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An old problem in differential geometry is that of prolongation of a Riemannian structure
g (z) on a real n—dimensional C*°-manifold M,z € M, to the bundle of k—jets (Jé“M, ﬂk,M)
or, equivalently the tangent bundle (TkM T M ) of the higher order accelerations. The problem
belongs to so-called geometry of higher order. It was solved in [18] for £ = 1 and partially in
[19] for k = 2. The same problem of prolongation can be considered for a Finslerian structure
F (w,y(l)). In the paper [15] are given these solutions in the general cases, using the Sasaki-
Matsumoto N —lift (for k = 2, see [3] and [6]).

But, the terms of Sasaki-Matsumoto prolongation of a Riemannian metric (or Finslerian
metric) to TFM have not the same physical dimensions because these prolongations is not
homogeneous on the fibres of the tangent bundle of order k. This is a disavantage in the study
of the geometry of T*M using the Riemannian metrics determined by these prolongations.

In this paper, only for a Finsler space F" = (M ,F (x,y(l))) , we correct this disavantage

introducing a new kind of prolongation G of the Finsler metric g, (ac, y(l)) = 02F/0y(Megy(Db

given by (2.1), which is 0—homogeneous. Some properties of the Riemannian space (TkM , G) are

studied. The almost (k — 1) n—contact structure F from (2.13) is introduced. It has the property
of homogeneity and (G, F> is a metrical almost (k — 1) n—contact structure on T*M. It depend

only on the fundamental function F (x,y(l)) of the Finsler space F™. The space (TkM , G, F)
is the geometrical model of the Finsler space F™ = (M, F (x, y(l))).

Mathematical Subject Classification: 53B05, 53B15, 53B40.

The Sasaki-Matsumoto N-lift of a Finsler metric

Let M be a real n-dimensional C'*°-manifold and (T"“M kM ) its tangent bundle of
order k (or k—jet bundle, or tangent bundle of the higher order accelerations).

Let us consider the Finsler space F" = (M, F) with the fundamental function
F (z,yM),F : T'M — R, and the fundamental tensor g, (z,y")) on T*M given by

1 O0*F
Mmy--_ -
gab (ffvy ) - 2 ay(l)aay(l)by (].].)

where g4 (:p, y(l)) is positively defined on T M.

The indices a, b, ... run over set {1,2,...,n} and Einstein convention of summaring is
adopted all over this work.

Let ;. (x, y(l)) be the formal Christoffel symbols of the g, (:p, y(l)) ..

a 1 a ag ag C ag C
co (B m)
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Then, the canonical semispray of F™ is given by

d?x® dx
2G° — =0 1.3
dt? + 1) (x’ dt> ’ (1.3)
where
a 1 a 1)\ ,,(1)b, (L)e )
(Cf) = 5k (2, yM) oy, (1.3")

The canonical nonlinear connection (determined only by the function F' of the Finsler
space F'™) is the Cartan nonlinear connection with the coefficients

0G*
)

- Ay’

Gy (a,y) (1.4)

Then, on the domain of chart (7r”‘;)71 (U) € T*M,U C M, we can consider the
functions

I (x,y(l), ...,y(k)) = (F owf) (x,y(l), ...,y(k)) ,

gz (2,9, y®) = (gw o7t (2,9, o y®),
v(l‘)y(l)aa (k)) (U)7

where 7% : T"M — TM, ¥ (x,y(l),...,y(k)) = (x,y(l)) is the natural projection. For
simplicity, F* and ¢}, will be denote by the same letters I’ and ggp.
We have

1°. The canonical nonlinear connection N on TFM = TFM \ {0} has the dual
coefficients

M5, = G,
Vs = (045 + ). 15
yrs = (cprg s )
where C' is the operator
C =yha 8?5“ + 2y(2)a% + o ky ke ERCET (1.6)

20 The Liouville d-vector field z®*) corresponding to the canonical nonlinear
connection N is given by

k2R = fy®a 4 (k — 1) y“ﬂ—l)bj\lwb + oy WP M, (1.7)
3°. The following Lagrangian

L (z,y",...,y®) = gap (z,yV) 2P H0 (1.8)

is a regular Lagrangian on T#M, determined only by F (x, y(l)) because gq and z*) have
this property.
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49 Tts fundamental tensor field coincide with the fundamental tensor field on Finsler
space F", namely on T*M we have

1 0*L
- = 1)
2 8z(k)a8z(’€)” = Yab (xay ) . (19>

5%. N determines the direct decomposition

T,T*M = No(u) @ Ni(u) @ ... ® Np_1(u) @ Vi(u), Yu €T M. (1.10)
6°. The adapted cobasis {d:pa, sy 5y(k)“} and the adapted basis
0 4] 0 0

{(h‘“ Sy GyDa’ 5y(k)a} to N are depending only on fundamental function
F

(:p, y) of Finsler space F", where

By = dy e + Meda,
5y(2)a — dy(Q)a + ]\gacdy(l)c + ]\gacdxc’

(1.11)
Syke = dykle 4 J\lﬁcdy(’“_”c + ...+ kJWl‘f:dy(l)C + J\g‘f:dxc,
and
o 0 0 0 0
= — N ——— — N — — ... — N, ———,
oxre ore 1 a@y(l)c 2 a@y@)c k aay(k)c
) 0
= — N¢ —..— N¢
5y(1)‘1 8y(1)a 1 aay(Q)C k—laay(l‘?)c7 (111’)
Syk—1a - Dy k=1)e Y @ Py(k)e
We know that
be:]\glﬂjyb:]\gb—]\{bﬂgm.“’ (112)
N4 =M% —-MGN%L—...— MGN® — MN?,
k k 1 k-1 k—2"72 k—1"1
and conversely
]\14—1):]}[[)’]\24—[):];[[)_'_]}[6]\14'[)’.“’ (1127)
M4 =N4+ NeMS+ ...+ N2MS + NOUMS.
k k k=11 2 k-2 1 “k—1
Then, the Sasaki-Matsumoto N —lift of gu (x, y(l)) to T*M is defined by
k: —_
G (u) = gap (2, y(l)) dz® @ da® + Zgab (, y(l)) oy @ 6y Ny e TEM. (1.13)

p=1
The following properties hold:
7°. G is globally defined on T*M.

8°. G is a Riemannian structure on T%M determined only by the Finsler space F™.
9°. G is not homogeneous on the fibres of T*M.
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Namely, for the homothety h; : (x,y(l), ...,y(k)) — (:E,ty(l), ...,tky(k)) Vt € R}, we
get

k
(G ohy) (1) = gab (x,y") da* @ dz’ +> 17 gay (,yM) 63D @ 5y # G (u) .
B=1

Let us consider the F (T*M) — linear mapping F : x (IT*M) — x (T*M) given in
the adapted basis (1.117) by

4] 0
F = ——F 1.14
) )
f(5) = () o
0 )

F = —.
oykla g
It follows that:

10°. F is globally defined on T*M and it is a d— tensor field of type (1,1).

11° F is an (k — 1) n—contact structure : F* 4+ F = 0.

12°. F depend only on the fundamental function F' (x, y(l)) of Finsler space F™.
13%. The pair (G, F) is a Riemannian almost (k — 1) n—contact structure on T*M :

G (FX,Y)=-G(X,FY),VX,Y € x (T"M).

Consequently, we get

Theorem 1.1 The space (T"M,G,F) is a Riemannian almost (k — 1) n—contact
space depending only on the fundamental function F (:c Yy ) of the Finsler space F" =
(M, F).

The previous space, called ”the geometrical model on T*M of the Finsler space”
(M, F) is important in the study of the geometry of the initial Finsler space F™ = (M, F') .

The homogeneous prolongation to 7%M of a Finsler metric

We define a new prolongation G on T*M of the fundamental tensor field g, (x, y(l))
of a Finsler space F" = (M, F'), which satisfies the following conditions:

19 G is 0— homogeneous with respect to y(e y@e  and y*

20, Tt depends only on the fundamental function F (a:, y(l)) )

3%, In the mechanical meaning the terms of G have the same physical dimensions.

Definition 2.1. We call the homogeneous prolongation to T*M of the fundamental
tensor field gu (x,y(l)) of a Finsler space F" = (M, F) the following tensor field on
TFM

o a2t

G (u) = gap (x Yy 1)) dz® ® dy® + Z HQﬁgab (wyy(l)) oy @ 5y Yu € T*M, (2.1)
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where a >0 s a constant imposed by application in order to preserve the physical

dimension of the components of G, and Hy(l)Hz s the square of the norm of the first
Liouwill vector field

@] = gap (2, ™) y Doy, (2.2)
We get, without difficulties:

—_— (o]

Theorem 2.1. 1.The pair <TkM, G) 15 a Riemann space.

2. G is a 0— homogeneous tensor field with respect to y®°, (8 =1, ..., k).
3. G depends only on the fundamental function F (x, y(l)) of the Finsler space F™.
4. The distributions Ny, Ny, ..., Ni._1 and V}. are orthogonal, in pairs, with respect to G.

We can write G in the form

G=GY +G" 4 ...+ G%, (2.3)
where . .
G = go (2,y") da* @ da’, G'? = gy (2,y) dy* @ dy'?" (2.4)
and 25
Wy & ) _
g ab (:L‘vy ) - Yab (:L‘vy )7 (ﬁ_ ]-7ak) (25)
®) ly 1>
As usually, let us denote
0 0 ; 0
aa = %aala = W) "'aaka - W)

and from now on we denote the adapted basis (1.11°) by
{5a7 51a7 ) 5(k71)a7 5ka} .

In order to study the geometry of Riemann space <T’“M , G), we can apply the theory

of the (h, vy, ...,vx) — Riemannian metric given by author in [5] (for k£ = 2, see [2], [4]).
A linear connection D on T*M is called a metrical N—linear connection with respect

to G if DxG = 0,VX € x (T"“M ) and it preserves by paralelism the horizontal and
vertical distributions Ny, Ny, ..., Np_1, Vj.

We can easily prove the existence of the metrical N —linear connections in the adapted
basis. To this aim we represent a linear connection D in the adapted basis in the following
form:

0 kE B
Dsoy= L% 6, + L % d3a,
3.0 (00) be 5;1(00)1’ B
0 kB )
D(gc(syb = L “bcéa + Z L abcéﬁaa (")/ = 1, ey k; 5ka = a]m>,
(70) B=1(70)
Ds 6= Ce 43 g
= 9 ot ac as
019 o) be 52:31(01)1, B

0 k B . 9
D(Slc(swb = Cabc(sa'f_ Z Cabc(sﬂaa (7: 17~'~ak;5ka :aka)a ( 6>
(v1) g=1(v1)

0 E B
D (5 - C a 5(1 C 4 5 as
O Vb (0k) be + ﬁz::l(%) bc¥B

0 k B .
Dékc(SWb =C abc(sa + Z ¢ abc(sﬁ(b (’7 = 15 ) k:a 5ka = akd)’
(vk) s=107k)
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The system of functions

(L be) L be) C bey C bey -+ C(Utbca C abc) ) (Oé = 07 17 7ka 6 = 17 "'7k>7
(00) (80) 01) (B1) (0k) (BK)

are the coeflicients of D and

(Ea L s Oy C oy O 5a) B=1,.k)
(00) bes (30) bc>(01 bc,(ﬁl) bes 'H’(Ok‘) bes (k) be | — Ly )

are the coefficients of an N —linear connection DI (N) on T*M.
Also, we will denote the coefficients of DI' (N) with

(f Ta G ¢ Go ¢ ) 3 k
CH Cy Cy @ Cy *** @ C Y “ C b - ]'7"" .
©0) " a0y " on P e P ok P aky © ( )

It is not difficult to prove
Theorem 2.2. There exist metrical N—linear connection DI (N) on T*M with

respect to the homogeneous prolongation G, which depend only of the fundamental function
F (:E,y(l)) of the Finsler space F™. One of them has the ”horizontal” coefficients:

H 1
L%, = ag“d (0v9de + 6cGba — Oagee)

(00)
Vs 1 s N s . | (2.7)
L% = b9det 0cgvd—0dGube | =1,..,k),
(80) 2@ ) () ()
the ”vi—vertical” coefficients:
g 1d® § 5149bc) (20)
¢ c — A “ e+ 01c - c)
&) b 29 1694 1c9bd 1d9b
Vs a 1 ad
C be =59 01 gdet01cGba—01agne |, (B=1,..k),
(B1) (B) (B) 3 )
and the v, —vertical” coefficients vanish:
Co= (o G0, (v=2,.k) (2.9)
I e s S LA ‘

Let us remark the particular form of the metrical N—linear connection DT (N ) in
(2.7), (2.8) and (2.9). Because it depends only on the fundamental function F' (z,y") of
the Finsler space F™, DI' (N) from the Theorem 2.2 will be called the canonical metrical

N —linear connection of the space (ﬁ]\?, G> .

Let us denote

11 9 11 9
O, = _iﬁé F = 2F2510F (210)
We obtain

Theorem 2.3. The coeffients of the metrical N—linear connection DI (N) with
respect to G given by (2.1), satisfy the following equations:
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Vs
be L bc"—ﬁ( bac+5go'b_gbcgadaa)7

Co 00
(6 ) ( ) (2.11)

(g)abc = C be T ﬁ (5 O+ 5 Op — gbcg“dUa) , (ﬁ = ]_, ceny k’) .

Indeed, substituting the tensors ¢ ap, g ap, ---» g oo given by (2.5) in (2.7) and (2.8) and
n @ (k)
using (2.10), one obtains (2.11).

It is not difficult to prove

Theorem 2.4. The coefficients of the ccmom'cal metrical N—linear connection

DT (N g L g ‘(/7 C ‘éﬁ' k h
- ) C9 Cy - C9 “be | 5 = 17“'7 () t

(N) ((OO) e S % RO > (B ) satisfy the
equations

Vi H

L abc = L abc + 5{?00 + 5301) - gbcgado-ou

(10) (00)

Loy — L% + 600, +0 a

(20) e (10) be ¥ 0pTe + 0c0 = Goef O

‘l/lj ........... Vk[jl .......... 5 ......... 5 ...... d

(9) "ty e T O T 0 T e T

Gy = C ot 8000+ 0 d

“ c — “ c b c qop — c “ s 2.12

& b A be T 0p0c + 0,0 — Gbc§™ O, ( )

Vs i

C abc =C abc + 5{?00 + 530'[) - gbcgadaaa

(21) (1)

‘ékY .(.1 ......... Vlbl .C.l ....... 5(1 ........ 5a ..... )

k) T e T 00 F0c0b = Goef O

H %1

C(abc: Cabc Cabc—o (7:2771{:)

(07) (1) (k)

The particular form (2.12) of the canonical metrical N—linear connection

I C
(k0) 7 (k1) (kk
to the Weyl’s conformal curvature tensor with respect to the curvature of
Vi1 Vk—1 Vk—1

the wj_;—connection ( L %, C %, .. C “bc),...,and the curvature of the
(k—10)  (k—11) (k—1k)

Vi Vi Vi
shows that the curvature of the wv,—connection (Labc C %y oo, C’)abc) lead

Vi Va
v1 —connection ((L) bes (C’) bey +ees (Ck')“bc lead to the Weyl’s conformal curvature of the
11 1

H H
h—connection ( L %, C%., ..., C “bc) )
(00) ~ (01) (OK)
This property shows the necessity to construct a gauge theory in the Asanov sense, [1],

P

for the Riemannian metric given on T*M by the prolongation G, from (4.1).
Now, we remark that the almost (k — 1)n—contact structure F defined in

(1.14) has not the property of homogeneity. The F <7/”?]\/4> —linear mapping

F : x <T’“M> — X <TkM), applies the 1—homogeneous vector field d, into the

(1 — k) —homogeneous vector field dx, = (%m (a=1,..,n).
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Therefore, we consider the F <7/“;“\]\//[ ) —linear mapping ]?‘ DX (7/“;“\]\//[ ) — X (ﬁﬂ ) ,

given in the adapted basis by

FTL

° m*.
F (5(1) - HyakH akaa (213)
f? (51a> - — ](-;‘ (5k71a) - 07
o s- a
0 al — a
(On) = oy

By direct calculus, we can prove:

Theorem 2.5. F has the following properties:

. ]c_?)‘ is a tensor field of type (1.1) on (M)

[e)

. F is an almost (k — 1) n—contact structure on TEM : F* +F = 0.

F depends only the fundamental function F (x,y(l)) of the Finsler space F™.

(o] —_—

F is homogeneous on the fibres on T*M.

P

The pair <G,F> is a metrical (k — 1) n—-contact structure on TFM :
G(FX, Y) - —G<X, FY), VXY € x (ﬁ]\?) .

The space (W,é,ﬁ“) is the geometrical model of the Finsler space

= (M, F), with respect to the homogeneous lift G given by (2.1). It can be used

for studying the Finslerian higher order gauge theory and, in general, the geometry of the
Finsler space F" = (M, F).
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