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� Introduction

The richness of the theory of functions over the complex �eld makes it nat�
ural to look for a similar theory for the only other non�trivial real associative
division algebra� namely the quaternions� Such a theory exists and is quite
far�reaching� yet it seems to be little known� It was not developed until
nearly a century after Hamilton	s discovery of quaternions� Hamilton him�
self 
�� and his principal followers and expositors� Tait 
�� and Joly 
��� only
developed the theory of functions of a quaternion variable as far as it could
be taken by the general methods of the theory of functions of several real
variables the basic ideas of which appeared in their modern form for the
�rst time in Hamilton	s work on quaternions�� They did not delimit a special
class of regular functions among quaternion�valued functions of a quaternion
variable� analogous to the regular functions of a complex variable�

This may have been because neither of the two fundamental de�nitions
of a regular function of a complex variable has interesting consequences
when adapted to quaternions� one is too restrictive� the other not restrictive
enough� The functions of a quaternion variable which have quaternionic
derivatives� in the obvious sense� are just the constant and linear functions
and not all of them�� the functions which can be represented by quaternionic
power series are just those which can be represented by power series in four
real variables�

In ���� R Fueter 
�� proposed a de�nition of �regular� for quaternionic
functions by means of an analogue of the Cauchy�Riemann equations� He
showed that this de�nition led to close analogues of Cauchy	s theorem�
Cauchy	s integral formula� and the Laurent expansion 
��� In the next twelve
years Fueter and his collaborators developed the theory of quaternionic ana�
lysis� A complete bibliography of this work is contained in ref� 
��� and a
simple account in English� of the elementary parts of the theory has been
given by Deavours 
���

The theory developed by Fueter and his school is incomplete in some
ways� and many of their theorems are neither so general nor so rigorously
proved as present�day standards of exposition in complex analysis would
require� The purpose of this paper is to give a self�contained account of the
main line of quaternionic analysis which remedies these de�ciencies� as well
as adding a certain number of new results� By using the exterior di�erential
calculus we are able to give new and simple proofs of most of the main
theorems and to clarify the relationship between quaternionic analysis and
complex analysis�
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Let H denote the algebra of quaternions� and let f�� i� j� kg be an or�
thonormal basis� with the product on H given by the usual multiplication
table see section ��� The typical quaternion can be written as

q � t� ix� jy � kz ����

where t� x� y� z are real coordinates� Fueter de�ned a function f � H � H

to be regular if it satis�ed the equation
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This is an analogue of the Cauchy�Riemann equations for a complex function
f � C � C � which can be written as

�f

�x
� i

�f

�y
� �� ����

where the variable is z � x� iy�
Fueter showed that any quaternionic function which is regular and also

continuously di�erentiable must satisfy an analogue of Cauchy	s theorem
which can be written as Z

C
Dq f � �� ����

where C is any smooth closed ��manifold in H and Dq is a certain natural
quaternion�valued ��form� Dq is de�ned in section �� it can be thought of as
the quaternion representing an element �C of the ��manifold� its magnitude
being equal to the volume of �C and its direction being normal to �C� Fueter
also obtained an analogue of Cauchy	s integral formula for such functions�
namely

fq�� �
�

���

Z
�D

q � q��
��

jq � q�j� Dq fq�� ����

where D is a domain in H in which f is regular and q� is a point inside D�
The complex Cauchy�Riemann equation ���� is equivalent to the state�

ment that f has a complex derivative� i�e� that there exists a complex
number f �z� such that

df � f �z� dz� ����

Fueter gave no corresponding characterisation of a regular function of a qua�
ternion variable� leaving the theorems ���� and ���� and the analogy with
the Cauchy�Riemann equations as su�cient justi�cation of the de�nition
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����� In this paper we will show that a regular function can be de�ned as
one which has a certain kind of quaternionic derivative� speci�cally� ���� is
equivalent to the existence of a quaternion f �q� such that

ddq � dq f� � Dq f �q�� ����

the ��form dq � dq is described in section ���
Cauchy	s theorem ���� and the integral formula ���� can be simply

proved by showing that
dDqf� � � ����

and

d

�
q � q��

��

jq � q�j�
�
Dq fq� � �

�
�

jq � q�j�
�
fq�v ����

where � is the Laplacian on R
� and v � dt � dx � dy � dz is the standard

volume ��form� Since jq � q�j�� is the Green	s function for the Laplacian
in R

�� ���� follows from ����� This is essentially how Fueter proved these
theorems� Since both proofs use Stokes	s theorem� they need the condition
that the partial derivatives of the function should be continuous� Schuler 
��
showed that this condition could be dropped by adapting Goursat	s proof
of Cauchy	s theorem� but he did not draw the full consequences of this
argument� In fact Cauchy	s theorem ���� can be proved for any recti�able
contour C and any function f which is di�erentiable at each point inside C
and whose partial derivatives satisfy ����� The integral formula ���� has a
similarly wide range of validity� From this it follows� as in complex analysis�
that if f is regular in an open set U then it has a power series expansion
about each point of U � Thus pointwise di�erentiability� together with the
four real conditions ���� on the sixteen partial derivatives of f � is su�cient
to ensure analyticity�

The homogeneous components in the power series representing a regular
function are themselves regular� thus it is important to study regular ho�
mogeneous polynomials� the basic regular functions from which all regular
functions are constructed� The corresponding functions of a complex vari�
able are just the powers of the variable� but the situation with quaternions
is more complicated� The set of homogeneous regular functions of degree n
forms a quaternionic vector space of dimension �

�n� ��n� ��� this is true
for any integer n if for negative n it is understood that the functions are
de�ned and regular everywhere except at �� The functions with negative
degree of homogeneity correspond to negative powers of a complex variable�
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and occur in the quaternionic Laurent series which exists for any regular
function which is regular in an open set except at one point� Fueter found
two natural bases for the set of homogeneous functions� which play dual roles
in the calculus of residues� He actually only proved that these bases formed
spanning sets�� In this paper we will study homogeneous regular functions
by means of harmonic analysis on the unit sphere in H � which forms a group
isomorphic to SU��� this bears the same relation to quaternionic analysis
as the theory of Fourier series does to complex analysis�

Many of the algebraic and geometric properties of complex analytic func�
tions are not present in quaternionic analysis� Because quaternions do not
commute� regular functions of a quaternion variable cannot be multiplied
or composed to give further regular functions� Because the quaternions are
four�dimensional� there is no counterpart to the geometrical description of
complex analytic functions as conformal mappings� The zeros of a qua�
ternionic regular function are not necessarily isolated� and its range is not
necessarily open� neither of these sets need even be a submanifold of H �
There is a corresponding complexity in the structure of the singularities of a
quaternionic regular function� this was described by Fueter 
��� but without
giving precise statements or proofs� This topic is not investigated here�

The organisation of this paper is as follows�
In section � the basic algebraic facts about quaternions are surveyed and

notation is established� some special algebraic concepts are introduced� and
quaternionic di�erential forms are described�

Section � is concerned with the de�nition of a regular function� The re�
marks in the second paragraph of this introduction� about possible analogues
of complex de�nitions of analyticity� are ampli�ed this material seems to be
widely known� but is not easily accessible in the literature�� and the de�n�
ition ���� of regular functions by means of the quaternionic derivative is
shown to be equivalent to Fueter	s de�nition ���� by means of a Cauchy�
Riemann�type equation�

Section � is devoted to the analogues of the Cauchy�Goursat theorem
and Cauchy	s integral formula�

Section � contains analogues of Liouvilles	s theorem� the maximum�
modulus principle� and Morera	s theorem� After the work of section �� only
the last of these requires proof�

In section � we show how regular functions can be constructed from
functions of more familiar type� namely harmonic functions of four real
variables and analytic functions of a complex variable�

Section � is concerned with the e�ect on regular functions of conformal
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transformation of the variable� these results are needed in the last two sec�
tions�

Section � is an investigation of homogeneous regular functions by means
of harmonic analysis on S��

In section � we examine the power series representing a regular function
and prove analogues of Laurent	s Theorem and the residue theorem�

� Preliminaries

��� The Algebra of Quaternions�

The quaternions H form a four�dimensional algebra over the real �eld R�
with an identity element denoted by �� We regard R as being embedded in
H by identifying t � R with t� � H � Then we can write H � R �P � where P
is an oriented three�dimensional Euclidean vector space� and the product of
two quaternions is de�ned by

a��a�b��b� � a�b� � a�b� a�b� b�a� a� b� ����

where a�� b� � R� a�b � P � a�b denotes the inner product of a and b�
and a� b denotes the vector product determined by the orientation on P �
Conversely� the subspace P � its inner product and its orientation can be
de�ned in terms of the multiplication on H ��

Thus we can choose a basis f�� i� j� kg for H so that the multiplication is
given by

i� � j� � k� � ���
ij � �ji � k� jk � �kj � i� ki � �ik � j

�
����

The typical quaternion will be denoted by

q � t� xi� yj � zk t� x� y� z � R� ����

In performing calculations it is sometimes useful to denote the basic qua�
ternions i� j� k by ei i � �� �� �� and the coordinates x� y� z by xi i � �� �� ���
and to use the summation convention for repeated indices� In this notation
eq� ���� becomes

q � t� xiei ����

and the multiplication rules ���� become

eiej � ��ij � �ijkek ����

�Proofs of the assertions in this section can be found in ���� chap� ����
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where �ijk is the usual alternating symbol�
The centre of the algebra H is the real sub�eld R� If q is any quaternion�

the vector subspace spanned by � and q is a sub�eld of H � which is isomorphic
to the complex numbers C if � and q are linearly independent� It is sometimes
convenient to distinguish a particular embedding of C in H � whenever we
want to do this� we will take C to be the sub�eld spanned by � and i� Then
any quaternion can be written as

q � v � jw ����

with v� w � C � if q is given by ����� then

v � t� ix and w � y � iz ����

�From an equation of the form v� � jw� � v� � jw� with v�� v�� w�� w� � C �
we can deduce that v� � v� and w� � w�� When quaternions are written in
this form� the basic law of multiplication is

vj � j�v� ����

The conjugate of the quaternion q is

�q � t� ix� jy � kz� ����

Conjugation is an involutive anti�automorphism of H � i�e� it is R�linear�
q � q� and

q�q� � �q� �q�� �����

For every embedding of C in H � quaternion conjugation coincides with com�
plex conjugation� q commutes with �q� and their product is

q�q � t� � x� � y� � z�� �����

The modulus of q is the non�negative real number

jqj � p
q�q �����

It follows from ����� that every non�zero quaternion has a multiplicative
inverse

q�� �
�q

jqj� � �����

The real part of q is

Re q � t � �
�q � �q� � R �����
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and its pure quaternion part or vector part� is

Pu q � xi� yj � zk � �
� q � �q� � P� �����

It follows from ���� that

Req�q�� � Req�q�� �����

and from ���� that
Re �q � Re q� �����

q is a unit quaternion if jqj � �� The set of unit quaternions� constituting
the sphere S�� forms a multiplicative Lie group isomorphic to SU��� we will
denote it by S� The versor of a quaternion q is the unit quaternion

Un q �
q

jqj �����

Any quaternion has a polar decomposition q � ru where r � jqj � R and
u � Un q � S�

The classical notation for these functions of q is S q � Re q� V q � Pu q�

K q � �q� T q � jqj� U q � Un q�
The positive�de�nite quadratic form ����� gives rise to an inner product

hq�� q�i � Req��q��

� Re�q�q�� by ����� and �����
�����

Note that
haq�� q�i � hq�� �aq�i �����

and
hq�a� q�i � hq�� q��ai� �����

i�e� the adjoint of left right� multiplication by a is left right� multiplication
by �a� for any a � H � If u� and u� are unit quaternions� the map q �� u�qu�
is orthogonal with respect to this inner product and has determinant ��
conversely� any rotation of H is of the form q �� u�qu� for some u�� u� � S�
This is the well�known double cover �� Z� � SU���SU��� SO��� ��

This inner product induces an R�linear map � � H � � H � where H
� �

HomRH �R� is the dual of H � given by

h���� qi � �q� �����
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for a � H
�� q � H � Since f�� i� j� kg is an orthonormal basis for H � we have

��� � ��� � i �i� � j �j� � k �k�� �����

The set of R�linear maps of H into Itself forms a two�sided vector space
over H of dimension �� which we will denote by F�� It is spanned over H �
by H

�� so the map � can be extended by linearity to a right H �linear map
�r � F� � H and a left�linear map �� � F� � H � They are given by

�r�� � ��� � i �i� � j �j� � k �k� �����

and
���� � ��� � �i� i � �j� j � �k� k �����

for any � � F��
The inner product ����� and the maps �r��� � F� � HomRH �R� � H

have alternative characterisations in terms of quaternion multiplication and
conjugation� in fact they are obtained by slight modi�cations of standard
procedures from the tensor of type ���� which de�nes the multiplication on
H � Let Lq � H � H and Rq � H � H be the operations of multiplication
by q on the left and on the right� respectively� and let K � H � H be the
operation of conjugation� then

Theorem �

�i� hq� pi � ��
� TrLqRpK�

�ii� h�r��� qi � TrR�q�K�

�iii� h����� qi � TrL�q�K� for all p� q � H and � � F��

Proof The trace of an R�linear map � � H � H is

Tr� � Re 
���� �
X
i

Re 
ei�ei�� �����

Hence i�

TrLqRpK� � Re

�
qp�

X
i

eiqeip

�

But
q �

X
i

eiqei � ���q �����
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as can easily be veri�ed� so

TrLqRpK� � ��Re�qp� � ��hq� pi� �

ii�

TrR�q�K� � Re

�
����q �

X
i

ei�ei��q

�

� Re 
�r���q� by �����

� h�r��� qi

�

iii�

TrL�q�K� � Re

�
�q��� �

X
i

ei�q�ei�

�

� Re

�
�q��� �

X
i

�q�ei�ei

�
by �����

� Re 
�q����� by �����

� h����� qi �

We will also need two other maps ��r� ��� � F� � H � de�ned as follows�

h��r��� qi � TrR�q��� ��r�� � ��� �
X
i

ei�ei� �����

h������ qi � TrLq��� ����� � ��� �
X
i

�ei�ei �����

��� Quaternionic Di�erential Forms

When it is necessary to avoid confusion with other senses of di�erentiability
which we will consider� we will say that a function f � H � H is real�

di�erentiable if it is di�erentiable in the usual sense� Its di�erential at a
point q � H is then an R�linear map dfq � H � H � By identifying the tangent
space at each point of H with H itself� we can regard the di�erential as a
quaternion�valued ��form

df �
�f

�t
dt�

�f

�x
dx�

�f

�y
dy �

�f

�z
dz� �����

Conversely� any quaternion�valued ��form � � a� dt� ai dxi a�� ai � H � can
be regarded as the R�linear map � � H � H given by

�t� xiei� � a�t� aixi �����
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Similarly� a quaternion�valued r�form can be regarded as a mapping from
H to the space of alternating R�multilinear maps from H � ���� H r times�
to H � We de�ne the exterior product of such forms in the usual way� if � is
an r�form and � is an s�form�

� � �h�� ���� hr�s� �
�
r�s�

X
�

�	��h���	� ���� h��r	��h��r��	� ���� h��r�s	��

�����
where the sum is over all permutations 	 of r�s objects� and �	� is the sign
of 	� Then the set of all r�forms is a two�sided quaternionic vector space�
and we have

a� � �� � a�� � ��

� � ��a � � � �a��

�a� � � � � � a��

����
��� �����

for all quaternions a� r�forms � and s�forms �� The space of quaternionic
r�forms has a basis of real r�forms� consisting of exterior products of the
real ��forms dt� dx� dy� dz� for such forms left and right multiplication by
quaternions coincide� Note that because the exterior product is de�ned in
terms of quaternion multiplication� which is not commutative� it is not in
general true that � � � � �� � � for quaternionic ��forms � and ��

The exterior derivative of a quaternionic di�erential form is de�ned by
the usual recursive formulae� and Stokes	s theorem holds in the usual form
for quaternionic integrals�

The following special di�erential forms will be much used in the rest of
the paper� The di�erential of the identity function is

dq � dt� i dx� j dy � k dz� �����

regarded as R�linear transformation of H � dq is the identity mapping� Its
exterior product with itself is

dq � dq � �
��ijk ei dxj � dxk � i dy � dz � j dz � dx� k dx � dy �����

which� as antisymmetric function on H � H � gives the commutator of its
arguments� For the essentially unique� constant real ��form we use the
abbreviation

v � dt � dx � dy � dz� �����

so that v�� i� j� k� � �� Finally� the ��form Dq is de�ned as an alternating
R�trilinear function by

hh��Dqh�� h�� h��i � vh�� h�� h�� h�� �����
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for all h�� ���� h� � H � Thus Dqi� j� k� � � and Dq�� ei� ej� � ��ijkek� The
coordinate expression for Dq is

Dq � dx � dy � dz � �
��ijk ei dt � dxj � dxk

� dx � dy � dz � i dt � dy � dz � j dt � dz � dx� k dt � dx � dy�
�����

Geometrically� Dqa� b� c� is a quaternion which is perpendicular to a� b and
c and has magnitude equal to the volume of the ��dimensional parallelepiped
whose edges are a� b and c� It also has the following algebraic expression�

Theorem � Dqa� b� c� � �
�c�ab� b�ac�

Proof For any unit quaternion u� the map q �� uq is an orthogonal trans�
formation of H with determinant �� hence

Dqua� ub� uc� � uDqa� b� c��

Taking u � jaj��� and using the R�trilinearity of Dq� we obtain

Dqa� b� c� � jaj�aDq�� a��b� a��c�� �����

Now since Dq�� ei� ej� � ��ijkek � �
�ejei � eiej�� we have by linearity

Dq�� h�� h�� �
�
� h�h� � h�h�� �����

for all h�� h� � H � Hence

Dqa� b� c� � �
� jaj�aa��ca��b� a��ba��c�

� �
�c�ab� b�ac� by ������ �

Two useful formulae were obtained in the course of this proof� The
argument leading to ����� can be generalised� using the fact that the map
q �� uqv is a rotation for any pair of unit quaternions u� v� to

Dqah�b� ah�b� ah�b� � jaj�jbj�aDqh�� h�� h��b� �����

and the formula ����� can be written as

�cDq � ��
� dq � dq� �����

where c denotes the usual inner product between di�erential forms and vec�
tor �elds and � denotes the constant vector �eld whose value is ��
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Since the di�erential of a quaternion�valued function on H is an element
of F�� the map �r can be applied to it� The result is

�rdf� �
�f

�t
� i

�f

�x
� j

�f

�y
� k

�f

�z
� �����

We introduce the following notation for the di�erential operator occurring
in ������ and for other related di�erential operators�

���f � �
��rdf� �

�

�

�
�f

�t
� ei

�f

�xi

�
�

��f � �
�
��rdf� �

�

�

�
�f

�t
� ei

�f

�xi

�
�

��rf � �
���df� �

�

�

�
�f

�t
�

�f

�xi
ei

�
�

�rf � �
�
���df� �

�

�

�
�f

�t
� �f

�xi
ei

�
�

�f �
��f

�t�
�
��f

�x�
�
��f

�y�
�
��f

�z�
�

�������������������
������������������

�����

Note that ��� ���� �r and ��r all commute� and that

� � ��r ��r � ��� ��� �����

� Regular Functions

We start by showing that the concept of an analytic function of a quaternion
variable as one which is constructed from the variable by quaternion addi�
tion and multiplication possibly involving in�nite series� is the same as the
concept of a real�analytic function in the four real variables t� x� y� z�

De�nition � A quaternionic monomial is a function f � H � H of the

form

fq� � a�qa�q���qr��qar ����

for some non�negative integer r �the degree of the monomial� and constant

quaternions a�� ���� ar�
A quaternionic polynomial is a �nite sum of quaternionic monomials�
A homogeneous polynomial function of degree r on H is a function

f � H � H of the form

fq� � F q� ���� q�

��



where F � H � ���� H �r times� � H is R�multilinear�

A polynomial function on H is a �nite sum of homogeneous polyno�
mial functions of varying degrees�

Theorem � Every polynomial function on H is a quaternionic polynomial�

Proof Any polynomial function f can be written as

fq� � f�t� x� y� z� �
X
i

fit� x� y� z�ei

where f� and fi are four real�valued polynomials in the four real variables
t� x� y� z� But

t � �
�q � iqi� jqj � kqk��

x � �
�iq � iqi� jqj � kqk��

y � �
�j q � iqi� jqj � kqk��

z � �
�k q � iqi� jqj � kqk��

�������
������

����

Putting these expressions for t� x� y� z into the polynomials f�� fi� we obtain
fq� as a sum of expressions in q of the form ����� so f is a quaternionic
polynomial� �

It is clear that conversely� every quaternionic polynomial is a polynomial
function� so we have
Corollary The class of functions which are de�ned in a neighbourhood of
the origin in H and can be represented there by a quaternionic power series�
i�e� a series of quaternionic monomials� is precisely the same as the class of
functions which are real�analytic in a neighbourhood of the origin�

We now turn to an alternative attempt to parallel complex analysis� in
which we concentrate on the existence of a quaternionic derivative de�ned
as the limit of a di�erence quotient� We will show that only quaternionic
polynomials of degree � and not all of them� possess such a derivative�

De�nition � A function f � H � H is quaternion�dierentiable on the

left at q if the limit

df

dq
� lim

h��

h
h��ffq � h�� fq�g

i

exists�

��



Theorem � Suppose the function f is de�ned and quaternion�di�erentiable

on the left throughout a connected open set U � Then on U� f has the form

fq� � a� qb

for some a� b � H �

Proof From the de�nition it follows that if f is quaternion�di�erentiable on
the left at q� it is real�di�erentiable at q and its di�erential is the linear map
of multiplication on the right by df

dq
�

dfqh� � h
df

dq
�

i�e�

dfq � dq
df

dq
�

Equating coe�cients of dt� dx� dy and dz gives

df

dq
�

�f

�t
� �i �f

�x
� �j �f

�y
� �k �f

�z
� ����

Put q � v � jw� where v � t� ix and w � y � iz� and let fq� � gv� w� �
jhv� w�� where g and h are complex�valued functions of the two complex
variables v and w� then ���� can be separated into the two sets of complex
equations

�g

�t
� �i �g

�x
�

�h

�y
� i

�h

�z
�

�h

�t
� i

�h

�x
� ��g

�y
� i

�g

�z
�

In terms of complex derivatives� these can be written as

�g

��v
�

�h

� �w
�

�h

�v
�

�g

�w
� �� ����

�g

�v
�

�h

�w
� ����

and
�h

��v
� � �g

� �w
� ����

Eq� ���� shows that g is a complex�analytic function of v and �w� and h is
a complex�analytic function of �v and w� Hence by Hartogs	s theorem 
���

��



p� ���� g and h have continuous partial derivatives of all orders and so from
����

��g

�v�
�

�

�v

�
�h

�w

�
�

�

�w

�
�h

�v

�
� ��

Suppose for the moment that U is convex� Then we can deduce that g is
linear in �w� h is linear in w and h is linear in �v� Thus

gv� w� � �� 
v � � �w � �v �w�

hv� w� � �� ��v � w � ��vw�

where the Greek letters represent complex constants� Now ���� and ����
give the following relations among these constants�


 � � � � ��� � � � � ��

Thus
f � g � jh � �� j�� v � jw�
 � j��

� a� qb�

where a � ��j� and b � 
�j�� so f is of the stated form if U is convex� The
general connected open set can be covered by convex sets� any two of which
can be connected by a chain of convex sets which overlap in pairs� comparing
the forms of the function f on the overlaps� we see that fq� � a� qb with
the same constants a� b throughout U � �

Even if f is quaternion�di�erentiable� it will not in general satisfy Cauchy	s
theorem in the form Z

dqf � � ����

where the integral is round a closed curve� in fact the only functions satis�
fying this equation for all closed curves are the constant functions� We will
prove this for the in�nitesimal form of ����� namely

ddqf� � �� ����

Theorem � If the function f � U � H is real�di�erentiable in the connected

open set U and satis�es ddqf� � � in U � then f is constant on U �

Proof

ddqf� � dq � df � dt� eidxi� �
	
�f

�t
dt�

�f

�xj
dx




�

�
�f

�xi
� ei

�f

�t

�
dt � dxi � ei

�f

�xj
dxi � dxj

��



Thus

ddqf� � �� �f

�xi
� ei

�f

�t
����

and

ei
�f

�xj
� ej

�f

�xi
�����

�From ���� we have� for example�

�f

�x
i �

�f

�y
j

while from ������
�f

�x
j �

�f

�y
i�

Hence
�f

�x
� ��f

�y
ji �

�f

�y
ij � ��f

�x
�

So �f
�x

� � and therefore �f
�t

� �f
�y

� �f
�z

� � in U � It follows that f is
constant in U� �

We will now give a de�nition of �regular� for a quaternionic function
which is satis�ed by a large class of functions and opens the door to a
development similar to the theory of regular functions of a complex variable�

De�nition � A function f � H � H is left�regular at q � H if it is real�

di�erentiable at q and there exists a quaternion f ��q� such that

ddq � dq f� � ��Dq f ��q�� �����

It is right�regular if there exists a quaternion f �rq� such that

df dq � dq� � ��f �rq�Dq�

Clearly� the theory of left�regular functions will be entirely equivalent to
the theory of right�regular functions� For de�niteness� we will only consider

left�regular functions� which we will call simply regular� We will write

f �q� � f ��q� and call it the derivative of f at q�

Theorem � �the Cauchy�Riemann�Fueter equations�

A real�di�erentiable function f is regular at q if and only if

�rdfq� � �� �����

��



Proof Suppose f is regular at q� Then from ������

dq � dq � dfq � ��Dqf �q�

Evaluating these trilinear functions with i� j� k as arguments gives

ij � ji� dfqk� � jk � kj� dfqi� � ki� ik� dfqj� � ��f �q�
while using �� i� j as arguments gives

ij � ji� dfq�� � �kf �q��

Hence
f �q� � dfq�� � �fi dfqi� � j dfqj� � k dfqk�g �����

Comparing with ������ we see that �rdfq� � ��
Conversely� if �rdfq� � � we can de�ne f �q� � dfq�� and then evalu�

ating as above shows that dq � dq � dfq � �Dqf �q�� so that f is regular at
q� �

Note that ����� and ����� can be written as

����f �
�f

�t
� i

�f

�x
� j

�f

�y
� k

�f

�z
� � �����

and

f �q� �
�f

�t
� �����

Hence f � � ��f � If we write q � v � jw� fq� � gv� w� � jhv� w� as in
theorem �� ����� becomes the pair of complex equations

�g

��v
�

�h

� �w
�

�g

�w
� ��h

�v
�����

which show some similarity to the Cauchy�Riemann equations for a function
of a complex variable�

�From ����� and ����� it follows that if f is regular and twice di�eren�
tiable� then

�f � ��

i�e� f is harmonic� We will see in the next section that a regular function is
necessarily in�nitely di�erentiable� so all regular functions are harmonic�

The derivative of a regular function can be characterised as the limit of
a di�erence quotient which is analogous to that used to de�ne the derivative
of a complex�analytic function�

��



De�nition � An oriented k�parallelepiped in H is a map C � Ik � H �

where Ik � R
k is the closed unit k�cube� of the form

Ct�� ���� tk� � q� � t�h� � ���� tkhk�

q� � H is called the original vertex of the parallelepiped� and h�� ���� hk �
H are called its edge�vectors� A k�parallelepiped is non�degenerate if

its edge�vectors are linearly independent �over R�� A non�degenerate ��

parallelepiped is positively oriented if vh�� ���� h�� � �� negatively ori�

ented if vh�� ���� h�� � ��

Theorem � Suppose that f is regular at q� and continuously di�erentiable

in a neighbourhood of q�� Then given � � �� there exists � � � such that

if C is a non�degenerate oriented ��parallelepiped with q� � CI�� and q �
CI��� jq � q�j � �� then�����

�Z
C
Dq

��� �Z
�C

dq � dqf

�
� �f �q��

����� � ��

Proof First note that jjh��h��h�jj � jDqh�� h�� h��j is a norm on the real
vector space H � H � H � Now since dfq is a continuous function of q at q�� so
is dq � dq � dfq� hence we can choose � so that

jq � q�j � � �jdq � dq � dfqh�� h�� h��� dq � dq � dfq�h�� h�� h��j
� �jDqh�� h�� h��j� 	h�� h�� h� � H �

Let C be as in the statement of the theorem� with edge�vectors h�� h�� h��
Then by Stokes	s theorem�Z
�C

dq�dqf �

Z
C
ddq�dqf� �

Z Z Z �

�
dq�dq�dfC�t	h�� h�� h�� dt�dt�dt�

Since f is regular at q��

�

Z
C
Dqf �q�� � �

Z Z Z �

�
Dqh�� h�� h�� f

�q�� dt�dt�dt�

� �
Z Z Z �

�
dq � dq � dfq�h�� h�� h�� dt�dt�dt�

Thus����
Z
�C

dq � dqf � �

Z
C
Dqf �q��

���� 

Z Z Z �

�
jdq � dq � dfC�t	h�� h�� h��

� dq � dq � dfq�h�� h�� h��j dt�dt�dt�
� � jDqh�� h�� h��j � �

����
Z
C
Dq

���� � �

��



The corresponding characterisation of the derivative in terms of the val�
ues of the function at a �nite number of points is

f �q�� � � lim
h��h��h���


Dqh�� h�� h��
��fh�h� � h�h��fq� � h��� fq���

�h�h� � h�h��fq� � h��� fq���

�h�h� � h�h��fq� � h��� fq���g�
�����

This is valid if it is understood that h�� h�� h� are multiples of three
�xed linearly independent quaternions� hi � tiHi� and the limit is taken
as t�� t�� t� � �� The limit ����� is similar to that used by Joly 
�� art� ���
to de�ne rf for a function satisfying �f

�t
� �� which would be obtained as

the Cauchy�Riemann equations if dx � dy � dz were substituted for Dq in
the de�nition of regularity�

To make explicit the analogy between the de�nition of regular qua�
ternionic functions and the de�nition of regular complex functions by means
of the Cauchy�Riemann equations� note that the analogues of the ��form
�
�dq � dq� the ��form �Dq and the equation ddq � dqf� � ��Dqf �q� are
the ��form �� the ��form dz and the equation df � dzf �z�� The analogy
between theorem � and the di�erence�quotient de�nition of regular complex
functions can be made explicit by stating the latter as follows� If f is regular
at z�� then given � � � there exists � � � such that if L is a directed line
segment i�e� an oriented parallelepiped of codimension � in C � with z� � L
and z � L� jz � z�j � �� then�����

�Z
L
dz

��� �Z
�L

f

�
� f �z��

����� � ��

� Cauchy�s Theorem and the Integral Formula

The integral theorems for regular quaternionic functions have as wide a range
of validity as those for regular complex functions� which is considerably wider
than that of the integral theorems for harmonic functions� Cauchy	s theorem
holds for any recti�able contour of integration� the integral formula� which
is similar to Poisson	s formula in that it gives the values of a function in
the interior of a region in terms of its values on the boundary� holds for a
general recti�able boundary� and thus constitutes an explicit solution to the
general Dirichlet problem�

Our route to the general form of Cauchy	s theorem will be to use Goursa�
t	s method to prove the theorem for a parallelepiped� and immediately obtain

��



the integral formula for a parallelepiped� then we can deduce that an analytic
function is continuously di�erentiable� and use Stokes	s theorem to extend
Cauchy	s theorem to di�erentiable contours� The extension to recti�able
contours also follows from an appropriate form of Stokes	s theorem�

The heart of the quaternionic Cauchy	s theorem is the following fact�

Theorem 	 A di�erentiable function f is regular at q if and only if

Dq � dfq � ��

Proof
Dq � dfqi� j� k� l� � Dqi� j� k�dfql��Dqj� k� l�dfqi�

�Dqk� l� i�dfqj� �Dql� i� j�dfqk�

� dfql� � idfqi� � jdfqj� � kdfqk�

� �rdfq�

which vanishes if and only if f is regular at q� by theorem �� �

Theorem 
 �Cauchy�s theorem for a parallelepiped�

If f is regular at every point of the ��parallelepiped C�Z
�C

Dq f � ��

Proof 
�� Let q� and h�� ���� h� be the original vertex and edge�vectors of
C� For each subset S of f�� �� �� �g let CS be the ��parallelepiped with
edge�vectors �

�h�� ����
�
�h� and original vertex q� �

P
i�S

�
�hi� thenZ

�C
Dqf �

X
S

Z
�CS

Dqf

Hence there is a CS�call it C��such that����
Z
�C�

Dqf

���� � �

��

����
Z
�C

Dqf

���� �
Now perform a similar dissection of C�� Continuing in this way� we obtain
a sequence of ��parallelepipeds Cn� with original vertices qn� such that Cn

has edge�vectors ��nh�� ���� �
�nh�� C � C� � C� � ���� and����

Z
�Cn

Dqf

���� � �

��n

����
Z
�C

Dqf

���� � ����

��



Clearly there is a point q� � Cn� and qn � q� as n���
Since f is real�di�erentiable at q�� we can write

fq� � fq�� � �q � q�� � q � q��rq�

where � � dfq� � F�� and rq�� � as q � q�� Then if we de�ne rq�� � ��
r is a continuous function and so jrq�j has a maximum value 	n on �Cn�
Since the Cn converge on q�� 	n � � as n���

Now Z
�Cn

Dqfq� �

Z
Cn

dDq�fq�� � �

and Z
�Cn

Dq�q � q�� �

Z
Cn

dDq�� � ���nDq � ��h�� ���� h�� � �

by theorem �� since f is regular at q�� ThusZ
�Cn

Dqfq� �

Z
�Cn

Dqq � q��rq��

Let F � I� � H be one of the ��parallelepipeds forming the faces of Cn�
Then F � �Cn� and the edge�vectors of F are three of the four edge�vectors
of Cn� say ��nha� �

�nhb� and ��nhc� For q � F I�� we have jrq�j � 	n and
jq � q�j 
 ��njh�j� ���� jh�j�� hence����

Z
F
Dqq � q��rq�

���� 
 ��n jDqha� hb� hc�j ��n jh�j� ���� jh�j� 	n�

Let V be the largest jDqha� hb� hc�j for all choices of a� b� c� then since the
integral over �Cn is the sum of � integrals over faces F �����

Z
�Cn

Dqfq�

���� 
 �����nV jh�j� ���� jh�j� 	n�

Combining this with ����� we �nd����
Z
�C

Dqf

���� 
 �V jh�j� ���� jh�j�	n�

Since 	n � � as n��� it follows that
R
�C Dqf � �� �

��



Theorem �� �the Cauchy�Fueter integral formula for a parallelepiped�

If f is regular at every point of the positively oriented ��parallelepiped C�
and q� is a point in the interior of C�

fq�� �
�

���

Z
�C

q � q��
��

jq � q�j� Dq fq��

Proof 
�� The argument of theorem � shows that

Dq � dfq � ����fq�v ����

where v � dt � dx � dy � dz� for any di�erentiable function f � A similar
calculation shows that

dfq �Dq � ��rfq�v� ����

Hence if f and g are both di�erentiable�

dgDqf� � dgDq�f � gdDqf�

� dg �Dqf � gDq � df

�
�
��rg�f � g���f�


v

����

Take gq� � �q�q�	��

jq�q�j�
� �q��q�

jq�q�j�
� �r

�
�

jq�q�j�

�
� then g is di�erentiable except

at q�� and

��rg � �

�
�

jq � q�j�
�
� ��

If f is regular we have ���f � �� and so

d

�
q � q��

��

jq � q�j� Dqf

�
� ��

We can now follow the argument of theorem � to show that

Z
�C�

q � q��
��

jq � q�j� Dqfq� � �

where C � is any ��parallelepiped not containing q�� By dissecting the given
��parallelepiped C into �� ��parallelepipeds with edges parallel to those of
C� we deduce that

Z
�C

q � q��
��

jq � q�j� Dqfq� �

Z
�C�

q � q��
��

jq � q�j� Dqfq��

��



where C� is any ��parallelepiped containing q� which lies in the interior
of C and has edges parallel to those of C� Take C� to have edge�vectors
�h�� ���� �h�� where � is a positive real number and h�� ���� h� are the edge�
vectors of C� and suppose q� is at the centre of C� so that the original
vertex of C� is q� � �

��h� � ���� �
��h��� then

min
q��C�

jq � q�j � min
��a�b�c��

����� v�h�� ���� �h��

Dq���ha�
�
��hb�

�
��hc�

����� �W�

where W depends only on h�� ���� h�� Since f is continuous at q�� we can
choose � so that q � C�I

��� jfq�� fq��j � � for any given � � �� hence�����
Z
�C�

q � q��
��

jq � q�j� Dqffq�� fq��g
����� 
 �V

W �
� ����

where� as in theorem ��

V � max
��a�b�c��

jDqha� hb� hc�j�

Since the ��form �q�q�	��Dq

jq�q�j�
is closed and continuously di�erentiable in

H nfq�g� Stokes	s theorem gives

Z
�C�

q � q��
��Dq

jq � q�j� �

Z
S

q � q��
��Dq

jq � q�j�

where S is the ��sphere jq � q�j � �� oriented so that Dq is in the direction
of the outward normal to S� Working in spherical coordinates r� �� �� ��� in
which

q � q� � r
�
cos � � i sin � cos�� j sin � sin�e�i�

�
�

we �nd that on S� i�e� when r � ��

Dq � q � q�� sin
� � sin�d� � d� � d�

� q � q��dS
����

where dS is the usual Euclidean volume element on a ��sphere� Hence

Z
�C�

q � q��
��Dq

jq � q�j� �

Z
S
dS � ���

��



and so ���� becomes�����
Z
�C�

q � q��
��

jq � q�j� Dqfq�� ���fq��

����� 
 �V

W �
��

Since � was arbitrary� it follows that

Z
�C

q � q��
��

jq � q�j� Dqfq� �

Z
�C

q � q��
��

jq � q�j� Dqfq� � ���fq��� �

Because of the special role played by the function occurring in this in�
tegral formula� we will use a special notation for it�

Gq� �
q��

jqj� � ����

Note that

Gq� � ���
�

�

jqj�
�
� ��r

�
�

jqj�
�
� ����

it follows that ���G � �� i�e� G is regular except at ��
As an immediate corollary of the integral formula we have

Theorem �� A function which is regular in an open set U is real�analytic

in U �

Proof Suppose f is analytic in the open set U � and let q� be any point of
U � Then we can �nd a ��parallelepiped C� such that q� lies in the interior
of C� and C� lies inside U � and by theorem �� we have

fq�� �
�

���

Z
�C�

Gq � q��Dqfq��

Let C� be a ��parallelepiped such that q� � C�I
�� � intC�I

��� then in this
integral the integrand is a continuous function of q� q�� in C��I

���C�I
��

and a C� function of q� in C�I
��� It follows that the integral de�nes a C�

function of q� in C�I
��� Thus f is C� throughout U � Since f is regular in

U � so that ���f � �� eq� ����� gives �f � �� i�e� f is harmonic� It follows

��� p� ���� that f is real�analytic in U � �

This fact enables us to give the most general formulation of Cauchy	s
theorem and the integral formula for a di�erentiable contour of integration�

��



Theorem �� �Cauchy�s theorem for a dierentiable contour�

Suppose f is regular in an open set U � and let C be a di�erentiable ��chain
in U which is homologous to 	 in the di�erentiable singular homology of U �
i�e� C � �C � for some di�erentiable ��chain C � in U � ThenZ

C
Dq f � ��

Proof By theorem �� ddqf� � �� By theorem ��� the ��formDqf is in�nitely
di�erentiable in U � hence we can apply Stokes	s theorem to �ndZ

C
Dqf �

Z
�C�

Dqf �

Z
C�
dDqf� � �� �

In order to state the general form of the integral formula� we need an
analogue of the notion of the winding number of a curve round a point in
the plane�

De�nition � Let q be any quaternion� and let C be a closed ��chain in

H nfqg� Then C is homologous to a ��chain C � � �I� � S� where S is the

unit sphere with centre q� The wrapping number of C about q is the

degree of the map C ��

Theorem �� �the integral formula for a dierentiable contour�

Suppose f is regular in an open set U � Let q� � U � and let C be a di�eren�

tiable ��chain in Unfq�g which is homologous� in the di�erentiable singular

homology of Unfq�g� to a ��chain whose image is �B for some ball B � U �
Then

�

���

Z
C

q � q��
��

jq � q�j� Dq fq� � nfq��

where n is the wrapping number of C about q��

Proof In the case n � �� C is homologous to � in Unfq�g� so C � �C� where
C� is a di�erentiable ��chain in Unfq�g� Since the ��form Gq � q��Dqfq�
is closed and in�nitely di�erentiable in Unfq�g� Stokes	s theorem gives

�

���

Z
C
Gq � q��dqfq� �

�

���

Z
C�

d 
Gq � q��Dqfq�� � ��

In the case n � �� C is homologous to a ��chain C � � �I� � �B where
q� � B � U and the map C � has degree �� hence C is homologous to �C��

��



for some ��parallelepiped C� with q� � intC�I
�� and C�I

�� � U � Again
using the fact that the ��form Gq � q��Dq is closed in Unfq�g� we have

�

���

Z
C
Gq � q��Dqfq� �

�

���

Z
�C�

Gq � q��Dqfq� � fq��

by the integral formula for a parallelepiped�
For general positive n� C is homologous to a ��chain C �� of the form

C �� � 	 � C � where C � having image �B� is as in the previous paragraph
and 	 � �B � �B is a map of degree n� e�g�

	 
q� � rv � jw�� � q� � rvn � jw�

where r is the radius of B� Dissect C � as C � �
Pn

�
�C
�
� where the image of

C �
� is the sector�

q � q� � rv � jw� � �B �
���� ��

n

 arg v 
 ���

n

�
�

Then each 	 �C �
� has image �B and wrapping number � about q�� and so by

the previous paragraph

�

���

Z
C
Gq � q��Dqfq� �

�

���

nX
�
�

Z
��C�

�

Gq � q��Dqfq� � nfq���

In the case n � ��� C is a homologous to a ��chain C �� of the form
C �� � C � � K� where C � � �I� � �B has degree � and K � �I� � �I� has
degree ��� for example the re ection t�� t�� t�� t��� �� t�� t�� t�� t��� ThenZ

C
�

Z
C��

� �
Z
C�

� ����fq���

the integrand Gq�q��Dqfq� being understood� For general negative n we
dissect the ��chain C as for general positive n� This establishes the theorem
for all n� �

More generally� Cauchy	s theorem and the integral formula are valid for
recti�able contours� which we de�ne as follows�

De�nition � Let C � I� � H be a continuous map of the unit ��cube into

H � and let P � � � s� � s� � ��� � sp � �� Q � � � t� � t� � ��� � tq � �

��



and R � � � u� � u� � ��� � ur � � be three partitions of the unit interval I�
De�ne

�C�P�Q�R� �
p��X
l
�

q��X
m
�

r��X
n
�

DqCsl��� tm� un�� Cs�� tm� un��

Cs�� tm��� un�� Cs�� tm� un��

Cs�� tm� un���� Cs�� tm� un���

C is a recti�able ��cell if there is a real numberM such that �C�P�Q�R� �
M for all partitions P � Q� R� If this is the case the least upper bound of the

numbers C�P�Q�R� is called the content of C and denoted by �C��
Let f and g be quaternion�valued functions de�ned on CI��� We say

that fDqg is integrable over C if the sum

p��X
l
�

q��X
m
�

r��X
n
�

fC�s�� �tm� �un��DqCsl��� tm� un��Cs�� tm� un��

Cs�� tm��� un��Cs�� tm� un��

Cs�� tm� un����Cs�� tm� un��gC�s� �tm� �un���

where s� 
 �s� 
 s���� tm 
 �tm 
 tm�� and un 
 �un 
 un��� has a limit

in the sense of Riemann�Stieltjes integration as jP j� jQj� jRj � �� where

jP j � max����p�� js��� � s�j measures the coarseness of the partition P � If
this limit exists� we denote it by

R
C fDqg�

We extend these de�nitions to de�ne recti�able ��chains and integrals over
recti�able ��chains in the usual way�

Just as for recti�able curves� we can show that fDqg is integrable over
the ��chain C if f and g are continuous and C is recti�able� and����

Z
C
f Dq g

���� 
 max
C
jf j�max

C
jgj��C��

Furthermore� we have the following weak form of Stokes	s theorem�
Stokes
s theorem for a recti�able contour� Let C be a recti�able ��chain in
H with �C � �� and suppose f and g are continuous functions de�ned in
a neighbourhood U of the image of C� and that fDqg � d� where � is a
��form on U � Then Z

C
f Dq g � ��

��



The proof proceeds by approximating C by a chain of ��parallelepipeds
with vertices at the points Cas�� tm� un� where Ca is a ��cell in C and s��
tm� un are partition points in I� Stokes	s theorem holds for this chain of ��
parallelepipeds� and we can use the same argument as for recti�able curves
see e�g� 
��� p� ������

We can now give the most general forms of Cauchy	s theorem and the
integral formula�

Theorem �� �Cauchy�s theorem for a recti�able contour�

Suppose f is regular in an open set U � and let C be a recti�able ��chain

which is homologous to 	 in the singular homology of U � ThenZ
C
Dq f � ��

Proof First we prove the theorem in the case when U is contractible� In
this case� since dDqf� � � and f is continuously di�erentiable by theorem
���� Poincar!e	s lemma applies and we have Dqf � d� for some ��form � on
D� But �C � �� so by Stokes	s theorem

R
C Dqf � ��

In the general case� suppose C � �C� where C� is a ��chain in U � We
can dissect C� as C� �

P
nC

�
n� where each C�

n is a ��cell lying inside an
open ball contained in U and C�

n is recti�able� Hence by the �rst part of
the theorem

R
�C�n

Dqf � �� and therefore

Z
C
Dq f �

X
n

Z
�C�n

Dqf � �� �

A similar argument proves the following general form of the integral
formula

Theorem �� �the integral formula for a recti�able contour�
Suppose f is regular in an open set U � Let q� � U � and let C be a recti�able

��chain in Unfq�g which is homologous� in the singular homology of Unfq�g�
to a di�erentiable ��chain whose image is �B for some ball B � U � Then

�

���

Z
C

q � q��
��

jq � q�j� Dq fq� � nfq��

where n is the wrapping number of C about q��

��



� Some Immediate Consequences

Since regular functions are harmonic� they satisfy a maximum�modulus prin�
ciple and a Liouville theorem� As with functions of a complex variable�
Liouville	s theorem follows immediately from the Cauchy�Fueter integral
formula� as in e�g� 
��� p� �� second proof���

Morera	s theorem also holds for quaternionic functions� but in this case
the usual proof cannot easily be adapted� The proof given here is based on
an incomplete proof by Schuler 
���

Theorem �� �Morera�s theorem� Suppose that the function f is con�

tinuous in an open set U and that
R
�C Dqf � � for every ��parallelepiped C

contained in U � Then f is regular in U �

Proof The method is to show that f satis�es the integral formula and then
argue as for the analyticity of a regular function theorem ����

First we show that
R
�C Gq � q��Dqfq� � � if q� does not lie inside

C� using Goursat	s argument� As in theorem �� we �nd a sequence of ��
parallelepipeds Cn� converging on a point q� and satisfying����

Z
�Cn

Gq � q��dqfq�

���� � �

��n

����
Z
�C

Gq � q��dqfq�

���� � ����

Since q� lies outside C� Gq � q�� is a right�regular function of q inside C
and so� by the counterpart of theorem � for right�regular functions� dGq�q��
Dq � �� Now write

Gq � q�� � Gq� � q�� � �q � q�� � q � q��rq�

where � � dGq��q� � F�� so that ��Dq � �� and rq�� � as q � q�� and
write

fq� � fq�� � sq�

where sq�� � as q � q�� ThenZ
�Cn

Gq � q��Dqfq� � Gq� � q��

Z
�Cn

Dqfq� �

Z
�C

�q � q��Dqfq��

�

Z
�Cn

�q � q��Dqsq� �

Z
�Cn

q � q��rq�Dqfq�

The �rst term vanishes by assumption� the second because � � Dq � ��
Now for q � �Cn we have jq � q�j 
 ��nL� where L is the sum of the

��



lengths of the edges of C� since � is linear� there is a number M such that
j�q � q�j 
 M jq � q�j� The volume of each face of Cn is at most ��nV �
where V is the volume of the largest face of C� Hence����
Z
�Cn

Gq � q��Dqfq�

���� 
 ��nLM���nV �n � ��nL	n��
�nV jfq��j� �n�

where 	n and �n are the maximum values of the continuous functions rq�
and sq� on �Cn� Since 	n � � and �n � � as n��� it follows that

��n
����
Z
Cn

Gq � q��Dqfq�

����� � as n��

and so from ���� that
R
�C Gq � q��Dqfq� � ��

Now consider the integral
R
�C Gq � q��Dqfq� where q� lies inside C�

By what we have just proved� the parallelepiped can be replaced by a small
parallelepiped C� containing q�� as in theorem ��� After this point has been
established� the proof of theorem �� depends only on the continuity of f and
is therefore valid under the present conditions� hence

fq� �
�

���

Z
�C

Gq� � q�Dq�fq��

for any ��parallelepiped C with q � intCI�� � U � Since Gq� � q� is a
continuously di�erentiable function of q in the interior of C as long as q�

lies on its boundary� it follows� as in theorem ��� that f is di�erentiable and
that

���fq� �
�

���

Z
�C

���
Gq
� � q��Dq�fq�� � �

since G is regular� Thus f is regular� �

� Construction of Regular Functions

Regular functions can be constructed from harmonic functions in two ways�
First� if f is harmonic then ����� shows that ��f is regular� Second� any
real�valued harmonic function is� at least locally� the real part of a regular
function�

Theorem �� Let u be a real�valued function de�ned on a star�shaped open

set U � H � If u is harmonic and has continuous second derivatives� there is

a regular function f de�ned on U such that Re f � u�

��



Proof Without loss of generality we may assume that U contains the origin
and is star�shaped with respect to it� In this case we will show that the
function

fq� � uq� � �Pu

Z �

�
s���usq�q ds ����

is regular in U �
Since

Re

Z �

�
s���usq�q ds �

�

�

Z �

�
s�
�
t
�u

�t
sq� � xi

�u

�xi
sq�

�
ds

�
�

�

Z �

�
s�

d

ds

usq�� ds

� �
�uq��

Z �

�
susq� ds�

we can write

fq� � �

Z �

�
s���usq�q ds� �

Z �

�
susq� ds� ����

Since u and ��u have continuous partial derivatives in U � we can di�erentiate
under the integral sign to obtain� for q � U �

���fq� � �

Z �

�
s� ��� 
��usq�� q ds�

Z �

�
s� f��usq� � ei��usq�eig ds��

Z �

�
s� ���usq� ds�

But ��� 
��usq�� �
�
�s�usq� � � since u is harmonic in U � and

��usq� � ei��usq�ei � ����usq� by �����

� �����usq� since u is real�

Hence ���f � � in U and so f is regular� �

If the region U is star�shaped with respect not to the origin but to some
other point a� formulae ���� and ���� must be adapted by changing origin�
thus�

fq� � uq� � �Pu

Z �

�
s���u��s�a�sq�q�a� ds ����

� �

Z �

�
s���u��s�a�sq�q�a� ds � �

Z �

�
su��s�a�sq� ds�����

An example which can be expected to be important is the case of the function
uq� � jqj��� This is the elementary potential function in four dimensions�

��



as log jzj is in the complex plane� and so the regular function whose real
part is jqj�� is an analogue of the logarithm of a complex variable�

We take U to be the whole of H except for the origin and the negative
real axis� Then U is star�shaped with respect to �� and jqj�� is harmonic in
U � Put

uq� �
�

jqj� � ��uq� � �q��

jqj� � a � ��

then ���� gives

fq� � �qPu q��� � �

jPu qj� arg q if Pu q �� �

�
�

jqj� if q is real and positive�

�����
����

����

where

arg q � logUn q� �
Pu q

jPu qj tan
��
� jPu qj

Re q

�
� ����

which is i times the usual argument in the complex plane generated by q�
In practice the formulae ���� and ���� are not very convenient to use� and
it is easier to obtain ���� by solving the equations

r�F � � �t

t� � r���

and
�F

�t
�r� F �

�r

t� � r���
�

where t � Re q� r � Pu q and r � jrj�these express the fact that F � H � P
is the pure quaternion part of a regular function whose real part is jqj���
and assuming that F has the form F r�r��

We will denote the function ���� by ��Lq�� The derivative of Lq� can
most easily be calculated by writing it in the form

Lq� � � r� � teixi
�r�r� � t��

�
eixi
�r�

tan��
�
r

t

�
� ����

the result is

��Lq� � Gq� �
q��

jqj� � ����

��



Thus Lq� is a primitive for the function occurring in the Cauchy�Fueter
integral formula� just as the complex logarithm is a primitive for z��� the
function occurring in Cauchy	s integral formula�

Theorem �� shows that there are as many regular functions of a qua�
ternion variable as there are harmonic functions of four real variables� However�
these functions do not include the simple algebraic functions� such as powers
of the variable� which occur as analytic functions of a complex variable�
Fueter 
�� also found a method for constructing a regular function of a qua�
ternion variable from an analytic function of a complex variable�

For each q � H � let q � C � H be the embedding of the complex numbers
in the quaternions such that q is the image of a complex number �q� lying
in the upper half�plane� i�e�

qx� iy� � x�
Pu q

jPu qjy� ����

�q� � Re q � ijPu qj� �����

Then we have

Theorem �	 Suppose f � C � C is analytic in the open set U � C � and
de�ne "f � H � H by

"fq� � q � f � �q�� �����

Then � "f is regular in the open set ���U� � H � and its derivative is

��� "f� � � "f �� �����

where f � is the derivative of the complex function f �

Proof 
�� Writing t � Re q� r � Pu q� r � jrj� and ux� y� � Re fx � iy��
vx� y� � Im fx� iy�� the de�nition of "f gives

"fq� � ut� r� �
r

r
vt� r�

Re
h
��� "fq�

i
� �

�

�
�

�t

ut� r���r�

�
r

r
vt� r�

��
� �

�u�t� r��
vt� r�

r
� �

�v�t� r�

�����
where the subscript � or � on u and v denotes partial di�erentiation with
respect to the �rst or second variable� and

Pu
h
��� "fq�

i
� �

�

�
r 
ut� r�� �

�

�t

�
r

r
vt� r�

�
�r�

�
r

r
vt� r�

��

� �
�

�
r

r
u�t� r� �

r

r
v�t� r�

�
�

��



Since f � u� iv is analytic� the Cauchy�Riemann equations give u� � v� �
u� � v� � � and so

��� "fq� � �vt� r�

r
�

Hence

���� "fq� � ����fq� � �
	
��

�t�
�
�

r

��

�r�
r



vt� r�

r

� �v��t� r� � v��t� r�

r
� �

since v is a harmonic function of two variables� Thus f is regular at q if f
is analytic at �q��

A calculation similar to the above shows that

�� "fq� �
�
� u� � v�� �

v

r
� �

�

r

r
�u� � v��

� u�t� r� �
r

r
v�t� r� �

vt� r�

r

by the Cauchy�Riemann equations for f � But f � � u��iv�� so � "f � "f ��v�r�
and �v�r� � �� so

��� "f� � ��� "f� � � "f �� �

Functions of the form f have been taken as the basis of an alternative
theory of functions of a quaternion variable by Cullen 
����

�From ����� a straightforward calculation� using the fact that u and v
are harmonic functions� gives

� "fq� �
�u�t� r�

r
�
�r

r

�
v�t� r�

r
� vt� r�

r�

�
�����

The following examples are interesting� When

fz� � z��� � "fq� � ��Gq�� �����

when
fz� � log z� � "fq� � ��Lq� �����

��



� Regular Functions and Conformal Mappings

Because the quaternions are four�dimensional� very little remains in qua�
ternionic analysis of the relation between analytic functions and conformal
mappings in complex analysis� However� the conformal group of H acts on
regular functions in a simple way� The action of rotations and inversions
will be needed in studying regular polynomials� and so it seems appropriate
to present here the action of the full conformal group�

Theorem �
 Let H� � H � f�g be the one�point compacti�cation of H �

If the mapping f � H� � H
� is conformal and orientation�preserving� f is

of the form

fq� � aq � b�cq � d��� ����

for some a� b� c� d � H � Conversely� any such mapping is conformal and

orientation�preserving�

Proof Let C be the group of orientation�preserving conformal mappings of
H
�� and let D be the set of mappings of the form ����� Then if f � D� f

has di�erential

dfq � ac��d� b�cq � d���c dqcq � d���

This is of the form �dq
� which is a combination of a dilatation and a
rotation� so f is conformal and orientation�preserving� Thus D is a subset
of C� Now C is generated by rotations� dilatations� translations and the
inversion in the unit sphere followed by a re ection 
��� p� ����� i�e� by the
mappings q �� �q
� q �� q � � and q �� q��� If a mapping in D is followed
by any of these mappings� it remains in D� hence CD � D� It follows that
D � C� �

The same argument can be used to obtain the alternative representation
fq� � qc� d���qa� b��

We now show how a regular function gives rise to other regular functions
by conformal transformation of the variable�

Theorem ��

�i� Given a function f � H � H � let If � H nf�g � H be the function

If q� �
q��

jqj� fq
����

If f is regular at q��� If is regular at q�

��



�ii� Given a function f � H � H and quaternions a� b� let Ma� b�f be the

function

Ma� b�f �q� � bfa��qb��

If f is regular at aqb� Ma� b�f is regular at q�

�iii� Given a function f � H � H and a conformal mapping � � q �� aq �
b�cq � d���� let M��f be the function


M��f �q� �
�

jb� ac��dj�
cq � d���

jcq � dj� f�q���

If f is regular at �q�� M��f is regular at q�

Proof i� By theorem �� it is su�cient to show that

Dq � dIf �q � ��

Now If � Gf � ��� where Gq� � q��

jqj� and � � H nf�g � H is the inversion

q �� q��� Hence

Dq � dIf �q � Dq � dGqfq
��� �Dq �Gq�df � ��q

� DqGq� � ��qdfq��

since G is regular at q �� �� But

��qDqh�� h�� h�� � Dq�q��h�q
����q��h�q

����q��h�q
���

� �q��

jqj�Dqh�� h�� h��q
��

by ������ Thus
DqGq� � �jqj�q��qDq

and so
Dq � dIf �q � �jqj�q��qDq � dfq���

� �

if f is regular at q��� �

ii� Let � � H � H be the map q �� aqb� Then by �����

��Dq � jaj�jbj�aDq b

��



and so

Dq � d
Ma� b�f �q � Dq � b��qdf��q	

� jaj��jbj��a����qDq�b�� � b��qdf��q	

� jaj��jbj��a����qDq � df��q	�

� �

if f is regular at �q�� It follows from theorem � that Ma� b�f is regular at
q� �

iii� The map q �� �q� � aq�b�cq�d��� can be obtained by composing
the sequence of maps

q � q� � cqb� ac��d��� ����

q� � q�� � q� � db� ac��d��� ����

q�� � q��� � q���� ����

q��� � �q� � q��� � ac�� ����

Clearly translation preserves regularity� i�e� if f is regular at q��� fq���
is regular at q� Applying this to the maps ����� part i� of the theorem to
���� and part ii� to ����� we �nd that M��f is regular at q if f is regular
at �q�� �

� Homogeneous Regular Functions

In this section we will study the relations between regular polynomials�
harmonic polynomials and harmonic analysis on the group S of unit qua�
ternions� which is to quaternionic analysis what Fourier analysis is to com�
plex analysis�

The basic Fourier functions ein� and e�in�� regarded as functions on the
unit circle in the complex plane� each have two extensions to harmonic func�
tions on Cnf�g� thus we have the four functions zn� �zn� z�n and �z�n� The
requirement of analyticity picks out half of these� namely zn and z�n� In the
same way the basic harmonic functions on S� namely the matrix elements
of unitary irreducible representations of S� each have two extensions to har�
monic functions on H nf�g� one with a negative degree of homogeneity and
one with a positive degree� We will see that the space of functions belonging
to a particular unitary representation� corresponding to the space of com�
binations of ein� and e�in� for a particular value of n� can be decomposed

��



into two complementary subspaces� one like ein�� gives a regular function
on H nf�g when multiplied by a positive power of jqj� the other like e�in��
has to be multiplied by a negative power of jqj�

Let Un be the set of functions f � H nf�g � H which are regular and
homogeneous of degree n over R� i�e�

f�q� � �nfq� for � � R�

Removing the origin from the domain of f makes it possible to consider
both positive and negative n the alternative procedure of adding a point at
in�nity to H has disadvantages� since regular polynomials do not necessarily
admit a continuous extension to H �f�g �� S��� Let Wn be the set of func�
tions f � H nf�g � H which are harmonic and homogeneous of degree n over
R� Then Un and Wn are right vector spaces over H with pointwise addition
and scalar multiplication� and since every regular function is harmonic� we
have Un �Wn�

Functions in Un and Wn can be studied by means of their restriction to
the unit sphere S � fq � jqj � �g� Let

"Un � ff jS � f � Ung� "Wn � ff jS � f �Wng�
then Un and "Un are isomorphic as quaternionic vector spaces� by virtue of
the correspondence

f � Un � "f � "Un� where fq� � rn "fu�� ����

using the notation r � jqj � R� u � q
jqj � S�

Similarly Wn and "Wn are isomorphic�
In order to express the Cauchy�Riemann�Fueter equations in a form ad�

apted to the polar decomposition q � ru� we introduce the following vector
�elds X�� ����X� on H nf�g�

X�f �
d

d�

h
fqe��

i
�
�

� ����

Xif �
d

d�

h
fqeei��

i
�
�

�
d

d�
f 
qcos � � ei sin ����
� i � �� �� �������

These �elds form a basis for the real vector space of left�invariant vector
�elds on the multiplicative group of H � and they are related to the Cartesian
vector �elds �

�t
� �
�xi

by

X� � t
�

�t
� xi

�

�xi
� ����

��



Xi � �xi �
�t

� t
�

�xi
� �ijk xj

�

�xk
� ����

�

�t
�

�

r�
tX� � xiXi�� ����

�

�xi
�

�

r�
�ijkxjXk � tXi � xiX��� ����

Their Lie brackets are


X��Xi� � �� ����


Xi�Xj � � ��ijkXk� ����

Using ���� and ���� the di�erential operators ��� and � can be calculated
in terms X� and Xi� The result is

��� � �
� �q
��X� � eiXi�� �����

� �
�

r�
fXiXi �X�X� � ��g � �����

�From ����� we can deduce the following well�known� facts about Wn�

Theorem ��

�i� "Wn � "W�n��

�ii� dimWn � n� ���

�iii� The elements of Wn are polynomials in q�

Proof The elements of Wn� being homogeneous of degree n� are eigenfunc�
tions of X� with eigenvalue n� Since they are also harmonic� e�g� �����
shows that they are eigenfunctions of XiXi with eigenvalue �nn���� Now
the vector �elds Xi are tangential to the sphere S� so their restrictions
"Xi � XijS are vector �elds on S� they are a basis for the real vector space of
left�invariant vector �elds on the Lie group S� which is isomorphic to SU���
Thus if "f � "Wn� "f � f jS for some f � Wn� so f is an eigenfunction of
XiXi with eigenvalue �nn��� and therefore "f is an eigenfunction of "Xi

"Xi

with eigenvalue �nn���� Conversely� if "f is an eigenfunction of "Xi
"Xi with

eigenvalue �nn� ��� then

�
h
rn "fu�

i
�

�

r�

n
rn "Xi

"Xi
"f � 
X�X� � ��rn� "f

o
� �

��



so "f � "Wn� Thus "Wn is the space of eigenfunctions of "Xi
"Xi with eigenvalue

�nn� ���
It follows immediately that "Wn � "W�n��� �i�
"Wn is the quaternioni�cation of the complex vector space "W c

n of complex�
valued functions on S which have eigenvalue �nn��� for "Xi

"Xi� It is known

��� p� ��� that this space has a basis consisting of the matrix elements of
the n� ���dimensional representation of the group S� Hence

dimH
"Wn � dimCW

c
n � n� ���� �ii�

In particular� "W� consists only of constant functions� and therefore so
does W�� Now if f belongs to Wn�

�f
�t

and �f
�xi

belong to Wn��� and all the
nth partial derivatives of f belong to W�� hence all the n � ��th partial
derivatives of f vanish and so f is a polynomial� �iii�

Theorem ��

�i� "Wn � "Un � "U�n��

�ii� Un
�� U�n��

�iii� dimUn � �
� n� ��n� ��

Proof i� Eq� ����� shows that the elements of Un� which satisfy X�f � nf
and ��if � �� are eigenfunctions of # � eiXi with eigenvalue �n� As in
theorem ��� it follows that Un consists of the eigenfunctions of # � eiXi

with eigenvalue �n� Now using ����� it can be shown that # satis�es the
equation

#� � �# �XiXi � �

and therefore
"#� � �"# �XiXi � ��

Hence
"f � "Wn � "Xi

"Xif � �nn� ��f

� "#�n���"#�n�f � �

It follows that "Wn is the direct sum of the eigenspaces of "# with eigenvalues
�n and n � � these are vector subspaces of "Wn since the eigenvalues are
real�� i�e�

"Wn � "Un � "U�n�� �i�

��



ii� It follows from theorem ��i� that the mapping I is an isomorphism
between Un and U�n��� �ii�

iii� Let dn � dimUn� By �� and theorem �� ii��

dn � d�n�� � n� ���

and by ii�� d�n�� � dn��� Thus dn � dn�� � n� ���� The solution of this
recurrence relation� with d� � �� is

dn �
�
�n� ��n� ��� �iii�

There is a relation between theorem ��ii� and the fact that homogeneous
regular functions are eigenfunctions of #� Theorem ��ii� refers to a repres�
entation M of the group H

�� H
� de�ned on the space of real�di�erentiable

functions f � H nf�g � H by


Ma� b�f �q� � b fa��qb��

Restricting to the subgroup fa� b� � jaj � jbj � �g� which is isomorphic to
SU���SU��� we obtain a representation of SU���SU��� Since the map
q �� aqb is a rotation when jaj � jbj � �� the set W of harmonic functions is
an invariant subspace under this representation� Now W � H �CW c� where
W c is the set of complex�valued harmonic functions� and the representation
of SU��� SU�� can be written as

Ma� b�q � f� � bq��Ra� b�f

where R denotes the quasi�regular representation corresponding to the ac�
tion q �� aqb�� of SU��� SU�� on H nf�g�


Ra� b�f �q � fa��qb��

Thus M jW is the tensor product of the representations D��D� and RjW c

of SU���SU��� where Dn denotes the n� l��dimensional complex repres�
entation of SU��� The isotypic components of RjW c are the homogeneous
subspacesW c

n� on which R acts irreducibly as Dn�Dn� thusWn is an invari�
ant subspace under the representation M � and M jWn is the tensor product
D��D���Dn�Dn�� Wn therefore has two invariant subspaces� on which
M acts as the irreducible representations Dn�Dn�� and Dn�Dn��� These
subspaces are the eigenspaces of #� To see this� restrict attention to the
second factor in SU��� SU��� we have the representation

M �b�q � f� �M�� b�q � f� � 
D�b�q�� 
R�� b�f �

��



where D�b�q � bq� The in�nitesimal generators of the representation
R�� b� are the di�erential operators Xi� the in�nitesimal generators of D

�b�
are ei by which we mean left multiplication by ei�� Hence the in�nitesimal
operators of the tensor product M � are ei�Xi� The isotypic components of
W are the eigenspaces of the Casimir operator

ei �Xi�ei �Xi� � eiei �XiXi � �#�

But eiei � ��� and XiXi � �nn� �� on Wn� hence

ei �Xi�ei �Xi� � �#� n� � �n� ��

and so the isotypic components of Wn for the representation M � are the
eigenspaces of #� Un� the space of homogeneous regular functions of degree
n� has eigenvalue �n for #� and so M �jUn is the representation Dn�� of
SU���

Similar considerations lead to the following fact�

Theorem �� If f is regular� qf is harmonic�

Proof First we show that f � Un � qf � Wn� From the de�nition ���� of
the operators Xi we have

Xiq� � qei

Hence
XiXiqf� � Xiqeif � qXif�

� ��qf � �qeiXif � qXiXif

since the Xi are real di�erential operators� If f � Un� it is an eigenfunction
of eiXi with eigenvalue �n and of XiXi with eigenvalue �nn� ��� and so

XiXiqf� � �n� ��n� ��f�

Since qf is homogeneous of degree n � �� it follows from ����� that it is
harmonic� But any regular function can be represented locally as a series
f �

P
fn with fn � Un� and so the result follows for any regular f � �

The representationM of SU���SU�� can also be used to �nd a basis of
regular polynomials� It belongs to a class of induced representations which
is studied in 
���� where a procedure is given for splitting the representation
into irreducible components and �nding a basis for each component� Rather
than give a rigorous heuristic derivation by following this procedure� which
is not very enlightening in this case� we will state the result and then verify
that it is a basis�

��



Since the functions to be considered involve a number of factorials� we
introduce the notation

z�n� �
zn

n$
if n � �

� � if n � �

for a complex variable z� This notation allows the convenient formulae

d

dz
z�n� � z�n���� �����

z� � z��
�n� �

X
r

z
�r�
� z

�n�r�
� � �����

where the sum is over all integers r�
The representation Dn of S �� SU�� acts on the space of homogeneous

polynomials of degree n in two complex variables by


Dnu�f �z�� z�� � fz��� z
�
���

where
z�� � jz�� � u��z� � jz���

Writing u � v � jw where v� w � C and jvj� � jwj� � �� we have

z�� � �vz� � �wz�� z�� � �wz� � vz��

Hence the matrix elements ofDnu� relative to the basis fkz�� z�� � z
�k�
� z

�n�k�
�

are
Dn

k�u� � ��nk$n� k�$P n
k�u�

where
P n
k�v � jw� �

X
r

��rv�n�k���r��v�r�w�k�r� �w���r� �����

The functions P n
k�q� are de�ned for all quaternions q � v � jw and for all

integers k� �� n� but they are identically zero unless � 
 k� � 
 n�

Theorem �� As a right vector space over H � Un has the basis

Qn
k�q� � P n

k�q�� jP n
k����q� � 
 k 
 � 
 n��

Proof Using ������ it is easy to verify that Qn
k� satis�es the Cauchy�

Riemann�Fueter equations in the form

�P n
k�

��v
� ��P n

k����

� �w
�

�P n
k�

�w
�

�P n
k����

�v
�

��



cf� ������ Since the functions Dn
k� are independent over C as functions on

S for � 
 k� � 
 n� the functions P n
k� are independent over C as functions

on H for � 
 k� � 
 n� It follows that the functions Qn
k� � 
 k 
 n � ��

� 
 � 
 n� are independent over C and therefore span a right vector space
over H of dimension at least �

�n� ��n� ��� Since this space is a subspace
of Un� which has dimension �

� n� ��n� ��� the Qn
k� span Un�

Since zj � j�z for any z � C � it can be seen from the de�nition �����
that

P n
k� j � j P n

n�k�n��

and therefore
Qn
k� j � Qn

n�k���n���

Thus Un is spanned by the Qn
k� � 
 k 
 � 
 n�� which therefore form a

basis for Un� �

Another basis for Un will be given in the next section�
We conclude this section by studying the quaternionic derivative ���

Since �� is a linear map from Un into Un�� and dimUn � dimUn��� ��
must have a large kernel and so we cannot conclude from ��f � � that f is
constant� However� although the result is far from unique� it is possible to
integrate regular polynomials�

Theorem �� Every regular polynomial has a primitive� i�e� �� maps Un

onto Un�� if n � ��

Proof Suppose f � Un is such that ��f � �� Then

�f

�t
� ei

�f

�xi
� ��

Thus f can be regarded as a function on the space P of pure imaginary
quaternions� Using vector notation for elements of P and writing f � f�� f

with f� � R� f � P � the condition ei
�f
�xi

� � becomes

rf� �r� f � �� r�f � ��

If n � �� we can de�ne f�� so that these hold throughout P � and so there
exists a function F � P � P such that

f � r� F� f� � �r�F�
i�e�

f � ei
�F

�xi
�

��



Then F is harmonic� i�e� r�F � ��
Let Tn be the right quaternionic vector space of functions F � P � H

which are homogeneous of degree n and satisfy r�F � �� then dimTn �
�n � �� Let Kn be the subspace of Tn consisting of functions satisfying
ei

�F
�xi

� �� then Kn � ker �� � Un� The above shows that ei
�
�xi

� Tn�� � Tn
maps Tn�� onto Kn� its kernel is Kn��� and so

dimKn � dimKn�� � dimTn�� � �n� ��

The solution of this recurrence relation� with dimK� � �� is dimKn � n���
But

dimUn � dimUn�� �
�
�n� ��n� ��� �

�nn� �� � n� ��

It follows that �� maps Un onto Un��� �

Theorem �� If n � �� the map �� � Un � Un�� is one�to�one�

Proof We introduce the following inner product between functions de�ned
on the unit sphere S�

hf� gi �
Z
S
fu�gu�du

where du denotes Haar measure on the group S� normalised so that
R
S du �

�
��

�� For functions de�ned on H � we can use ���� to write this as

hf� gi �
Z
S
fq�q��Dq gq�

As a map � Un�Un � H � this is antilinear in the �rst variable and linear in
the second� i�e�

hfa� gbi � �ahf� gib for all a� b � H

and is non�degenerate since hf� fi � � �� f � ��
Now let f � Un� g � U�n�� and let I denote the map � Un � U�n��

de�ned in theorem ��i�� Then

hg� I��fi �
Z
S
gq�q��Dq q����fq

���

� �
Z
S
gq���Dq ��f��

��



where � denotes the map q �� q�� and we have used the fact that ��Dq �
�q��Dqq�� for q � S� Since f is regular� Dq��f � �

�ddq � dqf� and so

hg� I��fi � ��

�

Z
S
gq�d
��dq � dq f��

� ��

�

Z
S
d�g � ��dq � dq f� since �S � ��

On S� the inversion � coincides with quaternion conjugation� hence ��dq � d�q
and therefore

hg� I��fi � ��

�

Z
S
d�g � d�q � d�qfq���

� ��

�

Z
S
dq � dq � dgfq���

� �
Z
S
Dq � ��gq�fq

���

since g is regular� Since conjugation is an orthogonal transformation with
determinant ��� Dq�h�� �h�� �h�� � �Dqh�� h�� h��� hence� because conjuga�
tion is the same as inversion on S�

Dq � ���Dq � q��Dq q���

Thus

hg� I��fi � �
Z
S
��gq�q

��Dq q��fq���

� �h��g� If i�
But I is an isomorphism� the inner product is non�degenerate on U�n���
and �� maps U�n�� onto U�n�� if n 
 ��� it follows that �� � Un � Un�� is
one�to�one� �

In the missing cases n � �� and n � ��� theorems �� and �� are both
true trivially� since U�� � U�� � f�g�

	 Regular Power Series

The power series representing a regular function� and the Laurent series
representing a function with an isolated singularity� are most naturally ex�
pressed in terms of certain special homogeneous functions�

Let � be an unordered set of n integers fi�� ���� ing with � 
 ir 
 �� � can
also be speci�ed by three integers n�� n�� n� with n� � n� � n� � n� where
n� is the number of �	s in �� n� the number of �	s and n� the number of �	s�

��



and we will write � � 
n�n�n��� There are
�
�n � ��n � �� such sets �� we

will denote the set of all of them by �n� They are to be used as labels� when
n � �� so that � � �� we use the su�x � instead of �� We write �� for the
n	th order di�erential operator

�� �
�n

�xi� ����xin
�

�n

�xn��yn��zn�
�

The functions in question are

G�q� � ��Gq� ����

and

P�q� �
�

n$

X
tei� � xi�����tein � xin� ����

where the sum is over all n�
n��n��n��

di�erent orderings of n� �	s� n� �	s and n�

�	s� Then P� is homogeneous of degree n and G� is homogeneous of degree
�n� ��

As in the previous section� Un will denote the right quaternionic vector
space of homogeneous regular functions of degree n�

Theorem �� The polynomials P� �� � �n� are regular and form a basis for

Un�

Proof 
��� Let f be a regular homogeneous polynomial of degree n� Since
f is regular

�f

�t
�
X
i

ei
�f

�xi
� �

and since it is homogeneous�

t
�f

�t
�
X
i

xi
�f

�xi
� ��

Hence

nfq� �
X
i

xi � tei�
�f

�xi
�

But �f
�xi

is regular and homogeneous of degree n � �� so we can repeat the
argument� after n steps we obtain

fq� �
�

n$

X
i����in

xi� � tei�����xin � tein�
�nf

�xi� ����xin

�
X
��	n

���nP�q���fq��

��



Since f is a polynomial� ��f is a constant� thus any regular homogeneous
polynomial is a linear combination of the P� � Let Vn be the right vector space
spanned by the P� � By theorem ��iii�� the elements of Un are polynomials�
so Un � Vn� but dimVn 
 �

�n � ��n � �� � dimUn by theorem ��iii��
Hence Vn � Un� �

The mirror image of this argument proves that the P� are also right�
regular�

Theorem �	 The expansions

Gp� q� �
�X
n
�

X
��	n

P�q�G�p� ����

�
�X
n
�

X
��	n

G�p�P�q� ����

are valid for jqj � jpj� the series converge uniformly in any region fp� q� �
jqj 
 rjpjg with r � ��

Proof Just as for a complex variable� we have

�� q��� �
�X
n
�

qn

for jqj � �� the series converges absolutely and uniformly in any ball jqj 
 r
with r � �� Hence G�� q� � �� q����� �q� can be expanded as a power
series in q and �q which converges uniformly in any ball with radius less than
�� Because G has the multiplicative property

Gq�q�� � Gq��Gq��� ����

it follows that Gp�q� can be expanded as a power series in p��q� multiplied
by Gp�� the series converges uniformly in any region jp��qj 
 r with r � ��

Regarding this series as a power series in q and identifying it with the
Taylor series of G about p� we have

Gp� q� �
�X

r�s
�

X
i����is

���r�s

r � s�$

�r�sG

�tr�xi� ����xis
p� trxi� ���xis � ����

Since G is regular� each derivative with respect to t can be replaced by
the combination �Pi ei

�
�xi

� giving

��



Gp� q� �
�X
n
�

�

n$

X
r�s
n

X
j����jr

i����is

tej�����tejr ��xi������xis�
�nG

�xj� ����xjr�xi� ����xis
p�

�
�X
n
�

X
��	n

P�q�G�p��

This proves ����� But G is also right�regular� i�e�

�G

�t
� �

X
i

�G

�xi
ei�

so the derivatives with respect to t in ���� can alternatively be replaced by
combinations of derivatives with respect to the xi with coe�cients on the
right� thus giving

Gp� q� �
�X
n
�

X
��	n

G�p�P�q�� �

Theorem �
 Suppose f is regular in a neighbourhood of �� Then there is a

ball B with centre � in which fq� is represented by a uniformly convergent

series

fq� �
X
n
�

X
��	n

P�q�a� � ����

where the coe�cients a� are given by

a� �
�

���

Z
�B

G�q�Dq fq� ����

� ���n��f��� ����

Proof Let S be a sphere with centre � lying inside the domain of regularity
of f � B a closed ball with centre � lying inside S� Then for q � B the integral
formula gives

fq� �
�

���

Z
S
Gq� � q�Dq�fq��

�
�

���

Z
S

�X
n
�

X
��	n

P�q�G�q
��Dq�fq��

��



since jqj � jq�j if q � B and q� � S� The series converges uniformly on B�S�
so it can be integrated term by term to give a uniformly convergent series
of the form ���� with

a� �
�

���

Z
S
G�q�Dqfq��

But the functionsG� are right�regular except at �� so ���� gives dG�Dqf� �
� outside B� and therefore Stokes	s theorem can be used to replace the
contour S by �B�

Di�erentiating the integral formula gives

��fq� �
���n
���

Z
S
G�q

� � q�Dq�fq��

Hence ��f�� � ���na� � �

Corollary
�

���

Z
S
G�q�Dq P�q� � ��� �

where S is any sphere containing the origin�
This follows by putting f � P� in �����

Theorem �� �the Laurent series� Suppose f is regular in an open set

U except possibly at q� � U � Then there is a neighbourhood N of q� such

that if q � N and q �� q�� fq� can be represented by a series

fq� �
�X
n
�

X
��	n

fP�q � q��a� �G�q � q��b�g

which converges uniformly in any hollow ball

fq � r 
 jq � q�j 
 Rg � with r � �� which lies inside N �

The coe�cients a� and b� are given by

a� �
�

���

Z
C
G�q � q��Dq fq�� �����

b� �
�

���

Z
C
P�q � q��Dq fq�� �����

where C is any closed ��chain in Unfq�g which is homologous to �B for

some ball B with q� � B � U �so that C has wrapping number  about q���

��



Proof Choose R� so that the closed ball B� � fq � jq� q�j 
 R�g lies inside
U � and let N � intB�� S� � �B�� Given q � Nnfq�g� choose R� so that
� � R� � jq � q�j � R�� and let S� be the sphere fq � jq � q�j � R�g� Then
by the integral formula�

fq� �
�

���

Z
S�

Gq� � q�Dq�fq��� �

���

Z
S�

Gq� � q�Dq�fq��� �����

For q� � S� we have jq� � q�j � jq � q�j� and so as in theorem ��

�

���

Z
S�

Gq� � q�Dq�fq�� �
�X
n
�

X
��	n

P�q � q��a� �����

where

a� �
�

���

Z
S�

G�q
� � q��Dq�fq��

and the series is uniformly convergent in any ball jq� q�j 
 R with R � R��
If C is a ��chain as in the statement of the theorem� it is homologous to S��
since dG�Dqf� � � in Unfq�g� Stokes	s theorem gives ������

For q� � S� we have jq� � q�j � jq � q�j and so we can expand Gq� � q�
as in ���� to obtain

� �

���

Z
S�

Gq� � q�Dq�fq�� �
�

���

Z
S�
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b� �
�
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� � q��Dq�fq���

The series is uniformly convergent in any region jq � q�j � r with r � R��
Since the P� are right�regular� dP�Dqf� � � in Unfq�g and so the contour
S� in the formula for b� can be replaced by any ��chain C as in the statement
of the theorem� In particular� b� is independent of the choice of R� and so
the same representation is valid for all q � Nnfq�g� Now putting ����� and
����� into ����� gives ����� for all q � Nnfq�g� �
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