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Abstract

The work is devoted to the generalization of the Dirac equation for a flat locally anisotropic, i.e., Finslerian space—time. At first
we reproduce the corresponding metric and a group of the generalized Lorentz transformations, which has the meaning of the
relativistic symmetry group of such event space. Next, proceeding from the requirement of the generalized Lorentz invariance
we find a generalized Dirac equation in its explicit form. An exact solution of the nonlinear generalized Dirac equation is also
presented.
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In spite of the impressive successes of the unified  Theoretical speculations about a possible violation
gauge theory of strong, weak and electromagnetic in- of Lorentz symmetry continue for more than forty
teractions, known as the Standard Model, one cannotyears and they are briefly outlined in [1]. Neverthe-
a priori rule out the possibility that Lorentz symme- less, we note here that, along with the spontaneous
try underlying the theory is an approximate symme- breaking [2], one of the first and, as it appeared sub-
try of nature. This implies that at the energies already sequently, fruitful ideas relating to a possible viola-
attainable today empirical evidence may be obtained tion of Lorentz symmetry was the idea [3] accord-
in favour of violation of Lorentz symmetry. At the ing to which the metric of event space differs from
same time it is obvious that such effects might man- Minkowski metric and the physically equivalent in-
ifest themselves only as strongly suppressed effects ofertial reference frames are linked by some transfor-
Planck-scale physics. mations which differ from Lorentz ones. In [4] such
transformations were called generalized Lorentz trans-
formations. Note also that the idea about the exis-

* : tence of generalized Lorentz transformations was sug-
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sence of the Greisen—Zatsepin—Kuz’'min effect (the so-
called GZK cutoff) predicted [5,6] on the basis of con-
ventional relativistic theory. The absence of the GZK
cutoff has yet not been explained convincingly and
still remains the main empirical fact which indirectly
speaks in favour of violation of Lorentz symmetry.

Interest in the problem of violation of Lorentz and
CPT symmetries has revived in recent years [7] in
connection with the construction of a phenomenolog-
ical theory referred to as the Standard-Model Exten-
sion [8].

In the present work, which is in essence devoted to

the same problem, we proceed from the assumption

[9] that phase transitions with breaking of gauge sym-
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metric falls within the category of Finsler metrics [12].
It depends on two constant parameterand v, in
which case the unit vector indicates a preferred di-
rection in 3D space while determines the magnitude
of space anisotropy, characterizing the degree of de-
viation of the metric (1) from the Minkowski metric.
Thus the anisotropic event space (1) is the generaliza-
tion of the isotropic Minkowski space of conventional
special relativity theory.

The 3-parameter noncompact group of the general-
ized Lorentz transformations, which leave the metric
(1) invariant, appears as

x'' = D(v, v)RY (v, v) L] (v)x*, 2

metries should be accompanied by phase transitions inwhere v denotes the velocities of moving (primed)

the geometric structure of space—time.

Our study is based on the fact [10] that the Lorentz
symmetry is not the only possible realization of the
relativistic symmetry. Another admissible realization
of the relativistic symmetry is obtained with the aid
of nonunimodular matrices belonging to a group of
the generalized Lorentz transformations. In contrast
to the conventional Lorentz transformations, the gen-
eralized ones conformally modify Minkowski metric
but leave invariant the corresponding Finslerian met-
ric which describes a flat locally anisotropic space—
time. Thus, from the formal point of view the locally

inertial reference frames; the matri@ﬁ(v) represent
the ordinary Lorentz boosts; the matric@%(v, v)
represent additional rotations of the spatial axes of the
moving frames around the vectofev] through the
angles

(1-v1i- v2/c2)[vv]2 }

=arccog1l—
¢ { (1—vv/c)v?

of relativistic aberration ob; and the diagonal matri-
ces

1—wv/c

— )1,
(x/l— v2/c2)

D(v,v) =

anisotropic space—time appears as the necessary con-
sequence of the existence of a group of the general-the additional dilatational transformations of the event
ized Lorentz transformations. As for the physical na- coordinates. The structure of the transformations (2)
ture of the anisotropy, there are some reasons to sup-ensures the fact that in spite of a new geometry of
pose that a fermion—antifermion condensate, which event space the 3-velocity space remains Lobachevski
may arise [11] (instead of elementary Higgs conden- space.
sate) in the spontaneous breaking of initial gauge sym-  With the inclusion of the 1l-parameter group of
metries, turns out to be anisotropic and its anisotropy rotations aboutv and of the 4-parameter group of
determines the local anisotropy of event space. Obvi- translations the inhomogeneous isometry group of the
ously, verification of this hypothesis is far from being Finslerian event space (1) turns out to have eight
trivial. Therefore, the opening investigations in this di- parameters. If the third spatial axis is chosen aleng
rection, as presented here, are aimed at the most fun-then its generators can be written as
damental problem, namely, at the generalization of the 1 0 1 3
Dirac equation for the locally anisotropic space—time. X1 = —(x"po+x"p1) = (x"ps = x"p1),
Consider the metric [4] of a flat locally anisotropic X2 = —(x%po + x°p2) + (x3p2 — x%p3),
space-time X3

52 |:(dxo —vdx)?
§S-=| ———F—
dx3 — dx?

Being not a quadratic form but a homogeneous func-
tion of the coordinate differentials of degree two, this [X1X2] =0,

= —rx'p; — (x*po + x%p3).
pi = 8/8xi.
These generators satisfy the commutation relations:

R3=x%p1—x'pa;

]r (dx§ — dx?). (1)

[R3X3]=0,
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[X3X1] = X1, [R3X1] = X>, a unit tensor. Later on we shall be usipg andy* to
[X3X5] = Xo. [RaXo] = —X1. lower and raise indices. Thg process, however, will be
accompanied by a change in weight. We shall be also
[pipj1=0, in need of an entity’ which indicates a preferred di-
[X1pol = p1, [X2po] = po2, rection in 4D space-time and whose components have

(X1p1] = po+ ps (Xap1] =0 the same valuegp?® = 1, v}, in all frames of refer-

’ ’ ence related by the transformations (2). It is easy to
[X1p2] =0, [X2p2] = po+ ps, verify thatv'! = J3H0/@n i pk = i e, thatv! is a
contravariant vector density of weigtit+r)/(4r), in

[X1p3] = —p1, [X2p3] = —p2, ; ‘ X - X X

which casey;v' = 0 is an invariant equation.
[X3pol =rpo+ p3, [Rspol =0, Using thev! andn;; one can represent the metric
[X3p1] =rp1, [R3p1] = p2, (1) as an explicit invariant of the transformations (2):
[X3p2] =rp2, [R3p2] = —p1, dxH27"

ds? = [M} dxg dx*.
[X3p3] =rp3+ po, [R3p3] =0. dxjdx/

As one can see the 8-parameter inhomogeneous isomWith the aid of this expression we arrive at the
etry group of the space—time (1) is a subgroup of relat|V|st|c§1IIy mv_arlant action for a free partlcle_ in
the 11-parameter extended Poincaré (similitude) group the flat anisotropic space. The action and its variation
[13] whereas the homogeneous one is isomorphic @PPearas

to the corresponding 4-parameter subgroup (with the b b

generatorsX1, X2, Xsl,—o, Rs) of the homogeneous ¢ _ —m/ds, 5S — _/Pi doxl.

Lorentz group. Itis shown in [14] that the 6-parameter

homogeneous Lorentz group has no 5-parameter sub-
group while the 4-parameter subgroup is unique (up to Hereafter we put =i = 1. The principle of least
isomorphisms). Thus, the transition from Minkowski action under the conditiox")|, = (6x")[, = 0 leads
space to the Finslerian event space (1) implies a min- t0 pi = const i.e., to rectilinear inertial motion. And
imum of symmetry-breaking of the Lorentz symme- if one varies the coordinates of poinat under the

a a

try. However, the relativistic symmetry is maintained conditionp; = const thenp; = fl?s?/axi, e piisa
in the form of the generalized Lorentz symmetry. canonical 4-momentum. Sinog" is a contravariant
Because of nonunimodularity of the matriogls= tensor density of weight /2 and sincepy is a

covariant vector it is clear that the 4-momentpm=
(p°, p) = n'*py is transformed as a contravariant
vector density of 12, i.e.,

DR".L-Ii representing the generalized Lorentz transfor-
mations (2), the transformational properties of some
geometric entities turn out to be changed as com-
pared with conventional special relatiyity theory. For /" — Jl/ZE;'cpk — D_lR;Lipk. (3)
instance, a 4-volume elemed®43x is no longer
invariant but is a scalar density of weightl, i.e.,
it transforms as followsdx'%d3x’ = J~1dx%43x,
wherel is the Jacobian] = [3x*/3x"/| = | (L1 =
D~*. Similarly, matricesn;z and n’* having the
identical formsn;; = diag(1, —1, —1, —1) andp’* = ; ( v dx! )r
p =m

diagl1, —1,—1,-1) in all frames of reference re- ;
lated by the transformations (2) are no longer invari- v dxjdx.

ant tensors but are, respectively, a covariant tensor dxi vidxrdxb
x((l—r) b ) @)

Thus we have arrived at the generalized Lorentz trans-
formations for 4-momenta. Note that the dilatational
transformations ofp’ are inverse to those of’ (cf.
(2)). In an explicit form

density of weight—1/2 and a contravariant tensor = +r m
density of weight }2. This statement signifies that Vdxadx vn dx
)ix = J’l/z(ﬁfl)ﬁ(ﬁ’l)k’"mm = nix and '™ = Since the direction ofp’ is not aligned with the
JY2Lick nim = ik Thenitis clear thaxn*' = 8! is direction ofdx? we introduce (apart fromp’) the so-
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called kinematic 4—momentukj which has the same
transformational properties aé:
l r
vidx )

<\/dxjdxf

Taking into account the equatianv’ = 0 we obtain
the following relations:

dx?

k' =m(1—
m(l=r) Jdx, dx"

®)

Pi =kl + 7rk1kl v
A -kt
1
K= p' = P (6)
@A +r)ppy"

As for the 3-velocity of a particle, it is determined by
the formulav = k/k°. The components of canonical
4-momenta satisfy the mass shell equation

[m- p')?
pjp’
This equation is an invariant of the transformations (3).

The same mass shell but in a space of kinematic 4-
momenta is described by the equation

[

The last two equations lead us to the important
conclusion, namely, that the motion of free massless
particles in anisotropic space is similar to their motion
in isotropic space, i.e., massless particles do not

—r
] pap® =m?L—r)I @4 ) (7)

(vik?)?
kjki

}kﬂ”:m%l—m? (8)

perceive the space anisotropy whereas the motion of
massive particles is analogous to that of quasiparticles

in a crystalline medium.

According to (8), the mass shell fer#£ 0 is a de-
formed two-sheeted hyperboloid inscribed into a light
cone. In order to show how its deformation changes
with the magnituder of space anisotropy it is rea-
sonable to proceed from the relations (5) which deter-
mine four-dimensional coordinates of points belong-
ing to the upper sheet of the deformed hyperboloid
as explicit functions of 3-velocities = dx /dx°. The
results of calculations, presented in Fig. 1 clearly
demonstrate the fact that, if— 1, the mass shell in

a space of kinematic 4-momenta converges (nonuni- ¢

formly) to a light cone. As for the canonical momenta
p', there is nonuniform convergenge: — ki +mv’,
wherek; k' = 0. Physically this means that the effec-
tive inertial mass of a particle present in anisotropic
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(Finslerian) space depends on the magnituds a
constant anisotropy field and disappears at alt if
reaches the value equal to unity.

Thus, with a view to generalizing the Dirac La-
grangian for the Finslerian space-time (1), we have
arrived at the following guiding principle: a general-
ized Lagrangian, in the limit = 1, must be reducible
(up to a 4-divergence) to the standard massless Dirac
Lagrangian.

Starting to generalize the Dirac Lagrangian, first
consider the standard massless one

i, - -
E(Wynanw - 8111;0)/"1#)-

Since massless particles do not perceive the space
anisotropy, the Lagrangian considered need not be
modified and it can be used as the kinetic term
of a massive generalized Dirac Lagrangian. Since
under the generalized Lorentz transformations (2)
the 4-volumedx®d3x behaves as a scalar density
of weight —1 and the action must remain invariant,
it follows that the kinetic term (just as the entire
Lagrangian) must be a scalar density of weightis
condition is fulfilled in the case where the generalized
Lorentz transformations (2) of the coordinates are
accompanied by the following transformations of the
fieldsy andy:

¥’ ()= D328 Sy (x) = J¥8Sy (x),
() =P (x)J¥8s 7L

9)
(10)

where the matriceS = Sg Sy, satisfy the standard con-
dition S~1y’S = Al yk, in which caseA! = R’}L-,i;

the matricesS; and Sg represent, respectively, the
Lorenz boosts and additional rotations of bispinors. In
an explicit form

1+ /1—2

2V1— 2

1
1—V1—v2y%y
24/1— 2

Sp =

/s

+i

(11)
|v]

(1-v1- vz)[vv]zl
2(1 — vv)v?

1—+/1—v2[wv]

20—wv) o] (12)
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Fig. 1. Parametric 3D plots of the mass shells in a space of kinematic 4-momenta.

where v denotes the velocities of moving (primed)
reference framesy” are the Dirac matricesy =
diag(o, o) ande are the Pauli matrices. Thus in the
flat Finslerian space—time (1) the fielgsand vy are,
according to (9) and (10), bispinor density fields of
weight 3/8.

In order to generalize the massive teramy s
of the Dirac Lagrangian we remind that a general-

scalar, in which case the latter Finslerian form gen-
eralizes the scalar bilinear formy of conventional
theory.

Now we are able to write down a Lagrangian for
the bispinor density fields representing such a general-
ization of the standard Dirac Lagrangian that the cor-
responding field equations turn out to be invariant un-
der the group of generalized Lorentz transformations.

ized massive term, like the kinetic one, must be a It appears as

scalar density of weight.1t can be verified that for

the bispinor density fieldsf v is a scalar density of

weight 3/4, ¥y is a contravariant vector density
of weight 1, [(va ¥y /U )2]"/ %y is a scalar den-

sity of weight 1 and (v, ¥y v /¥ y)?1~3/%yy is a

L= Sy oy = 09 7"Y)

- r/2
_ vnw”w)z .
m[( v } v
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This Lagrangian leads to the following generalized
Dirac equations:

iy .0 —mK”’}jn
X {(l—r)l—i—r(

1A%

w%)vaya}d/ =0,
VnJ

(13)
N 27772
i0,9y" +m (U’_” )
A%
xx/'f{(l—r>1+r( ‘{;)w”}=o,
VnJ
(14)

where j" = ¥ y™y. The operation:y(13) + (14)y
provides the equatios), j* = 0. Thus;" is a preserved
current. And at last, owing to the operatiofi(13)—
(14)s, we conclude thai = 0 on the solutions of
Egs. (13) and (14).

Due to translational invariance, the generalized
Dirac equations (13), (14) must admit solutions in
the form of plane wavesg (x) = u(p) exp(—ipy,x“).
This means that the amplitude p) must satisfy the
equations:

P hy
“ uu
+r(wgzlu>vny" ]u:O, (15)
—.,a
ﬁpa[y“ - (”Y ”){(l—r)l
u
+r< 1_414] )vny” ]:O, (16)
viylu
2
- vity'u 21" _
paty‘u=m — uu. an
uu

Egs. (15)—(17) lead to the invariant dispersion relation

[Par® _ (A4 r) (v pH)2]7?
1—r2 A—rpjpi | -

where the sign+’ corresponds to positive frequency
states whereas the sigr-* corresponds to negative

ones. It is worth mentioning that the mass shell
equation (7) can be obtained from (18). In order to
find the planewave solutions in a general form, i.e.,

(18)

45

at arbitrary momentunp® we, for a start, confine
ourselves to the rest frame and try the following
ansatz:

Yi(x) = \/m (g) e*i(mxofmrvx)’
o1 B ()t

where /2m(1—r) is a normalizing multiplier and
@, x are arbitrary 3-spinors normalized by means of
oto =1, xTx = 1. Itis easy to verify that the cor-
responding positive and negative frequency bispinor
density amplitudes satisfy Egs. (15)—(17). Note once
more that these solutions are found in the rest frame, in
which p% = {m, rmv}, whereas kinematic 4-momen-
tumk? = {m(1—r), 0} and, respectivelyy = k/k° =

0. Taking into account the transformational properties
(9)—-(12) we find planewave solutions of Eq. (13) in the
final form:

\/,%_7 Jko+JkE — k2

Vi(x) = md—1)
ko — k2 — k? (no)e
x e Pax?
W ko — k& — k? (no) x
Y_(x) = m
Jko+ k3 — k% x
xeip“xa,

where the unit vectae indicates the direction d¥, in
which case? and p® are related by (6). The bispinor
density fieldsy+ are normalized with the help of the
invariant conditions:

(Un Yy Y
(/ERVES
As for the dispersion relation (18), in terms bf it

takes the form

iN27r/2
Vkikt =+tm(l— r)[w] .
kjk]
One of its solutions corresponds to massive fermions
and, according to (5), admits the parametric represen-
tation by means of 3-velocities. Another solution
corresponds to massless fermions and has the form

2—3r/2
) } Ve =+2m(1 —r).
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k% oc v*. Note at last that, in the limit = 1, Eq. (13) ever, efficient algebraic-theoretical methods of con-

takes the formy“ad, v — mv,y%y = 0 and, after the  structing exact solutions for a wide class of nonlin-

local gauge transformatiofy — exp(—imv,x%)yr, ear spinor equations have already been developed [15].

reduces to the massless Dirac equation. Using these methods, one can in principle obtain, also,
Summing up the results of the present work, we other and, which is especially important, “nongener-

would like to emphasize that the spontaneous break- able” families of exact solutions of Eq. (13). As for

ing of Lorentz symmetry does not necessarily signify the general conceptual problems relating to nonlinear

the breaking of relativistic symmetry and may turn generalizations of the Dirac equation [16], we hope to

out to be a secondary effect induced by the spon- give more attention to them in our subsequent publica-

taneous breaking of gauge symmetry. Here, the 10- tions.

parameter Poincaré group of an initial massless gauge-

invariant theory is reduced to the 8-parameter inho-

mogeneous group of the generalized Lorentz trans- Acknowledgements
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