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It is shown that the problem of a possible violation of the Lorentz trans-

formations at Lorentz factors c > 5 £ 10 10 , indicated by the situation

which has developed in the physics of ultra-high energy cosmic rays (the

absence of the gzk cutoŒ), has a nontrivial solution. Its essence con-

sists in the discovery of the so-called generalized Lorentz transformations

which seem to correctly link the inertial reference frames at any values of

c . Like the usual Lorentz transformations, the generalized ones are lin-

ear, possess group properties and lead to the Einstein law of addition of

3-velocities. However, their geometric meaning turns out to be diŒeren t:

they serv e as relativistic symmetry transformations of a ¯ at anisotropic

Finslerian even t space rather than of Minkowski space. Consideration

is given to two typ es of Finsler spaces which generalize locally isotropic

Riemannian space-time of relativit y theory , e.g. Finsler spaces with a

partially and entirely broken local 3D isotropy. The investigation ad-

vances argumen ts for the corresp onding generalization of the theory of

fundamen tal interactions and for a sp eci® c searc h for physical eŒects due

to local anisotropy of space-time.

KEY WORDS : Finsler spaces ; relativit y theory ; high energy physics ;

relativistic astroph ysics

1. INTRODUCTION

At present, apart from general relativit y theory (gr ), there exist a num-
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ber of alternativ e metric theories of gravitation. They all employ the

Riemannian geometric model of space-time borrowed from gr , and diŒer

only by the ® eld equations which describ e the self-consistent dynamics of

space-time and matter. The cosmological models based on such theories

diŒer accordingly. Common to them, however, is the fact that space-time,

being Riemannian and, consequently, locally isotropic, preserves its local

isotropy during the evolution of the Universe.

Although, as it would seem, there is no reason to question the lo-

cal isotropy of space (the more so as no violation of the law of angular

momentum conservation has yet been revealed), there are some indirect

indication s that in our epoch space-time, on the average, has a weak relic

local anisotropy, and that it therefore should be describ ed by Finsler ge-

ometry [1] rather than by Riemann geometry. A strong local anisotropy

of space-time might have occured at an early stage in the evolution of the

Universe as a result of high-temp erature phase transitions in its geometric

structure, caused by a breaking of higher gauge symmetries and by the

appearance of massive elementary particles. If this was the case, it is nat-

ural to assume that the local anisotropy of space decreased to its present

low level (< 10 - 10 ) due to the expansion of the Universe.

The existence of a local anisotropy of space-time is indirectly indicated

by the following facts: (i) a breaking of the discrete space-time symmetries

in weak interactions; (ii) an anisotropy of the relic background radiation

® lling the Universe; and (iii) the absence [2] of the eŒect of cutoŒof the

spectrum of primary ultra-high energy cosmic protons, i.e. of the so-called

gzk cutoŒ[3,4].

By a strict local isotropy of Riemannian space-time we imply that,

at each point, its tangent space is Minkowski space,3 the isotropic event

space of special relativit y theory (sr ). In Galilean coordinates, the pseudo-

Euclidean metric is of the form ds2 = dx2
0 ¡ dx 2 . As under the discrete

transformations: x0 ® ¡ x0 , xa ® ¡ xa , this metric is invariant under the

continuous transformations belonging to the 10-parameter inhomogeneous

Lorentz or Poincar Âe group.4

From the mathematical point of view, the presence of the Poincar Âe

group as a group of relativistic symmetry (isometry group) of the event

space is the necessary and su� cient condition for it to be Minkowski space.

Therefore, if the Poincar Âe symmetry turns out to be only approximate, and

3 The name Minkowski space is used here in the usual sense, i.e. for a 4-dimensional,

pseudo-Euclidean, ¯ at Riemannian space. In contrast, Rund [1] has used it for a ¯ at

Finsler space.
4 Four parameters corresp ond to space-time translations, three to 3D rotations, and

another three to Lorentz boosts.
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if the exact transformations of relativistic symmetry realized in nature are

some ª generalized Lorentz transformations” imbedded into another group,

then the event space has a geometry diŒerent from that of Minkowski

space — even at the level of sr .

The idea of a possible violation of the usual Lorentz transformations

at Lorentz factors c > 5 £ 1010 , and of a corresponding generalizat ion of the

relativistic theories was suggested ® rst in [5,6]. Its motivation rested on a

discrepancy, assumed at the time, between the theoretical predictions [3,4]

and the experimental data [7] relating to the behaviour of the spectrum

of primary ultra-high energy cosmic protons. If the usual Lorentz trans-

formations would correctly link inertial frames at relative velocities very

close to the velocity of light, then, in the case of uniformly distributed

sources, the energy spectrum of primary cosmic protons should show a

cutoŒ(due to inelastic collisions of the protons with cosmic background

radiation photons) at proton energies ~ 5 £ 1019 eV. However, as now has

been ® rmly established, such a prediction is at variance with present ex-

perimental data.5

Apart from the violation of the Lorentz transformations, there exist

also other possible causes of the absence of the gzk cutoŒ[9]. Nevertheless,

the assumption that the inertial frames could be linked by some ª general-

ized Lorentz transformations” markedly diŒerent from the usual Lorentz

transformations only at relative velocities extremely close to the velocity

of light, remains valid. Moreover, general considerations make it possible

to ® nd the required transformations in an explicit form. There exists an

8-parameter group of relativistic symmetry obviously diŒerent from the

Poincar Áe group [10]. Along with space-time translation s and the ª general-

ized Lorentz transformations” (three parameters), the group includes only

a 1-parameter subgroup of rotations of 3D space about some preferred

direction. Since, as it turned out, such an 8-parameter group allows for

a geometric invariant in the form of a ¯ at Finsler metric generalizing the

Minkowski metric of sr , the door is opened to a nontrivial generalization

of relativit y theory [11-13].

Although any relativistic theory is constructed from the requirement

of invariance of its equations under the Poincar Âe group, soon after the

creation of sr , the authors of [14,15] demonstrated invariance of the elec-

trodynamic equations not only under Poincar Âe group but also under the

5 In connection with this situation Coleman and Glashow [8] argue that possible de-

partures from strict Lorentz invariance can aŒect elemen tary-particle kinematics so

as to suppress or forbid inelastic collisions of cosmic-ra y nucleons with background

photons.
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15-parameter conformal group. This group incorporate s both linear and

nonlinear transformations of event coordinates [16]. In terms of sr , the

nonlinear transformations are of no interest since they link noninertial

frames. A full classi® cation of the subgroups of linear transformations of

the conformal group has not yet been carried out. From the very outset,

however, it was known that one of the linear subgroups of the conformal

group is the Poincar Âe group.

In the next section it will be shown that the above-mentioned 8-

parameter group6 is another linear subgroup of the conformal group. It

likewise leads to Einstein’ s law of addition of 3-velocities. Therefore, if rel-

ativistic physics could have been developed already during a cosmological

epoch with a su� ciently large local anisotropy of space and a ¯ agrant vi-

olation of the conservation law of total angular momentum for any closed

physical system, then the 8-parameter linear subgroup of the conformal

group rather than the Poincar Âe subgroup might have been chosen as a

group of relativistic symmetry . In order to empirically test such a choice

in our epoch, very speci® c experiments are required since the rate of change

of the total angular momentum is the lower, the smaller the magnitude of

local space-time anisotropy will be. This signi® es that non-conservation

of angular momentum may primarily be manifested in processes for which

the interaction time is long enough.

When speaking of a ¯ at locally anisotropic event space, we implied a

space which, while not being symmetric with respect to arbitrary 3D ro-

tations, is still symmetric with respect to rotations around some preferred

direction and therefore will be referred to as a space with a partially bro-

ken 3D isotropy. Although as one of the consequences of this breaking of

symmetry a violation of the conservation law of total angular momentum

results, this is not inconsistent, but permissible from the point of view of

physics. A demonstration is given by the analysis [17] of the corresponding

generalized Dirac equation with the existence of stable massive fermions.

Of physically interest seems also a model of space-time [18,19] with an en-

tirely broken local isotropy corresponding to a 7-parameter inhomogeneous

group of relativistic symmetry .

In Section 2, we present a model of a ¯ at Finsler space with a partially

broken local rotational symmetry and sketch the induced point mechan-

ics. Section 3 introduces a ¯ at Finsler space with a totally broken local

rotational symmetry . Here, the second simplest type of line elements for

Finsler spaces already mentioned by Riemann [20] appears. Properties of

6 i.e. the group whose invarian t is the Finslerian metric describ ing a ¯ at anisotropic

event space
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the isometry group and some physical consequences of this model are dis-

cussed in Sections 4 and 5. In both models the conformal structure of sr

is preserved. Finally, Section 6 brie¯ y reviews a generalization to curved

Finsler space, eventually needed for an interpretation of recent observa-

tional discoveries in astrophysics.

2. A RELATIVISTICALLY SYMMETRIC FINSLERIAN SPACE-TIME

WITH PARTIALLY BROKEN 3D ISOTROPY

2.1. Introducing the model

In order to arrive at a viable Finslerian model of space-time, for the

sake of simplicit y we ® rst con® ne ourselves to a two-dimensional space and

show that it is possible to generalize the Lorentz transformations

{x 90 = x0 cosh a ¡ x sinh a,

x 9 = ¡ x0 sinh a + xcosh a, tanh a = v/c,
(1)

so that the new linear transformations will also form a group with a single

parameter a and will keep invariance of the wave equation ( ¶ 2 / ¶ x2
0 ¡

¶ 2 / ¶ x2 ) f = 0 . Guided by the conformal invariance of the electrodynamic

equations, we insert an additional scale transformation into (1). As a

result, in place of (1), we obtain the generalized Lorentz transformations

in the form

{x 90 = e - ra (x0 cosh a ¡ x sinh a),

x 9 = e - ra ( ¡ x0 sinh a + xcosh a),
(2)

where r is a dimensionless parameter of the scale transformation. Since

according to (2) the relation of the group parameter a to the velocity v of

the primed frame remains the same, i.e. tanh a = v/c , (2) can be rewritten

as follows:

ì    í     î
x 90 = ( 1 ¡ v/c

1 + v/c )
r / 2 x0 ¡ (v/c )xp

1 ¡ v2 /c 2
,

x 9 = ( 1 ¡ v/c
1 + v/c )

r / 2
x ¡ (v/c )x0p

1 ¡ v2 /c 2
.

(3)

Obviously, in contrast to (1), the ª generalized Lorentz transforma-

tions” (2) or (3) do not leave invariant the pseudo-Euclidean metric ds2 =

dx2
0 ¡ dx2 but conformally modify it. Therefore, the question arises as

to what the metric of an event space invariant under such ª generalized

Lorentz transformations” is. The rigorous solution to this problem is

ds2
= [ (dx0 ¡ dx)2

dx2
0 ¡ dx2 ]

r

(dx2
0 ¡ dx2

). (4)
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Not being a quadratic form but a homogeneous function of the coordi-

nate diŒerentials of degree two, the metric (4) falls into the category of

Finsler metrics. It describ es a ¯ at but anisotropic event space.7 As long

as we deal with 2D anisotropic space, its anisotropy manifests itself in

the noninvariance of the metric (4) under the re¯ ections x0 ® ¡ x0 or

x ® ¡ x . If r = 0 , then the anisotropy disappears. In this case, the

event space becomes isotropic while the ª generalized Lorentz transforma-

tions” (3) reduce to the usual Lorentz transformations. However, if r /= 0

characterizing the magnitude of space anisotropy, is su� ciently small, then

the additional dilatation of space-time, which distinguishe s the generalized

Lorentz transformations from the usual ones, becomes markedly diŒerent

from unity only at relative velocities of the inertial frames extremely close

to the velocity of light. In the physics of ultra-high energy cosmic rays we

deal with precisely such a situation. Therefore, the use of the ª generalized

Lorentz transformations” instead of the usual ones makes it possible, in

principle, to remove the discrepancy between theory and experiment in

this ® eld; this may be regarded as a hint towards a local anisotropy of

space.

According to (4), the parameter r is limited by the condition j r j < 1.

In this case, due to equation ds2 = 0 , the velocity of light is the same in

both directions of the x- axis and is equal to c in spite of the presence of a

space-time anisotropy. Both relations (3) incorporate the same power-type

scale factor canceling out when the second relation (3) is divided by the

® rst one. As a result the Einstein formula, which describ es the addition of

3D velocities, is reproduced:

V =
V 9 + v

1 + V 9 v/c 2
, (5)

where v is the velocity of the primed frame.

Certainly, the 2D model (4) of a ¯ at anisotropic event space is of

methodical interest only and must be generalized to the 4D case. It turns

out that two independent ways for such an extension exist. The ® rst

path leads to a ¯ at anisotropic space-time with partially broken symmetry

with respect to 3D rotations. The second way ends in a ¯ at anisotropic

space-time with entirely broken rotational symmetry . Both models are

su� ciently interesting from a physical aspect.

7 In accordance with the Busemann approach to the mathematical theory of Finsler

spaces, a ¯ at anisotropic space is understo od as a linear normalized vector space in

which the norm of a vector is determined not exclusiv ely by its Euclidean length but

also by its orientation with resp ect to some preferred direction.
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2.2 Partially broken isotropy

We ® rst will discuss the model of space-time with a partially broken

isotropy. The corresponding 4D Finslerian metric can be found if we note

that the 2D metric (4) is a de® nite function of two quantities: (dx2
0 ¡ dx2 )

and (dx0 ¡ dx). The ® rst quantit y is the pseudo-Euclidean square of a vector

having components (dx0 , dx). The second quantit y is the pseudo-Euclidean

scalar product of such a vector with a vector ni = (1, 1). Replacing now

the cited vectors by their 4D analogs with the components (dx0 , dx ) and

ni = (1, n ) , where n 2 = 1, we arrive at

(dx2
0 ¡ dx2

) ® (dx2
0 ¡ dx

2
), (dx0 ¡ dx) ® (dx0 ¡ n dx ),

by means of which the 4D metric is obtained from the 2D metric (4),

ds2
= [ (dx0 ¡ n dx )2

dx2
0 ¡ dx 2 ]r

(dx2
0 ¡ dx

2
) . (6)

This Finslerian metric depends on two constant parameters r and n and

describ es a ¯ at anisotropic space-time with partially broken rotational

symmetry . Instead of the 3-parameter group of rotations of Minkowski

space, the space-time (6) admits only the 1-parameter group of rotations

about the unit vector n , which indicates a preferred direction in 3D space.

Nochanges occur for translationa l symmetry: space-time translations leave

the metric (6) invariant. As regards the transformations linking the various

inertial frames, the usual Lorentz boosts modify the metric (6). Therefore,

they do not belong to the isometry group of the space-time (6). By proper

use of them, however, invariance transformations for the metric (6) can

be constructed. The corresponding transformations, named ª generalized

Lorentz transformations”, will be the following:

x 9 i = D (v , n ) R i
j (v , n ) L j

k (v ) xk
. (7)

In order to demonstrate how the invariance of the metric (6) is realized

under the transformations (7), we ® rst carry out the transformation using

the matrix L j
k (v ), which represents a usual Lorentz boost (the given matrix

naturally depends on the velocity v of a moving frame). As a result, in

expression (6) only the Minkowskian scalar product dx0 ¡ n dx will change

its form since the components (1, n ) of the 4-vector ni will change. The

vector ni was initially de® ned as light-like (1 ¡ n 2 = 0). It will remain the

same after the boost, i.e. it will remain light-like although both the time

and spatial components are changed by a scale factor. In addition, the
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spatial component of the 4-vector ni will change its direction due to the

rotation about the vector [v n ] through an angle of relativistic aberration

u = arccos {1 ¡ (1 ¡
p

1 ¡ v 2 /c 2 )[v n ]2

(1 ¡ v n /c )v 2 } . (8)

Therefore, having carried out [according to (7)], subsequent to the Lorentz

boost, an additional rotation R i
j (v , n ) of the space axes of the moving

frame through the angle (8) about the vector [v n ], we regain for the spatial

component of the 4-vector ni its initial orientation with respect to the space

axes. The net result of the transformations performed will be the fact that

the form (dx2
0 ¡ dx 2 ) will not be changed while the form (dx0 ¡ n dx ) will

be altered minimally: its new representation will be distinguish ed from

the initial one only by a scale factor dependent on v and n . If now, as

prescrib ed by (7), we perform also the dilatation transformation of the

event coordinates using the matrix

D (v , n ) = ( 1 ¡ v n /cp
1 ¡ v 2 /c 2 )

r

I , (9)

where I is the unit matrix, then within the square brackets in (6) no addi-

tional scale factor will appear,8 while the scale factor, which occurred there

at the previous stage of transformations, will be completely cancelled out

by a scale factor arising from the dilatation transformation of the expres-

sion (dx2
0 ¡ dx 2 ) . The result is that the generalized Lorentz transformations

determined by (7) do indeed leave the metric (6) invariant.

In contrast to Lorentz boosts, the generalized transformations (7)

make up a 3-parameter noncompact group with generators X 1 , X 2 , X 3 .

Thus, with the inclusion of the 1-parameter group of rotations about the

preferred direction n and of the 4-parameter group of translations , the

inhomogeneous group of isometries of the space (6) turns out to have

8-parameters. In order to obtain the simplest representation for its gen-

erators, it is su� cient to choose a third space axis along n and then to

make use of the in® nitesimal form of the transformations (7). As a result,

X 1 = ¡ (x1 p0 + x0 p1 ) ¡ (x1p3 ¡ x3 p1 ) ,

X 2 = ¡ (x2 p0 + x0 p2 ) + (x3p2 ¡ x2 p3 ) ,

X 3 = ¡ rxipi ¡ (x3 p0 + x0p3 ),

R3 = x2p1 ¡ x1 p2 , pi = ¶ / ¶ xi
.

(10)

8 Since the ratio, enclosed within these brackets, is homogeneous of degree zero with

resp ect to the coordinate diŒeren tials
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The generators (10) satisfy the commutation relations

[X 1 X 2 ] = 0, [R3 X 3 ] = 0,

[X 3 X 1 ] = X 1 , [R 3X 1 ] = X 2 ,

[X 3 X 2 ] = X 2 , [R 3X 2 ] = ¡ X 1 ,

[pipj ] = 0,

[X 1p0 ] = p1 , [X 2 p0 ] = p2 , [X 3 p0 ] = rp0 + p3 , [R3 p0 ] = 0,

[X 1p1 ] = p0 + p3 , [X 2p1 ] = 0, [X 3 p1 ] = rp1 , [R3 p1 ] = p2 ,

[X 1p2 ] = 0, [X 2 p2 ] = p0 + p3 , [X 3 p2 ] = rp2 , [R3 p2 ] = ¡ p1 ,

[X 1p3 ] = ¡ p1 , [X 2 p3 ] = ¡ p2 , [X 3 p3 ] = rp3 + p0 , [R3 p3 ] = 0 . (11)

From (11), we conclude in particular that the homogeneous isometry group

of the space (6) contains 4 parameters (the generators X 1 ,X 2 ,X 3 ,R3 ).

Being a subgroup of the conformal group, it is isomorphic to the corre-

sponding 4-parameter subgroup of the homogeneous Lorentz group (with

the generators X 1 , X 2 , X 3 j r=0 , R3 ). Since the 6-parameter homogeneous

Lorentz group has no 5-parameter subgroup [21] while the 4-parameter

subgroup is unique (up to isomorphisms), the transition from Minkowski

space to the event space (6) implies a minimum of symmetry-breaking of

the Lorentz symmetry . Some types of Finslerian spaces with more radical

breaking of the Lorentz symmetry are considered in [22-24].

A remarkable property of the anisotropic event space (6) is the fact

that it keeps the conformal structure (light cones) of Minkowski space, i.e.

light propagates according to the equation dx2
0 ¡ dx 2 = 0. Therefore, the

velocity of light is independent of the direction of its propagation and is

equal to c. It thus appears that the square of the distance dl2 between

adjacent points of 3D space, determined by means of exchange of light

signals, 9 is expressed by the formula dl2 = dx 2 . Thus, although in the

3D space there is a preferred direction n , its geometry remains Euclidean.

But, what does the anisotropy physically manifest itself in? First of all, it

aŒects the dependence of proper time of a moving clock by including the

direction of its velocity in addition to the magnitude. According to (6),

the interval dt of proper time read by the clock moving with a velocity

v , is related to the time interval dt read by a clock at rest by the relation

9 As regards the additional tachyon solution dx0 - n dx = 0 of the equation ds2 = 0, it

does not admit the re¯ ection operation dx ® - dx . Therefore, there is no algorithm

for determining the 3D distances based on exc hange of tachyon signals.
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dt = (dt /dt ) dt , where

dt

dt
= ( 1 ¡ v n /cp

1 ¡ v 2 /c 2 )
r p

1 ¡ v 2 /c 2 . (12)

It can be seen from Fig. 1 that, in contrast to Minkowski space (for which

r = 0, (dt /dt ) j r =0 =
p

1 ¡ v2 /c 2 £ 1 and, hence, the moving clock is

always slow in comparison with the clock at rest), in the anisotropic space

the time dilatation factor (dt /dt ) j r > 0 can take on values greater than

unity. Therefore, at some of its velocities the clock moving in the aniso-

tropic space is fast in comparison with the clock at rest. However, having

returned to its starting point, it will necessarily run behind the clock at

rest. Consequently, at r > 0 inertial motion is still uniform and along a

straigh t line.

Figure 1. Plots for dt /dt = [(1 - v cos a/c ) /
p

1 - v2 /c 2 ]r
p

1 - v2 /c 2 at r = 0.6

and at three successiv e values 0, p / 4, p / 2 of the angle a between v and n . These plots

demonstrate the speci ® c features of the behaviour of the anisotropic factor of time

dilatation (dt /dt ) j r > 0 in comparison with the behaviour of the isotropic (Minkowskian)

factor (dt /dt ) j r =0 .

Along with the time dilatation factor the anisotropy of space also

aŒects the Doppler shift. In place of the usual relativistic formula, now
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the modi® ed relation [25] holds:

x = x 9

p
1 ¡ v 2 /c 2

1 ¡ v e /c ( 1 ¡ v n /cp
1 ¡ v 2 /c 2 )

r

, (13)

where r is the magnitude of space anisotropy, v the velocity of a moving

frame, x 9 the frequency of a ray with respect to it, and x , e and n are

the frequency, direction of the ray and the preferred direction in an initial

frame.

Precision measuremen ts of the Doppler eŒect by use of the M Èossbauer

eŒect were suggested and have since been made (cf. Refs. 26-28). Of spe-

cial interest here is the experiment of [27] which consisted in measuring a

relative frequency shift D x / x = ( x a ¡ x s )/ x s between a M Èossbauer source

and an absorber placed at equal and diametrically opposite distances from

the center of a rapidly rotating rotor. For the quantit y D x / x , the prerel-

ativistic theory of absolute aether (pr ), sr and the relativistic theory of

locally anisotropic space (ar ), respectively, give the following predictions

to within v2 /c 2 :

(D x / x )
PR

= 2w v a /c 2
, (14)

(D x / x )
SR

= 0, (15)

(D x / x )
AR

= 2rcn v a /c 2
, (16)

where w is the velocity of the aether wind and v a the velocity of the

absorber. Comparing (14) and (16), we may regard the quantit y rcn in

a sense as the velocity of the aether wind. It must be noted, however,

that rcn is an invariant of the generalized Lorentz transformations. In the

experiment of [27], no aether wind was found. As a result, an upper limit,

speci® ed in [29], was obtained for the velocity of the aether wind. In terms

of the relativistic theory of anisotropic space-time this constraint signi® es

that the value of anisotropy r < 5 £ 10 - 10 . At the present time, due to

the use of radically new rotors developed at the I.T.E.P . (Moscow) and of

M Èossbauer sources with a much narrower line width, it is possible to lower

the minimally detectable value of anisotropy at least by three orders of

magnitude. Therefore, a repetition of the experiment [27] would now be

interesting.

2.3. Modi® cation of fundamen tal relativistic equations in the anisotropic

space

All fundamental relativistic equations are invariant under the trans-

formations of the Poincar Âe group, the isometry group of Minkowski space.
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If the event space is describ ed by the Finslerian metric (6), then the com-

plete inhomogeneousgroup of its isometries turns out to be an 8-parameter

group. In this a case, the fundamental relativistic equations must be mod-

i® ed in accordance with the requirement of invariance under this group.

The requirement just formulated represents a generalization of the

special principle of relativit y for the locally anisotropic space-time. Since

the 8-parameter group in question is incorporated in the conformal group

and the standard relativistic equations relating to massless particles are

conformally invariant, then only such equations continue to work in the

locally anisotropic space as well. The remaining relativistic equations,

in particular the standard equations of relativistic mechanics, are neither

conformally invariant nor invariant under the transformations belonging

to the 8-parameter linear subgroup of the conformal group. Thus, such

equations need modi® cation. We now consider the required modi® cation

[30] for the equations of mechanics.

The equations of relativistic mechanics, which satisfy the special prin-

ciple of relativit y for the locally anisotropic space, can be obtained if in

the action integral

S = ¡ mc

b

s
a

ds (17)

we replace the Minkowskian expression for ds by the Finslerian expression

(6). As a result, the Lagrangian function corresponding to a free particle

in the locally anisotropic space, takes the form

L = ¡ mc2( 1 ¡ v n /cp
1 ¡ v 2 /c 2 )

r p
1 ¡ v 2 /c 2 . (18)

This Lagrangian leads to the following expressions for the momentum p =

¶ L/ ¶ v and the energy E = p v ¡ L of a relativistic particle

E =
mc2

p
1 ¡ v 2 /c 2 ( 1 ¡ v n /cp

1 ¡ v 2 /c 2 )
r

[1 ¡ r + r
1 ¡ v 2 /c 2

1 ¡ v n /c ], (19)

p =
mcp

1 ¡ v 2 /c 2 ( 1 ¡ v n /cp
1 ¡ v 2 /c 2 )

r

[(1 ¡ r)v /c + rn
1 ¡ v 2 /c 2

1 ¡ v n /c ]. (20)

It can be veri® ed by direct substitution that energy and momentum are

related by the relation

[ (E /c ¡ pn )2

E 2 /c 2 ¡ p 2 ] - r

(E 2
/c 2 ¡ p

2
) = m2c2

(1 ¡ r)
(1 - r )

(1 + r)
(1+ r )

. (21)
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This relation determines the square of the Finslerian length of the 4-

momentum p . In passing from one inertial frame to another its compo-

nents p0 = E /c and p must transform such as to guarantee invariance of

the form (21). We have shown above that the invariance of the Finslerian

metric (6) is established by the generalized Lorentz transformations (7).

From the comparison of (21) and (6), the invariance of (21) results from

the transformations

p9 i = D - 1 R i
j L j

k pk
, (22)

where the matrices L j
k and R i

j are the same as in (7), while

D - 1
= ( 1 ¡ v n /cp

1 ¡ v 2 /c 2 )
- r

I . (23)

Thus, under generalized Lorentz transformations the scale transformation

(23) for momenta is inverse to the corresponding scale transformation (9)

for the coordinates of events. Consequently, the phase of a plane wave is

an invariant of the generalized Lorentz transformations.

Equation (19) determines the dependence of the energy E of a free

particle, present in the anisotropic space, on both the magnitude and the

direction of its velocity v . At v = 0 the energy reaches its absolute min-

imum E0 = mc2 . As regards the momentum p , its direction, according

to (20), does not coincide with the direction of the velocity of a massive

particle. Even in the case v = 0, the momentum of a particle does not

vanish; there remains a ª rest momentum” p 0 = rmcn . Massless particles

have no such property; for them, as in sr , v = c and E 2 /c 2 ¡ p 2 = 0.

In the space of 4-momenta p the relation (21) is the equation of mass

shell. It appears as a deformed two-sheeted hyperboloid inscrib ed into

a cone p0 2 ¡ p 2 = 0. For the upper sheet of such a ª hyperboloid” p0

reaches its absolute minimum p0
min = E0 /c = mc at p = p 0 = rmcn .

For the lower sheet, p0 reaches its absolute maximum p0
max = ¡ mc at

p = ¡ rmcn . In order to display the mass shell graphically, let us intro-

duce the dynamic 4-velocity u = p/mc in place of p. We also put c = 1

and choose the coordinate axes such that n = (1, 0, 0). If we con® ne our

consideration to the case of two-dimensional motion and use polar coor-

dinates 0 £ v < 1, 0 £ a < 2p , in which v = (v cos a, v sin a, 0) , then,

according to (21),(20),( 19), the equation of (the positive frequency part

of) the mass shell

[ (u0 ¡ u1 )2

(u0 )2 ¡ (u1 )2 ¡ (u2 )2 ] - r

[(u0
)

2 ¡ (u1
)

2 ¡ (u2
)

2
]

= (1 ¡ r)
(1 - r )

(1 + r)
(1+ r )

(24)
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Figure 2. Parametric 3D plots illustrating the dep endence of deformation of a two-sheet

hyp erb oloid on the magnitude r of space anisotropy. Any of the deformed hyp erb oloids

remains inscrib ed into a light cone and like a light cone it is an invarian t of the gener-

alized Lorentz transformations (22).

can be written in the following parametric form (parameters v,a):
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u1
= ( 1 ¡ v cos ap

1 ¡ v2 )
r [(1 ¡ r)v cos a +

r(1 ¡ v2 )

1 ¡ v cos a]/p
1 ¡ v2 ,

u2
= ( 1 ¡ v cos ap

1 ¡ v2 )
r

(1 ¡ r)v sin ap
1 ¡ v2

,

u0
= ( 1 ¡ v cos ap

1 ¡ v2 )
r [1 ¡ r +

r(1 ¡ v2 )

1 ¡ v cos a]/p
1 ¡ v2 .

(25)

The results of calculation s using (25) are presented in Fig. 2. As, according

to (24), the mass shell is symmetric with respect to the plane u2 = 0 , the

range of variation of the angle a was limited in Fig. 2 by the condition

0 £ a £ p .

Being an intrinsic property of space, anisotropy is independent of the

magnitude of relative velocities. Therefore, also nonrelativis tic mechanics

as a whole is diŒerent from the Newtonian case. In fact, in the nonrela-

tivistic limit the following expressions are obtained from (19) and (20):

E = mc2
+ (1 ¡ r)

mv 2

2
+ r(1 ¡ r)

m(v n )2

2
, (26)

p = rmcn + (1 ¡ r)mv + r(1 ¡ r)m(v n )n . (27)

Since within the framework of nonrelativi stic mechanics the rest mass m is

an additive quantit y, the occurrence of the constant terms mc2 and rmcn

in (26) and (27) does not aŒect the conservation laws and the equations

of motion. As a result, these terms can be omitted, and the kinetic energy

and kinetic momentum, read oŒfrom (26) and (27), are

T =
1

2
M ab vavb , pa = M ab vb , (28)

where

M ab = m(1 ¡ r) ( d ab + rna nb ) . (29)

DiŒerentiating the second relation in (28) with respect to time, and using

as de® nition of force the derivativ e of momentum, we ® nd that Newton’ s

second law in anisotropic space has the form

M ab ab = Fa (a = 1, 2, 3). (30)

Thus the inertial properties of a nonrelativis tic particle in anisotropic space

is speci® ed by a tensor of inertial mass (29); its motion is analogous to the
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motion of a quasiparticl e in a crystalline medium. Equations like (30) were

also discussed in the framework of nonrelativi stic Machian theories [31].

Irrespective of which closed physical system is considered — nonrel-

ativistic or relativistic —, according to Noether’ s ® rst theorem [32], there

exist eight additive integrals of motion corresponding to the eight indepen-

dent symmetry transformations of the space-time (6). Conservation of the

total 4-momentum follows from the 4-parameter translationa l symmetry

of (6); conservation of three more quantities determining the coordinates

of the center of inertia corresponds to the 3-parameter generalized Lorentz

symmetry of (6); and, ® nally, conservation of the projection of the total an-

gular momentum of the system onto the preferred direction n corresponds

to the symmetry of (6) with respect to rotations about n .

The conservation law of total momentum manifests itself diŒerently

in isotropic and anisotropic spaces. As an elementary example, consider

the elastic collision of two particles in isotropic space, one of which at

® rst was at rest. The conservation law of total momentum then makes

the tracks of the particle coplanar. For the same process but now in

anisotropic space, where the directions of velocities and, hence, of the

tracks of particles do not coincide with the directions of their momenta,

the conservation law of total momentum does not lead to the fact that all

the three tracks must necessarily lie in the same plane. However, since the

amount of the deviation from coplanarity is a function of the magnitude of

space anisotropy, possible eŒects of noncoplan arity should be searched for

in regions where the magnitude of local anisotropy is signi® cantly greater

than its mean value (i.e. greater than 10 - 10 ). Such a situation may obtain

in the vicinit y of very large masses, for example, near the Sun. It seems

reasonable to test this assumption with a corresponding detector on a space

vehicle able to identify elementary events with nonstandard kinematics.

Having mentioned that the magnitude of local anisotropy near massive

bodies is greater than that farther away, we thus strayed from the model of

space whose anisotropy is constant always and everywhere. Introducing a

® eld of anisotropy against the background of space-time curved by matter

would be a further step in the construction of a theory of locally anisotropic

space-time. We will turn to this problem in Section 6. In the next Section,

we consider another type of a possible breaking of local isotropy, viz. a

complete loss of symmetry with respect to the group of 3D rotations.

3. FINSLERIAN METRIC OF A FLAT SPACE-TIME WITH ENTIRE-

LY BROKEN 3D ISOTROPY

It was demonstrated in Section 2 that the homogeneous isometry
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group of a ¯ at space-time with a partially broken local isotropy, i.e. the

homogeneous isometry group of the space (6), is a 4-parameter group and

includes, apart from 3-parameter generalized Lorentz transformations (7),

the 1-parameter group of rotations about the preferred direction n . We now

try to construct a geometric model of a ¯ at space-time, the homogeneous

isometry group of which would only consist of noncompact 3-parameter

transformations of relativistic symmetry . For the solution of this problem,

the following observation is important.

Consider the metric (6) in the limiting case r = 1. In this case

ds = dx0 ¡ n dx , (31)

and since n = const., ds turns out to be a total diŒerential; the action (17)

for a free particle of mass m is no longer dependent on the shape of the

world line connecting the points a and b. All this means that at r = 1 a

massive particle loses its inertia. This can be illustrated by eq. (29) which

determines the inertial mass tensor M ab , and also by eqs. (19) and (20)

which determine the dependence of the energy E and the momentum p

on the particle velocity v . From these formulae, at r = 1, it follows that

M ab = 0 while E and p become no longer dependent on v and become

equal to the corresponding constants mc2 and mcn . At r = 1, apart from

inertness, the notion of spatial extension disappears, which is due to the

absence of a light cone and, hence, of the possibility itself for determining

spatial distances with the aid of exchange of light signals. As a result,

in the space-time (31) there remains a single physical characteristic, time

duration ds, which should be regarded as an interval of absolute time.

Since the ª metric” (31) is a special case of the metric (6), all trans-

formations leaving invariant the metric (6) leave invariant the ª metric”
(31) as well. This likewise applies to the transformations (7), if in them

r = 1 is set. It can readily be seen, however, that in comparison with (6)

the ª metric” (31) possesses an additional symmetry . Its existence becomes

evident after substitution of the variables

n1 x1 ® x1 , n2 x2 ® x2 , n3 x3 ® x3 , n1 , n2 , n3 /= 0 ,

as a result of which eq. (31) takes the form

ds = dx0 ¡ dx1 ¡ dx2 ¡ dx3 . (32)

Thus our observation (suggested by invariance of the expression (4) under

(2) at r = 1) consists in the fact that the additional symmetry of the 1-

form (32) is realized as its invariance under the following three independent
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1-parameter groups of transformations

ì     
í      î

x 90 = e - a1 ( x0 cosh a1 ¡ x1 sinh a1 )

x 91 = e - a1 ( ¡ x0 sinh a1 + x1 cosh a1 )

x 92 = e - a1 ( x2 cosh a1 + x3 sinh a1 )

x 93 = e - a1 ( x2 sinh a1 + x3 cosh a1 ),

(33)

ì     
í      î

x 90 = e - a2 ( x0 cosh a2 ¡ x2 sinh a2 )

x 91 = e - a2 ( x1 cosh a2 + x3 sinh a2 )

x 92 = e - a2 ( ¡ x0 sinh a2 + x2 cosh a2 )

x 93 = e - a2 ( x1 sinh a2 + x3 cosh a2 ),

(34)

ì     
í      î

x 90 = e - a3 ( x0 cosh a3 ¡ x3 sinh a3 )

x 91 = e - a3 ( x1 cosh a3 + x2 sinh a3 )

x 92 = e - a3 ( x1 sinh a3 + x2 cosh a3 )

x 93 = e - a3 ( ¡ x0 sinh a3 + x3 cosh a3 ).

(35)

Note that each of the groups (33)-(35) is represented by nonorthogonal

transformations. For example, the transformations (33) change the angle

between the axes x2 and x3 . Apart from the 1-form (32), the transforma-

tions (33), (34) and (35), respectively leave invariant the 1-forms

ds = dx0 ¡ dx1 + dx2 + dx3 , (36)

ds = dx0 + dx1 ¡ dx2 + dx3 (37)

and

ds = dx0 + dx1 + dx2 ¡ dx3 . (38)

Let us now take the following step by introducing into (33)-(35) a

dependence of the dilatations e - a1 , e - a2 , and e - a3 on three independent

parameters r1 , r2 and r3 , respectively. As a result of such generalization

we arrive at three independent 1-parameter groups of transformations, cor-

responding to eqs. (33)-(35) but in which the factors e - ai are replaced by

e - r i ¢ ai , respectively (ai still act as group parameters). These transforma-
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tions act on the 1-forms (32), (36)-(38) in the following way:

ì      
í       î

dx90 ¡ dx91 ¡ dx92 ¡ dx93 = e(1 - r1 ) a1 (dx0 ¡ dx1 ¡ dx2 ¡ dx3 )

dx90 ¡ dx91 + dx92 + dx93 = e(1 - r1 ) a1 (dx0 ¡ dx1 + dx2 + dx3 )

dx90 + dx91 ¡ dx92 + dx93 = e - (1+ r1 ) a1 (dx0 + dx1 ¡ dx2 + dx3 )

dx90 + dx91 + dx92 ¡ dx93 = e - (1+ r1 ) a1 (dx0 + dx1 + dx2 ¡ dx3 ) ,

(39)

ì      
í       î

dx90 ¡ dx91 ¡ dx92 ¡ dx93 = e(1 - r2 ) a2 (dx0 ¡ dx1 ¡ dx2 ¡ dx3 )

dx90 ¡ dx91 + dx92 + dx93 = e - (1+ r2 ) a2 (dx0 ¡ dx1 + dx2 + dx3 )

dx90 + dx91 ¡ dx92 + dx93 = e(1 - r2 ) a2 (dx0 + dx1 ¡ dx2 + dx3 )

dx90 + dx91 + dx92 ¡ dx93 = e - (1+ r2 ) a2 (dx0 + dx1 + dx2 ¡ dx3 ) ,

(40)

ì      
í       î

dx90 ¡ dx91 ¡ dx92 ¡ dx93 = e(1 - r3 ) a3 (dx0 ¡ dx1 ¡ dx2 ¡ dx3 )

dx90 ¡ dx91 + dx92 + dx93 = e - (1+ r3 ) a3 (dx0 ¡ dx1 + dx2 + dx3 )

dx90 + dx91 ¡ dx92 + dx93 = e - (1+ r3 ) a3 (dx0 + dx1 ¡ dx2 + dx3 )

dx90 + dx91 + dx92 ¡ dx93 = e(1 - r3 ) a3 (dx0 + dx1 + dx2 ¡ dx3 ) ,

(41)

Since, according to (39)-(41), there occur only scale transformations of

the four introduced 1-forms, we try to seek the metric for the ¯ at Fins-

lerian space-time (with an entirely broken symmetry with respect to 3D

rotations) in the form

ds = (dx0 ¡ dx1 ¡ dx2 ¡ dx3 )
a
(dx0 ¡ dx1 + dx2 + dx3 )

b £

£ (dx0 + dx1 ¡ dx2 + dx3 )
c
(dx0 + dx1 + dx2 ¡ dx3 )

d
, (42)

where a, b,c, d are some constants for the determination of which the fol-

lowing four conditions must be ful® lled: (i) the metric (42) should be a

homogeneous function of the coordinate diŒerentials of the ® rst degree of

homogeneity; and (ii)-(iv) the metric (42) should remain invariant un-

der the transformations belonging to any of the three independent groups

(39)-(41). These conditions lead to a system of four equations,

ì   í    î
a + b + c + d = 1

(1 ¡ r1 )a + (1 ¡ r1 )b ¡ (1 + r1 )c ¡ (1 + r1 )d = 0

(1 ¡ r2 )a ¡ (1 + r2 )b + (1 ¡ r2 )c ¡ (1 + r2 )d = 0

(1 ¡ r3 )a ¡ (1 + r3 )b ¡ (1 + r3 )c + (1 ¡ r3 )d = 0 .
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The determinan t of the given system is equal to ¡ 16 while its solution is

of the form

a = (1 + r1 + r2 + r3 ) / 4 , b = (1 + r1 ¡ r2 ¡ r3 ) / 4 ,

c = (1 ¡ r1 + r2 ¡ r3 ) / 4 , d = (1 ¡ r1 ¡ r2 + r3 ) / 4 .

Thus, taking into account (42), we obtain the required expression [19] for

the metric of the ¯ at locally anisotropic space-time with entirely broken

rotational symmetry ,10

ds = (dx0 ¡ dx1 ¡ dx2 ¡ dx3 )
(1+ r1+ r2+ r3 ) / 4 £

£ (dx0 ¡ dx1 + dx2 + dx3 )
(1+ r1 - r2 - r3 ) / 4 £

£ (dx0 + dx1 ¡ dx2 + dx3 )
(1 - r1+ r2 - r3 ) / 4 £

£ (dx0 + dx1 + dx2 ¡ dx3 )
(1 - r1 - r2+ r3 ) / 4

. (43)

The anisotropy of the Finslerian space (43) is now speci® ed by even the

three parameters r1 , r2 , r3 which satisfy the conditions

1 + r1 + r2 + r3 > 0 , 1 + r1 ¡ r2 ¡ r3 > 0 ,

1 ¡ r1 + r2 ¡ r3 > 0 , 1 ¡ r1 ¡ r2 + r3 > 0 .
(44)

These condition s ensure the fact that the section of a light cone by hyper-

plane dx0 = const is a closed convex surface. This, in turn, ensures the

applicabilit y of the procedure of exchange of light signals for determining

3D distances.

According to (44), the permissible values of the parameters r1 , r2 , r3

® ll the inner region of a regular tetrahedron with the vertices at the points

(r1 = 1 , r2 = 1 , r3 = 1), (r1 = 1 , r2 = ¡ 1 , r3 = ¡ 1),

(r1 = ¡ 1 , r2 = 1 , r3 = ¡ 1), (r1 = ¡ 1 , r2 = ¡ 1 , r3 = 1) .

At these four points the metric (43) degenerates into the corresponding

1-forms (32), (36)-(38), i.e. into the total diŒerentials of absolute time.

10 The general form of this line elemen t is

ds = f (ai dxi
)1+ a (bj dxj

)1+ b (ck dxk
)1+ c

(dl dxl
)1+ d g 1/ 4

with a + b + c + d = 0. This is an example for the ª 4th square root of a diŒeren-

tial expression of fourth degree” announced by Riemann as the second simplest line

elemen t of what later became known as Finsler spaces [20].
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We now recall that the metric (6) of the ¯ at locally anisotropic space-time

with the partially broken 3D isotropy also degenerates, at r = 1, into the

total diŒerential of absolute time. This suggests that absolute time is not

a stable degenerate state of space-time and (as a result of the geometric

phase transition) may turn either into the partially anisotropic space-time

(6) or into the entirely anisotropic space-time (43). Such a phase transition

is could be interpreted as an ª act of creation” of a 3D space. In the passage

to (6) there occurs a 3D space with locally Euclidean geometry while in

the passage to (43) there occurs, as will be shown below, a ¯ at 3D space

with non-Euclidean geometry. Thus, absolute time plays the role of a

connecting link by which a principle of correspondence is satis® ed for the

Finslerian spaces (6) and (43).

In order to better understand the role of the parameters r1 , r2 , r3 , we

put dx2 = dx3 = 0 in the metric (43). As a result, it turns out that

ds = [ (dx0 ¡ dx1 )
2
/ (dx2

0 ¡ dx2
1 ) ]

r1 / 2
q

dx2
0 ¡ dx2

1 .

In (43), we now put dx1 = dx3 = 0. Then we obtain ds in the form

ds = [ (dx0 ¡ dx2 )
2
/ (dx2

0 ¡ dx2
2 ) ]

r2 / 2
q

dx2
0 ¡ dx2

2 .

Similarly, by putting dx1 = dx2 = 0 in (43), we arrive at the metric

ds = [ (dx0 ¡ dx3 )
2
/ (dx2

0 ¡ dx2
3 ) ]

r3 / 2
q

dx2
0 ¡ dx2

3 .

Each of these three expressions is idential with the expression (4) which

represents the metric of a 2D anisotropic space-time. Therefore, in a sense,

the parameters r1 , r2 , r3 characterize the anisotropy along the correspond-

ing axes x1 , x2 , x3 . However, space-time (43) is such that it remains ani-

sotropic even at r1 = r2 = r3 = 0.

In summing up, we see that the 2D anisotropic metric (4) admits two

independent ways of generalization to four dimensions. The ® rst way leads

to the partially anisotropic Finslerian 4D metric (6) and the second one

to the totally anisotropic Finslerian 4D metric (43).

4. HOMOGENEOUS GROUP OF RELATIVISTIC SYMMETRY OF

THE ENTIRELY ANISOTROPIC SPACE-TIME

Consider an homogeneous isometry group of the ¯ at space-time (43).

By its construction the metric (43) is an invariant of the three independent
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1-parameter group of the transformations (39)-(41). In their in® nitesimal

form, the transformations belonging to these groups appear as

ì   í    î
dx0 = ( ¡ r1 x0 ¡ x1 )da1

dx1 = ( ¡ r1 x1 ¡ x0 )da1

dx2 = ( ¡ r1 x2 + x3 )da1

dx3 = ( ¡ r1 x3 + x2 )da1 ,

ì   í    î
dx0 = ( ¡ r2 x0 ¡ x2 )da2

dx1 = ( ¡ r2 x1 + x3 )da2

dx2 = ( ¡ r2 x2 ¡ x0 )da2

dx3 = ( ¡ r2 x3 + x1 )da2 ,

ì   í    î
dx0 = ( ¡ r3x0 ¡ x3 )da3

dx1 = ( ¡ r3x1 + x2 )da3

dx2 = ( ¡ r3x2 + x1 )da3

dx3 = ( ¡ r3x3 ¡ x0 )da3 .

It can easily be veri® ed that the corresponding generators

X 1 = ¡ r1 xi ¶ / ¶ xi ¡ (x1 ¶ / ¶ x0 + x0 ¶ / ¶ x1 ) + (x2 ¶ / ¶ x3 + x3 ¶ / ¶ x2 ),

X 2 = ¡ r2 xi ¶ / ¶ xi ¡ (x2 ¶ / ¶ x0 + x0 ¶ / ¶ x2 ) + (x1 ¶ / ¶ x3 + x3 ¶ / ¶ x1 ),

X 3 = ¡ r3 xi ¶ / ¶ xi ¡ (x3 ¶ / ¶ x0 + x0 ¶ / ¶ x3 ) + (x1 ¶ / ¶ x2 + x2 ¶ / ¶ x1 ),

commute, i.e. [X aX b ] = 0. It thus appears that the homogeneous 3-

parameter noncompact isometry group, i.e. the relativistic symmetry

group of the space-time (43) is Abelian and any of its elements can be

obtained by multiplying (in an arbitrary order) the transformations (39)-

(41). Having made such multiplicat ion we arrive at the required 3-para-

meter transformations

x 9i = D Lik xk . (45)

Here D = exp( ¡ r1 a1 ¡ r2 a2 ¡ r3 a3 ); the matrices

Lik =

0
 @

A ¡ B ¡ C ¡ D
¡ B A D C
¡ C D A B
¡ D C B A

1
 A

are unimodular, whereby

A = cosh a1cosh a2cosh a3 + sinh a1 sinh a2 sinh a3 ,

B = cosh a1 sinh a2 sinh a3 + sinh a1cosh a2cosh a3 ,

C = cosh a1 sinh a2cosh a3 + sinh a1cosh a2 sinh a3 ,

D = cosh a1cosh a2 sinh a3 + sinh a1 sinh a2cosh a3 ,
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and a1 , a2 , a3 are the group parameters. The transformations inverse to

(45) can be obtained if we make the substitution

a1 ® ¡ a1 , a2 ® ¡ a2 , a3 ® ¡ a3 .

As a result

xi = D - 1 L - 1
ik x 9k , (46)

where

L - 1
ik =

0
 @

~
A ¡ ~

B ¡ ~
C ¡ ~

D
¡ ~

B
~

A
~

D
~
C

¡ ~
C

~
D

~
A

~
B

¡ ~
D

~
C

~
B

~
A

1
 A ,

~
A = cosh a1cosh a2cosh a3 ¡ sinh a1 sinh a2 sinh a3 , (47)
~

B = cosh a1 sinh a2 sinh a3 ¡ sinh a1cosh a2cosh a3 , (48)
~
C = sinh a1 cosh a2 sinh a3 ¡ cosh a1 sinh a2cosh a3 , (49)
~

D = sinh a1 sinh a2 cosh a3 ¡ cosh a1cosh a2 sinh a3 . (50)

Since the relativistic symmetry transformations (45) have the same

meaning as the Lorentz transformations, it is helpful to use as group para-

meters, in place of a1 , a2 , a3 , the components v1 , v2 , v3 of the velocity of

the primed frame. In order to obtain the necessary relations it is su� cient

to put x 91 = x 92 = x 93 = 0 in (46). As a result

v1 =
x1

x0

= ¡
~

B
~

A
, v2 =

x2

x0

= ¡
~
C
~

A
, v3 =

x3

x0

= ¡
~

D
~

A
. (51)

Taking into account (47)-(50), we can rewrite these formulae as follows:

v1 = (tanh a1 ¡ tanh a2 tanh a3 )/ (1 ¡ tanh a1 tanh a2 tanh a3 ) ,

v2 = (tanh a2 ¡ tanh a1 tanh a3 )/ (1 ¡ tanh a1 tanh a2 tanh a3 ) ,

v3 = (tanh a3 ¡ tanh a1 tanh a2 )/ (1 ¡ tanh a1 tanh a2 tanh a3 ) .

Now ® nd the inverse relations, i.e. express a1 , a2 , a3 in terms of v1 ,

v2 , v3 . This is easy to do if the following formulae are used:
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1 ¡ v1 ¡ v2 ¡ v3 =
(1 ¡ tanh a1 )(1 ¡ tanh a2 )(1 ¡ tanh a3 )

(1 ¡ tanh a1 tanh a2 tanh a3 )
,

1 ¡ v1 + v2 + v3 =
(1 ¡ tanh a1 )(1 + tanh a2 )(1 + tanh a3 )

(1 ¡ tanh a1 tanh a2 tanh a3 )
,

1 + v1 ¡ v2 + v3 =
(1 + tanh a1 )(1 ¡ tanh a2 )(1 + tanh a3 )

(1 ¡ tanh a1 tanh a2 tanh a3 )
,

1 + v1 + v2 ¡ v3 =
(1 + tanh a1 )(1 + tanh a2 )(1 ¡ tanh a3 )

(1 ¡ tanh a1 tanh a2 tanh a3 )
.

As a result we obtain

a1 =
1

4
ln

(1 + v1 ¡ v2 + v3 )(1 + v1 + v2 ¡ v3 )

(1 ¡ v1 ¡ v2 ¡ v3 )(1 ¡ v1 + v2 + v3 )
,

a2 =
1

4
ln

(1 ¡ v1 + v2 + v3 )(1 + v1 + v2 ¡ v3 )

(1 ¡ v1 ¡ v2 ¡ v3 )(1 + v1 ¡ v2 + v3 )
,

a3 =
1

4
ln

(1 ¡ v1 + v2 + v3 )(1 + v1 ¡ v2 + v3 )

(1 ¡ v1 ¡ v2 ¡ v3 )(1 + v1 + v2 ¡ v3 )
.

Since v1 , v2 , v3 by de® nition are components of the coordinate velocity

of the primed frame and the light cone equation for the entirely anisotropic

event space (43) diŒers from the light cone equation of Minkowski space,

it is clear that in the entirely anisotropic space an observable such as the

magnitude of velocity no longer is determin ted by the Euclidean expression

v =
p

v2
1 + v2

2 + v2
3 . In order to obtain the correct formula for v it is ® rst

necessary to formulate a procedure for synchronizing coordinate clocks, i.e.

for determining the diŒerence D x0 of the readings of coordinate clocks,

which correspond to simultaneous events at neighbouring points of the

space (43), and also to determine the observable distance between these

points.

5. 3D GEOMETRY AND CLOCK SYNCHRONIZATION IN THE EN-

TIRELY ANISOTROPIC SPACE-TIME

According to the de® nition of the totally anisotropic metric (43), the

range of permissible values of dxi is limited by the conditions

ì   í    î
dx0 ¡ dx1 ¡ dx2 ¡ dx3 ³ 0

dx0 ¡ dx1 + dx2 + dx3 ³ 0

dx0 + dx1 ¡ dx2 + dx3 ³ 0

dx0 + dx1 + dx2 ¡ dx3 ³ 0 .

(52)
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Being invariant under the relativistic transformations (45), these condi-

tions determine either a timelike interval between two events or an interval

equal to zero. The latter case corresponds to events related by a light sig-

nal. Owing to the Abelian structure of the group (45) the cited invariance

of conditions (52) follows from the relations (39)-(41). Apart from this,

the transformations (45) leave invariant the sign of dx0 .

Now, let dx0 > 0. Then, in terms of the components va = dxa /dx 0

of the coordinate velocity, the conditions (52) can be rewritten as

ì   í    î
1 ¡ v1 ¡ v2 ¡ v3 ³ 0

1 ¡ v1 + v2 + v3 ³ 0

1 + v1 ¡ v2 + v3 ³ 0

1 + v1 + v2 ¡ v3 ³ 0 .

(53)

The range of va -values, limited by the condition s (53), is represented in

Fig. 3. It forms a regular tetrahedron with its center at the origin o of a

rectangular system of coordinates v1 , v2 , v3 . The velocities corresponding

to the timelike intervals ds ® ll the inner region of the tetrahedron while

the velocities describing the propagation of light signals and guaranteing

ds = 0 ® ll the surface of the tetrahedron. In comparison, we note that in

the case of Minkowski space, in place of (53), the relativistically invariant

constraint 1 ¡ v 2 ³ 0 obtains; i.e., in place of the tetrahedron, a sphere of

unit radius as the range of permissible va values occurs.

Each face of the tetrahedron is describ ed by one of the four equations

1 ¡ v1 ¡ v2 ¡ v3 = 0, (54)

1 ¡ v1 + v2 + v3 = 0, (55)

1 + v1 ¡ v2 + v3 = 0, (56)

1 + v1 + v2 ¡ v3 = 0, (57)

and each of its six edges by a system of two equations chosen properly

from (54)-(57). The face DJL is describ ed by eq. (54), the face C JL by

(55), the face C DJ by (56), the face C LD by (57), while for example the

edge DJ is describ ed by the system of equations by (54) and (56) etc.

On the surface of the tetrahedron we mark 14 characteristic points:

a, b, c , d , e, f, C, D, H, L, J, F , C , V . Let us represent the coordinates

of these points in the form of the rectangular components of the corre-

sponding radius vectors. In particular, ¬¡ao = (1, 0, 0);
¬¡bo = (0, 1, 0); ¬¡c o =

(0, 0, 1); ¬¡d o = ( ¡ 1, 0, 0); ¬¡eo = (0, ¡ 1, 0); ¬¡fo = (0, 0, ¡ 1); ¬¡
D o = ( ¡ 1, 1, 1);
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Figure 3. The relativistically invarian t range of permissible va values.

¬¡Lo = (1, ¡ 1, 1); ¬¡Jo = (1, 1, ¡ 1); and ¬¡
C o = ( ¡ 1, ¡ 1, ¡ 1). Similarly the ra-

dius vector ¬¡Co = ( 1
3 , 1

3 , 1
3 ) represents the point C. This point is located at

the center of the face DJL and coincides with the projection of the vertex

C onto this face. The radius vector ¬¡
Vo = ( 1

3 , ¡ 1
3 , ¡ 1

3 ) represents the point

V located at the center of the face C JL and coinciding with the projec-

tion of the vertex D onto it. Likewise, the radius vector
¬¡
F o = ( ¡ 1

3 ,
1
3 , ¡ 1

3 )

represents the point F located at the center of the face C DJ and coincid-

ing with the projection of the vertex L onto this face. Finally, the radius

vector ¬¡
Ho = ( ¡ 1

3 , ¡ 1
3 , 1

3 ) represents the point H located at the center of

the face C LD and coinciding with the projection of the vertex J onto this

face.

By these characteristic points on the tetrahedron surface this surface

is divided into twelve equal tetragons which, in turn, are grouped into six

pairs of mutually conjugate 11 tetragons. Denoting the re¯ ection operation

11 With resp ect to a re¯ ection operation at the origin
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by a symbol ¬® we obtain the following pairs:

Cc D b ¬® C fVe

CbJa ¬® C eH d

CaLc ¬® C d F f

VeLa ¬® D b F d

VaJf ¬® D d Hc

Hc Le ¬® Jf F b.

In accordance with the division of the tetrahedron surface, the full solid an-

gle 4p is also divided into six pairs of mutually conjugate sectors. Each of

these sectors constitutes a tetrahedral solid angle which rests on the corre-

sponding tetragon and has its vertex at the origin of the coordinates. Con-

sider, for example, the sector Cc D bo which rests on the tetragon Cc D b.

This tetragon belongs to the face DJL . Therefore, the coordinates v1 , v2 ,

v3 of any inner point of such a tetragon or of a point belonging to its

boundary satisfy eq. (54), in which case the radius vector ¬¡vo = (v1 , v2 , v3 )

represents the coordinate velocity of an initial light ray propagatin g within

the sector Cc D bo since ds = 0 [in virtue of (54)]. Using Fig. 3, and taking

into consideration the equation

1 ¡ ~v1 + ~v2 + ~v3 = 0, (58)

which describ es the face C JL, [cf. (55)] it is easy to verify that the radius

vector
~¬¡vo = (~v1 , ~v2 , ~v3 ) with components

~v1 = ¡ v1

v2 + v3 ¡ v1

, ~v2 = ¡ v2

v2 + v3 ¡ v1

, ~v3 = ¡ v3

v2 + v3 ¡ v1

, (59)

where, according to (54),

v1 + v2 + v3 = 1 , (60)

represents the coordinate velocity of a re¯ ected light ray. Compared with

the initial ray such a ray has the opposite direction and propagates within

the sector C fVeo which rests on the tetragon C fVe. Formulae (59), (60)

give a one-to-one mapping of the tetragon Cc D b onto the tetragon C fVe.

The formulae inverse to (59), (60) appear as

v1 =
~v1

~v1 + ~v2 + ~v3

, v2 =
~v2

~v1 + ~v2 + ~v3

, v3 =
~v3

~v1 + ~v2 + ~v3

, (61)
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where, according to (58),

~v2 + ~v3 ¡ ~v1 = ¡ 1. (62)

These formulae also give a one-to-one mapping of the tetragon C fVe onto

the tetragon Cc D b. It is precisely in connection with the mappings (59),

(60) and (61), (62) that the tetragons Cc D b and C fVe (as well as the

corresponding sectors) were called mutually conjugate above.

The formulae, which relate the components of the coordinate velocities

of initial and re¯ ected light rays are modi® ed in the passage from one pair

of mutually conjugate sectors to another. This involves a corresponding

change in the formulae for the observables, the change being such that the

observables remain continuous at the boundarie s separating neighbouring

sectors. This is con® rmed by the Table given below, in which formulae are

collected which determine the observables for each of the twelve sectors.

For illustrativ e purposes we reproduce here only the formulae pertaining

to the sector Cc D bo. The meaning of all the symbols involved in the Table

of observables should now have become obvious.

Table I. Table of observables.

sector dl D x0 v

Cc D bo dx2 + dx3 dx1 (v2 + v3 )/ (1 ¡ v1 )

C fVeo ¡ (dx2 + dx3 ) dx1 ¡ (v2 + v3 )/ (1 ¡ v1 )

CbJao dx1 + dx2 dx3 (v1 + v2 )/ (1 ¡ v3 )

C eH d o ¡ (dx1 + dx2 ) dx3 ¡ (v1 + v2 )/ (1 ¡ v3 )

CaLc o dx1 + dx3 dx2 (v1 + v3 )/ (1 ¡ v2 )

C d F fo ¡ (dx1 + dx3 ) dx2 ¡ (v1 + v3 )/ (1 ¡ v2 )

VeLao dx1 ¡ dx2 ¡ dx3 (v1 ¡ v2 )/ (1 + v3 )

D b F d o ¡ (dx1 ¡ dx2 ) ¡ dx3 ¡ (v1 ¡ v2 )/ (1 + v3 )

VaJfo dx1 ¡ dx3 ¡ dx2 (v1 ¡ v3 )/ (1 + v2 )

D d Hc o ¡ (dx1 ¡ dx3 ) ¡ dx2 ¡ (v1 ¡ v3 )/ (1 + v2 )

Hc Leo dx3 ¡ dx2 ¡ dx1 (v3 ¡ v2 )/ (1 + v1 )

Jf F bo ¡ (dx3 ¡ dx2 ) ¡ dx1 ¡ (v3 ¡ v2 )/ (1 + v1 )

In order to determine how the diŒerence of the coordinates of two

events in the event space (43) is correlated with the observables, we use
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the Einstein procedure implying exchange of light signals between points

of 3D space.

Let an initial event I , with coordinates (0, 0, 0, 0), be involved in the

emission of a light signal, and another event R with coordinates

(dx(1)

0 , dx1 , dx2 , dx3 ) be involved in the re¯ ection of this signal. In addi-

tion, let the dx1 , dx2 , dx3 be such that the initial signal propagates within

the sector Cc D bo. Represent the components of the coordinate velocity of

the initial signal in the form

v1 =
dx1

dx(1)
0

, v2 =
dx2

dx(1)
0

, v3 =
dx3

dx(1)
0

. (63)

Finally, let

(dx
(1)

0 + dx
(2)

0 , 0, 0, 0) (64)

be the coordinates of a ® nal event F, involving the return of the signal

to the initial point after its re¯ ection. Represent the components of the

coordinate velocity of the re¯ ected signal in the form

~v1 = ¡ dx1

dx(2)
0

, ~v2 = ¡ dx2

dx(2)
0

, ~v3 = ¡ dx3

dx(2)
0

. (65)

It was mentioned before that the re¯ ected signal propagates within the

sector C fVeo conjugate to the sector Cc D bo. It is therefore clear from

Fig. 3 that ~va /= ¡ va and, consequently, dx
(2)

0 /= dx
(1)

0 . In virtue of (65),

(63), (59), we have

¡ v1 / ~v1 = ¡ v2 / ~v2 = ¡ v3 / ~v3 = dx
(2)

0 /dx
(1)

0 = v2 + v3 ¡ v1 .

The latter equality, together with (60), makes up a system of two equa-

tions. It will be written as

{dx(2)

0 /dx (1)

0 = 2(v2 + v3 ) ¡ 1,

dx
(2)

0 /dx
(1)

0 = 1 ¡ 2v1 .

Hence, taking into account (63), we obtain the following relations:

(dx(1)
0 + dx(2)

0 )/ 2 = dx2 + dx3 , (66)

(dx(1)
0 ¡ dx(2)

0 )/ 2 = dx1 . (67)

Turning to the de® nition (64), it is easily understood that the quantit y

(dx(1)
0 + dx(2)

0 ) / 2 prescrib es the 3D distance dl between the events I and R .
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By de® nition, these events have 3D coordinates (0, 0, 0) and (dx1 , dx2 , dx3 ),

respectively, in which case the vector dx = (dx1 , dx2 , dx3 ) falls into the

sector Cc D bo. Thus, within the given sector, the relation (66) gives

dl = dx2 + dx3 . (68)

We now consider a procedure which allows synchronization of coor-

dinate clocks (i.e. clocks reading the coordinate time x0 ) located at the

neighbouring points I and R of 3D space; we intend to determine the

diŒerence D x0 between the readings of these neighbourin g clocks, which

corresponds to simultaneous events at I and R .

Let ( 0, 0, 0) and (dx1 , dx2 , dx3 ) be the 3D coordinates of the points I

and R , respectively. Choose as one of the events the event R at the point

R which has the coordinates (dx
(1)

0 , dx1 , dx2 , dx3 ). Then another event

S at the point I , with coordinates ((dx(1)
0 + dx(2)

0 )/ 2, 0, 0, 0) is obviously

simultaneous to the event R at the point R . As a result

D x0 = dx
(1)

0 ¡ dx
(1)

0 + dx
(2)

0

2
=

dx
(1)

0 ¡ dx
(2)

0

2
.

Using the relation (67), we ® nally ® nd that

D x0 = dx1 . (69)

This formula permits synchronization of clocks within the sector Cc D bo.

Moreover, consider the motion of a particle and determine v, i.e. the

observable values of its velocity. For obtaining v, it is necessary ® rst to

know the true time dt, spent by this particle on the displacement dx =

(dx1 , dx2 , dx3 ).

If the particle starts from point I at an instant of coordinate time 0

and reaches point R at an instant of coordinate time dx0 , then the true

time dt spent on the displacement is not equal to dx0 but equal to the

diŒerence between the instants dx0 and D x0 which is simultaneous at R

to the instant 0 at the starting point I , i.e. dt = dx0 ¡ D x0 . Thus, using

(69), we get

dt = dx0 ¡ dx1 . (70)

As a result, from (68) and (70),

v =
dl
dt

=
dx2 + dx3

dx0 ¡ dx1

=
v2 + v3

1 ¡ v1

. (71)
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The formula given shows how within the sector Cc D bo the observable value

of the particle velocity is expressed in terms of the components v1 , v2 , v3

of its coordinate velocity. According to (71), v £ 1, with v = 1 for a

photon. In the latter case, (71) is equivalent to (54) and thus to the light

cone equation ds = 0.

After similar calculations for each of the remaining eleven sectors

we obtain the complete set of formulae which determine the observables.

These formulae are tabulated in the Table of the observables. According

to this Table, the symmetry of 3D space is determined not by the rotation

group but by a corresponding group of discrete transformations: the ¯ at

3D space which corresponds to the totally anisotropic event space (43) is

non-Euclid ean. This is demonstrated most easily if we graphically repro-

duce an Euclidean image of the sphere of radius dl prescrib ed in the ¯ at

non-Euclid ean 3D space. For this purpose, a rectangular system of coordi-

nates dx1 , dx2 , dx3 is introduced in Euclidean 3D space and use is made

of the relations presented in the second column of the Table. It can readily

be seen that each of the twelve sectors cuts its own piece (a rhomb) out

of the corresponding plane dl = const. All twelve rhombs turn out to be

equal to each other and taken together constitute the surface of a regular

rhombic dodecahedron. Such a dodecahedron is illustrated in Fig. 4. The

Cartesian coordinates of 14 vertices of the dodecahedron are represented

as rectangular components of the corresponding radius vector

¬¡ao = dl(1, 0, 0) , ¬¡bo = dl(0, 1, 0) , ¬¡c o = dl(0, 0, 1) ,

¬¡d o = dl( ¡ 1, 0, 0) , ¬¡eo = dl(0, ¡ 1, 0) , ¬¡fo = dl(0, 0, ¡ 1) ,

¬¡Co = dl( 1
2 , 1

2 , 1
2 ) , ¬¡

D o = dl( ¡ 1
2 , 1

2 , 1
2 ) ,

¬¡
Ho = dl( ¡ 1

2 , ¡ 1
2 , 1

2 ) , ¬¡Lo = dl( 1
2 , ¡ 1

2 , 1
2 ) ,

¬¡
Jo = dl( 1

2 ,
1
2 , ¡ 1

2 ) ,
¬¡F o = dl( ¡ 1

2 ,
1
2 , ¡ 1

2 ) ,

¬¡
C o = dl( ¡ 1

2 , ¡ 1
2 , ¡ 1

2 ) , ¬¡Vo = dl( 1
2 , ¡ 1

2 , ¡ 1
2 ) .

By the coordinates of the vertices it is easy to calculate an acute angle of

any rhomb, e.g. / Cc D . It turns out that

/ Cc D = arccos 1
3 ¼ 70±.

Needless to say, in comparison with Minkowski space the relativisti-

cally invariant Finslerian space-time (43) — with entirely broken isotropy

of 3D space — possesses more exotic properties than the relativistically
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Figure 4. A regular rhombic dodecahedron as an Euclidean image of the sphere of

radius dl, prescrib ed in the ¯ at non-Euclidean 3D space.

invariant Finslerian space-time (6) with partially broken isotropy. In spite

of the fact that, proceeding from the ¯ at metric (43), it is easy to build

the corresponding model of a curved Finslerian space possessing local rel-

ativistic symmetry and local entire 3D anisotropy, it is still diŒucult to

indicate the place which such a model could occupy in modern physics. 12

6. A FIELD OF LOCAL ANISOTROPY AND THE FINSLERIAN

MODELOF A CURVED SPACE-TIME

It is obvious that within the framework of the model of ¯ at Finslerian

spaces as given by (6) or (43), it is impossible to answer constructively the

question of the possible origin of local anisotropy. While discussing the

physical nature of inertia, Mach arrived at the conclusion that it is un-

reasonable to speak of the acceleration of a body relative to empty space.

Inertia of bodies should be regarded as their ability to resist acceleration

12 A possible sp eculation would be that the ¯ at Finslerian metric (43) describ e the

space geometry in the asymptotically free limit of quantum chromo dynamics, i.e. at

distances much smaller than the ten th part of a fermi.
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relative to external matter. Since external matter is distributed nonuni-

formly, inertia and inertial forces arising from acceleration should depend

on the localization of a body and on the direction of its acceleration. Con-

sequently, inertial mass should be a quantit y represented by a tensor ® eld

over space-time. When this conclusion is compared with the fact that iner-

tial mass in anisotropic space is represented by a tensor, such a comparison

suggests that the parameters r and n , in terms of which the inertial mass

(29) is expressed, should be regarded not as constants but as ® elds over

space-time with a matter distribution as their source. Consequently, we

should also consider a space-time with local anisotropy varying from point

to point. Then, due to the dependence on the ® elds r and n characterizing

the local anisotropy of what will turn out to be a curved space-time, the

inertial mass (29) will acquire the character of a tensor ® eld in correspon-

dence with Mach’ s principle. In relativistic metric theories of gravitation,

where r = 0, such a result cannot be obtained.

The Finslerian metric of a curved locally anisotropic space-time must

be of such a form that, on the one side, the principle of correspondence

with the Riemannian metric of a curved locally isotropic space-time of

gr is satis® ed, and on the other side, at any point it ought to admit a

representation in the form (6) [or (43)]. The Finslerian metric with the

above-mentioned properties turns out to be the following:

ds = [ ( ni dxi )2

gik dxidxk ]r / 2 p
gik dxidxk . (72)

The given metric is a function of three ® elds: r = r(x), a scalar ® eld

determining the magnitude of local anisotropy; ni = ni(x), a vector ® eld

of locally preferred directions in space-time satisfying the condition nin
i =

gik nink = 0, and ® nally gik = gik (x), the ® eld of a Riemannian metric

tensor. At each of its points, the curved Finslerian space-time (72) has its

own tangent space (6) with its own values of the parameters r and n which

determine the local anisotropy. These values of the parameters are none

other than the local values of the corresponding ® elds r(x) and ni(x).

The metric (72) is written in arbitrary coordinates. It is therefore

important to elucidate how the diŒerence of the coordinates of two neigh-

bouring events is related to observables. First of all consider proper time.

From (72) the interval dt, measured by an observer at rest at a point

with spatial coordinates xa , is related to the interval dx0 of coordinate

time by the relation c dt = (n2
0 /g 00 )r / 2 p

g00 dx0 . For obtaining the 3D

distance between neighbouring points and for synchronizing the coordi-

nate clocks it is necessary to use the exchange of light signals. This can
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easily be done since the light cone equation remains the same as in gr

[in accordance with (72)]. As a result, the 3D metric turns out to be the

following: dl2 = c ab dxadxb , where c ab = (n2
0 /g 00 )r ( ¡ gab + g0a g0b /g 00 )

and the diŒerence D x0 of the readings of the coordinate clocks recording

the simultaneous events at the neighbouring points is given by the formula

D x0 = ¡ g0a dxa /g 00 .

The structure of the locally anisotropic Finslerian space (72) is such

that the motions of massless particles and of test bodies in it are signif-

icantly diŒerent. Light propagates along Riemannian geodesics with the

metric tensor gik whereas free fall of test bodies occurs along Finslerian

geodesics [33].

According to (72), the dynamics of Finslerian space-time is completely

determined by the dynamics of the gravitational ® eld gik (x) and of the

® elds r(x) and ni(x), responsible for local anisotropy. Since these three

® elds interact with each other and with matter, for a description of the

dynamics it is necessary to construct equations which generalize the corre-

sponding Einstein equations. The key role in solving this task is played by

the property of invariance of the Finslerian metric (72) under the trans-

formations

gik ® e2s ( x ) gik , ni ® e( r - 1) s ( x ) /r
ni , (73)

where s(x) is an arbitrary function. Apart from the metric, the local

transformations (73) leave invariant all the observables. Therefore in the

theory taking account of the anisotropy of space-time the transformations

(73) are local gauge transformations. Gauge-invariant, for example, is the

action for a compressible ¯ uid in the Finslerian space [34]

S = ¡ 1

c s m
*( ni vi

p
gik vivk )

4r p¡ g d4x,

where m* is the invariant ¯ uid energy density, vi = dxi/ds, and ds is the

Finslerian metric (72).

In connection with the mentioned gauge invariance, the dynamic sys-

tem consisting of the ® elds gik , r, ni and a compressible ¯ uid must be

complemented with a vector gauge ® eld B i which under (73) transforms

as follows

B i ® B i + b[ (r ¡ 1)s(x)/r ]; i ,

where b is a constant with a dimension of length. As a result, the behaviour

of the given system is describ ed by the following gauge-invariant variational
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principle

d s { ¡ 1

2
[. . .]R ¡ 3

4
[. . .] - 1

[. . .]; i
[. . .]; i ¡ r; ir; i

4 1 ( e ¡ r) ( . . .
. . .)

2r

¡ f
4

N ik N ik ( . . .
. . .)

2r - 2

+
1

2
l

2 f nin
i( . . .

. . .)
4r - 2

¡ 1

4
F ik F ik

¡ 8p^k
c4

m
*( ni vi

p
gik vivk )

4r} p¡ g d4 x = 0, (74)

where (
¢ ¢ ¢
¢ ¢ ¢) = (nk r;k /

p
¡ r;k r;k ), [. . .] = [(1 ¡ r/ e )(

¢ ¢ ¢
¢ ¢ ¢)

2r ], N ik = nk ;i ¡ ni;k ¡
(nk B i ¡ niB k )/b , F ik = Bk ;i ¡ B i;k , and R is a Riemannian scalar. The

constants f , 1 and 1/ e are dimensionless; 1 characterizes the interaction of

the ¯ uid (matter) with the ® eld r while 1/ e , the interaction of the ® elds r
and gik ; ^k is a gravitationa l constant related to the observable Newtonian

constant by ^k = k/g ; g is a renormalizat ion constant given by the formula

g = 1 +
1 / (2 e )

[1 + 1 / (4 e )]1/ 2

and, ® nally, l2 is a Lagrange multiplier.

The variational principle (74) leads to the equations of relativistic

hydrodynami cs in the locally anisotropic space and also to a system of

gauge-invariant ® eld equations. In a gauge given by the condition nk r;k =p
¡ r;k r;k , the corresponding system of ® eld equations is presented in

[12,13]. It should be noted that if the existence of a ª ® fth force” is

con® rmed then the gauge ® eld B i may be regarded as its carrier. An

additional term ~ B ij i must then be incorporated in the variational prin-

ciple (74), where j i is a preserved current involved in the hydrodynamic

equations.13

In [11], the static centrally symmetric solution of the new ® eld equa-

tions was found, i.e. the Finslerian problem of Schwarzschild solved. Sub-

sequently, in a post-Newtonian approximation the equations of Finslerian

geodesics were integrated and corrections to the classical gravitationa l ef-

fects arising from the local anisotropy of space-time were calculated . Com-

parison of these corrections with error estimates in the experimental data

relating to the solar system gives the following constraints on the interac-

tion constants

¡ 0, 054 < 1 £ 0, 0 < 1/ e < 0, 25.

13 Such a re® nemen t of the variational principle (74) actually seems to be necessary . In

this connection see the rep ort [35].
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Within the framework of the Finslerian theory, the equality 1 = 0

means the absence of the ® eld r determining the magnitude of the local

anisotropy of space-time. In this case the Finslerian metric (72) reduces to

the Riemannian one and the Finslerian gravitation theory to the Einstein

theory. If 1 /= 0, the presence of the ® eld of locally preferred directions

introduces a partial ordering into the structure of space-time; it is pre-

cisely by this that the Finslerian space-time (72) is distinguished from

the ª amorphous” Riemannian space. It must be added here that, accord-

ing to the ® eld equations of the Finslerian theory, the main source of the

® eld r is the trace of the energy-momentum tensor for the matter ® elds

which is zero for the massless and nonzero for massive ® elds. As a re-

sult, a scenario of the evolution of the Universe becomes possible where

only initially, i.e. before the appearance of high-temp erature phase tran-

sitions with a successive breaking of higher gauge symmetries and before

the appearance of masses in the fundamental matter ® eld , space-time was

Riemannian. With the appearance of massive elementary particles, the

trace of the energy-momentum tensor becomes nonzero. In this case, a

strong local anisotropy of space-time is generated, i.e. there occur phase

transitions in its local geometric structure as a result of which space-time

acquires a Finslerian metric. In the course of the subsequent expansion

the initially strong local anisotropy of space gradually decreases and on

the average tends to zero along with its curvature. Thereby, the Finslerian

space-time again approximates a Riemannian one. Apparently, it is the

induced phase transitions in the geometric structure of space-time which

make energetically most favourable the scheme of breaking higher gauge

symmetries realized in nature.

7. CONCLUSION

We have described two types of Finslerian event spaces, namely, spaces

with partially and entirely broken local rotational symmetry in 3D space.

Since the locally isotropic Riemannian space-time is a special case of the

Finslerian space-time (72) (corresponding to the vanishing of the ® eld r),

one can speak of a joint description of three geometric models of space-

time. It is important to stress that each of the above-mentioned models

possesses (diŒering) local relativistic invariances. Depending on the mag-

nitude and character of the breaking of local 3D isotropy, local relativistic

invariance may take either the form of full Lorentz invariance (3D rota-

tional symmetry not broken), the form of generalized Lorentz invariance,

i.e. invariance under the transformations (7) (partial breaking of isotropy),

or invariance under the transformations (45) (total breaking of isotropy).
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Experimental discoveries of recent years, in particular the discovery of

the anisotropy of the cosmic background radiation have led to a renaissance

of interest in theories with a preferred frame of reference. In essence, in

such investigation s, the old idea of an absolute ª ether” is exploited, the

only diŒerence being that the preferred frame is now identi® ed with a

frame in which the cosmic background radiation is locally isotropic and

the already established physical laws are operativ e. In this case, attempts

are sometimes undertaken to explain new experimental results by an ad

hoc breaking of Lorentz invariance in the passage from the preferred frame

to another (lab oratory) inertial frame. In this way, certainly ª anything”
can be ª explained”. At the same time, Einstein’ s principle of relativit y,

implemented with help of the generalized Lorentz transformations, allows

the avoidance of such a diversit y of options, and convincingly leads to local

anisotropy of space-time. As a result, the problem of a possible violation

of the Lorentz transformations reduces to the problem of existence of local

anisotropy of space-time. 14

In connection with a possible local anisotropy of space-time it will be

recalled that according to the model of the hot Universe the temperature

of relic radiation should not depend on the direction in which it is being

measured. At the same time the temperature anisotropy of relic radia-

tion is already an experimental fact with dipole component of anisotropy

having the largest value. Investigators usually do not express a funda-

mental interest in such a dipole anisotropy because they believe that it

arises from the fact that our lab frame accidentally moves at a certain

velocity relative to the cosmic microwave background. Such an explana-

tion would be more satisfactory if the corresponding anisotropy were also

observed in the Hubble constant. Until now, studies of the angular de-

pendence of the Hubble constant are neither precise enough nor covering

a larger section of the sky (cf. Ref. 37). If a special analysis will show that

there is no correlated dipole anisotropy in the Hubble constant then the

dipole anisotropy of relic radiation might be an indication of a strong local

anisotropy of space-time at an early stage of the evolution of the Universe.

The point is that in a space with strong anisotropy there indeed exists a

physically preferred frame; with respect to this frame the hot background

radiation was isotropic while the velocity distribution of massive relativis-

tic particles was anisotropic . As a result, the Hubble constant became

anisotropic . Therefore, by passage to another frame, a reversed situation

becomes possible: the Hubble constant looses its dipole anisotropy while

14 A diŒeren t approach to deviations from Lorentz invariance which, however, leads to

a more complicated physics was followed in [36].
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the background radiation picks it up.

It has already been noted that the experimental data on the behaviour

of the spectra of primary ultra-high energy cosmic protons were one of

the motivations for the Finslerian generalization of relativit y theory. In

spite of indirect evidence in favour of it, the relativistic theory of locally

anisotropic space-time, outlined in the present paper, is still in need of

empirical support. Since the alternativ e to local anisotropy is a strict

local isotropy of space-time, and since in nature any strict symmetry holds

only approximately , it seems reasonable to continue investigation s into the

physical manifestations of local anisotropy. In fact, such a line of research is

equivalent to the testing of sr and of Lorentz invariance to which increased

atten tion has been paid recently, both from the experimental [38] and

theoretical side [39].
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