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1 The dual bundle (T**M,7*?, M) of the 2-tangent bundle (T?*M, w2 M)

Let M be a real differentiable manifold of dimension n. A point of M will be denoted
by z and its local coordinates in a chart (U, ¢), as ¢(z) = («*). The indices a, b, ... will
further run over the set {1,...,n} and the Einstein convention of transvection will be
adapted all over this work. Let (T'M, m, M) be the tangent bundle of the manifold M and
let (T*M,7*, M) be its cotangent bundle ( [7], [9]).

Definition 1.1. We call the dual bundle of the 2—tangent bundle (T%M, 72, M), the
differentiable bundle (T*2M, 7*, M) whose total space is

T*M =TM x, T*M (1.1)

Sometimes we shall denote (T**M,7*?, M) briefly by T*?M. A point u € T**M will be
denoted by u = (x,y, p), having the local coordinates (z%, y*, p,). The projection is given
by m%(u) = 7n**(x,y,p) = x. Evidently, we take the projections on the factors of the
fibered product of (1.1): 72 : T**M — TM, w:TM — M as being 7%(z,y,p) = (z,v)
and 7*(z,y) = z; also, 7 : T**M — T*M is given by 7™ (u) = 7 (z,y,p) = (z, p).

The change of local coordinates on the manifold T*2M is:

0 =32, ... "), det(&c ) £0,
. oxb
. 01
vy =% (1.2)
- Oxb
L pa - afapb'

The dimension of the manifold T*?M is 3n.
The null section O : M — T**M of the projection 7*? is defined by O : () € M —

(2,0,0) € T**M, where we denote T*2M = T*2M \ {0} .
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Let us consider the tangent bundle of the differentiable manifold 7T7*2M,
(TT*>M, 72, T*>*M), where 7*% is the canonical projection and the vertical distribution
0 0
V:iue T?M — V(u) C T,T**M generated by the vector fields {a—|u,a—|u},
y* " Opa
Yu € T*2M. We shall denote the natural basis as
=L 0,=L -l
ox® oy® Opq

By means of (1.2), we can consider the following subdistributions of V' :
Viiu€T?*M — Vi(u) C T,T*M,

and
W2 Tu e T*QM — WQ(U) C TuT*QM,
locally generated by the vector fields {aa lu, w€ T*QM} and {8“ lu,u € T*QM}

respectively. Clearly,we have
V(u) = Vi(u) ® Wy(u), Vue T2M. (1.3)
Let us consider the following forms
w = pedz® (Liouville 1-form), and 60 = dw = dp, A dz*.

Theorem 1.1 1°. The differential forms w and 0 are globally defined on the manifold
T*2M.
2°. The 2-form 0 s closed and the rank of the form 6 is 2n.
3°. The form 0 provides a is a presymplectic structure on T**M.

We note that the following F(T*?M)—linear mapping
J: X(T?M) — X(T*M),
defined by
J(0,) =04, J(0,) =0, J(0O)=0, VueT*2M,
has geometrical meaning. It is not difficult to prove the following result:

Theorem 1.2 1°. J is a tensor field of type (1,1) on the manifold T**M.
2°. J is a tangent structure on T**M, i.e., JoJ = 0.
3°. J 1s an integrable structure.
4°. JoJ = J* = 0.
5. Ker J=Vi®W;, ImJ=1V].

With these object fields we can construct the geometry of the manifold T*?M.

2 Nonlinear connections on T*2M

We extend the classical definition of the nonlinear connection ( [11]) to the total space
of the dual bundle (T**M, 7*2, M).

Definition 2.1 A nonlinear connection of the manifold 7*2M is a regular distribution
N on T*?M, supplimentary to the vertical distribution V| i.e.,

T,T*M = N(u) @V (u),Vu € T*>M. (2.1)
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Taking into account (1.3), it follows that the distribution N has the property
T,T**M = N(u) ® Vi(u) © Wa(u),Yu € T*M. (2.2)

Therefore, the main geometrical objects on T**M will be reported to the direct sum (2.2)

of vector spaces.
We denote by
)
{—,i,i}, (a=1,..,n), (2.3)

0x®’ Oy®’ Op,
a local basis adapted to N, Vi, Ws. Clearly, we have
) 0 0 0
= — N — + Nyp—. 2.4
ox®  QJxo “ Oyt + b@pb (24)

The system of functions (N°(z,y,p), Nao(z,y,p)) form the coefficients of the nonlinear
connection N.
With respect to the coordinate transformations (1.2), we have the rule of change:

4] ozt § 0 ozt 0 0 Oz* 0

Szt Ore ozb’ oy - dzo 05" Opa - ozt opy

Theorem 2.1 With respect to (1.2), the coefficients (N, Nu») of a nonlinear connection
N on T*2M obey the rule

(2.5)

ATa 0T __ ATc 0zt 0Y°
Ncaxb - ]Vbc?:cC Oxb? (26)

o0x¢ O d 62
Nap = G555 Noa + pegabs-
Conversely, if the system of functions (NS, Nupy) are given on the every domain of local

chart of the manifold T**M, such that the equations (2.6 hold, then (N$, Ny) are the
coefficients of a mnonlinear connection on T**M.

Assuming that the manifold M is paracompact it follows that the manifold T*2M is
paracompact, too. Let v4,(x), x € M be a Riemannian metric on M and ~i.(x) be its
Christoffel symbols. Setting

Jo = pe(@)pay’.
Then, the system of functions

Ny =0"%, Na=0bfa, (2.7)
are geometrical object fields on T*?M, having the rules of transformations (2.6), with
respect to the change of local coordinates (1.2). Hence we get the following

Theorem 2.2 If the base manifold M is paracompact, then there exists a nonlinear
connection on the manifold T**M.

We shall further denote the basis (2.3) by:

{5a,aa,aa}.

The dual basis of the adapted basis (2.3) is given by
[da, 5", 6pa} 2.8)

where
Sy = dy® 4+ N9da®, Sp, = dp, — Npada®.
With respect to (1.2), the covector fields (2.8) are transformed by the rules:

ozt 895 Oxb 0
Oxb = Ozt ~ 9ie

dz =
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3 Distinguished vector and covector fields.
The Algebra of distinguished tensor fields.

Let N be a nonlinear connection on T*2M. Let h,v;, ws be the projectors defined by
the distributions N, V;, Wy of the direct decomposition (2.2). We have

h+uv +wy =1, h* =h, v} =v, wi = w,, (3.1)

hovi=v10h=0, howys =wyo0h =0, v1 0wy =wy0v; =0.
If X e X(m), then we denote
XH =hX, X' =0 X, X2 = w,X.
Therefore we have the unique decomposition
X=X"4 X" 4 x" (3.2)

Each of the components X, XV1 XW2 are called d—vector fields on T*2M .
In the adapted basis (2.3) we get

XH = xOa5,  xV1 = x(Wag, ~— xWa _ (X)aéa.
2

By means of (2.5) we have

B Oz
" 910"

~ 0z® ~ 0z®
X©a — ZZ x (0 y(Da _ 77 (1))
oxb ’ oxb ’

i.e., the classical rules of the transformations of the local coordinates of vector and covector
fields on M. Therefore, X0 X Me are called d—wvector fields and EX)a is called a d— covector
2

field on the manifold T*2M.
A similar theory can be done for distinguished 1—forms.

With respect to the direct decomposition (2.2) a 1—form w € x*(T*?*M) can be
uniquely written in the form:

w=wl +u" +wW2,

where

wl=woh, wi=wouv, w"?=wouws.

In the adapted cobasis (2.8), we have

W= wadr®+ w,oy*+ w(2)a5pa.
(0) 1)

The quantities w’,w"t,w"? are called d — 1—forms. The coefficients (w)a,(w)a,w@)a are
0" (1
transformed by (1.2) as follows:

_oab oz" _

wo= P S@a _ 9T oy
(0) oxe (0)"

O~ dze () O

Hence (w)a and (w)a are called d— covector fields and w®? is called a d—wvector field.
0 1
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Definition 3.1 A distinguished tensor (briefly, d—tensor field) on the manifold 72 M
is a d—tensor field T of type (r,s) on T*?*M, with the property

(W, ..., 0, X, X) = T(WH, .. 0", X7 XM,

Vi, . € XH(T*2M), VX, X € (T2M).

For instance, every set of components X, XV, XW2 of a vector field X forms a d—tensor
field of type (1,0), and every set of components w?,w", wW"? of a 1—form w is a d—tensor
field of type (0, 1).

In the adapted basis (d,, 5a, 8“) and its dual basis (dz?, 0y“, 0p,), a d—tensor field T
of type (7, s) can written in the form:

T =T (2,9.0)00, ® .. ® " @ dz" @ ... @ p,.

where .
T Z;g: (z,y,p) = T(dxbl, ey 0Dy Oy s ooy 8b5).

It follows that the set {1, Oas 5a, 8“} generates the algebra of the d—tensor fields over the

ring of functions F(T*?M).
With respect to the transformation of the coordinates on T*2M, the local coefficients
Tyt of T' are transformed by the classical rule

Ferer _ 0xr 91 Oxtr Oxbs T arar
dids = Gpar U Gpar Gpdi T Gpds T brobs

4 Lie brackets

In applications, the Lie brackets of the vector fields (d,, 8a, 8“) of the basis adapted
to the direct decomposition (2.2), are important. By a direct calculus, we have:

Proposition 4.1 The Lie brackets of the vector fields of the adapted basis are given by

[5127 50] =R abcéa + R abcaaa
(01) (02)

_5b780:| = Babcéa'f_ B abcéaa
I (11) (12)

B abcaaa
22

0,,0°| = B0, +
L (21) (22)

:81,,8(3] _0, [61,,80} _0, [61?,80} _0,

where
R abc = 5CNCIL) - 5bNC(l;7 R abc — 5cha - 50Nba7
(01) (02)

Ba —= : Na B = —. N
1) be ac by (12) abe 8c ba (42)

“¢ = 9N, B 0 = —0°Nj,.
(1) (22)

(



96 Atanasiu G., Balan V. The 2-Cotangent Bundle with Berwald-Moor Metric

Let us consider the followings coefficients from (4.1):

B i (3 N B ¢ — (SCN i B ¢ .
(11) be c by (22) ab ba ( (22) ab)
By means Of (26) it fOHOWS

Proposition 4.2 The coefficients B, = U %, — B % = U %y have the same rule
(11) (11) (22) (22)

of transformation with respect to the local change of coordinates (1.2) on T**M. This is

~a Ox%0s 9" 0*z"
@3 Yozt oxc  dxdep O Oxboxe’

(B =1,2). (4.3)

We will see that these coeflicients are the horizontal coefficients of an N —linear connection
on T*2M. By straightforward direct computation, we obtain

Proposition 4.3 The coefficients R “y., R ape and
(01) (02)

aczécNa Bac:_écNm
@n ° b 1) b

are d—tensor fields on T**M, of type (1,2),(0,3),(2,1) and, respectively, (0,3), i.e.,

~, 074 02b oxc

R%; = — ., €Elc.
(01) I Oge 5zc 0%F (01) bey €LC

We will see that (4.4) can be the vertical coefficients of N—linear connection on T**M.
Also, we have

Proposition 4.4 For the nonliner connection N(N%,, Nyp) given by (2.7):

N = /yl?c(x)yb> Nap = 'ng(l')pc, (44)
the coefficients (4.2) of Lie brackets have the following expressions:

ORl abc = Tbacd(x)yda R abc — Tadbc(x)pda

(01) (02)

B c =V > B abc — 07 .

o be = Vi(T) (i b (4.5)
ac_ B ¢ = —¢ )

1) b ) (22) b vab(x)

5 The almost contact structure [F.

The nonlinear connection N being fixed, we have the direct decomposition (2.1), (2.2)
and the corresponding adapted basis (2.3).
Let us consider the F(T*?M)—linear mapping:

F: X (T"2M) — x(T*M),
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determined by
F(éa) = _aaa F(aa) = 5a7 F(aa) =0. (51)
Then, we obtain

Theorem 5.1 The mapping F has the following properties:
1°. It is globally defined on T*>M.
2°. F is a tensor field of type (1,1).
3. KerF=W,, ImF=Na&V;.
4°. rank F = 2n.
5°. F3 +F = 0.
Proof. For 1° — 5° see [7, p.259].
We say that F is a natural almost contact structure determined by the nonlinear
connection N.
6 The Riemann structures on m .

—_~—

Let us consider a Riemannian structure G on the manifold T*2M .
In the natural basis, G is given locally by

GC=0 ad®@d® + § adr® @dy’ + § ldz® @dpy,+ ...+ § Pdp, @ dps,
(00) (01) (02) (22)
where the matrix | g || is positively defined.
(aB)
Let {0,} ,(a =1,...,n), be the basis adapted to N:
§a = O — N®0p + Ny
and let {dz®, 0y®, dp,} be the cobasis adapted to N
Sy = dy® + N%dz’, dp, = dp, — Nypeda®.

Then, after a direct calculation, the Riemann structure G can be written in the adapted
cobasis, in the form

G= g adr*® dz’ + g adzr® ® 5yb + g JLdrt @ opp+ ...+ g abdpa ® Opy, (6.1)
(00) (01) (02) (22)

where ¢ ap, G ab, G o', etc., are expressed bY G ap, G ab, G o  etc. and with the
(00)  (01)  (02) (00)  (01)  (02)
coefficients N%, and N, of N given by (4.4).

Let F be the natural contact structure determined by the nonlinear connection N
given by (4.4).

The following problem arises: when is the pair (G,F) a Riemannian almost contact
structure?

For this, it is obviously necessary to have:

G(FX,Y) = —G(X,FY), VX,Y € x(T"2M).
Consequently, we get

Theorem 6.1 The pair (G,F) is a Riemannian almost contact structure if and only
if in the adapted basis determined by N and V' the tensor G has the form

G = gupdr® @ dz’ + gudy” @ 0y’ + h*p, ® Spy. (6.2)

Corollary 6.1 With respect to the Riemannian structure (2.3), the distributions
N, Vi, W5 are orthogonal in pairs respectively.
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7 N-linear connections on T*2M

A linear connection on T*?M is an mapping
D (T2M) x (T2M) = \(T"2M), (X, Y) — Dy,

with the properties:

1. Dy, x,Y = Dx,Y + Dy,Y,
DixY = fDxY, Vfe F(T2M), VX, X1, X5, Y € x(T"*M).

2. Dx (Y1 +Y3) = DxYi + DxYa, VX, V1,Ys € \(T2M).

3. Dx(fY) = (Xf)Y + fDxY, VXY € x(T*2M), Vf € F(TM).

We consider X, Y € x(T**M). With respect to the decomposition of type (3.2), we

have
2

DxY =) (DxuY" + DywY"™ + Dyw, Y'?),
a=0
where Vo = H and V5, = Ws.

The components DxuY V> Dyw YV Dyw,YVe (Vo = H, Vo = W,), are (not
necessarily distinguished) vector fields.

The linear connection D on T*2M is uniquely determined by its 27 sets of coefficients,
written in the adapted basis. To work with these 27 sets of coefficients is not imposible,
but is laborious. We shall further use N—linear connections whose coefficients are much
easier to determine and operate with.

Let N be a nonlinear connection on T*?M.

Definition 7.1 A linear connection D on T*?M is called an N—linear connection if
it preserves by parallelism the horizontal and the vertical distributions N, V; and W5 on
T2 M.

By the general theory of connections on manifolds, the horizontal and vertical
distributions are preserved by parallelilsm if for any X € x(T**M), Dx carries the
horizontal vector fields to horizontal vector fields and the vertical vector fields to vertical
vector fields. Thus DY is always an horizontal vector field, and DxYV# are vertical
ones, (B =1,2; Vo =Ws).

Obviously, the local description of an N—linear connection DI'(N) on T*2M is given
by nine unique sets of adapted coefficients:

DF(N) = (Habca Habca Habc> C abc; C abc> C C “° O “ C abc)a
(00) (10) (20) (01) (11) (21) (02) (12) (22)

We have

Theorem 7.1 1°. An N— linear connection D on T**M can be uniquely represented
in the adapted basis (4, 8a, 8“) in the form

D5 o = (H “be0a, D(Scab (H bcaaa D(;c@b _(g—g)abcaaa

D. 6 = J D. — D. b _ b 9a
e b (Oq) bclas Bcab (g) bcaaa 808 (g)a ca s (71)

D 8= C%6, D. 9= C% 0, D &=—C o
[ o (02) ae (12) oe (22)
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2°. With respect to the coordinate transformation (1.2), the coefficients (H)”bc,
a0

(=0,1,2; H%.:= H %) obey the rule of transformation:
(20) (20)

. oor ow ., o
(@0) 0z Oz Ox¢(a0) * OxbOxe’

3°. The system of functions (C’)abc, % (a=0,1,2; (C’)abc = Oy C 0= O
al 21

(a2) (21) (22) (22)

are d—tensor fields of type (1,2) and (2,1), respectively.
We have the following theorem of existence of N —linear connections on T*?M.

Theorem 7.2 If the manifold M is paracompact and N is a nonlinear connection on
T*2M with coefficients N%, Ny, then there exists an N—linear connection on T**M.

Proof. Since M is paracompact, then there exists a linear connection on M of local
coefficients, say 1'%, (z). Let N%(z,y,p) and Ng(x,y,p) be the local coefficients of the

nonlinear connection N. We set H %, = I'} (x), H%. = O,N%, H%. = SaNbc. Thus,
(00) (10) (20)

taking into account the previous results, we obtain three sets of functions which transform,
with respect to (1.2), by (7.1). It results that DI'(IV) given by

DI(N) = (T¢ B4, — B%.0,0,0,0,0,0),
(N) = ( bc(x),(n) b= B )

defines an N—linear connection on T*?M.

In applications, we use the N—linear connection of the form

BT(N) = (L %., B%,— B %0, C%.0,0,0, C %)
(00)  (11) (22) (11) (22)

called N—linear connection of Berwald type on T*2M.

8 The h,—,v,— and wy,—covariant derivatives in the local adapted basis,
(=0,1,2)

The N—linear connection DI'(N) induces a linear connection on the d—tensors set of
the 2—cotangent bundle (T*?*M, 7*2, M), in a natural way. Thus, starting with a d—vector
field X and a d—tensor field T, locally expressed by

X = XOag, 1 xMag, o (X)aéa,
2

T =T (2,9,p)00 ® ... 0" ®dz" ® ... ® 5p,,,

we can define the covariant derivative
DxT = {X©Od grgr +
FXOMT G20 Lo 4T 50 8 800
where

al...ar o al...ar a1 cas...ar ar ai...c
Ty paa = 0aT 3757 + (g) cdl 2+t (g) cdl y Ty, —
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c ai.. ar c ai...ar
_(]%) bldT ch — ... (g) bsdT b1...c 5

ai...a . ai...a a cas...a ar aj...c
T bll...b: |ad: adT bll : + C 1ch b1.2..bsr 4+ ...+ q ch !
(a

(al) by...bs
c ai...ar ¢ ai.ar
—(g) bdl oy, = e — (g) bod 40

Tgl...gzr |ad: adT 21 .ap + C aldT caz. bar o+ C ardT aj..c __
1...0s 1 1 E]

by...bs
drm ai...ar drp ay...ar
_(g)blc T ng...bs e T (ac;)bsc T b11...c :
Definition 8.1 The local derivative operators ” ,q", ” |aa 7 and ” \O‘d ” are called the

h,—,vi,— and way,—covariant derivatives of DI'(NV), (a = 0, 1, 2).

Remark 8.1 (i) In the particular case when T is a function f(z,y,p) on T**M, the
preceding covariant derivatives reduce to

Jioa = daf = Oaf — N0,
f loa= 0af, f|2=0%f, Vf e F(T2M).
(1) Considering the d—tensor T'=Y as a d—tensor on T*2M, locally expressed by

Y = y©as, 4 yWag, 4 (Y)aaa,
2

the following expressions of local covariant derivatives of DI'(N) hold good:

Y(O _ 5 Y (0)a 4 Y(O)b(H)ab Y(l)a _ 5cy(1)a + Y(l)b(]%)abc,

YlOéC:(SCY _YaH )

@’ @ %0 "

y (0a |ac: 30 y (0)a + y (0 a. y (Da |ac: a’c y (Da + y @b ¢ ay.
(al) (al)

Yb|ac_6Y ~Y,C 9,
@ <2><>

Y(O |ab ab C ab Y(l |ab ab Y(l —I—Y(l C ab

Yy |®=0Y,.-Y,C Cab.
2) @ (2 (2

Proposition 8.1 The quantities T 35" 00 T 310 g, T 3t 24 (o = 0,1,2) are
d—tensor fields on T*>M. The first szx are of type (r,s + 1), the last three are of type
(r+1,s).

9 Ricci identities. Local expressions of d—tensors of torsion and curvature

Let DI'(N) be an N—linear connection with the coefficients

DF(N) = (Habcv Habcv HabCa C abc; C abc; C abc; C abca c abC; C abc); (91)
(00) (10) (20) (01) (11) (21) (02) (12) (22)

By a straightforward calculation we obtain:
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Theorem 9.1 For any N —linear connection D and any d—vector field X € x(T**M),
the following Ricci formulae hold:

Xa|ab|ac - X iaciab — Xf R f - T fch of T R fch |af - R fb X ‘af
(a00) (a0) (01)
Xau ac_ ama—Xf R c Cch [l _Pch « _B X af
b | * Jaciab B e X ar= B 7 lor = B e X [0,
|a ac _ ya |ac “ _Xf R C fc Xala o Bf cxa of — cxa af
b | | b B =B las L Xt

X |ab‘ac —-X* |ac|ab: Xf R f be — S fch ‘afa

Xe |a |ac —Xe |ac| b= Xf R f b _ C cha | s _( | bea |af
Xa ablac _Xoa |ac ab__ Xf R abc __ S cha af, 0620,1,2 )
b X o= XS R § X e )

where all the terms in R %, R ape, B abe, B % are known from the Lie brackets (4.1),

on 2" 1277 @1)
and the coefficients DT'(N) are given in (9.1).

We further denote

0
T abc = H* be — H*“ cb)y P be — B¢ be — H acba P ab =B ab + Hc¢ abs
(a0) (a0) (a0) (al) (11) (a0) (02) (22) (a0)

Saczcac_oac Sabc:_ Sabc_oacb
(al) b (ad) b (ad) b (a2) ((a2) (a2) )7
1 2

dTc,Tc,Tc,Pc,Pc,Pc,Pc,Pcapa e o QaS,
and I% &% &% &b &5 £ % £ e £ 2% Qe G

(12) (12)
(S : b¢ are called d—tensors of torsion of D. These are given by:
22
(0 1 2
T % = Habc - Hacba T % = R abca T ape = R abes
(00) (00) (00) (00) (01) (00) (02)
0 1 2
P “be = C abca P “be = B “be — Hacba P abe — B abe
(01) (01) (01) (11) (10) (01) (12)
0 2
P& = O %°, P“ “= B%" Pa°= Ba"+ H %,
L (02) (02) (02) (21) (02) (22) (20)
1 2
S%he=0C" bc — ce cby S abc = _( C abc - C aCb)
@ " ay (11) (22) (22) (22)
1 2
a_ c — C a c = C ac ) a C — C aC = C Ca i
(g) Ty’ (g) T T e

We remark that P be = P ves P ap’ = Pab ,etc. Also, R ,..., are called d—tensors of
11) (01) (22) (02) (00)

curvature of D, and they are given by:

;

R iea = 03 H e = 6 H ¢ Hiy, Hopy— HiyHay,
@00’ " "0y Byt el ra = B B et

+C befcd+ CbafRfcda
(al) 01) (a2)  (02)

Rbc—ad C_delac_'_c bfbe+C focd,
(a01) (a0) (al) 7 (al) (@2)” (12)

R 2.1 6dH“c—(J 4 e+ (J“ Bfi4+ C P4 (a=0,1,2),
\<ao2>b a0) ’ Gy T G By | )
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Rbcd—adO bc_a Cabd+ Cf Cafd_ Cfde fes

(all) 1) (al)

R ,o.¢ adcabc—aoad (Jf C 4 — (deoafc,

(al2) (al) (al) (a2) (a2) (al)
R 4ot = 0 O e accbad+ C e C o C 10, (a=0,1,2).
[ (a2) @' @ e @ e

10 Metric structures on the manifold 7*2M/.
Metric N—linear connections

Definition 10.1 A metric structure on the manifold 7*2M is a symmetric covariant
tensor field G of type (0,2) which is non-degenerate at each point u € T*?M and of
constant signature on T*?M. If G is positive definite we say that it defines a Riemann
structure on T*2M.

Let us consider a metric structure G on T*>M for which the distributions N, V;, W,
are more general then (6.2), namely we have the decomposition:

G(X,Y)=GX", Y + GX", Y") + G(X"2,Y"?) VXY e T**M.  (10.1)
In other words, G decomposes as a sum of three d—tensor fields,

(0) G of type (0,2) defined by G (X,Y) = G(XH YH),
(1) G* of type (0,2) defined by G"1(X,Y) = G(X"1,Y"),
(2) G2 of type (0,2) defined by G"2(X,Y) = G(X"2, YW2).

Locally, these d—tensor fields can be written as

GH = (g)abd.%'a & dl’b, GVI = (g)abéya & 5yb, GW2 = (g)“bépa & (5pb,
0 1 2

where ¢4 = G(04, %), gap = G(éa, 31;), g = G(@“, 3’)), and
(0) (1) 2)
rank || g ll=n, (@=0,1,2), | ga =l g™ 1I".
2) (2)

()
Thus the decomposition (10.1) looks locally as

G = gudr® @dz’ + 9wy @5y’ + gPop, @ dps. (10.2)
0) (1) 2)

Definition 10.2 An N-—linear connection D on T*?M endowed with a metric
structure G is said to be a metric N—linear connection if DxG = 0 for every X € T*?M.
Let G be a metric structure on T*?M given by (10.2). We have

Proposition 10.2 An N-—linear connection on T**M is a metric N—linear
connection with respect to G given by (10.2) if and only if

9 abac = 07 g ab |ac: 07 g ab |ac: 07 (1O3>

(a) a (a

where || g |I=]l g I7!, (@=0,1,2).

() (a)
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Remark 10.1 The conditions (10.3) are equivalent with the conditions

g)ab|ac = 07 g)ab |ac: 07 g ab |ac: 07 (Oé = 07 17 2)
(a (a

(a)

We shall now discuss the existence of metric N—linear connection on T*?M. By
straightforward calculation we get

Theorem 10.1 If the manifold T*M s endowed with the metric structure G given

by (10.2), then there exists on T**M a metric N—linear connection, depending only on
0 1 2

G, whose h(hh)—, v1(v1v1)—and we(wews)—tensors of torsion, (T bes S %ey S "¢ vanish.
00

an 7 (22)
Its local coefficients defined by

DFN:: HQC7‘HQC’ dC)C C)C C)Ca(/‘)CaCOaC dbc’
() ((00) b (10) b (20) (01) b (11) b (21) (02) (12) (22) )

are as follows

1
Hbc— Oc G od + 06 G de — 0d G be
(00) 2(0) ! © 0) 0) )

ik —B“C+ 8.9va— B, —ch
<1o>b any @ 2(‘% ) e an 4T @) d(‘%bf)

1
H“c — B%, + 8e Goa+ B pe + B7,
(20) " (@22) " 2(‘% “ ot 2 )b(g>fd (22 )d(g)bf)

1 c 1

C%  ==g add), Ggoa, Co*= da gt 10.4

(01) 2 (0) (0) (02) 2 (0) (0) ( )
1

C“bc—Q YOe g ba+ Op 9 de — Oa G ve),

1) 1(1) (1) 1) 1(1)
Che= = g%, gras C o = —= guad’g
o T ag g &) 207 &)

c 1 .
Co=—=gaaldg"+0"g%—0"g").
(22) 200 @ &) &)

Definition 10.3 The metric N—linear connection given by (10.4) will be called the
canonical N—linear connection associated with G.

11 Berwald-Moor metrics on the manifold T*2M

We further specialize the obtained results to the case when the base manifold is
a Space-Time. Then dim M = 4, dim7T*M = 8 and dim7*?*M = 12. The nonlinear
connection N = (N%, N,) given by (4.4), has the coefficients of the Lie brackets of the

adapted basis satisfying the relations (4.5). We consider the Riemannian metric on T**M:
G = gap(7)dz® @ da® + gap(2)0y® @ 6y + h*(y)0pa @ ps

where g, is a Riemannian metric on M and h® is the dual of the Berwald-Moor type

metric
1 0%F?

2 Oyrdyb’
where F(y) = /|y'y?y3y?*|. Then the structure F given in (5.1) satisfies the relation

hap = a,b=1,4, (11.1)

G(FX,Y) = —G(X,FY). (11.2)
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As well, the following results regarding the canonic d—linear connection hold true:

Theorem 11.1 1° The canonic metrical linear d—connection DIT'(N) has the
components

Habc = Vgc(l')’ Habc - /ygc('r)’

(00) (10)
ey — 2Ly o ynen [yidn 5% h
(20) be 9 ’ch(x) ’ch(x) Yy ( f bm) + m!bf )

and

1 . c
Cab =0, Cabc—O C“bc——h“dachbd, Ca =0, C bC—O C be =0
(01) 2 (02) 12" 22)"

2°. The d—tensors of torsion are given by

Tac_o Rac: ac d7 Rac: adc )

(00) b oD b Ty d(x)y ©3) b Ta b (9€)pd
1 2

Pabc—o Pabc:O Pabczoa

(01) (0 ) (0 )

P —0, Pae—0, Put——n He,.
(02) (02) (02)" Vhel®) + 20) °

1 2 1 .
and S %, = 0 S be — 0 Q 0, Q bca = —h“dachbd.
@ (22 (12) (12) 2

3° The d—tensors of curvature are given in the adapted basis by

4
R y%a =1 cd(ﬂﬁ) R % cq = 1p%a()

(000) (100)
Rbc—5d bc—5Hbd+Hfbch—Hf ch+
(200) 20) 20) (20) ~ (20) (20) (20)

+§ham (afhbm)rc dmy )

\

where 6, = 83 — N™30,, and

R p"a =0, Rbacdzo

(001) 01)
— H = a a f _ f{f
(21;3)1) cd &z e = (g) bdj2c + (QCI) b (Vig() & de)

R bacd = 07 R bacd = 07 R bacd = 0
(002) (102) (202)

R%q=0, R %q=0,

(011) (111)
R % =01C % —0.C %+ Clp C%%g— Oy C %= c’ealy),
(211) (21) (21) 1) " (21) 1) (21
R bacd = 07 R bacd = 0, R bacd = Oa
(012)
R acd __ O R bacd _ O R acd =0
022)" (122) (222)”

If we endow the space T*M with the metric

G = gap(7)dz” @ da® + gap(2)5y" @ 5y° + h™(p)Spa @ Opy,
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where g, is a Riemannian metric on M and h® is the Berwald-Moor type metric

- 2 apaapb’

a,b=T1,4, (11.3)

where F'(y) = {/|p1p2pspal, then the structure IF given in (5.1) satisfies the relation (11.2).
As well, we can state the following
Theorem 11.2 1° The canonic metrical d—connection DI'(N) has the components:

C

Habc = ’yl?c(x% Habc = ’}/gc(l')

(00) (10)
c 1 )
ég)abc = ’ch(l') -+ ih“d(chafhbd — ’Y[{chfd — 7£chbf),

C

Cabczo’ (lclf)abc:(]’ Cabc:O, CabC:O, Cabczo,

(01) (21) (02) (12)
(262*) bc _ 5had(achbd + abhdc _ adhbc) — Fgc(p)

2° The following sets of components of the d—tensors of torsion are nontrivial:

2

Rac: ac da Rac—ac 7Pac:_c [flca-
i be = T ca(T)y (02)1; 70" be(Z)Pa (02)1; ’Yab+(20) b

3° The following sets of components of the d—tensors of curvature are nontrivial:

(Olo%)b cd = Tp%ca(), (R b ed = Tp"ed(T)

R %q=04H% 5Hbd+Hfo—Hdefc+
(200) (20) 20) 20) "°(20) 20) "% (20)

+beRfcd7
(22) (02

where 0g = Oy — Ndfgf and (2]2%2)ba0d = 5"“(p),

Rad ad be Cadc Caf_ Hdc
(202)” © 20) T @y 1 +(22)b (=7 +(20) se)-
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