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1 Introduction

The richness of the theory of functions over the complex field makes it nat-
ural to look for a similar theory for the only other non-trivial real associative
division algebra, namely the quaternions. Such a theory exists and is quite
far-reaching, yet it seems to be little known. It was not developed until
nearly a century after Hamilton’s discovery of quaternions. Hamilton him-
self [1] and his principal followers and expositors, Tait [2] and Joly [3], only
developed the theory of functions of a quaternion variable as far as it could
be taken by the general methods of the theory of functions of several real
variables (the basic ideas of which appeared in their modern form for the
first time in Hamilton’s work on quaternions). They did not delimit a special
class of regular functions among quaternion-valued functions of a quaternion
variable, analogous to the regular functions of a complex variable.

This may have been because neither of the two fundamental definitions
of a regular function of a complex variable has interesting consequences
when adapted to quaternions; one is too restrictive, the other not restrictive
enough. The functions of a quaternion variable which have quaternionic
derivatives, in the obvious sense, are just the constant and linear functions
(and not all of them); the functions which can be represented by quaternionic
power series are just those which can be represented by power series in four
real variables.

In 1935 R Fueter [4] proposed a definition of “regular” for quaternionic
functions by means of an analogue of the Cauchy-Riemann equations. He
showed that this definition led to close analogues of Cauchy’s theorem,
Cauchy’s integral formula, and the Laurent expansion [5]. In the next twelve
years Fueter and his collaborators developed the theory of quaternionic ana-
lysis. A complete bibliography of this work is contained in ref. [6], and a
simple account (in English) of the elementary parts of the theory has been
given by Deavours [7].

The theory developed by Fueter and his school is incomplete in some
ways, and many of their theorems are neither so general nor so rigorously
proved as present-day standards of exposition in complex analysis would
require. The purpose of this paper is to give a self-contained account of the
main line of quaternionic analysis which remedies these deficiencies, as well
as adding a certain number of new results. By using the exterior differential
calculus we are able to give new and simple proofs of most of the main
theorems and to clarify the relationship between quaternionic analysis and
complex analysis.



Let H denote the algebra of quaternions, and let {1,4,5,k} be an or-
thonormal basis, with the product on H given by the usual multiplication
table (see section 2). The typical quaternion can be written as

g=t+ix+jy+kz (1.1)

where ¢, z, y, z are real coordinates. Fueter defined a function f : H — H
to be regular if it satisfied the equation
of .of .of af
—— —— —+k—=0. 1.2
ot Tlos Ty T e (12)
This is an analogue of the Cauchy-Riemann equations for a complex function
f : C — C, which can be written as
of .of
— +i—= =0, 1.3
or oy (13)
where the variable is z = z + 1y.
Fueter showed that any quaternionic function which is regular and also
continuously differentiable must satisfy an analogue of Cauchy’s theorem
which can be written as

/ Dqf =0, (1.4)
C

where C' is any smooth closed 3-manifold in H and Dgq is a certain natural
quaternion-valued 3-form. Dgq is defined in section 2; it can be thought of as
the quaternion representing an element dC' of the 3-manifold, its magnitude
being equal to the volume of )C and its direction being normal to 6C'. Fueter
also obtained an analogue of Cauchy’s integral formula for such functions,
namely .
1 (¢ —qo0)
f(q) = ) /8D WDQJC(Q), (1.5)
where D is a domain in H in which f is regular and qq is a point inside D.
The complex Cauchy-Riemann equation (1.3) is equivalent to the state-
ment that f has a complex derivative, i.e. that there exists a complex
number f’(z) such that

df = f'(2) dz. (1.6)
Fueter gave no corresponding characterisation of a regular function of a qua-

ternion variable, leaving the theorems (1.4) and (1.5) and the analogy with
the Cauchy-Riemann equations as sufficient justification of the definition



(1.2). In this paper we will show that a regular function can be defined as
one which has a certain kind of quaternionic derivative; specifically, (1.2) is
equivalent to the existence of a quaternion f’(¢q) such that

d(dg Ndq f) = Dq f'(q). (1.7)

(the 2-form dg A dq is described in section 2).
Cauchy’s theorem (1.4) and the integral formula (1.5) can be simply
proved by showing that

d(Dqf) =0 (1.8)

and
d [(q —q0)”!

lg — qo?

1
]qu(q) =& (=) S (1.9
where A is the Laplacian on R* and v = dt A dz A dy A dz is the standard
volume 4-form. Since |¢ — qo|~? is the Green’s function for the Laplacian
in R*, (1.5) follows from (1.9). This is essentially how Fueter proved these
theorems. Since both proofs use Stokes’s theorem, they need the condition
that the partial derivatives of the function should be continuous. Schuler [8]
showed that this condition could be dropped by adapting Goursat’s proof
of Cauchy’s theorem, but he did not draw the full consequences of this
argument. In fact Cauchy’s theorem (1.4) can be proved for any rectifiable
contour C' and any function f which is differentiable at each point inside C
and whose partial derivatives satisfy (1.2). The integral formula (1.5) has a
similarly wide range of validity. From this it follows, as in complex analysis,
that if f is regular in an open set U then it has a power series expansion
about each point of U. Thus pointwise differentiability, together with the
four real conditions (1.2) on the sixteen partial derivatives of f, is sufficient
to ensure analyticity.

The homogeneous components in the power series representing a regular
function are themselves regular; thus it is important to study regular ho-
mogeneous polynomials, the basic regular functions from which all regular
functions are constructed. The corresponding functions of a complex vari-
able are just the powers of the variable, but the situation with quaternions
is more complicated. The set of homogeneous regular functions of degree n
forms a quaternionic vector space of dimension 3(n + 1)(n + 2); this is true
for any integer n if for negative n it is understood that the functions are
defined and regular everywhere except at 0. The functions with negative
degree of homogeneity correspond to negative powers of a complex variable,



and occur in the quaternionic Laurent series which exists for any regular
function which is regular in an open set except at one point. Fueter found
two natural bases for the set of homogeneous functions, which play dual roles
in the calculus of residues. (He actually only proved that these bases formed
spanning sets). In this paper we will study homogeneous regular functions
by means of harmonic analysis on the unit sphere in H, which forms a group
isomorphic to SU(2); this bears the same relation to quaternionic analysis
as the theory of Fourier series does to complex analysis.

Many of the algebraic and geometric properties of complex analytic func-
tions are not present in quaternionic analysis. Because quaternions do not
commute, regular functions of a quaternion variable cannot be multiplied
or composed to give further regular functions. Because the quaternions are
four-dimensional, there is no counterpart to the geometrical description of
complex analytic functions as conformal mappings. The zeros of a qua-
ternionic regular function are not necessarily isolated, and its range is not
necessarily open; neither of these sets need even be a submanifold of H.
There is a corresponding complexity in the structure of the singularities of a
quaternionic regular function; this was described by Fueter [9], but without
giving precise statements or proofs. This topic is not investigated here.

The organisation of this paper is as follows.

In section 2 the basic algebraic facts about quaternions are surveyed and
notation is established; some special algebraic concepts are introduced, and
quaternionic differential forms are described.

Section 3 is concerned with the definition of a regular function. The re-
marks in the second paragraph of this introduction, about possible analogues
of complex definitions of analyticity, are amplified (this material seems to be
widely known, but is not easily accessible in the literature), and the defin-
ition (1.7) of regular functions by means of the quaternionic derivative is
shown to be equivalent to Fueter’s definition (1.2) by means of a Cauchy-
Riemann-type equation.

Section 4 is devoted to the analogues of the Cauchy-Goursat theorem
and Cauchy’s integral formula.

Section 5 contains analogues of Liouvilles’s theorem, the maximum-
modulus principle, and Morera’s theorem. After the work of section 4, only
the last of these requires proof.

In section 6 we show how regular functions can be constructed from
functions of more familiar type, namely harmonic functions of four real
variables and analytic functions of a complex variable.

Section 7 is concerned with the effect on regular functions of conformal



transformation of the variable; these results are needed in the last two sec-
tions.

Section 8 is an investigation of homogeneous regular functions by means
of harmonic analysis on S3.

In section 9 we examine the power series representing a regular function
and prove analogues of Laurent’s Theorem and the residue theorem.

2 Preliminaries

2.1 The Algebra of Quaternions'

The quaternions H form a four-dimensional algebra over the real field R,
with an identity element denoted by 1. We regard R as being embedded in
H by identifying ¢t € R with {1 € H. Then we can write H = R&® P, where P
is an oriented three-dimensional Euclidean vector space, and the product of
two quaternions is defined by

(ao,a)(bo,b) = (aobg — a.b,aob + boa +aXx b) (21)

where ag,by € R, a,b € P, a.b denotes the inner product of a and b,
and a X b denotes the vector product determined by the orientation on P.
(Conversely, the subspace P, its inner product and its orientation can be
defined in terms of the multiplication on H.)

Thus we can choose a basis {1,1, j, k} for H so that the multiplication is

given by
2 2 2
= = I{; = —]_,
o T (2:2)
iy=—gi=k, jk=—-kj=1, ki=—-ik=j
The typical quaternion will be denoted by
g=t+zi+yj+zk (t,z,y,z € R) (2.3)

In performing calculations it is sometimes useful to denote the basic qua-
ternions 4, j, k by e; (i = 1,2, 3) and the coordinates z, y, z by z; (i = 1,2, 3),
and to use the summation convention for repeated indices. In this notation
eq. (2.3) becomes

qg=1t+xe; (2.4)

and the multiplication rules (2.2) become

€;ej = _5ij + €ijkek (25)

'Proofs of the assertions in this section can be found in [10, chap. 10].



where ¢€;;; is the usual alternating symbol.

The centre of the algebra H is the real subfield R. If ¢ is any quaternion,
the vector subspace spanned by 1 and q is a subfield of H, which is isomorphic
to the complex numbers C if 1 and ¢ are linearly independent. It is sometimes
convenient to distinguish a particular embedding of C in H; whenever we
want to do this, we will take C to be the subfield spanned by 1 and 2. Then
any quaternion can be written as

g=v+jw (2.6)
with v,w € C; if ¢ is given by (2.3), then
v=t+izx and w=y—iz (2.7)

JFrom an equation of the form vy + jw; = vg + jwy with vy, ve, wy,ws € C,
we can deduce that v = vo and w; = wo. When quaternions are written in
this form, the basic law of multiplication is

vj = jo. (2.8)
The conjugate of the quaternion ¢ is
qg=1t—1ix—jy—kz. (2.9)

Conjugation is an involutive anti-automorphism of H, i.e. it is R-linear,
7=q, and
7192 = G2 q1- (2.10)

For every embedding of C in H, quaternion conjugation coincides with com-
plex conjugation. g commutes with ¢, and their product is

qf =t + 2% + > + 22 (2.11)
The modulus of q is the non-negative real number

gl = Vaq (2.12)

It follows from (2.11) that every non-zero quaternion has a multiplicative
inverse

-1 q
g l=—. 2.13
P (2:19)
The real part of q is
Req=t=13(g+4q) €R (2.14)

~J



and its pure quaternion part (or vector part) is
Pug=uzi+yj+zk=73(q—q) € P. (2.15)
It follows from (2.1) that

Re(q1¢2) = Re(q2q1) (2.16)

and from (2.9) that
Reg = Req. (2.17)

q is a unit quaternion if |q| = 1. The set of unit quaternions, constituting
the sphere S3, forms a multiplicative Lie group isomorphic to SU(2); we will
denote it by S. The versor of a quaternion ¢ is the unit quaternion

Ung= L (2.18)

lql
Any quaternion has a polar decomposition ¢ = ru where r = |g| € R and
u=Ung € S.
The classical notation for these functions of ¢ is Sq = Req, V¢ = Pug,
Kq=q, Tq=lql, Ug="Ung.
The positive-definite quadratic form (2.11) gives rise to an inner product

(91, g2) = Re(q1¢2)

- (2.19)
= Re(qig2) by (2.16) and (2.17)
Note that
(aq1, q2) = (q1,aq2) (2.20)
and
(q10,92) = (01, 42@), (2.21)

i.e. the adjoint of left (right) multiplication by a is left (right) multiplication
by a, for any a € H. If 41 and us are unit quaternions, the map ¢ — wuiquo
is orthogonal with respect to this inner product and has determinant 1;
conversely, any rotation of H is of the form ¢ — uiqus for some uy,us € S.
This is the well-known double cover 0 — Zy — SU(2) x SU(2) — SO(4) — 0.

This inner product induces an R-linear map I' : H* — H, where H* =
Homg (H, R) is the dual of H, given by

(C(a),q) = alq) (2.22)



for a € H*, ¢ € H. Since {1,14,7,k} is an orthonormal basis for H, we have
Ma) = a(l) +ia(i) + j a(j) + ka(k). (2.23)

The set of R-linear maps of H into Itself forms a two-sided vector space
over H of dimension 4, which we will denote by F;. It is spanned (over H)
by H*, so the map I' can be extended by linearity to a right H-linear map
I, : Fi — H and a left-linear map 'y : F1 — H. They are given by

Ty (a) = a(l) +ia(i) + j a(j) + ka(k) (2.24)

and
Ty(a) = a(l) + ali) i+ aj) j + a(k) k (2.25)

for any a € F.

The inner product (2.19) and the maps I';, Iy : F; = Homg(H,R) — H
have alternative characterisations in terms of quaternion multiplication and
conjugation; in fact they are obtained by slight modifications of standard
procedures from the tensor of type (1,2) which defines the multiplication on
H. Let L, : H — H and R, : H — H be the operations of multiplication
by ¢ on the left and on the right, respectively, and let K : H — H be the
operation of conjugation; then

Theorem 1

(i) (¢,p) = =3 Te(LyRyK)

(ii) (Tr(a),q) = Tr(RgaK)
(iii) (Le(),q) = Tr(LgaK) for all p,q € H and o € F}.
Proof The trace of an R-linear map « : H — H is

Tra = Re[a(1)] — Z Re[e;a(e;)] (2.26)

Hence (i)
Tr(L,R,K) = Re

ap+ ez-qez-pl

1
But
g+ eiqei = —2q (2.27)
:



as can easily be verified, so

Tr(L,R,K) = —2Re(qp) = —2(¢,p). O

(ii)

Tr(RsaK) = Re [a(l)cj + Z eia(ei)cj]
“Rellh(a)g by (220)
= (T'r(a),q)

(iii)

Tr(LgaK) = Re [cja(l) + Z eiQa(ei)]

= Re lqa(l) + an(ei)ei] by (2.16)

— Re[qle(a)] by (2.25)
= <Fl (Oé), Q> U
We will also need two other maps I',,, Ty : F; — H, defined as follows:

(Cr(@),q) =Tr(Rga);  Tp(a) =a(l) — Z eicr(e;) (2.28)

(Te(a),q) = Tr(Lya); To(a) = 1) = > ales)es (2.29)

2.2 Quaternionic Differential Forms

When it is necessary to avoid confusion with other senses of differentiability
which we will consider, we will say that a function f : H — H is real-
differentiable if it is differentiable in the usual sense. Its differential at a
point ¢ € H is then an R-linear map df, : H — H. By identifying the tangent
space at each point of H with H itself, we can regard the differential as a
quaternion-valued 1-form
of of of of

df = —dt+ —dz+ —d —dz. 2.30

f=p @t g det g, Wt 5, (2:30)
Conversely, any quaternion-valued 1-form 6 = ag dt + a; dx; (ag,a; € H) can
be regarded as the R-linear map 6 : H — H given by

O(t + zie;) = apt + a;x; (2.31)

10



Similarly, a quaternion-valued r-form can be regarded as a mapping from
H to the space of alternating R-multilinear maps from H X ... X H (r times)
to H. We define the exterior product of such forms in the usual way: if 0 is
an r-form and ¢ is an s-form,

ONG(h1, oo Brgs) = 7151 D €(P)O(Pp(rys oo o)) D (Pip(r i1y +oos Pop(rtes) )

p
(2.32)
where the sum is over all permutations p of r+ s objects, and €(p) is the sign
of p. Then the set of all r-forms is a two-sided quaternionic vector space,

and we have

a(f A ¢) = (ab) A ¢,

(@A P)a =0 A (¢a), (2.33)

(Oa) N p =0 A (ad)
for all quaternions a, r-forms 6 and s-forms ¢. The space of quaternionic
r-forms has a basis of real r-forms, consisting of exterior products of the
real 1-forms dt,dz,dy,dz; for such forms left and right multiplication by
quaternions coincide. Note that because the exterior product is defined in
terms of quaternion multiplication, which is not commutative, it is not in
general true that 0 A ¢ = —¢ A 0 for quaternionic 1-forms 6 and ¢.

The exterior derivative of a quaternionic differential form is defined by
the usual recursive formulae, and Stokes’s theorem holds in the usual form
for quaternionic integrals.

The following special differential forms will be much used in the rest of
the paper. The differential of the identity function is

dg=dt+idr+ jdy + kdz; (2.34)

regarded as R-linear transformation of H, dq is the identity mapping. Its
exterior product with itself is

dg N\Ndg = %eijkeidacj/\dxk =idy Ndz+jdz Ndx +kdx Ndy  (2.35)

which, as antisymmetric function on H X H, gives the commutator of its
arguments. For the (essentially unique) constant real 4-form we use the
abbreviation

v=dt Ndx Ady A dz, (2.36)

so that v(1,4,7,k) = 1. Finally, the 3-form Dgq is defined as an alternating
R-trilinear function by

<h17Dq(h27h37h4)> = v(h17h27h37h4) (237)

11



for all hy,...,hs € H. Thus Dq(i,5,k) = 1 and Dq(1,e;,e;) = —¢€;j1ex. The
coordinate expression for Dq is

Dg=dxz Ndy Ndz — %eijk eidt Adz; \dxy

=drANdyNdz —i1dt Ndy Ndz — jdt Ndz Ndx — kdt A\ dx N dy.
(2.38)
Geometrically, Dq(a, b, c) is a quaternion which is perpendicular to a, b and
¢ and has magnitude equal to the volume of the 3-dimensional parallelepiped
whose edges are a, b and c. It also has the following algebraic expression:

Theorem 2 Dq(a,b,c) = 3(cab — bac)

Proof For any unit quaternion w, the map ¢ — wuq is an orthogonal trans-
formation of H with determinant 1; hence

Dq(ua, ub,uc) = u Dq(a, b, c).

Taking v = |a| !, and using the R-trilinearity of Dq, we obtain

Dq(a,b,c) = |a|*a Dg(1,a'b,a " '¢). (2.39)
Now since Dq(1,e;,¢e;) = —€jjpep = %(ejez- — eje;j), we have by linearity
Dq(1,h1, ha) = $(hoh1 — hihs) (2.40)

for all hq, ho € H. Hence

Dq(a,b,c) = %|a|2a(a_lca_lb —a""ba""¢)

= L (cab —bac) by (2.13). |

Two useful formulae were obtained in the course of this proof. The
argument leading to (2.39) can be generalised, using the fact that the map
q — uqu is a rotation for any pair of unit quaternions wu, v, to

Dq(ahyb, ahab, ahsb) = |a|?|b|?a Dq(hy, hy, h3)b; (2.41)
and the formula (2.40) can be written as
1|Dg = —1 dg A dg, (2.42)

where | denotes the usual inner product between differential forms and vec-
tor fields and 1 denotes the constant vector field whose value is 1.

12



Since the differential of a quaternion-valued function on H is an element
of F1, the map I', can be applied to it. The result is
of . of of

0
Fr(df):a—{-i-i——i-]——i-k

2.4
ox oy 0z (243)

We introduce the following notation for the differential operator occurring
in (2.40), and for other related differential operators:

1/0 F\ )
Ouf = AT, (df) = 3 (8_{ +€ia—i>,
_ 1/0 0
Ouf = 3T, (df) = 3 <8_{ _eiag{)’
) of o
O f = ST4(df) %(a_{Jra_xfie")’ (2.44)
_ 1/0f 8
0 =30 =5 (2 - 2Le).
L PfAf  0rf | 0%
M=zt oz tor Tar

Note that 0y, 9y, 0, and 0, all commute, and that

A = 40,0, = 40,0, (2.45)

3 Regular Functions

We start by showing that the concept of an analytic function of a quaternion
variable as one which is constructed from the variable by quaternion addi-
tion and multiplication (possibly involving infinite series) is the same as the
concept of a real-analytic function in the four real variables ¢, z, y, z.

Definition 1 A quaternionic monomial is o function f : H — H of the
form
f(q) = apqarq...qr—1qay, (3.1)

for some non-negative integer v (the degree of the monomial) and constant
quaternions agy, ..., Gp.
A quaternionic polynomial is a finite sum of quaternionic monomials.
A homogeneous polynomial function of degree r on H is a function
f:H — H of the form



where F: H X ... x H (r times) — H is R-multilinear.
A polynomial function on H is a finite sum of homogeneous polyno-
mial functions of varying degrees.

Theorem 3 Fvery polynomial function on H is a quaternionic polynomial.

Proof Any polynomial function f can be written as

f(Q) = fO(taxayaz) + Zfi(taxayaz)ei

where fy and f; are four real-valued polynomials in the four real variables
t, z,y, z. But

= 1(q —iqi — jqj — kqk),
z = £(q—iqi + jqj + kqk), 52)
y = 3;(q +1iqi — jgj + kqk), '

z= ﬁ(q +iqi + jqj — kqk).
Putting these expressions for ¢, z, y, z into the polynomials fy, f;, we obtain
f(q) as a sum of expressions in ¢ of the form (3.1), so f is a quaternionic
polynomial. a

It is clear that conversely, every quaternionic polynomial is a polynomial
function, so we have
Corollary The class of functions which are defined in a neighbourhood of
the origin in H and can be represented there by a quaternionic power series,
i.e. a series of quaternionic monomials, is precisely the same as the class of
functions which are real-analytic in a neighbourhood of the origin.

We now turn to an alternative attempt to parallel complex analysis, in
which we concentrate on the existence of a quaternionic derivative defined
as the limit of a difference quotient. We will show that only quaternionic
polynomials of degree 1 (and not all of them) possess such a derivative.

Definition 2 A function f : H — H is quaternion-differentiable on the
left ot q if the limit

Y i (A7 (g + k) - £(9)}]

-1
dq B30

exists.

14



Theorem 4 Suppose the function f is defined and quaternion-differentiable
on the left throughout a connected open set U. Then on U, f has the form

flg) =a+qb

for some a,b € H.

Proof From the definition it follows that if f is quaternion-differentiable on
the left at g, it is real-differentiable at ¢ and its differential is the linear map
of multiplication on the right by g—’;:

d
() =
i.e. if

Equating coefficients of dt, dz, dy and dz gives

a _or _ of _ .of _ ,of

dg Ot T or - oy 0z (3:3)

Put ¢ = v+ jw, where v =t + iz and w = y — iz, and let f(q) = g(v,w) +
jh(v,w), where g and h are complex-valued functions of the two complex
variables v and w; then (3.3) can be separated into the two sets of complex
equations

dg .09 Oh . Oh
- 'ox oy 9z
oh .Oh  0g .0g
ot 'or oy oz

In terms of complex derivatives, these can be written as

g9 _9h _0h _dg _,

oo ow v  ow (34)
dg _ Oh
%~ 5o’ (3.5)
and 9 5
__9
o ow (3.6)

Eq. (3.4) shows that g is a complex-analytic function of v and w, and h is
a complex-analytic function of v and w. Hence by Hartogs’s theorem [11,

15



p. 133] g and h have continuous partial derivatives of all orders and so from

(3.5)
By _ o (ohy_ 0 (om)
o2 v \ow/) ow\ow)

Suppose for the moment that U is convex. Then we can deduce that ¢ is
linear in w, h is linear in w and A is linear in v. Thus

g(v,w) = a+ Bv + yw + dvw,
h(v,w) = € + (¥ + nw + fvw,

where the Greek letters represent complex constants. Now (3.5) and (3.6)
give the following relations among these constants:

Thus
f=g9+jh=a+je+ (v+jw)(B—jv)
=a + gb,
where a = a+je and b = 3—j7; so f is of the stated form if U is convex. The
general connected open set can be covered by convex sets, any two of which
can be connected by a chain of convex sets which overlap in pairs; comparing
the forms of the function f on the overlaps, we see that f(q) = a + gb with
the same constants a, b throughout U. O
Even if f is quaternion-differentiable, it will not in general satisfy Cauchy’s
theorem in the form

/ dqf =0 (3.7)

where the integral is round a closed curve; in fact the only functions satis-
fying this equation for all closed curves are the constant functions. We will
prove this for the infinitesimal form of (3.7), namely

d(dqf) = 0. (3.8)

Theorem 5 If the function f : U — H is real-differentiable in the connected
open set U and satisfies d(dqf) =0 in U, then f is constant on U.

Proof

B B o of of
d(dqf) =dq N df = (dt + e;dz;) N <8t dt + oz, dx>
_ (9 .ﬂ) L .
= (8%’ e 5 dt Ndz; + e; oz, dz; \dx;

16



Thus

_ of _ of
d(dqf) =0 = or Cipy (3.9)
and o/ o/
) e 1
€ 327]‘ K 8961 (3 0)
;From (3.9) we have, for example,
of,_of
oxr ayj
while from (3.10),
oF . _ o1,
oz’ Oy
Hence
of _ _of ., _of.._ _9f
or By] _3yj_ or’
So % = 0 and therefore % = % = % = 0 in U. It follows that f is
constant in U. O

We will now give a definition of “regular” for a quaternionic function
which is satisfied by a large class of functions and opens the door to a
development similar to the theory of regular functions of a complex variable.

Definition 3 A function f : H — H is left-regular at q € H if it is real-
differentiable at q and there exists a quaternion f;(q) such that

d(dg Ndq f) = —2Dq fi(q). (3.11)
It is right-regular if there exists a quaternion f(q) such that
d(f dg N dq) = —2f;(q) Dg.

Clearly, the theory of left-reqular functions will be entirely equivalent to
the theory of right-regular functions. For definiteness, we will only consider
left-reqular functions, which we will call simply regular. We will write
f'(q) = fi(q) and call it the derivative of f at g.

Theorem 6 (the Cauchy-Riemann-Fueter equations)
A real-differentiable function f is reqular ot q if and only if

I'\(df,) = 0. (3.12)
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Proof Suppose f is regular at ¢q. Then from (3.11),
dq A dg A dfy = —2Dqf'(q)
Evaluating these trilinear functions with 4, j, k£ as arguments gives
(i — ji) dfq(k) + (jk — k) dfq (i) + (ki — ik) df(j) = —2/"(q)

while using 1, 7, 7 as arguments gives

(ij — ji) dfg(1) = 2kf'(q)-

Hence
f'(@) = dfy(1) = = {idfq(i) +j dfg(5) + k dfy(k)} (3.13)
Comparing with (2.24), we see that I, (df,) = 0.

Conversely, if T'y(df,) = 0 we can define f'(¢) = dfy(1) and then evalu-
ating as above shows that dg A dg A dfy, = 2Dqf'(q), so that f is regular at
q. O

Note that (3.12) and (3.13) can be written as

of | .of  .of of

254fza+z%+jay+k£:0 (3.14)

and of
"(q9) = =. 3.15
f'a) =2 (3.15)
Hence f' = 0pf. If we write ¢ = v + jw, f(q) = g(v,w) + jh(v,w) as in
theorem 4, (3.14) becomes the pair of complex equations

99 _0h 99 _ 0h
v Ow’ ow v

which show some similarity to the Cauchy-Riemann equations for a function
of a complex variable.

JFrom (3.14) and (2.45) it follows that if f is regular and twice differen-
tiable, then

(3.16)

Af =0,

i.e. f is harmonic. We will see in the next section that a regular function is
necessarily infinitely differentiable, so all regular functions are harmonic.

The derivative of a regular function can be characterised as the limit of
a difference quotient which is analogous to that used to define the derivative
of a complex-analytic function.
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Definition 4 An oriented k-parallelepiped in H is a map C : I* — H,
where I*¥ C R¥ is the closed unit k-cube, of the form
C(t1, -y tk) = qo + t1h1 + ... + tihg.

qo € H s called the original vertex of the parallelepiped, and hy,...,h; €
H are called its edge-vectors. A k-parallelepiped is non-degenerate if
its edge-vectors are linearly independent (over R). A non-degenerate 4-
parallelepiped is positively oriented if v(hq,...,hs) > 0, negatively ori-
ented if v(hy,...,hy) <O.

Theorem 7 Suppose that f is reqular at gy and continuously differentiable
in a neighbourhood of qo. Then given € > 0, there exists 6 > 0 such that
if C' is a non-degenerate oriented 3-parallelepiped with qo € C(I3) and q €
C(I?) = |q — qo] < 9, then

‘ </C Dq) : (/ac da A dqf> +2f'(q0)

Proof First note that ||hy Aha Ahs|| = |Dg(h1, ha, hs)| is a norm on the real
vector space HAHAH. Now since df, is a continuous function of g at go, so
is dg A dq A df;; hence we can choose 0 so that

lg — qo| < 0 =|dg A dq A dfg(hi,ha, h3) —dgq A dg A dfy,(hi, ha, h3)|
<6|Dq(h1,h2,h3)|, Vhi, hs, hy € H.

Let C be as in the statement of the theorem, with edge-vectors hi, hs, hs.
Then by Stokes’s theorem,

1
/B dandaf = /C d(dgAndqf) = / / /0 dg A dq Adf ey (b, ha, hs) di dtydts

Since f is regular at gy,

1
2/CDCIJ”'(CIO)ZQ///O Dq(hy, by, h3) f'(qo) dtidtadts

1
:—/// dq/\dq/\dfqo(hl,hQ,hg)dtldtgdtg
0

< €.

Thus

1
‘/acdq/\dqva?/chf'(qo) S///O |dg A dg A df oy (ha, ha, hs)

—dgANdg A dfqo (h1, ha, h3)| dt dtodts

J.Pe
(&

<6|Dq(h1,h2,h3)| =€ . O
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The corresponding characterisation of the derivative in terms of the val-
ues of the function at a finite number of points is

@) =— lim [Dq(hy, ha, h3)” " {(h1hy — hah1)(f(q0 + hs) — f(q0))

h1,h2,h3—0
+(hahs — hgh2)( (90))
+(h3h1 — h1h3)( (90))}]
(3.17)
This is valid if it is understood that hi, he, hs are multiples of three
fixed linearly independent quaternions, h; = t;H;, and the limit is taken
as t1,ta,t3 — 0. The limit (3.17) is similar to that used by Joly [3, art. 54]
to define Vf for a function satisfying % = 0, which would be obtained as
the Cauchy-Riemann equations if dz A dy A dz were substituted for Dq in
the definition of regularity.

To make explicit the analogy between the definition of regular qua-
ternionic functions and the definition of regular complex functions by means
of the Cauchy-Riemann equations, note that the analogues of the 2-form
%dq A dgq, the 3-form —Dgq and the equation d(dq A dqf) = —2Dqf'(q) are
the O-form 1, the 1-form dz and the equation df = dzf’(z). The analogy
between theorem 7 and the difference-quotient definition of regular complex
functions can be made explicit by stating the latter as follows: If f is regular
at zp, then given € > 0 there exists 6 > 0 such that if L is a directed line
segment (i.e. an oriented parallelepiped of codimension 1 in C) with zy € L
and z € L = |z — 29| < 6, then

(L) (), 7) -

4 Cauchy’s Theorem and the Integral Formula

(qo + h1) —

f
fqo + ha) —

- =

< €.

The integral theorems for regular quaternionic functions have as wide a range
of validity as those for regular complex functions, which is considerably wider
than that of the integral theorems for harmonic functions. Cauchy’s theorem
holds for any rectifiable contour of integration; the integral formula, which
is similar to Poisson’s formula in that it gives the values of a function in
the interior of a region in terms of its values on the boundary, holds for a
general rectifiable boundary, and thus constitutes an explicit solution to the
general Dirichlet problem.

Our route to the general form of Cauchy’s theorem will be to use Goursa-
t’s method to prove the theorem for a parallelepiped, and immediately obtain
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the integral formula for a parallelepiped; then we can deduce that an analytic
function is continuously differentiable, and use Stokes’s theorem to extend
Cauchy’s theorem to differentiable contours. The extension to rectifiable
contours also follows from an appropriate form of Stokes’s theorem.

The heart of the quaternionic Cauchy’s theorem is the following fact.

Theorem 8 A differentiable function f is regular at q if and only if

Dqg Ndf, = 0.
Proof
Dq Ndfq(i, 3, k,1) = Dq(i, j, k)df (1) — Dq(j, k, [)df(2)

+ Dq(k,1,i)dfq(5) — Dq(l, 2, 5)dfq (k)
= dfq(l) + Z.C'qu(i) "‘jdfq(j) + kdfq(k)
=T (dfy)

which vanishes if and only if f is regular at ¢, by theorem 6. O

Theorem 9 (Cauchy’s theorem for a parallelepiped)
If f is regqular at every point of the 4-parallelepiped C,

Dqf=0.
oC

Proof [8] Let gy and hi,...,hs be the original vertex and edge-vectors of
C. For each subset S of {1,2,3,4} let Cs be the 4-parallelepiped with
edge-vectors %hl, e %h4 and original vertex qo + > ;cg %hi; then

/80qu=;/6€5qu

Hence there is a Cs—call it C1—such that

1
/ qu‘zl—‘/ qu‘-
el 6 |Joc

Now perform a similar dissection of C';. Continuing in this way, we obtain
a sequence of 4-parallelepipeds C,, with original vertices ¢,, such that C,
has edge-vectors 27 "hy,...,27"hy, C D Cy D Cy D ..., and

1
bz L |[ b
/acn qf‘_lﬁn ac af

21
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Clearly there is a point goc € NCyp, and g, — goo as N — 0.
Since f is real-differentiable at g, we can write

f(@) = fgoo) + (g — goo) + (¢ — go0)7(q)

where o = df., € Fi, and 7(q) = 0 as ¢ = ¢s. Then if we define r(¢oo) = 0,
r is a continuous function and so |r(¢)| has a maximum value p, on 9C),.
Since the C,, converge on ¢so, pn, — 0 as n — o00.

Now

Daf(q) = /C d(Dq)f (gso) = 0

aCh
and

o Dga(q — gx) = /C d(Dga) = 167" (Dg A a)(h1,....,hs) =0

by theorem 8, since f is regular at ¢,. Thus

Dqf(q) =/ Dq(q — goo)7(q)-

oC, oCy

Let FF : I3 — H be one of the 3-parallelepipeds forming the faces of C,,.
Then F' C 0C,,, and the edge-vectors of F' are three of the four edge-vectors
of Cy, say 2 "hg, 2 "hy, and 2~ "h.. For ¢ € F(I*®) we have |r(q)| < p, and
| — goo| < 27™(|h1| + ... + |h4|); hence

‘/F Dq(q — QOO)T(Q)‘ < 87" |Dq(ha, by, he)| 27" ([ha] + ... + [hal) pn-

Let V be the largest |Dgq(hq, hy, he)| for all choices of a, b, ¢; then since the
integral over 0C), is the sum of 8 integrals over faces F,

[ Daf(@)] <816V (] + e ]
Combining this with (4.1), we find

‘/Mqu‘ < 8V ([hu| + . + [hal)pn.

Since p, — 0 as n — oo, it follows that [, Dgf = 0. |
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Theorem 10 (the Cauchy-Fueter integral formula for a parallelepiped)

If f is regular at every point of the positively oriented J-parallelepiped C',
and qg is a point in the interior of C,

Fa = 5 [ 7 g pq)

2n2 Joc 7 — qof?
Proof [7] The argument of theorem 8 shows that
Dq A dfy = =0, (g)v (4.2)

where v = dt A dz A dy A dz, for any differentiable function f. A similar
calculation shows that

dfy N Dq = 0, f(q)v. (4.3)
Hence if f and g are both differentiable,

d(gDqf) = d(gDq)f + gd(Dqf)

=dg A Dqf — gDq A df (4.4)
= {(9r9)f +9(def)} v
Take g(q) = (“1;:133‘;1 = ‘qq__q%% = 0, (m); then g is differentiable except

at qo, and

lg — qol

If f is regular we have 0;f = 0, and so

d [(q —qo)

s Dqf| =0.
g — qol

We can now follow the argument of theorem 9 to show that

N1
,L -@—J@L—qu@)ZO

C’ |q - QO|2

where C’ is any 4-parallelepiped not containing go. By dissecting the given
4-parallelepiped C into 81 4-parallelepipeds with edges parallel to those of
C, we deduce that

[ pgpay = [ pgs),
oC 0

lg — qo? o la—qof?
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where Cj is any 4-parallelepiped containing ¢o which lies in the interior
of C' and has edges parallel to those of C'. Take Cjy to have edge-vectors
0hi,...,0hy, where § is a positive real number and hq, ..., hy are the edge-
vectors of C, and suppose g is at the centre of Cy (so that the original

vertex of Cy is qp — %6h1 ——— %(5h4); then
ohi,...,0h
min |¢ — ¢o| = min 1)1( L 41) =W
qe0Co 1<a,b,c<4 Dq(iéha, 26hb, 2(5h )

where W depends only on hy,...,hy. Since f is continuous at qg, we can
choose 4 so that ¢ € Co(I*) = |f(q) — f(qo)| < € for any given € > 0; hence

-1
[ U= Dt i)~ )

%
c la—qol? = e (4.5)

where, as in theorem 9,

= D .
4 lgr;}gtfgl q(has o, he)l

— 71 . . . . .
% is closed and continuously differentiable in

H\{qo}, Stokes’s theorem gives

Since the 3-form

(g—q) 'Dq [ (q—qo) ' Dq
fes -/,

lg — qol? lg — qo/?

where S is the 3-sphere |q — qo| = 1, oriented so that Dgq is in the direction
of the outward normal to S. Working in spherical coordinates (r, 8, ¢, 1), in
which

q—qo=r (cosH +4sinf cos ¢ +jsin0sin¢e*w) ,

we find that on S, i.e. when r =1,

Dq = (q — qo) sin® @sin ¢pdd A dep A dp
= (¢ — qo)dS

where dS is the usual Euclidean volume element on a 3-sphere. Hence

_ ID
/ (¢ —q0)” Dg 9 —d) 24 q /dS'—27r
9Cp |q q0|

(4.6)
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and so (4.5) becomes

< ﬂe.

-1
[ =2 Datta) - 267 ()| < 3

|q—C]0|2

Since € was arbitrary, it follows that
(g—qo)! / (g—qo) ! 2
D =[| ~—5D =27 . O
/ac g — ol =, g — qo|? /(@) /(q0)

Because of the special role played by the function occurring in this in-
tegral formula, we will use a special notation for it:

-1

-4 _
G(q) = PR (4.6)

G(q) = =0, (#) = —0r <ﬁ> ; (4.7)

it follows that 0,G = 0, i.e. G is regular except at 0.
As an immediate corollary of the integral formula we have

Note that

Theorem 11 A function which is reqular in an open set U is real-analytic

i U.

Proof Suppose f is analytic in the open set U, and let gy be any point of
U. Then we can find a 4-parallelepiped Cy such that g lies in the interior
of Cy and Cj lies inside U, and by theorem 10 we have

fla) = 575 [, Gla=a)Das(a)

Let Cy be a 4-parallelepiped such that gy € C1(I*) C int Co(I*); then in this
integral the integrand is a continuous function of (g, qg) in Co(0I*) x Cy(I*)
and a C™ function of go in C;(I*). It follows that the integral defines a C>
function of ¢y in C;(I*). Thus f is C* throughout U. Since f is regular in
U, so that 9,f = 0, eq. (2.45) gives Af = 0, i.e. f is harmonic. It follows
[12, p. 269] that f is real-analytic in U. a

This fact enables us to give the most general formulation of Cauchy’s
theorem and the integral formula for a differentiable contour of integration.
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Theorem 12 (Cauchy’s theorem for a differentiable contour)
Suppose [ is reqular in an open set U, and let C be o differentiable 3-chain
in U which is homologous to 0 in the differentiable singular homology of U,
i.e. C =0C" for some differentiable 4-chain C' in U. Then

/Cqu:().

Proof By theorem 8, d(dqf) = 0. By theorem 11, the 3-form Dgqf is infinitely
differentiable in U; hence we can apply Stokes’s theorem to find

[ par=[ par=[ dwan=o. o

In order to state the general form of the integral formula, we need an
analogue of the notion of the winding number of a curve round a point in
the plane.

Definition 5 Let q be any quaternion, and let C be a closed 3-chain in
H\{q}. Then C is homologous to a 3-chain C': OI* — S, where S is the
unit sphere with centre q. The wrapping number of C' about q is the
degree of the map C'.

Theorem 13 (the integral formula for a differentiable contour)
Suppose f is reqular in an open set U. Let qy € U, and let C' be a differen-
tiable 3-chain in U\{qo} which is homologous, in the differentiable singular
homology of U\{qo}, to a 3-chain whose image is OB for some ball B C U.
Then

1 _ -1
o2 /C %Dq f(@) =nf(q)

where n is the wrapping number of C about qq.

Proof In the case n = 0, C' is homologous to 0 in U\{gy}, so C = 9C\ where
Cy is a differentiable 4-chain in U\{qo}. Since the 3-form G(q — qo)Dqf(q)
is closed and infinitely differentiable in U\{qo}, Stokes’s theorem gives

o [, Gla—w)daf (@) = 5 [ dIG(a—a)Daf (@) =o.

In the case n = 1, C' is homologous to a 3-chain C’ : 9I* — OB where
go € B C U and the map C’ has degree 1, hence C' is homologous to 9Cj,
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for some 4-parallelepiped Cy with gy € int Co(I*) and Co(I*) C U. Again
using the fact that the 3-form G(q — qo)Dgq is closed in U\{qp}, we have

/Gq—qOqu / G(q—q0)Dqf(q) = f(q)

by the integral formula for a parallelepiped.

For general positive n, C' is homologous to a 3-chain C" of the form
C" = po C' where C' (having image 0B) is as in the previous paragraph
and p: 0B — 0B is a map of degree n, e.g.

plgo +r(v+jw)] = go + (" + jw)

where r is the radius of B. Dissect C' as C' = >_j_; C; where the image of
C} is the sector

2m(0 — 1 2
{QZQO+T(v+jw)E@B:%gargvg%ﬁ}‘

Then each po C} has image B and wrapping number 1 about g, and so by
the previous paragraph

n
27r2/ G(q—a0)Daf(q Z/ G(q— q0)Dqf(q) = nf(qo)-
=1
In the case n = —1, C is a homologous to a 3-chain C” of the form

C" = C'o K, where C' : 0I* — OB has degree 1 and K : 0I* — 0I* has
degree —1, for example the reflection (¢1,t2,t3,t4) — (1 —t1,to,t3,t4). Then

L=], ==, =2

the integrand G(q —qo)Dqf(¢q) being understood. For general negative n we
dissect the 3-chain C as for general positive n. This establishes the theorem
for all n. O

More generally, Cauchy’s theorem and the integral formula are valid for
rectifiable contours, which we define as follows.

Definition 6 Let C : I? — H be a continuous map of the unit 3-cube into
H, andlet P:0 =50 <51 <..<s5,=1,0Q:0=%(<ti <..<t;=1
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and R:0=uy <uy <..<u, =1 be three partitions of the unit interval I.
Define

o(C;P,Q,R) = Z 2_:

I=0m

Sl+17 tma Un) - C(Sz, tM7 Un),

”M'

C(Séa tm+17 un) - C(Séa tma un)7
C(Séa tma un+1) - C(Séa ms un))

C is a rectifiable 3-cell if there is a real number M such that o(C; P,Q, R) <
M for all partitions P, Q, R. If this is the case the least upper bound of the
numbers (C; P,Q, R) is called the content of C and denoted by o(C).

Let f and g be quaternion-valued functions defined on C(I®). We say
that fDqg s integrable over C if the sum

p—1g-1r—-1
Z Z Z f(C(gfa {ma ﬂn))Dq(C(3l+la tma Un) - C(Sfa tma 'U'n)a
[=0 m=0n=0
0(84, tm+1, un) - 0(84, tm, Un)a
0(84, tm, 'Ufn—i—l) - 0(84, tms un))g(C(E, t_ma ﬂn))a

where syg < 5p < Sp41, tm < b < tar and uy < Gy < Upt1, has a limit
in the sense of Riemann-Stieltjes integration as |P|,|Q|,|R| — 0, where
|P| = maxo<g<p—1|Se+1 — S¢| measures the coarseness of the partition P. If
this limit exists, we denote it by [~ fDqyg.

We extend these definitions to define rectifiable 3-chains and integrals over
rectifiable 3-chains in the usual way.

Just as for rectifiable curves, we can show that fDgqg is integrable over
the 3-chain C if f and g are continuous and C is rectifiable, and

‘/CfDqg‘ < (max| f]) (max |g)o (C).

Furthermore, we have the following weak form of Stokes’s theorem:
Stokes’s theorem for a rectifiable contour. Let C' be a rectifiable 3-chain in
H with 0C' = 0, and suppose f and g are continuous functions defined in
a neighbourhood U of the image of C, and that fDqg = dw where w is a
2-form on U. Then

/CfDqg=0-
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The proof proceeds by approximating C' by a chain of 3-parallelepipeds
with vertices at the points Cy(sy, tm, un) where Cy is a 3-cell in C' and sy,
tm, Uy are partition points in I. Stokes’s theorem holds for this chain of 3-
parallelepipeds, and we can use the same argument as for rectifiable curves
(see e.g. [13, p. 103]).

We can now give the most general forms of Cauchy’s theorem and the
integral formula.

Theorem 14 (Cauchy’s theorem for a rectifiable contour)
Suppose [ is reqular in an open set U, and let C be a rectifiable 3-chain
which is homologous to 0 in the singular homology of U. Then

/Cqu:O.

Proof First we prove the theorem in the case when U is contractible. In
this case, since d(Dqf) = 0 and f is continuously differentiable (by theorem
11), Poincaré’s lemma applies and we have Dqf = dw for some 2-form w on
D. But 0C =0, so by Stokes’s theorem [, Dqf = 0.

In the general case, suppose C' = 9C* where C'* is a 4-chain in U. We
can dissect C* as C* = ), C, where each C; is a 4-cell lying inside an

open ball contained in U and C} is rectifiable. Hence by the first part of
the theorem [;~. Dgf =0, and therefore

/Cqu:%:/BC%qu:o. O

A similar argument proves the following general form of the integral
formula

Theorem 15 (the integral formula for a rectifiable contour)
Suppose f is reqular in an open set U. Let qo € U, and let C be a rectifiable
3-chain in U\{qo} which is homologous, in the singular homology of U\{qo},
to a differentiable 3-chain whose image is OB for some ball B C U. Then

R
3z [, =D @) = @)

where n is the wrapping number of C about qq.

29



5 Some Immediate Consequences

Since regular functions are harmonic, they satisfy a maximum-modulus prin-
ciple and a Liouville theorem. As with functions of a complex variable,
Liouville’s theorem follows immediately from the Cauchy-Fueter integral
formula, as in e.g. [14, p. 85 (second proof)].

Morera’s theorem also holds for quaternionic functions, but in this case
the usual proof cannot easily be adapted. The proof given here is based on
an incomplete proof by Schuler [8].

Theorem 16 (Morera’s theorem) Suppose that the function f is con-
tinuous in an open set U and that [5- Dqf =0 for every 4-parallelepiped C
contained in U. Then f is regular in U.

Proof The method is to show that f satisfies the integral formula and then
argue as for the analyticity of a regular function (theorem 11).

First we show that [, G(q — qo)Dqf(q) = 0 if go does not lie inside
C, using Goursat’s argument. As in theorem 9, we find a sequence of 4-
parallelepipeds C),, converging on a point ¢, and satisfying

‘/ G(q—qo)dqf(q ‘

2 Ten / G(g—qo)dqf(q)|- (5.1)

Since g lies outside C', G(q — qo) is a right-regular function of ¢ inside C'
and so, by the counterpart of theorem 8 for right-regular functions, dGy—4, A
Dqg = 0. Now write

G(q = q0) = G(goo — q0) + (g — goo) + (¢ — Go0)7(q)

where a = dG g, € F1, so that a ADg =0, and r(¢) — 0 as ¢ = ¢oo; and
write

f(@) = flg) + 5(q)

where s(¢) = 0 as ¢ = ¢. Then
/ G(q—q0)Dqf(q) = G(goo — 0 / Dqf(q +/ a(q — o) D f (qo)
+/ a(q — gx)Dgs(q +/ (¢ — go0)7(9) Dqf(q)

The first term vanishes by assumption, the second because a A Dg = 0.
Now for ¢ € 0C, we have |¢ — goo| < 27"L, where L is the sum of the

30



lengths of the edges of C; since « is linear, there is a number M such that
|a(q — goo] < M|q — goo]. The volume of each face of Cj, is at most 8 "V,
where V' is the volume of the largest face of C. Hence

‘/ac Glg— CIO)DQf(Q)‘ <S2"LM8 "Von +27"Lpp8""V(|f(g0)| + on)

where py, and o, are the maximum values of the continuous functions r(q)
and s(q) on 0C,,. Since p, — 0 and g, — 0 as n — oo, it follows that

16"

/C G(g—q0)Dqf(q)] >0 as n— o0

and so from (5.1) that [~ G(q — q0)Dqf(q) = 0.

Now consider the integral [~ G(¢ — qo)Dqf(q) where gy lies inside C.
By what we have just proved, the parallelepiped can be replaced by a small
parallelepiped Cy containing qg, as in theorem 10. After this point has been
established, the proof of theorem 10 depends only on the continuity of f and
is therefore valid under the present conditions; hence

flg) = 2—71r2 /30 G(q'—q)Dq'f(q')

for any 4-parallelepiped C' with ¢ € int C(I*) C U. Since G(q¢' — q) is a
continuously differentiable function of ¢ in the interior of C' as long as ¢
lies on its boundary, it follows, as in theorem 11, that f is differentiable and
that

def(q) = % o [G(q —q)IDq f(q') =0

since G is regular. Thus f is regular. O

6 Construction of Regular Functions

Regular functions can be constructed from harmonic functions in two ways.
First, if f is harmonic then (2.45) shows that J;f is regular. Second, any
real-valued harmonic function is, at least locally, the real part of a regular
function:

Theorem 17 Let u be a real-valued function defined on a star-shaped open
set U C H. If u is harmonic and has continuous second derivatives, there is
a reqular function f defined on U such that Re f = u.
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Proof Without loss of generality we may assume that U contains the origin
and is star-shaped with respect to it. In this case we will show that the
function

Fla) = ula) +2Pu | ' 2ou(sq)q ds (6.1)

is regular in U.
Since

1
Re/ s20pu(sq)qds =

1

L (2 2 )
2 0xz;

1 d

2 d

L
/ u(sq)] ds
u(q

= / su(sq) ds,

N)I»—A

we can write
1 1
flq) = 2/ s20pu(sq)qds + 2/ su(sq) ds. (6.2)
0 0

Since v and dpu have continuous partial derivatives in U, we can differentiate
under the integral sign to obtain, for g € U,

_ 1 _ 1 1
Ouf(q) = 2/0 520y [Opu(sq)] qu—i—/o s2 {Opu(sq) + e;0pu(sq)e;} ds+2/0 s20pu(sq) ds

But 0y [0pu(sq)] = 43Au(sq) = 0 since u is harmonic in U, and

Opu(sq) + e;0pu(sq)e; = —20pu(sq) by (2.27)
= —20,u(sq) since w is real.

Hence 0;f =0 in U and so f is regular. O

If the region U is star-shaped with respect not to the origin but to some
other point a, formulae (6.1) and (6.2) must be adapted by changing origin,
thus:

flg) =u(g) + 2Pu/01 s20pu((1—s)a+sq)(q—a) ds (6.3)
L 1
= 2/0 s°0pu((1—s)a+sq)(qg—a) ds +2/0 su((1—s)a+sq) ds.(6.4)

An example which can be expected to be important is the case of the function
u(q) = |g|~2. This is the elementary potential function in four dimensions,
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as log|z| is in the complex plane, and so the regular function whose real
part is |¢| 2 is an analogue of the logarithm of a complex variable.

We take U to be the whole of H except for the origin and the negative
real axis. Then U is star-shaped with respect to 1, and |¢|~2 is harmonic in
U. Put

0=t ouwle) = -1, |
u\g) = o> u\g) = — ) a =13
|l |a|?
then (6.3) gives
_ 1 .
f(g) = —(¢Puq) 1—72argq if Pug #0
| Pug]
1 (6.5)
= W if ¢ is real and positive,
q
where b Pug
ug -1 ugq
arg ¢ = log(Un g) Pug ( Reg ) (6.6)

which is ¢ times the usual argument in the complex plane generated by gq.
(In practice the formulae (6.3) and (6.4) are not very convenient to use, and
it is easier to obtain (6.5) by solving the equations

2t
F=——""
VE= @1y
and OF 2
r
bl F=-_ =
o TV E = ey

where t = Req, r = Puq and r = |r|—these express the fact that F : H — P
is the pure quaternion part of a regular function whose real part is |¢|=2—
and assuming that F has the form F(r)r.)

We will denote the function (6.5) by —2L(gq). The derivative of L(g) can
most easily be calculated by writing it in the form

2 + tejz; eirT; r
L(q) = — tan ! (- ) ; 6.7
(a) 2r2(r? + t2) TR ( > , (67)

the result is
dL(q) =G(q) = 13- (6.8)
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Thus L(q) is a primitive for the function occurring in the Cauchy-Fueter
integral formula, just as the complex logarithm is a primitive for z~!, the
function occurring in Cauchy’s integral formula.

Theorem 17 shows that there are as many regular functions of a qua-
ternion variable as there are harmonic functions of four real variables. However,
these functions do not include the simple algebraic functions, such as powers
of the variable, which occur as analytic functions of a complex variable.
Fueter [4] also found a method for constructing a regular function of a qua-
ternion variable from an analytic function of a complex variable.

For each g € H, let n, : C — H be the embedding of the complex numbers
in the quaternions such that ¢ is the image of a complex number ((gq) lying
in the upper half-plane; i.e.

Pugq

ng(z +iy) =z + |y, (6.9)

|Pug
((q) = Req +i|Pug|. (6.10)

Then we have

Theorem 18 Suppose f : C — C is analytic in the open set U C C, and

define f : H — H by

f(q) =mng e fol(q). (6.11)
Then Af is reqular in the open set (1 (U) C H, and its derivative is
au(Af) = AF, (6.12)

where f' is the derivative of the complex function f.

Proof [6] Writing t = Regq, r = Pug, r = [r|, and u(z,y) = Re f(z +1iy),
v(z,y) = Im f(z + iy), the definition of f gives

J(@) = u(t,r) + ~o(t,r)

Re [0, (q)] = 4 {% fult, r)] — V. [;v(t,r)} } ~Lui(tyr) — @ ~luy(t,r)
(6.13)

where the subscript 1 or 2 on u and v denotes partial differentiation with
respect to the first or second variable; and

r

Tt}

Pu[0.f(g)] = 4 {v fut, )] + % Ev(t,r)} 4V %

=1 {£u2(t,r) + Em(zt,r)} :

T r
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Since f = u + v is analytic, the Cauchy-Riemann equations give u; — vy =
uo +v1 = 0 and so

a 7 Q)(t,’f')
r—
Hence

_ _ 9 )
OAf(q) = Aopf(q) = — (% +%%r> v(t,r)

_vnltr) +oxlt,r)

r

-
=0
since v is a harmonic function of two variables. Thus f is regular at ¢ if f

is analytic at ((q).
A calculation similar to the above shows that

0ef(q) = ur +02) + =+ 5> (—uy +01)
r t,
=y t,r) + Sy ) + 20

by the Cauchy-Riemann equations for f. But f' = uj+ivy, so 9f = f’—i—v/r;
and A(v/r) =0, so

H(AF) = A@f) = AF. O

Functions of the form f have been taken as the basis of an alternative
theory of functions of a quaternion variable by Cullen [15].

JFrom (5.13) a straightforward calculation, using the fact that v and v
are harmonic functions, gives

Af(q) = 2albr)  2r {UQ(t’T) _olbr) } (6.14)

r r r r2

The following examples are interesting: When
fz)==""  Af(q) = —4G(g); (6.15)

when

fz)=logz,  Af(q) =—4L(q) (6.16)
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7 Regular Functions and Conformal Mappings

Because the quaternions are four-dimensional, very little remains in qua-
ternionic analysis of the relation between analytic functions and conformal
mappings in complex analysis. However, the conformal group of H acts on
regular functions in a simple way. The action of rotations and inversions
will be needed in studying regular polynomials, and so it seems appropriate
to present here the action of the full conformal group.

Theorem 19 Let H* = H U {oco} be the one-point compactification of H.
If the mapping f : H* — H* is conformal and orientation-preserving, f is
of the form

f(a) = (ag +b)(cqg +d)~" (7.1)
for some a,b,c,d € H. Conversely, any such mapping is conformal and
orientation-preserving.

Proof Let C' be the group of orientation-preserving conformal mappings of
H*, and let D be the set of mappings of the form (7.1). Then if f € D, f
has differential

df, = (ac™'d — b)(cq + d)"'cdg(cq + d) ™

This is of the form adgB, which is a combination of a dilatation and a
rotation, so f is conformal and orientation-preserving. Thus D is a subset
of C. Now C' is generated by rotations, dilatations, translations and the
inversion in the unit sphere followed by a reflection [16, p. 312], i.e. by the
mappings q — agf, ¢ — ¢+ and ¢ — ¢~'. If a mapping in D is followed
by any of these mappings, it remains in D; hence CD C D. It follows that
D=C. O

The same argument can be used to obtain the alternative representation
fg) = (ge+d)~ (qa +b).

We now show how a regular function gives rise to other regular functions
by conformal transformation of the variable.

Theorem 20

(i) Given a function f:H — H, let If : H\{0} — H be the function

-1
If(q) = qu?f(q‘l)-

If f is reqular at ¢—', If is reqular at q.
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(ii) Given a function f:H — H and quaternions a, b, let M(a,b)f be the
function

[M(a,b)f](q) = bf(a"qb).
If f is regular at agb, M (a,b)f is reqular at q.

(iii) Given a function f : H — H and a conformal mapping v : q — (aq +
b)(cq+d) 1, let M(v)f be the function

_ 1 (cq+d)t
~b—ac™d]? |cq +d|?

[M(v)f1(q) f(v(q)-

If f is regular at v(q), M (v)f is reqular at q.

Proof (i) By theorem 8, it is sufficient to show that

Dg Ad(If), = 0.

Now If = G(f o), where G(q) = % and ¢ : H\{0} — H is the inversion

g — ¢~ '. Hence
DgAd(If)g = DgAdGof (¢ ") + Dg A G(q)d(f 0 1),
= DqG(q) A Z;dqul

since G is regular at ¢ # 0. But

wDq(h1, ha, hs) = Dg(—q ' hig™ ", —q " haq ™" —q " hag™")
—1

—fqﬁDq(hl,ha,hg)q—l

by (2.41). Thus
DqG(q) = —|ql*qu; Dg

and so )
Dg Nd(If)q = —lq|"qry(Dg A df ;1)
=0

if f is regular at ¢~ . O
(ii) Let p : H — H be the map g — agb. Then by (2.41)

w*Dq = |a*|b]?a Dgb
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and so

Dq A d[M(a’a b)f]q = DgA bu;dfu(q)
= lal (bl *a™ (g Dg)b" A brgdfy(q)
= la [l %™ g (Dg A dfq))
=0
if f is regular at p(q). It follows from theorem 8 that M (a,b)f is regular at
q. d

(iii) The map g — v(q) = (ag+b)(cg+d) ! can be obtained by composing
the sequence of maps

q—q =cqb—actd)™! (7.2)

¢ —=q¢" =¢ +db—actd)™? (7.3)

q// N q/// — q//—l (7.4)
¢" > v(g) =¢" +ac” (7.5)

Clearly translation preserves regularity, i.e. if f is regular at ¢+ «, f(q+ @)
is regular at ¢. Applying this to the maps (7.3), part (i) of the theorem to
(7.4) and part (ii) to (7.2), we find that M (v)f is regular at ¢ if f is regular
at v(q). 0

8 Homogeneous Regular Functions

In this section we will study the relations between regular polynomials,
harmonic polynomials and harmonic analysis on the group S of unit qua-
ternions, which is to quaternionic analysis what Fourier analysis is to com-
plex analysis.

The basic Fourier functions e , regarded as functions on the
unit circle in the complex plane, each have two extensions to harmonic func-
tions on C'\{0}; thus we have the four functions 2", 2", 27" and z~". The
requirement of analyticity picks out half of these, namely 2™ and z~". In the
same way the basic harmonic functions on S, namely the matrix elements
of unitary irreducible representations of .S, each have two extensions to har-
monic functions on H\{0}, one with a negative degree of homogeneity and
one with a positive degree. We will see that the space of functions belonging
to a particular unitary representation, corresponding to the space of com-
binations of €™ and e~ for a particular value of n, can be decomposed

inf and e—in@
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into two complementary subspaces; one (like €?) gives a regular function
on H\{0} when multiplied by a positive power of |g|, the other (like e~""9)
has to be multiplied by a negative power of |g|.

Let U, be the set of functions f : H\{0} — H which are regular and

homogeneous of degree n over R, i.e.
flag) =a"f(q) for « € R.

Removing the origin from the domain of f makes it possible to consider
both positive and negative n (the alternative procedure of adding a point at
infinity to H has disadvantages, since regular polynomials do not necessarily
admit a continuous extension to HU {oo} = S%). Let W,, be the set of func-
tions f : H\{0} — H which are harmonic and homogeneous of degree n over
R. Then U, and W, are right vector spaces over H (with pointwise addition
and scalar multiplication) and since every regular function is harmonic, we
have U,, C W,,.

Functions in U,, and W,, can be studied by means of their restriction to
the unit sphere S = {q: |¢| = 1}. Let

Up={fIS:feU}, Wy={fIS:feW}

then U,, and U, are isomorphic (as quaternionic vector spaces) by virtue of
the correspondence

feU, e fel,  where  f(q)=r"f(u), (8.1)

using the notation r = |¢| € R, u = € 5.

Similarly W,, and Wn are isomorphic.

In order to express the Cauchy-Riemann-Fueter equations in a form ad-
apted to the polar decomposition ¢ = ru, we introduce the following vector
fields Xy, ..., X3 on H\{0}:

Xof =[], (52)

Xif = % [f(ge?)],_ = % [q(cos @ + e;sinf)]o—o (i = 1,2,3).(8.3)

These fields form a basis for the real vector space of left-invariant vector
fields on the multiplicative group of H, and they are related to the Cartesian
0 o)
vector fields &, D by
0

0
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0 0 0

Xy = -2 — +t—— — €005 —, 8.5
T P Ll T (8:5)
0 1
0 1
(3

Their Lie brackets are

[Xo, Xi] =0, (8.8)
[Xi,Xj] = 262'ij]€. (89)

Using (3.4) and (8.5) the differential operators 9, and A can be calculated
in terms Xy and X;. The result is

O =307 (Xo + e X;), (8.10)
1
A = S XX, + Xo(Xo +2)} (8.11)

JFrom (8.11) we can deduce the following (well-known) facts about W,:

Theorem 21

(’L) Wn = I/T/;n72
(i) dimW,, = (n + 1)?
(iii) The elements of W,, are polynomials in q.

Proof The elements of W, being homogeneous of degree n, are eigenfunc-
tions of X with eigenvalue n. Since they are also harmonic, e.g. (8.11)
shows that they are eigenfunctions of X;X; with eigenvalue —n(n+2). Now
the vector fields X; are tangential to the sphere S, so their restrictions
X, =X; |S are vector fields on S; they are a basis for the real vector space of
left-invariant vector fields on the Lie group S, which is isomorphic to SU(2).
Thus if f € W,, f = f|S for some f € W,, so f is an eigenfunction of
X; X; with eigenvalue —n(n + 2) and therefore f is an eigenfunction of X;X;
with eigenvalue —n(n+2). Conversely, if f is an eigenfunction of X;X; with
eigenvalue —n(n + 2), then

A )] = 5 { KK + [Xo(Xo +2r7) ) =0
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SO f € Wn Thus Wn is the space of eigenfunctions of XiXi with eigenvalue
—n(n + 2).

It follows immediately that W, = W_,_s. a(i)

W, is the quaternionification of the complex vector space WC of complex-
valued functions on S which have eigenvalue —n(n+2) for X; X;. It is known
[17, p. 71] that this space has a basis consisting of the matrix elements of
the (n 4+ 1)-dimensional representation of the group S. Hence

dimy Wy, = dim: WS = (n+1)2.  0O(ii)

In particular, Wy consists only of constant functions, and therefore so
does Wy. Now if f belongs to W, 5{ and i belong to W,,_1, and all the
nth partial derivatives of f belong to Wy; hence all the (n + 1)th partial
derivatives of f vanish and so f is a polynomial. O(iii)

Theorem 22

(i) Wo, =0, 00U,
(ii) Up 2U_, 3
(iii) dimU, = (n+1)(n +2)

Proof (i) Eq. (8.10) shows that the elements of U, which satisfy Xof = nf
and O;f = 0, are eigenfunctions of } = e; X; with eigenvalue —n. As in
theorem 21, it follows that U, consists of the eigenfunctions of 2 = ¢;X;
with eigenvalue —n. Now using (8.9), it can be shown that € satisfies the
equation

0% —20+ X,X; =0

and therefore . B
Q% — 20+ X;X; =0.

Hence

few,=XX;f =—-n(n+2)f
= (anf2)(ﬁ+n)f =0

It follows that W, is the direct sum of the eigenspaces of Q with eigenvalues
—n and n + 2 (these are vector subspaces of W,, since the eigenvalues are
real), i.e

Wy=Uo®U_pn_o 0O
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(ii) It follows from theorem 20(i) that the mapping I is an isomorphism
between U,, and U_,,_3. O(ii)
(iii) Let d,, = dimU,. By (1) and theorem 21 (ii),

dp+d_p o= (n+1)?

and by (ii), d_,_2 = dy_1. Thus dp, + d,,_1 = (n + 1)2. The solution of this
recurrence relation, with dg = 1, is

dp = 3(n+1)(n+2).  Oiii)

There is a relation between theorem 20(ii) and the fact that homogeneous
regular functions are eigenfunctions of €2. Theorem 20(ii) refers to a repres-
entation M of the group H* x H* defined on the space of real-differentiable
functions f : H\{0} — H by

[M(a,b)f](q) = b f(a"" qb).

Restricting to the subgroup {(a,b) : |a| = |b| = 1}, which is isomorphic to
SU(2) x SU(2), we obtain a representation of SU(2) x SU(2). Since the map
g — agb is a rotation when |a| = |b] = 1, the set W of harmonic functions is
an invariant subspace under this representation. Now W = H®: W€, where
W€ is the set of complex-valued harmonic functions, and the representation
of SU(2) x SU(2) can be written as

M (a,b)(¢ ® f) = (bg) ® R(a,b)f

where R denotes the quasi-regular representation corresponding to the ac-
tion g — agb™! of SU(2) x SU(2) on H\{0}:

[R(a,b)flg = f(a 'qb).

Thus M|W is the tensor product of the representations D° x D' and R|W¢
of SU(2) x SU(2), where D™ denotes the (n +1[)-dimensional complex repres-
entation of SU(2). The isotypic components of R|W¢ are the homogeneous
subspaces W, on which R acts irreducibly as D™ x D™; thus W), is an invari-
ant subspace under the representation M, and M|W, is the tensor product
(D° x DY) ® (D™ x D™). W,, therefore has two invariant subspaces, on which
M acts as the irreducible representations D™ x D™ and D™ x D™, These
subspaces are the eigenspaces of 2. To see this, restrict attention to the
second factor in SU(2) x SU(2); we have the representation

M'(b)(q® f) = M(1,0)(¢® f) = [D'(b)g] ® [R(L,b)f]
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where D'(b)g = bq. The infinitesimal generators of the representation
R(1,b) are the differential operators X;; the infinitesimal generators of D' (b)
are e; (by which we mean left multiplication by e;). Hence the infinitesimal
operators of the tensor product M’ are e; + X;. The isotypic components of
W are the eigenspaces of the Casimir operator

(e; + Xi)(e; + Xi) = eje; + X; X, +2Q.
But e;e; = —3, and X;X; = —n(n + 2) on Wy,; hence
(ei + XZ)(GZ +X1) =20 —n?—2n—3.

and so the isotypic components of W, for the representation M’ are the
eigenspaces of 2. Uy, the space of homogeneous regular functions of degree
n, has eigenvalue —n for , and so M’|U, is the representation D"*! of
SU(2).

Similar considerations lead to the following fact:

Theorem 23 If f is reqular, qf is harmonic.

Proof First we show that f € U, = qf € W,,. From the definition (8.3) of
the operators X; we have

Xi(q) = qe;
Hence
XiXi(qf) = Xi(gei f + gXif)
= —3qf +2qe; X; f +qX; Xif

since the X; are real differential operators. If f € U, it is an eigenfunction
of ¢;X; with eigenvalue —n and of X;X; with eigenvalue —n(n 4 2), and so

XiXi(qf) = =(n+1)(n+3)f.

Since ¢f is homogeneous of degree n + 1, it follows from (8.11) that it is
harmonic. But any regular function can be represented locally as a series
f=> fn with f, € Uy, and so the result follows for any regular f. O

The representation M of SU(2) x SU(2) can also be used to find a basis of
regular polynomials. It belongs to a class of induced representations which
is studied in [18], where a procedure is given for splitting the representation
into irreducible components and finding a basis for each component. Rather
than give a rigorous heuristic derivation by following this procedure, which
is not very enlightening in this case, we will state the result and then verify
that it is a basis.
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Since the functions to be considered involve a number of factorials, we
introduce the notation

z[”]:z—' ifn>0

n!
=0 ifn<0
for a complex variable z. This notation allows the convenient formulae
d
Ez[n} = =1, (8.12)
(z1 + zg)["] = Z zgr]zgnfr], (8.13)
r

where the sum is over all integers r.
The representation D™ of S 22 SU(2) acts on the space of homogeneous
polynomials of degree n in two complex variables by

[D"(u) f1(21,22) = f(zivzé)a

where
2+ jzh=u" 2+ jz).
Writing u = v + jw where v,w € C and |v|?> + |w|?> = 1, we have

2] = V21 + Wz, zh = —wz1 + v29.

Hence the matrix elements of D™ (u) relative to the basis fi(z1,22) = zgk]zgnfk]

are

Dige(u) = (=)"k!(n — k)P (u)

where
Pl(v+ jw) = Z(—)rv[n_k_”’"]17[’"]10[]“_’"]117[(_’"] (8.14)

r

The functions P[(¢) are defined for all quaternions ¢ = v + jw and for all
integers k, ¢, n, but they are identically zero unless 0 < k, £ < n.

Theorem 24 As a right vector space over H, U, has the basis
Qre(q) = Pip(q) —jP_1,(q)  (0<k<E<n)

Proof Using (8.14), it is easy to verify that @}, satisfies the Cauchy-
Riemann-Fueter equations in the form

or}, _8P1?71,£ opPr, OB,
o ow ' ow v
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(cf. 3.16). Since the functions D}, are independent over C as functions on
S for 0 < k, ¢ < n, the functions P}, are independent over C as functions
on H for 0 < k, £ < n. It follows that the functions @}, (0 < k < n+1,
0 < ¢ < n) are independent over C and therefore span a right vector space
over H of dimension at least 1(n+ 1)(n + 2). Since this space is a subspace
of Uy, which has dimension (n + 1)(n + 2), the Q7, span U,,.

Since zj = jZ for any z € C, it can be seen from the definition (8.14)
that

n - __ - n
Prod =7 Po—_gn—t

and therefore

Qred = Qn_ty1,n—t-
Thus U, is spanned by the QF, (0 < k < ¢ < n), which therefore form a
basis for U,. |

Another basis for U,, will be given in the next section.

We conclude this section by studying the quaternionic derivative 0.
Since Jp is a linear map from U, into U, 1 and dimU, > dimU, 1, Oy
must have a large kernel and so we cannot conclude from 9yf = 0 that f is
constant. However, although the result is far from unique, it is possible to
integrate regular polynomials:

Theorem 25 Every regular polynomial has a primitive, i.e. 0y maps U,
onto Up—1 if n > 0.

Proof Suppose f € U, is such that dpf = 0. Then

of _ . 9f _

—e; 21—,
ot o,

Thus f can be regarded as a function on the space P of pure imaginary
quaternions. Using vector notation for elements of P and writing f = fo+f
with fo € R, f € P, the condition eia% = 0 becomes

Vio+Vxf=0 V.£=0.

If n > 0, we can define f(0) so that these hold throughout P, and so there
exists a function F : P — P such that

f=VxF, fy=-V.F

i.e.

OF

f=e ox;
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Then F is harmonic, i.e. V2F = 0.

Let T, be the right quaternionic vector space of functions F : P — H
which are homogeneous of degree n and satisfy V?F = 0; then dim7},, =
2n + 1. Let K, be the subspace of T}, consisting of functions satisfying
eig—fi = 0; then K,, = ker 9y C U,,. The above shows that eia%i 1 = Ty
maps 141 onto Ky; its kernel is K, 41, and so

dim K, + dim K, 11 = dimT,,41 = 2n + 3.

The solution of this recurrence relation, with dim Ky = 1, is dim K, = n+1.
But

dimU, — dimU, 1 = 3(n+1)(n+2) —in(n+1) =n+1.
It follows that 0y maps U, onto U, 1. O
Theorem 26 Ifn <0, the map 0y : U, — U, _1 is one-to-one.

Proof We introduce the following inner product between functions defined
on the unit sphere S:

(.9) = [ TCalg(u)du

where du denotes Haar measure on the group S, normalised so that [¢ du =

%7@. For functions defined on H, we can use (4.6) to write this as

(f.9) = AWQ‘qu g(q)

As a map : U, x U, — H, this is antilinear in the first variable and linear in
the second, i.e.
(fa,gb)y =a(f,g)b for all a,b € H

and is non-degenerate since (f, f) =0 < f =0.
Now let f € Uy, g € U_,,_5 and let I denote the map : U,, = U_,,_3
defined in theorem 20(i). Then

(9,10, f) Z/S@q’quq’lazf(q’l)

= —/@Z*(anlf)a
S
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where . denotes the map ¢ — ¢~' and we have used the fact that .*Dq =
—q 'Dgq~! for ¢ € S. Since f is regular, DqO,f = %d(dq Adgqf) and so

(g.100f) =~ [ ST (dq A da £
= —% /Sdg A" (dg Ndq f) since 9S = 0.

On S, the inversion ¢ coincides with quaternion conjugation; hence ¢*dg = dg
and therefore

(g.100f) = =3 [ dg ndq ndag(a )
= —%/qu/\dq/\dgf(q_l)

_ _/gmf(Q‘l)

since g is regular. Since conjugation is an orthogonal transformation with
determinant —1, Dq(hq, ho, h3) = —Dq(h1, ho, h3); hence, because conjuga-
tion is the same as inversion on S,

Dq=—*Dg=q 'Dqq "

Thus
(9, 100f) = —/Saeg(q)q’quq’lf(q*l)

= —(0g, If ).
But I is an isomorphism, the inner product is non-degenerate on U_, o,
and 0y maps U_,,_o onto U_,,_3 if n < —3; it follows that 9, : U, — Up,_1 is
one-to-one. d
In the missing cases n = —1 and n = —2, theorems 25 and 26 are both
true trivially, since U_y = U_y = {0}.

9 Regular Power Series

The power series representing a regular function, and the Laurent series
representing a function with an isolated singularity, are most naturally ex-
pressed in terms of certain special homogeneous functions.

Let v be an unordered set of n integers {i1, ..., %, } with 1 <4, < 3; v can
also be specified by three integers ny,no,n3 with ny + no + ng = n; where
nq is the number of 1’s in v, ny the number of 2’s and ng the number of 3’s,
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and we will write v = [nynong]. There are 2(n + 1)(n + 2) such sets v; we
will denote the set of all of them by ¢,. They are to be used as labels; when
n = 0, so that v = ), we use the suffix 0 instead of ). We write 9, for the
n’th order differential operator

871 an
Oz ...0z;,  Ox™Oyn20z"s’

0, =

The functions in question are
Gu(q) = 0,G(q) (9.1)
and

n|ztel1 T, )...(tei, — i) (9.2)

where the sum is over all W different orderings of nq 1’s, ny 2’s and ng3
3’s. Then P, is homogeneous of degree n and G, is homogeneous of degree
—n — 3.

As in the previous section, U,, will denote the right quaternionic vector
space of homogeneous regular functions of degree n.

Theorem 27 The polynomials P, (v € oy,) are reqular and form a basis for
Un.

Proof [17] Let f be a regular homogeneous polynomial of degree n. Since
f is regular
of of
' . -0
t * zl: € ox;

and since it is homogeneous,

Hence

But % is regular and homogeneous of degree n — 1, so we can repeat the
argument; after n Steps we obtain

f(Q) = | Z Ly — tell (xln - tein)ai

'n Jn

= Z (=1)"P.(q)0,f(q)-

vEon
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Since f is a polynomial, d,f is a constant; thus any regular homogeneous
polynomial is a linear combination of the P,. Let V,, be the right vector space
spanned by the P,. By theorem 21(iii), the elements of U,, are polynomials,
so U, C Vy; but dimV,, < (n+ 1)(n + 2) = dimU, by theorem 22(iii).
Hence V,, = U,,. O

The mirror image of this argument proves that the P, are also right-
regular.

Theorem 28 The expansions

Gp—q) =Y. > P(q)G.u(p) (9.3)

=Y Y G.(p)P(q) (94)

are valid for |q| < |p|; the series converge uniformly in any region {(p,q) :
lg| < rlp|} with r < 1.

Proof Just as for a complex variable, we have
1-9~ "' =>¢"

for |g| < 1; the series converges absolutely and uniformly in any ball |¢| < r
with 7 < 1. Hence G(1 — q) = (1 — ¢)~2(1 — q) can be expanded as a power
series in ¢ and ¢ which converges uniformly in any ball with radius less than
1. Because G has the multiplicative property

G(q1q2) = G(g2)G(qn), (9.5)

it follows that G (p—¢q) can be expanded as a power series in p~'¢, multiplied
by G(p); the series converges uniformly in any region [p~lq| < r with r < 1.

Regarding this series as a power series in ¢ and identifying it with the
Taylor series of G about p, we have

(_1 r4s ar—l—sG

)
(r+ s)! 0tr Oz, ...0z;, ()

Glp—q) = i >

r,s=0171...15

t"zi, ...z, (9.6)

Since G is regular, each derivative with respect to ¢ can be replaced by
the combination — 3}, eia%i, giving

49



oG
Z > X (e )eltes) () (i) g

r+s n J1
J1--Jr

11.nnlg
= Z Z PI/(Q)G
n=0veon

This proves (9.5). But G is also right-regular, i.e.
oG oG
92,

so the derivatives with respect to ¢ in (9.6) can alternatively be replaced by
combinations of derivatives with respect to the x; with coefficients on the
right, thus giving

=> Y G.p)P(g). O
n=0vEon

Theorem 29 Suppose f is reqular in a neighbourhood of 0. Then there is a
ball B with centre 0 in which f(q) is represented by a uniformly convergent

= Z Z PV(Q)aVa (97)

n=0v€Eon

where the coefficients a, are given by
1
w =55 [ Gla)Daf@) (9:8)
™ JOB
— (~1)"3,(0). (9.9)

Proof Let S be a sphere with centre 0 lying inside the domain of regularity
of f, B a closed ball with centre 0 lying inside S. Then for ¢ € B the integral
formula gives

flg) = L/ G(¢'—q)Dq' f(q")
=2W2/ZZP 7)Dd f(d)

=0veEon
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since |q| < |¢'| if ¢ € B and ¢’ € S. The series converges uniformly on B X S,
so it can be integrated term by term to give a uniformly convergent series
of the form (9.7) with

0 = 507 [ Gul@)Daf (@)

But the functions G, are right-regular except at 0, so (4.4) gives d(G,Dqf) =
0 outside B, and therefore Stokes’s theorem can be used to replace the
contour S by 0B.

Differentiating the integral formula gives

(="

Hence 9, f(0) = (—=1)"a,. O
Corollary

/S Gu(¢'—q)Dq'f(q")

1
ﬁ/gau(q)DqPIJ(q) :5uua

where §' is any sphere containing the origin.
This follows by putting f = P, in (9.7).

Theorem 30 (the Laurent series) Suppose f is reqular in an open set
U except possibly at qo € U. Then there is a neighbourhood N of qy such
that if ¢ € N and q # qo, f(q) can be represented by a series

F@=3 3 {Pola—ao)ar +Gula— ao)bs}

n=0v€Eon

which converges uniformly in any hollow ball
{g:7<|qg—q| <R}, withr >0, which lies inside N.

The coefficients a, and b, are given by

ay = %/C’GV(Q_QO)D(I][(Q)’ (9.11)
b, = #/CPV(q—qo)qu(q), (9.12)

where C is any closed 3-chain in U\{qo} which is homologous to OB for
some ball B with gy € B C U (so that C has wrapping number 1 about qy).
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Proof Choose R; so that the closed ball By = {q: |¢ — qo| < Ry} lies inside
U, and let N = int By, S1 = 90B;. Given ¢ € N\{q}, choose Ry so that
0 < Ry < |q — qo] < Ry, and let Sy be the sphere {q : |¢ — qo| = R2}. Then
by the integral formula,

flg) = # /S1 G(d' —q)Dq'f(q') - # /52 G(¢' — D4 f(¢).  (9.13)

For ¢ € S1 we have |¢' — qo| < |¢ — qo|, and so as in theorem 29

/Gq—quf ZZP q—q)a (9.14)

n=0veEon

where

1
a, = 2—2/ Gu(q" —90)Dq'f(q")
s S1

and the series is uniformly convergent in any ball |¢ — qo| < R with R < R;.
If C is a 3-chain as in the statement of the theorem, it is homologous to St;
since d(G,Dqf) =0 in U\{qo}, Stokes’s theorem gives (9.11).

For ¢’ € S we have |¢' — qo| < |¢ — qo| and so we can expand G(¢' — q)
as in (9.4) to obtain

1/32G(q—q)qu 27T2 > > Gula—q)Pd — q0)Dd f(q")

T 9.2
2 52 p—oveo,

= i Z Gl/(q_ qO)bu

n=0ve€on

(9.15)

where
1 ! ! !
- | P.(d —q)Dd'f(d).
Vs So

The series is uniformly convergent in any region |¢ — qo| > r with r > Rs.
Since the P, are right-regular, d(P,Dqf) =0 in U\{go} and so the contour
S5 in the formula for b, can be replaced by any 3-chain C as in the statement
of the theorem. In particular, b, is independent of the choice of Ry and so
the same representation is valid for all ¢ € N\{qo}. Now putting (9.14) and
(9.15) into (9.13) gives (9.10) for all ¢ € N\{qo}- O
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