Maxwell
equations are determined.
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1 Introduction

The recent attempts of modeling relativity based on metrical structures include
two notable trends: one originates in the theory of bundles endowed with Ehresmann
connection (e.g. via osculating structures and their duals, R. Miron [7-10]) and one
based on a palette of physical models relying on the Berwald-Moor metric (D.G. Pavlov,
G.S. Asanov [1,12,13]). The present work proposes several relativistic models of Miron
type which emerge naturally from this metric. The basic geometric structure is an
(h,v)—metric on a vector bundle (in particular the tangent bundle of a Space-Time),
where the horizontal part is of Generalized Lagrange type ( [8]) and the vertical one is
of Finslerian Berwald-Moor type. For these models (h—conformal, h-relativistic optic,
h—electromagnetic and h—classical Riemannian) the GR formalism is developed, and the
Einstein and relativistic Maxwell equations are described.

2 The flag-Finsler Berwald-Moor metric

Let M be a 4-dimensional differential manifold of class C*>°, T'M its tangent bundle
and (z°,y?) the coordinates in a local chart on TM. If F : TM — R, F = F(y) is a
Finsler function, we denote by

. 1P

———— qb=14
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the associated metric tensor. For F(y) = +/|y'y?y3y?|, Pavlov has studied the "4-
pseudoscalar product" related to the Berwald-Moor metric ( [13])

(XY, Z,T) = Gapea XY ZT, (2.1)
where
1 oL

41 Qyadyoycoyd (22)
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and £ = F*. We denote

1
<X,Y):ﬁ(X,Y,y,y,), X, Y € X(M), (2.3)

0
where y = y“a— is the Liouville vector field ( [9]), the vector fields X, Y being considered
ya

at some z € M. Then (, ) is a pseudo-scalar product; locally we have

1 avrb ¢ Gab00 a
(X,Y) = 73 Glabea X Ylyeyt = X Y?, (2.4)
where the null index represents transvection with y. The coefficients of the scalar product
(2.4) are hence
Gapoo 1 0°F*

ha = - ’
’ F? 12F2 Qyedyb

(2.5)

providing a tensor which coincides with the one @f;l) proposed by Lebedev ( [6]). Then,
hap is a 2-covariant tensor field, and (M, h) thus becomes a generalized Lagrange space.
Its absolute energy, £ = hay®y®, is

Gaoo oy 1 OF' , F—4:F2

g: = — —
Y Tt T

this is, & = F?. The Lagrange metric associated to h is exactly

1 rE 1 O*F*?
20y20y® 2 Oyeoyb

= hgy,
and taking into account that F'is a Finsler function, A* is nondegenerate and of constant
signature, which shows that (M,€ = F?) is a Lagrange space. From the homogeneity of

F' it also follows that 1
- = ha b. 2.6
9 93/& bY ( )

Consequently, we can state

Theorem 1. The space (M, h) with h given by (2.5) is a generalized Lagrange space
with reqular metric. The assoctated Lagrange metric b}, coincides with the Finsler metric
generated by F' and the two metrics provide the same energy,

(c: — F2 — habyayb — h*byayb.

a

Remark. The considerations above hold true for an arbitrary Finsler space whose
fundamental function is of locally Minkowski type.

3 A Riemann-locally Minkovski model

and let 5 3
{@:—.,&l i,a:1,4}
) 0 y O

Let TM be endowed with a nonlinear connection N with coefficients N% = N%(z, y)
o’ T oy
denote the corresponding adapted basis, where
= — — N — i=1,4.
oxt  Ox' Loyt !
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We also denote the dual basis by {dz’,d0y | i,a = 1,4}, with dy* = dy® + N%da?. If
D is a linear d-connection on T'M ( [9]), then it is described by its adapted coefficients
DU(N) = {L'};, L%, C";., C%.}, where:

je
Ds,6; = L' 15i, Ds,0p = L%0,,
D;.6; = C'.8i, Dy, 0p = C%.0,.

We shall further denote by | and | the h— and v— covariant derivatives induced by D

respectively.
As well, the torsion T' of the linear connection D has the adapted components

hT(6r,0;) = T6;, vT (0, 6;) = R0,
hT(0e,0;) = C'.0i, vT(0e,0;) = P4 0,

hT(0.,0,) = 0, VT (Dp, Dy) = 5%, 00,

while the adapted components of the curvature R are

R(0y, 01)0; = Riy,05,  R(, 0%)0p = Ry0a,
R(3e, 04)8; = Piybiy R(De,64)0 = Py,
R(De; )85 = Sjpebis R(Da,00)0h = Siega
Now, let us consider on T'M the following Riemann-locally Minkovski (h, v)—metric:
G = gyj(w)da’ @ da’ + hay(y)dy" @ 0y, (3.1)

which we shall use in our further considerations. Together with N, this metric produces
the canonical metrical d—connection CT'(N) ( [9]),

( i — 1 4 (0gnj | Ognk  Ogjk
2 29 oxk dxd oxh )7’
ONZ2 1 ohy, ON¢ ON¢
Lo — k Z pac c k h . — k h
O oy 2 (590’“ Oyb d oy© bd | (3.2)
i 1 n09jn
je 29 ayc )
1 8hdb 8th ahbc
ce = —pad — .
(2 <3yc "oy 3yd)

For h given in (2.5), the (h,v)—metric G given in (3.1) is v-regular, which implies that
the coefficients of the canonical (Kern [4,9]) nonlinear connection N vanish,

Ni(z,y) =0, i,a=1,4. (3.3)

The canonical metrical linear d-connection CT'(N) associated to G, is given by ( [9])

. . A 1 Ohgy  Ohge  Ohype
Li., =~ L% =0.C" =0. C° :_had o
ik = Tk Sek = 5 e = H Mbe =5 ( dy° " oyt oyt )’

where ;& denote the Christoffel symbols of g. It is worth mentioning that, for the canonic
d-linear connection in the Kern case (3.3), the torsion vanishes,

T, =0, R%, =0, C",,=0, P% =0, S% =0.
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4 Locally v-Minkovskian metrics

In general, an (h,v)—metric
G = gij(w,y)da’ @ da’ + hay(w,y)0y* @ 0y’ (4.1)

which has the property that in the neghborhood of any point (x,y) € TM there exists a

local map in which h(z,y) = h(y), is called v-locally Minkovski. A known result provides
consequences specific to this case, as follows

Theorem 2. ( [9]) IfG is a v-locally Minkovski metric and h = h(y) is weakly regular,
then the Kern nonlinear connection N and the canonic linear d-connection D (5.2) given
by CT(N) = {L*};,, L%, C";,, C%,} obey the properties

1N®=0, L'y ={,}, L% =0;

2. T, =0, §% =0, R, =0, P%=0.

3. R¢ =0, Pt =0,
where {* .} are the Christoffel symbols corresponding to g = g(x,y).

Remark 1. In our case, the following consequences hold true:

o 0
1. The equality N7 = 0 yields il
' o’

2. The torsion of the canonic linear d-connection has a single non-vanishing component,
namely the coefficient P*;, = C*;, of hT'(0,, J;).

3. C4%. are the Christoffel symbols of second kind associated to h., = he(y) and they
depend on y only.

We shall assume further that h = h(y) is the metric (2.5) from [3]; this satisfies
1 ore
T 12E Qyedyt

In this case, the deflection tensor fields attached to the nonlinear connection above are

a

y a a a a C a
D +ybLbj:0’ dY =y = 0y +y°C%,

D% =y =
From the definition of C%, (since h is 0—homogeneous in y), it follows that

1 8hbd 8hdc 8hbc 1 8hdc 8th
coe — _had o c_ _had o c
e ( oy oy 3yd) Y73 ( oy Oy ) Y

Taking into account the particular form (2.5) of h, and taking into account the
homogeneity of £, we get by deriving the product w.r.t. y® that
Ohge ., 1 .0 (1 0*&? 1 0 0f
v = 15V 50 \ e ameani ) = 29 ud T 2l
oy 127 oyb \ &€ Oycdy 2E Oyt Oy

is a geometric object symmetrical in the indices b and d, whence

yCCQCb - O = dab - 5ab
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Hence, the canonic linear d-connection is of Cartan type ( |9]) and the deflection tensors
are
DZ] = 07 dab = hab7

where the indices were raised /lowered using the corresponding parts of the (h, v)—metric.
We obtain subsequently that the electromagnetic tensors identically vanish,

1
Fij = Q(Dz‘j —Dj;) =0,

1
fab = é(dab - dba) =0.
and, since D is of Cartan type, we have ( [9])

Sq bcyd = 5% = andRZlL jk = Rajk =0, ydpa? ke = Pe = 0.

5 Einstein equations for the Riemann-locally Minkovski model

The curvatures of the canonical metrical linear d-connection associated to G in (3.1)
with (2.5) are, according to [9],

) _ 7 a _ A a __ [
R‘kh_rjkthbkh—()’ ijc_(]?Pbkc_O’ Sjbc_()’

j
a aC(abc aC(abd f a f a (5 1 )
bed — 8yd _a—yc+cbc fd_dewa

where 7%, are the components of the curvature tensor of the horizontal metric. Taking
into account the relations (5.1), it follows, as in [9], that the Einstein equations of the
canonical metrical linear d-connection CT'(IV) (3.2)-(3.3) can be written as

(

1
rij = 5(r + 5)gy; = T

ij
Tb];'/[l — O, Tﬁb — O, (52)

1
\ Sab — 5(7’ + S)hdb = T;g,

where 7;; denotes the Ricci tensor r;; = rihjh attached to the Riemannian metric g, Sg
is the Ricci tensor attached to the vertical metric hgp, 7 is the scalar curvature of rj,
and T,g are the components of the energy-momentum tensor field. If it is to compare
(5.2) with the (classical) Einstein equations of the Riemannian manifold (M, g), we have
to notice in the h-part of the above equations the "perturbation"introduced by the term

1 -
—55 gij- According to [9], the energy conservation law is identically satisfied by CT'(N).

6 The electrodynamic case

If we consider the Lagrangian of electrodynamics ( [10]),

o 2¢ .
Lo(z,y) = meyi;(2)y'y’ + EAi(x)yZ, (6.1)

where 7;; is a Lorentz metric tensor, A;(x) is a covector field and m,c, e are physical
constants, then, the attached Lagrange metric tensor is

1 9L
©20yi0y)

9ij = mcyij.
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On the other hand, from the variational problem associated to 6.1, there arises a nonlinear
connection N, whose coefficients are given by ( [10])

NG =7%(2)y" = F9, (6.2)
where F' is the electromagnetic field

0 e
Fj=5-9 F(Ajk — Ary),

the symbol ”7;” denotes the covariant derivative defined by means of the Christoffel
symbols vijk(x) of the Lorentz metric tensor «;;, and we denoted for simplicity,
a. — agk~t
Y b i %7 jk

If we consider now T'M endowed with the (h,v)-metric

G = gyj(w)da’ @ da? + hay(y)dy® @ 0y,

then the canonical metrical linear d—connection CT(N ) associated to G is given by

( ~ . .

L'k =" m

ahbc

oy

A 1 Ohagy Ohge  Ohpe

Gio—0, Co — —po _ .
Je ’ be 7 9 ( oye oyb Oy

+ 7% hde + 7 %chva),

T 1 ac
Lo =% — §h (N,f

\

By direct computation, one obtains that this time, the torsions of CT(N ) are
T =0, CY. =0, 5% =0,
while P%, and R"; do not vanish. Its curvatures are

[ _ ) a i a i a
Rj kh — Tj kh> Rb kh> P_] ke — Oa Pb ke» Sj be — Oa Sb cd’

where the expression of S, is similar to that one in the previous section. The Ricci
tensor has the properties
2
h
Rij :T’Z‘j,P]‘b == Pj hb — 0.

The Einstein equations take the particular form
4

1 h
rij — 5(7" + S)gw = Tz'j7

1 1 2
Ty = Py, Tjp =0,

]_ v
Sab - a(r + S>hab = Taba

\

while the energy conservation law writes as:

) 1 ) 10,
rj—§T5j “+Pj|a:O,

7

1
(Sab - 555ab) |a = O,
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. . 1 2
where 7} = gy, S = hSy, P§ = h*Py;.

We shall study further two particular cases of wv-locally Minkowski metrics, by
preserving h = h(y) from (2.5) and particularizing g = g(z,y). In these cases the results
in Section 4 still hold true, and the nonlinear connection used throughover is according
to Theorem 2, the trivial one.

7 The relativistic Miron-Kawaguchi optic h~—metric case

Let ;; = vij(x) be a Riemannian metric on M. We denote
vi =v59’s ylI* =9y’
We consider now the metric G from (4.1), in which the h—metric is given by
9 = Vij + ¢ Yy,
where ¢ is a nonzero real constant. The coefficients C* ;a Of the linear d—connection are

i 1, 0gin g™
Cliq= 2 8—yd = Q_CQ(deyh + Yha¥s)

and C%_ = C% (y) are determined in [3].

From the theorem above, it results that the Ricci tensor field has the components
h L a
Rij = Ry jp, Py = By =0,
z h a
Pjy, = Pj hb> Sbc:Sbca-
The Einstein equations write then
r 1 n
Rij = 5(B+5)gi; = Tij,

1 2 2
Ty =0, Tjp, = —Pjp,

]_ v
Sab - §(R + S>hab = Taba

\

and the energy conservation law is described by the system of PDEs

N R
(R]—§R5]):0,

1 2
(S“b — a(R + 5)5“,,) a— Py =0,

. . 2, L2
where R, = 9" Ryj, S% = h*Se, PYy = g Pjp.
The first equality from above is identically satisfied (see [8]), since it coincides with
the horizontal part of the energy conservation law for the canonical linear d—connection

of the generalized Lagrange space (M, g) (which is infered straightforward by the Bianchi
identity).
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8 The h—conformal metric case

In the h—conformal metric case, i.e. for the horizontal metric given by

gz’j(xa y) = 620(x’y)’7ij(33)a

the coefficients L', are given by ( [2])
Lijk = ”)/ijk + 5;079 + (5,in — ”)/jkO'i,

where ¢! = 0, vijk are the Christoffel symbols of 7;;(x) and for h given by (2.5) we

) 0
have o, = 5—2 = a—ak‘ Obviously, L%, and C%,_ are as in Theorem 2 and Remark 1. By
x x
direct computation, we get
C 1 095 _ .

je = 99 gye %%

) o ) do )
where g, denotes the derivative of o w.r.t. y: 0. = e As well, the torsion components
. . Y
vanish, except P*;, = C";. and the curvature components are

( . .
_’lz ’la — _l)z _pa a
i kD b jk — 07 j ke b kc 07 Sb cd.

J
- ach,  act, Z. i
b = ayi - ay; + Chjbc he — ChjcC w =10

. ;
L P}k = 0103 — Vi) O,

820' 620 1
———=—. The Ricci tensor has the properties: Py; = By, =0

where Ojb = W’ Onp = 8xl8yb

and
2
h h hl l
ij = Pj h = 5hajb — YinY O = 40'jb — 5j0lb = 3Ujb-
Then the Einstein equations are
(

1 h
Rij = 5(B+5)gi; = Tij,

1 2
Tbj = 07 T]b = —30']'1,,

]_ v
Sab - §(R + S>hab = Tab-

\

Taking into account that S = S(y), the conservation law is described by

1
a 1 a J

where the first equality is identically satisfied.
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