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The science of the past century has achieved great success on the basis of the geometrical
quadratic concepts that were followed as logical and mathematical primaries. More profound
ideas will imply using a more capacious class of geometries, for example the Finsler one which
inscribes structures because the Finslerian indicatrices are no more isotropic in all directions. In
the present work an attempt is made to resolve the respective difficulties of Finsler generalization
by choosing the particular Finsleroid–type metric that implies one preferred direction, admitting
the total axial symmetry around it. In this case, interesting constructive methods of introducing
the concept of the angle and scalar product outside the frame of the Euclidean Geometry can
conveniently be opened up.

“The Euclidean traditions are too strong to be rejected, and
probably few generations of mathematicians are necessary

to work off its influence.” (Busemann [2], p. 8.)

Introduction

The quadratic method is the most convenient one to introduce the vector length. Ac-
cording to the method the length is defined by means of the square root of the quadratic
form. For more than 20 centuries the Euclidean geometry and Euclidean rotations based
on it have been served in theoretical constructions and predictions of results of experi-
ments. The non-quadratic methods are developed in the Finsler geometry (see [1 – 6]).

Unfortunately, we must admit that much attention has not been paid in literature to
studying the corresponding opportunities. By tradition the mathematical and theoretical
physical concepts and equations are based on the method of introducing the vector length
by the help of square root. And numerous interesting and deeply critical analysis (see, e.g.,
[7, 8]) of the geometrical structure of the space–time and methods of its generalization and
comprehension usually go without even mentioning the existence of ideas and methods
of the Finsler Geometry. In spite of high level of adequacy and accurate coincidence, it
is still not clear how it is possible to express this degree of accuracy in numbers, for the
Euclidean rotations do not possess a small parameter to evaluate.

In comparison with the common Euclidean metrics the Finslerian one introdudces
the structure in metric geometry. While the unit surface of the Euclidean Geometry is
a sphere that is isotropic in all directions, the introduction of geometrically preferred
directions leads to generalizing the sphere and finally to generalizing the Euclidean Ge-
ometry. The corresponding, not isotropic, surface of the ends of the unit vectors (when
issued from a fixed point) generates the Finsler metrics. Respective geometries can re-
flect the physical cases where the corresponding directional anisotropy is present. The
Berwald–Moor metrics is totally anisotropic, for it supposes geometrically–emphasized
directions whose number equals the number of manifold dimensions (accordingly, 3 in the
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three–dimensional case and 4 in the four–dimensional case). The Finsleroid–Geometry
introduces only one preferred direction, supposing the total axial symmetry around it.

Actually, the task of generalizing the Euclidean metric function to the Finsler case
seems to be too general and rather unclear to give a definite answer. But if we treat
the problem from point of view of invariance and the possibility of introduction of the
angle and scalar product, then we can endeavor to find constructive ways of defining the
classes of Finsler spaces. As a result, there may emerge the methods of abandoning the
Euclidean geometry.

Of course, no matter how motivated our desire to leave the borders of “quadratic
conceptions” is, it is impossible to “overcome the square root completely”. The hierarchy
of geometries takes its root in generalizing. It is clear that methods and ideas of the
Euclidean geometry are present and work in the Riemann geometry. Many authors of
works on the Finsler Geometry used “the associative Riemann Geometry”, introduced
“the Riemann connection” or “the Finsler–Riemann connection”, introduced “associative
relative Riemann geometry along the vector fields”, constructed “osculating Riemann
space” , and “the Riemann development of the Finsler space along the curve”, etc. The
mathematicians applied steadily the associative Euclidean geometry in the Minkowski
spaces.

Any theory that abandons the concepts dictated by the quadratic form has the shape
of a pyramid: going down to the basis of the “unique super-geometry” the researcher must
enter the area of “the associative Finsler Geometry”, where in its turn appear different
Riemann images, and then numerous Euclidean pictures.

The above facts are directly related to the Quadra-number geometry (developed
recently in the work by Pavlov [9, 10]). In fact, it appears from examining the commutative
hyper-numbers and relates the standard to them. By interpreting the component of the
hyper-numbers as the component of the vector this metrics can be related to the type
of “Berwald–Moor’s Finsler metric function”. Basing ourselves on the last case we can
(and must) develop the theory of geometric correlations, including the introduction of
the geodesic angle, perpendicularity,... – that do not coincide with analogous geometrical
juxtaposition of the Riemann or Euclidean Geometry. Particularly, we cannot reject the
latter one because we use graphic presentations and pictures, at least we have to simulate
and construct them in the Euclidean space!

At the same time, this does not mean that the Finsler geometrical properties are
prescribed uniquely to the Quadra–space. In fact, according to its own capacities, the
poly–form theory makes it possible to introduce the corresponding angles and perpendic-
ularity; in particular, such a generalization of the theory of “higher degree of metrics”
was made in the works [9, 10].

Obviously, the Minkowski geometry has more invariants than the Euclidean one, and
the Finsler aprroach – more than the Riemann one. In such context we should indicate
that the Quadra–spaces have much more invariant objects, than the Finsler or Minkowski
ones, and can offer a theory which is richer in geometrical concepts. In particular, this
can be seen in the fact that the Euclidean geometry can be easily associated with the
Quadra–space in many ways.

Philosophy and logic of associated problems. We can hardly overestimate the
importance of Euclidean approaches and the fact that the Euclidean Quadratic geometry
has already built up and keeps on building up the way of thinking and analysis of many
scientists and researchers. For example, the Riemann geometry since its definition is
based on the quadratic form (sometimes it used to be called “the geometry created by the
quadratic form”), the theory of bundle spaces also applies the quadratic method (but it
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is more multifarious than the Riemann geometry), the Lagrangians in theories of physical
fields are usually quadratic with respect to derivatives, the energy and impulse of the
relativistic particle are connected by a quadratic form, etc. The Special and General
Theory of Relativity are also based on the quadratic forms, but now possess pluses 〈+〉
as well as minuse 〈−〉 in the signature; the Lobachevski geometry is also related to the
type.

Nowadays there are many books on geometry, where quite often different “models”
of generalized geometries are presented and studied. In contrast to this the Geometry,
and not “a model of geometry”, is presented in Euclid’s work.

Why the Euclidean geometry has lived through 2 millenniums? The reason is that
the square root of a quadratic form is used to define length and vectors. We can come
across this method everywhere: in practice, in mathematical and physical theories, and in
experiments; it is also used nowadays. Logically it is the simplest way. But “the simplest”
is not always “the most precise”.

“The axiomaticians” during the last century have been analyzing the structure of the
Euclidean geometry (remind Hilbert’s famous work The Foundations of Geometry), and
not the ways of constructive generalizing of the “quadraticity” of the Euclidean metrics.

It is quite easy to question any statement that declares about “high experimental
accuracy” of the quadratic method of establishing the length. Has anyone and with what
accuracy checked the Pythagorean theorem? Such check is hardly possible without the
researcher using more general methods for comparison (profound research of the topic is
out of the aim of the work, the readers may try to carry out their own analysis)

In fact, the Euclidivity of the geometry or its models is preserved till preserves the
quadraticity of the definition of length. But we need something more than just courage
to make the corresponding decisive step. This is a difficult task: we must find a good way
to change the quadratic method of defining the length by a more general one and recast
the equations of mathematical physics on the basis of the method in order to abandon
the “Euclidivity”. And this is a good task for the scientists of the new millennium. The
conservative way of thinking as an obstacle in the way of geometrical progress can be
effective only during a very short period of time.

The Length is the fundamental concept either in theoretical or applied science. We
can compare it only with the concept of Number in its fundamentality. The development
and application of the concept of the length have lead to creation of Geometry, and the
concept of number – to Algebra.

Using the theory of the so–called Minkowski Space (it is also called Minkowski ge-
ometry) we can formulate quite a general and modern attitude. In the modern accurate
mathematical language the Minkowski Space is often defined as the Finite–Dimensional
Banach Space.

In the Minkowski spaces the length is introduced by the general definition that
enables it to be defined by functions of a rather wide range of classes with minimum
conditions on smoothness. The fibered manifold, where the fiberes are Minkowski spaces,
are called the Finsler spaces.

During the last century many scientists have been studying the Minkowski geometry
and Finsler geometry. More than 2000 works and a number of monographs have been
published, but we should be very cautious while speaking about the achieved success.
It is inevitable that we come across a large number of tensors in the Finsler geometry
(that do not have non-trivial prototypes on the Riemann geometry), and it is not obvious
that such numerical growth predetermines qualitative leap. By the latter case the Finsler
geometry have spurned many mathematicians as it seems to be extremely difficult to study
because of the great number of tensors (in comparison to this the Riemann geometry is
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quite economical: there is a metrical tensor, one set of coefficients of association and one
curvature tensor).

But we should not be too pessimistic about the inconvenience of formalism. Es-
pecially nowadays, that there are few people that will be surprised by the multy–
componentry of the objects neither in mathematics nor in theoretical physics. It is likely
that the problems lie in another level, and to be more precise in the lack of definite key
links. Here we can recall Busemann’s remark, that the progress in motion should consist
“not of the generalizing of the Riemann geometry, but of its results as well”.

Should the development of the concept of “the Length” be in connection with the
development of the concept of “the Number”?

If we turn to prehistory of the Euclidean geometry, to Pythagoras’s activity, then we
will learn about his tragedy when he learnt that the diagonal of the square is rationally not
commensurable with the length of its sides. So, for Pythagoras it was a real catastrophe
that the number did not correspond to the length. This “surprise” gave an impulse to
development of the concept of the Number, and to be more precise, to creation of the
theory of the irrational number. The developed correspondence between the Length and
the Number made the basis of the Euclidean geometry and moreover of its axiomatics (for
example suggested by Hilbert). In this regard the axiomatic of the Euclidean geometry
developed by Hilbert was the culmination of the identity of the concept of arithmeti-
cal number and quadratic length, many geometric key concepts have been derived from
arithmetical numerical properties.

The following move from the Euclidean geometry to the Riemann one does not
add any new ideas to the dichotomy. The Riemann geometry is just “a fibration of the
Euclidean geometries”, so that in every level there works the Euclidean geometry and the
common definition of length is used.

The Minkowski geometry abandons the definition of the length, but (though, as
is well known, Minkowski started thinking about geometry while studying the theory
of numbers) develops the problem without any connection with the concept of number.
Pythagoras’s tragedy does not matter any more! We can say the same about the modern
Finsler spaces, that are just fibrations of the levels in the Minkowski space.

Such excursus into history enables us to show enough courage to state the following:
we should build the Finsler geometry in close connection with the development of the
concept of the Number.

We can hope that this idea will be principle for the successive development of the
Finsler geometry in the present century. We should know on what level does the Finsler
generalizing of the Length is needed to generalize the concept of the Number. The answer
is not clear, though the reversed way of thinking is obvious: the non-Euclidean, not
quadratic Finsler metric function should be the measure of the generalized number.

There emerges a very important question: where does poly-numbers are crucial in
the Finsler geometry, so that you can do nothing without them? Pythagoras’s tragedy
is clear: the rational numbers are not enough to measure the length of the unit square
diagonal. The origin of the transcendental numbers is also clear: the unit circumference
diameter cannot be measured by the algebraic irrational number.

The anisotropy is presumed in generalizing the Euclidean geometry. In this connec-
tion the indicatrix becomes the key concept: it is the surface of ends of the unit vectors
that issue at a fixed point. In the Euclidean geometry the sphere is the indicatrix. It
symbolizes the isotropy of the space, equality of its properties in all directions. As the
uniformity condition appears in the definition of the Minkowski space and the Finsler
space, the indicatrix proves anisotrophy of any vectors (not necessarily the unit ones).
The move from The Euclidean geometry to the Minkowski one symbolizes refusal from
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the total isotropy of the space and after the move the corresponding indicatrix cannot be
a second-order surface any more.

From the point of view of anisotropy, The Berwald-Moor metrics is characterized by
the presence of preferred directions, that in their number equal the number of dimensions
of the space.

In the present work the necessary basic definitions and results of calculations of
the associated values for the Finsleroid-geometry (EPD

g –geometry), that admit only one
preferred direction are presented. Our previous investigation [5,6] showed that the study
is promising. In fact, EPD

g -approach is applied to the development of new study of new
field in the metric differential geometry and can be effective in Finsler and Minkowski
geometries. The observation that the one-vector Finsler metric function associated with
EPD

g -space quite naturally admits the promising two-vector generalizing , in this way
generating the angle and the scalar product, is the key point of the article.

Attempts to introduce the angle and into the Finsler and Minkowski spaces always
striked against the ambiguity:

“Therefore no particular angular measure can be entirely natural in Minkowski ge-
ometry. This is evidenced by the innumerable attempts to define such a measure, none
of which found general acceptance“. (Busemann [2], p. 279.)

“Unfortunately, there exists a number of distinct invariants in a Minkowskian space
all of which reduce to the same classical euclidean invariant if the Minkowskian space
degenerates into a euclidean space. Consequently, distinct definitions of the trigonometric
functions and of angles have appeared in the literature concerning Minkowskian and
Finsler spaces“. (Rund [3], p. 26)

The fact that the attempts have never been unambiguous seems to be due to a lack
of the proper tools. For the opinion was taken for granted that the angle ought to be
defined or constructed in terms of the basic Finslerian metric tensor (and whence ought to
be explicated from the initial Finslerian metric function). Let us doubt the opinion from
the very beginning. Instead, we would like to raise alternatively the principle that the
angle is a concomitant of the geodesics (and not of the metric function proper). The angle
is determined by two vectors (instead of one vector in case of the length) and actually
implies using a due extension of the Finslerian metric function to a two-vector metric
function (to a scalar product). Below, the principle is applying to the Finsleroid space in
a systematic way. The essence of the generalizing can be visualized in deformation of the
Euclidean sphere (which is the indicatrix of the Euclidean space).

We devote the section 1 to geodesic equations. Remarkably, the equations admit a
simple and clear solution. Then we can find the angle between two vectors. Usually it is
expected that the angle measure should be additive (for the angles with the same vertex).
The angle differs from the Euclidean angle in the quasi–Euclidean space only by the
constant factor and consequently is additive. The cosine rule is held true when changing
the Euclidean angle by the found angle. We get the corresponding scalar product.

Formally, the method of introducing the vector length with the help of the square
root of a quadratic form lies in the basis of Euclidean conception. In the present work
we use the concrete axial–symmetric generalizing of such method, basing ourselves on
constructive ideas of the Finsler geometry. We introduce the corresponding Finsler metric
function and in detail describe its basic properties and consequences. The generalizing is
characterized by one non–dimentional parameter, that is denoted below as g.

Then the section 2 introduces designations, definitions and basic concepts of the
space EPD

g . On this fact the supposition that the space includes one emphasized direction,
that we will often call the Z axis, is based. The abbreviations FMF and FMT will be
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used to denote the Finsler metric function and Finsler metric tensor accordingly. The
characteristic parameter g can take the value between −2 and 2; if g = 0 the space EPD

g is
driven to the common Euclidean space. After preliminary introduction of characteristic
quadratic form B, that differs from the Euclidean sum of squares by the presence of the
mixed term (see (2.22)), we define FMF K of the space EPD

g with the help of the formula
(2.30) – (2.33). The characteristic feature of the formula is the presence of the function
“arctan”. Then we calculate the tensorial values of the space. There is a phenomenon
that simplifies the construction: the associated Cartan tensor that turns out to have a
simple algebraic structure (2.66) – (2.67). In particular this unique phenomenon leads
to the conclusion that the indicatrix of the space EPD

g is a space of constant positive
curvature. The curvature value depends on the parameter g according to the rule (2.73).

The section 3 introduces the concept of quasi–Euclidean reflection of the EPD
g –space.

The concept turns out to be quite promising because the quasi–Euclidean space is simple in
many aspects, so that the corresponding transformation simplifies different calculations.
It is not flat, but is conformally flat. The section 4 gives idea about some interesting
properties of the quasi–Euclidean metric tensor. Figures that illustrate the Finsleroids
with different values of the parameter g are placed in the Appendix.

1. Derivation of geodesics and angle in associated quasi–euclidean space

For the space under study, the geodesics should be obtained as solutions to the
equation

d2Rp

ds2
+ Cq

p
r(g; R)

∂Rq

∂ds

∂Rr

∂ds
= 0 (1)

which coefficients Cp
q
r are given by the list placed at the end of Sec. 2. To avoid

complications of calculations involved, it proves convenient to transfer the consideration
in the quasi–euclidean approach (see Secs. 3 and 4). Accordingly, we put

√
gpq(g; R)dRpdRq =

√
npq(g; t)dtpdtq (2)

and
Rp(s) = µp(g; tr(s)) (3)

together with
dRp(s)

ds
= µp

q(g; tr(s))
dtq(s)

ds
, (4)

where µp(g; tr) and µp
q(g; tr) are the coefficients given, respectively by Eqs. (3.14) and

(3.38) – (3.40). Let a curve C: tp = tp(s) be given in the quasi-euclidean space, with the
arc-length parameter s along the curve being defined by the help of the differential

ds =
√

npq(g; t)dtpdtq, (5)

where npq(g; t) is the associated quasi-euclidean metric tensor given by Eq. (3.49) in Part
II. Respectively, the tangent vectors

up =
dtp

ds
(6)

to the curve are unit, in the sense that

npq(g; t)upuq = 1. (7)
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Since Lp = ∂S/∂tp, we have

Lpu
p =

dS

ds
. (8)

Here, S2(t) = npq(g; t)tptq = rpqt
ptq (see Eq. (3.46)). Using Eq. (4.16) leads through

well-known arguments to the following equation of geodesics in the quasi–euclidean space:

d2t

ds2
=

1

4
G2 t

S2
Hpqu

puq, (9)

where Hpq = h2(npq − LpLq) (see Eq. (4.4)) and t = {tp}. We obtain

d2t

ds2
=

1

4
g2 t

S2

(
1− (

dS

ds
)2

)
=

1

4
g2(a2 − b2)

t

S4
(10)

and
d2t

ds2
=

1

4
g2(a2 − b2)

t

S4
(11)

with
S2(s) = a2 + 2bs + s2, (12)

where a and b are two constants of integration.
If we put

S(∆s) =
√

a2 + 2b∆s + (∆s)2 (13)

and
t1 = t(0), t2 = t(∆s), (14)

then we get
a =

√
(t1t1) (15)

and
S(∆s) =

√
(t2t2) (16)

together with

(t1t2) = aS(∆s) cos
[
h arctan

√
a2 − b2 ∆s

a2 + b∆s

]
. (17)

Here, t1 and t2 are two vectors with the fixed origin O; they point to the beginning of
the geodesic and to the end of the geodesic, respectively. The notation parenthesis couple
(..) is used for the euclidean scalar product, so that (t1t1) = rpqt

p
1t

q
1, (t1t2) = rpqt

p
1t

q
2, and

rpq is a euclidean metric tensor; rpq = δpq in case of orthogonal basis; δ stands for the
Kronecker symbol. From (1.15)-(1.17) it directly follows that

√
a2 − b2 ∆s

a2 + b∆s
= tan

[1

h
arccos

(t1t2)√
(t1t1)

√
(t2t2)

]
. (18)

The equality (1.18) suggests the idea to introduce

DEFINITION. The EPD
g -associated angle is given by

α
def
=

1

h
arccos

(t1t2)√
(t1t1)

√
(t2t2)

, (19)

so that

α =
1

h
αeuclidean. (20)
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Such an angle is obviously additive:

α(t1, t3) = α(t1, t2) + α(t2, t3). (21)

Also,
α(t, t) = 0. (22)

With the angle (1.19), we ought to propose

DEFINITION. Given two vectors t1 and t2, we say that the vectors are EPD
g -

perpendicular, if
cos (α(t1, t2)) = 0. (23)

Since the vanishing (1.23) implies

αquasi−euclidean(t1, t2) =
π

2
, (24)

in view of 1.20) we ought to conclude that

αeuclidean(t1, t2) =
π

2
h ≤ π

2
. (25)

Therefore, vectors perpendicular in the quasi-euclidean sense proper look like acute vectors
as observed from associated euclidean standpoint.

With the equality

(
√

a2 − b2 ∆s)2 + (a2 + b∆s)2 ≡ a2S2(∆s), (26)

we also establish the relations

√
a2 − b2 ∆s = aS(∆s) sin α (27)

and
a2 + b∆s = aS(∆s) cos α. (28)

They entail the equality
b√

a2 − b2
=

S(∆s) cos α− a

S(∆s) sin α
(29)

from which the quantity b can be explicated.
Thus each member of the involved set {a, b, ∆s, S(∆s)} can be explicitly expressed

through the input vectors t1 and t2. For many cases it is worth rewriting the equality
(1.24) as

S2(∆s) = (∆s)2 − a2 + 2(a2 + b∆s). (30)

Thus we have arrived at the following substantive items:

The EPD
g -Case Cosine Theorem

(∆s)2 = S2(∆s) + a2 − 2aS(∆s) cos α ; (31)

The EPD
g -Case Two-Point Length

(∆s)2 = (t1t1) + (t2t2)− 2
√

(t1t1)
√

(t2t2) cos α ; (32)

The EPD
g -Case Scalar Product
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< t1, t2 >=
√

(t1t1)
√

(t2t2) cos α ; (33)

The EPD
g -Case Perpendicularity

< t1, t2 >=
√

(t1t1)
√

(t2t2). (34)

The identification

|t2 ª t1|2 = (∆s)2 (35)

yields another lucid representation

|t2 ª t1|2 = (t1t1) + (t2t2)− 2
√

(t1t1)
√

(t2t2) cos α . (36)

The consideration can be completed by

THEOREM. A general solution to the geodesic equation (1.11) can explicitly be
found as follows:

t(s) =

=
S(s)

a

sin
[
h arctan

√
a2 − b2 (∆s− s)

a2 + b∆s + (b + ∆s)s

]

sin
[
h arctan

√
a2 − b2 ∆s

a2 + b∆s

] t1 +
S(s)

S(∆s)

sin
[
h arctan

√
a2 − b2 s

a2 + bs

]

sin
[
h arctan

√
a2 − b2 ∆s

a2 + b∆s

] t2.

(37)

The euclidean limit proper is

t(s)∣∣∣
g=0

=
(∆s− s)t1 + st2

∆s
= t1 + (t2 − t1)

s

∆s
,

so that the geodesics become straight. From (1.35) the equality

(t(s)t(s)) = S2(s) (38)

follows, in agreement with (1.12). Since the general solution (1.35) is such that the
right-hand side is spanned by two fixed vectors, t1 and t2, we are entitled concluding that
the geodesics under study are plane curves.

2. Finsleroid-space EPD
g of positive-definite type

Suppose we are given an N–dimensional vector space VN . Denote by R the vectors
constituting the space, so that R ∈ VN . Any given vector R assigns a particular direction
in VN . Let us fix a member R(N) ∈ VN , introduce the straightline eN oriented along the
vector R(N), and use this eN to serve as a RN–coordinate axis in VN . In this way we get
the topological product

VN = VN−1 × eN (1)
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together with the separation

R = {R, RN}, RN ∈ eN and R ∈ VN−1. (2)

For convenience, we shall frequently use the notation

RN = Z (3)

and
R = {R, Z}. (4)

Also, we introduce a euclidean metric

q = q(R) (5)

over the (N − 1)–dimensional vector space VN−1.
With respect to an admissible coordinate basis {ea} in VN−1, we obtain the coordinate

representations
R = {Ra} = {R1, . . . , RN−1} (6)

and
R = {Rp} = {Ra, RN} ≡ {Ra, Z}, (7)

together with

q(R) =
√

rabRaRb, (8)

where rab are the components of a symmetric positive–definite tensor defined over VN−1.
The indices (a, b, . . . ) and (p, q, . . . ) will be specified over the ranges (1, . . . , N − 1) and
(1, . . . , N), respectively; vector indices are up, co–vector indices are down; repeated up–
down indices are automatically summed; the notation δa

b will stand for the Kronecker
symbol. The variables

wa = Ra/Z, wa = rabw
b, w = q/Z, (9)

where
w ∈ (−∞,∞), (10)

are convenient whenever Z 6= 0. Sometimes we shall mention the associated metric tensor

rpq = {rNN = 1, rNa = 0, rab} (11)

meaningful over the whole vector space VN .
Given a parameter g subject to the inequality

−2 < g < 2, (12)

we introduce the convenient notation

h =

√
1− 1

4
g2, (13)

G = g/h, (14)

g+ =
1

2
g + h, g− =

1

2
g − h, (15)

g+ = −1

2
g + h, g− = −1

2
g − h, (16)
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so that

g+ + g− = g, g+ − g− = 2h, (17)

g+ + g− = −g, g+ − g− = 2h, (18)

(g+)2 + (g−)2 = 2, (19)

(g+)2 + (g−)2 = 2, (20)

and

g+
g→−g⇐⇒ −g−, g+ g→−g⇐⇒ −g−. (21)

The characteristic quadratic form

B(g; R) = Z2 + gqZ + q2 ≡ 1

2

[
(Z + g+q)2 + (Z + g−q)2

]
> 0 (22)

is of the negative discriminant, namely

D{B} = −4h2 < 0, (23)

because of Eqs. (2.12) and (2.13). Whenever Z 6= 0, it is also convenient to use the
quadratic form

Q(g; w)
def
= B/(Z)2, (24)

obtaining

Q(g; w) = 1 + gw + w2 > 0, (25)

together with the function

E(g; w)
def
= 1 +

1

2
gw. (26)

The identity

E2 + h2w2 = Q (27)

can readily be verified. In the limit g → 0, the definition (2.22) degenerates to the
quadratic form of the input metric tensor (2.11):

B|g=0 = rpqR
pRq. (28)

Also

Q|g=0 = 1 + w2. (29)

In terms of this notation, we propose the FMF

K(g; R) =
√

B(g; R) J(g; R), (30)

where

J(g; R) = e
1
2
GΦ(g;R), (31)

Φ(g; R) =
π

2
+ arctan

G

2
− arctan

( q

hZ
+

G

2

)
, if Z ≥ 0, (32)

Φ(g; R) = −π

2
+ arctan

G

2
− arctan

( q

hZ
+

G

2

)
, if Z ≤ 0, (33)
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or in other convenient forms,

Φ(g; R) =
π

2
+ arctan

G

2
− arctan

(L(g; R)

hZ

)
, if Z ≥ 0, (34)

Φ(g; R) = −π

2
+ arctan

G

2
− arctan

(L(g; R)

hZ

)
, if Z ≤ 0, (35)

where
L(g; R) = q +

g

2
Z, (36)

and

Φ(g; R) =
π

2
− arctan

hq

A(g; R)
, if Z ≥ 0, (37)

Φ(g; R) = −π

2
− arctan

hq

A(g; R)
, if Z ≤ 0, (38)

where

A(g; R) = Z +
1

2
gq. (39)

This FMF has been normalized to show the handy properties

−π

2
≤ Φ ≤ π

2
, (40)

Φ =
π

2
, if q = 0 and Z > 0; Φ = −π

2
, if q = 0 and Z < 0. (41)

We also have

cot Φ =
hq

A
, Φ|

Z=0
= arctan

G

2
. (42)

It is often convenient to use the indicator of sign εZ for the argument Z:

εZ = 1, if Z > 0; εZ = −1, if Z < 0; (43)

Under these conditions, we call the considered space the EPD
g –space:

EPD
g = {VN = VN−1 × eN ; R ∈ VN ; K(g; R); g}. (44)

The right–hand part of the definition (2.30) can be considered to be a function K̆ of
the arguments {g; q, Z}, such that

K̆(g; q, Z) = K(g; R). (45)

We observe that
K̆(g; q,−Z) 6= K̆(g; q, Z), unless g = 0. (46)

Instead, the function K̆ shows the property of gZ–parity

K̆(−g; q,−Z) = K̆(g; q, Z). (47)

The (N − 1)–space reflection invariance holds true

K(g; R)
Ra↔−Ra⇔ K(g; R). (48)

It is frequently convenient to rewrite the representation (2.30) in the form

K(g; R) = |Z|V (g; w), (49)
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whenever Z 6= 0, with the generating metric function

V (g; w) =
√

Q(g; w) j(g; w). (50)

We have
j(g; w) = J(g; 1, w).

Using (2.25) and (2.31)–(2.35), we obtain

V ′ = wV/Q, V ′′ = V/Q2, (51)

(V 2/Q)′ = −gV 2/Q2, (V 2/Q2)′ = −2(g + w)V 2/Q3, (52)

j′ = −1

2
gj/Q, (53)

and also
1

2
(V 2)′ = wV 2/Q,

1

2
(V 2)′′ = (Q− gw)V 2/Q2, (54)

1

4
(V 2)′′′ = −gV 2/Q3, (55)

together with
Φ′ = −h/Q, (56)

where the prime (′) denotes the differentiation with respect to w.
Also,

(A(g; R))2 + h2q2 = B(g; R) (57a)

and
(L(g; R))2 + h2Z2 = B(g; R). (57b)

Sometimes it is convenient to use the function

E(g; w)
def
= 1 +

1

2
gw. (58)

The simple results for these derivatives reduce the task of computing the components
of the associated FMT to an easy exercise, indeed:

Rp
def
=

1

2

∂K2(g; R)

∂Rp
:

Ra = rabR
b K

2

B
, RN = (Z + gq)

K2

B
; (59)

gpq(g; R)
def
=

1

2

∂2K2(g; R)

∂Rp∂Rq
=

∂Rp(g; R)

∂Rq
:

gNN(g; R) = [(Z + gq)2 + q2]
K2

B2
, gNa(g; R) = gqrabR

b K
2

B2
, (60)

gab(g; R) =
K2

B
rab − g

radR
drbeR

eZ

q

K2

B2
. (61)

The reciprocal tensor components are

gNN(g; R) = (Z2 + q2)
1

K2
, gNa(g; R) = −gqRa 1

K2
, (62)
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gab(g; R) =
B

K2
rab + g(Z + gq)

RaRb

q

1

K2
. (63)

The determinant of the FMT given by Eqs. (2.59) – (2.60) can readily be found in
the form

det(gpq(g; R)) = [J(g; R)]2N det(rab) (64)

which shows, on noting (2.31) – (2.33), that

det(gpq) > 0 over all the definition range VN \ 0. (65)

The associated angular metric tensor

hpq
def
= gpq −RpRq

1

K2

proves to be given by the components

hNN(g; R) = q2K2

B2
, hNa(g; R) = −ZrabR

b K
2

B2
,

hab(g; R) =
K2

B
rab − (gZ + q)

radR
drbeR

e

q

K2

B2
,

which entails

det(hab) = det(gpq)
1

V 2
.

The use of the components of the Cartan tensor (given explicitly in the end of the
present section) leads, after rather tedious straightforward calculations, to the following
simple and remarkable result.

PROPOSITION 1. The Cartan tensor associated with the FMF (2.30) is of the
following special algebraic form:

Cpqr =
1

N

(
hpqCr + hprCq + hqrCp − 1

CsCs
CpCqCr

)
(66)

with

CtC
t =

N2

4K2
g2. (67)

By the help of (2.65), elucidating the structure of the curvature tensor

Spqrs
def
= (CtqrCp

t
s − CtqsCp

t
r) (68)

results in the simple representation

Spqrs = −CtC
t

N2
(hprhqs − hpshqr). (69)

Inserting here (2.66), we are led to

PROPOSITION 2. The curvature tensor of the space EPD
g is of the special type

Spqrs = S∗(hprhqs − hpshqr)/K
2 (70)
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with

S∗ = −1

4
g2. (71)

DEFINITION. FMF (2.30) introduces an (N − 1)–dimensional indicatrix hyper-
surface according to the equation

K(g; R) = 1. (72)

We call this particular hypersurface the Finsleroid, to be denoted as FPD
g .

Recalling the known formula R = 1 + S∗ for the indicatrix curvature (see [4]), from
(2.71) we conclude that

RFinsleroid = h2 = 1− 1

4
g2, 0 < RFinsleroid ≤ 1. (73)

Geometrically, the fact that the quantity (2.70) is independent of vectors R means that
the indicatrix curvature is constant. Therefore, we have arrived at

PROPOSITION 3. The Finsleroid FPD
g is a constant-curvature space with the

positive curvature value (2.73).

Also, on comparing between the result (2.73) and Eqs. (2.22)–(2.23), we obtain

PROPOSITION 4. The Finsleroid curvature relates to the discriminant (2.23) of
the input characteristic quadratic form (2.22) simply as

RFinsleroid = −1

4
D{B}. (74)

Last, we write down the explicit components of the relevant Cartan tensor

Cpqr
def
=

1

2

∂gpq

∂Rr
:

RNCNNN = gw3V 2Q−3, RNCaNN = −gwwaV
2Q−3,

RNCabN =
1

2
gwV 2Q−2rab +

1

2
g(1− gw − w2)wawbw

−1V 2Q−3,

RNCabc = −1

2
gV 2Q−2w−1(rabwc +racwb +rbcwa)+gwawbwcw

−3

(
1

2
Q + gw + w2

)
V 2Q−3;

and
RNCN

N
N = gw3/Q2, RNCa

N
N = −gwwa/Q

2,

RNCN
a
N = −gw(1 + gw)wa/Q2,

RNCa
N

b =
1

2
gwrab/Q +

1

2
g(1− gw − w2)wawb/wQ2,

RNCN
a
b =

1

2
gwδa

b /Q +
1

2
g(1 + gw − w2)wawb/wQ2,

RNCa
b
c = −1

2
g

(
δb
awc + δb

cwa + (1 + gw)racw
b
)
/wQ +

1

2
g(gwQ + Q + 2w2)waw

bwc/w
3Q2.

The components have been calculated by the help of the formulae (2.50) – (2.53).
The use of the contractions

RNCa
b
cr

ac = −g
wb

w

1 + gw

Q

(
N − 2

2
+

1

Q

)
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and
RNCa

b
cw

awc = −g
w

Q2
(1 + gw)wb

is handy in many calculations.
Also,

RNCN =
N

2
gwQ−1, RNCa = −N

2
g(wa/w)Q−1,

RNCN =
N

2
gw/V 2, RNCa = −N

2
gwa(1 + gw)/wV 2,

CN =
N

2
gwRNK−2, Ca = −N

2
gwa(1 + gw)w−1RNK−2,

CpC
p =

N2

4K2
g2.

3. Quasi–euclidean map of Finsleroid

It is possible to indicate the diffeomorphism

FPD
g

ig
=⇒ SPD (1)

of the Finsleroid FPD
g ⊂ VN to the unit sphere SPD ⊂ VN :

SPD = {R ∈ SPD : S(R) = 1}, (2)

where
S(R) =

√
rpqRpRq ≡

√
(RN)2 + rabRaRb (3)

is the input euclidean metric function (see (2.11)).
The diffeomorphism (3.1) can always be extended to get the diffeomorphic map

VN
σg

=⇒ VN (4)

of the whole vector space VN by means of the homogeneity:

σg · (bR) = bσg ·R, b > 0. (5)

To this end it is sufficient to take merely

σg ·R = ||R||ig ·
( R

||R||
)
, (6)

where
||R|| = K(g; R). (7)

Eqs. (3.1)–(3.7) entail
K(g; R) = S(σg ·R). (8)

The identity (2.57) suggests to take the map

R̄ = σg ·R (9)

by means of the components
R̄p = σp(g; R) (10)



56 Asanov G. S. Finsleroid–space supplemented by angle and scalar product

with

σa = RahJ(g; R), σN = A(g; R)J(g; R), (11)

where J(g; R) and A(g; R) are the functions (2.31) and (2.39). Indeed, inserting (3.11) in
(3.3) and taking into account Eqs. (2.30) and (2.57), we get the identity

S(R̄) = K(g; R) (12)

which is tantamount to the implied relation (3.8).

PROPOSITION 5. The map given explicitly by Eqs. (3.9)–(3.11) assigns the
diffeomorphism between the Finsleroid and the unit sphere according to Eqs. (3.1)–(3.8).

Therefore, we may also call the operation (3.1) the quasi–euclidean map of
Finsleroid.

The inverse
R = µg · R̄, µg = (σg)

−1, (13)

of the transformation (3.9) – (3.11) can be presented by the components

Rp = µp(g; R̄) (14)

with
µa = R̄a/hk(g; R̄), µN = I(g; R̄)/k(g; R̄), (15)

where
k(g; R̄)

def
= J(g; µ(g; R̄)) (16)

and

I(g; R̄) = R̄N − 1

2
G

√
rabR̄aR̄b. (17)

The identity
µp(g; σ(g; R)) ≡ Rp (18)

can readily be verified. Notice that

√
rabR̄aR̄b

R̄N
=

hq

A(g; R)
, wa =

Ra

RN
=

R̄a

hI(g; R̄)
, (19)

and √
B/Z = S/I,

√
Q = S/I. (20)

The σg–image

φ(g; R̄)
def
= Φ(g; R)|

R=µ(g;R̄)
(21)

of the function Φ described by Eqs. (2.31) – (2.42) is of a clear meaning of angle:

φ(g; R̄) = arccos
R̄N

√
rabR̄aR̄b

=





π

2
− arctan

√
rabR̄aR̄b

R̄N
, if R̄N ≥ 0;

−π

2
− arctan

√
rabR̄aR̄b

R̄N
, if R̄N ≤ 0;

(22)

which ranges over

−π

2
≤ φ ≤ π

2
. (23)
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We have

φ =
π

2
, if R̄a = 0 and R̄N > 0; φ = −π

2
, if R̄a = 0 and R̄N < 0, (24)

and also
φ|

R̄N =0
= 0. (25)

Comparing Eqs. (3.16) and (2.31) shows that

k = e
1
2
Gφ . (26)

The right–hand parts in (3.11) are homogeneous functions of degree 1:

σp(g; bR) = bσp(g; R), b > 0. (27)

Therefore, the identity
σp

s(g; R)Rs = R̄p (28)

should be valid for the derivatives

σq
p(g; R)

def
=

∂σq(g; R)

∂Rp
. (29)

The simple representations

σN
N (g; R) =

(
B +

1

2
gqA

)
J

B
, (30)

σN
a (g; R) = −g(ZA−B)

2q

JrabR
b

B
, (31)

σa
N(g; R) =

1

2
gq

JRah

B
, (32)

σa
b (g; R) =

(
Bδa

b −
grbcR

cRaZ

2q

)
Jh

B
, (33)

and also the determinant value

det(σq
p) = hN−1JN (34)

are obtained. The relations

σa
b R

b = JhRa(AZ+q2)/B, rcdσa
c σ

b
d = J2h2

[
rab − g(RaRbZ/qB) +

1

4
g2(RaRbZ2/B2)

]

are handy in many calculations involving the coefficients {σq
p}.

Henceforth, to simplify notation, we shall use the substitution

tp = R̄p. (35)

Again, we can note the homogeneity

µp(g; bt) = bµp(g; t), b > 0, (36)

for the functions (3.15), which entails the identity

µp
s(g; t)ts = Rp (37)
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for the derivatives

µp
q(g; t)

def
=

∂µp(g; t)

∂tq
. (38)

We find

µN
N = 1/k(g; t)− 1

2
g

m(t)I(g; t)

k(g; t)(S(t))2
, µN

a =
1

2
g

ract
cI∗(g; t)

k(g; t)(S(t))2
, (39)

µa
N = −1

2
g

m(t) ta

hk(g; t)(S(t))2
, µa

b =
1

hk(g; t)
δa
b +

1

2
g

tN tarbct
c

m(t) hk(g; t)(S(t))2
, (40)

where
m(t) =

√
rabtatb, (41)

I∗(g; t) = hm(t)− 1

2
gtN , (42)

and
S(t) =

√
rrstrts ≡

√
(tN)2 + rabtatb. (43)

The relations

∂(1/k(g; t))

∂tN
= −1

2
g

m(t)

hk(g; t)(S(t))2
,

∂(1/k(g; t))

∂ta
=

1

2
g

tNrabt
b

m(t)hk(g; t)(S(t))2

are obtained.
Also

Rpµ
p
q = tq, tpσ

p
q = Rq. (44)

The unit vectors

Lp def
=

tp

S(t)
, Lp

def
= rpqL

q (45)

fulfil the relations

Lq = lpσq
p, lp = µp

qL
q, lp = σq

pLq, Lp = µq
plq, (46)

where lp = Rp/K(g; R) and lp = gpq(g; R)lq are the initial Finslerian unit vectors.
Now we use the explicit formulae (2.61) – (2.62) and (3.29) – (3.32) to find the trans-

form
nrs(g; t)

def
= σr

pσ
s
qg

pq (47)

of the FMT gpq under the FPD
g –induced map (3.9) – (3.11), which results in

PROPOSITION 6. One obtains the simple representation

nrs = h2rrs +
1

4
g2LrLs. (48)

The covariant version reads

nrs =
1

h2
rrs − 1

4
G2LrLs. (49)

The determinant of this tensor is a constant:

det(nrs) = h2(1−N) det(rab). (50)

Notice that

LpLp = 1, npqL
q = Lp, npqLq = Lp, npqL

pLq = 1, npqt
ptq = (S(t))2.
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Eq. (5.47) obviously entails

gpq = nrs(g; t)σr
pσ

s
q . (51)

4. Quasi-euclidean metric tensor

Let us introduce

DEFINITION. The metric tensor (3.48) – (3.49) is called quasi-euclidean.

DEFINITION. The quasi-euclidean space

QN = {VN ; npq(g; t); g} (1)

is an extension of the euclidean space {VN ; rpq} to the case g 6= 0.

The transformation (3.47) can be inverted to read

gpq = σr
pσ

s
qnrs. (2)

For the angular metric tensor (see the formula going below Eq. (2.64)), from (3.46) and
(4.2) we infer

hpq = σr
pσ

s
qHrs

1

h2
, (3)

where
Hrs

def
= rrs − LrLs (4)

is the tensor showing the orthogonality property

LrHrs = 0. (5)

One can readily find that

Hrs = h2(nrs − LrLs).

PROPOSITION 7. The quasi-euclidean metric tensor (3.48) – (3.49) is conformal
to the euclidean metric tensor.

Indeed, if we consider the map

R̄p → R̃ : R̃p = f(g; R̄)R̄p/h (6)

with

f(g; R̄) = a

(
g;

1

2
S2(R̄)

)
(7)

and use the coefficients

kp
q

def
=

∂R̃p

∂R̄q
= (fδp

q + a′R̄pR̄q)/h (8)

to define the tensor
cpq(g; R̃)

def
= kp

rk
q
sn

rs(g; R̄), (9)

we find that
cpq = f 2rpq (10)
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whenever

f =

[
1

2
S2(R̄)

]γ/2

, (11)

where

γ = h− 1 ≡
√

1− g2

4
− 1 (12)

is the parameter. The proof of Proposition 7 is complete.
Let us now use the obtained quasi-euclidean metric tensor npq(g; t) to construct the

associated quasi-euclidean Christoffel symbols Np
r
q(g; t). We find consecutively:

npq,r
def
=

∂npq

∂tr
= −1

4
G2(HprLq + HqrLp)/S, (13)

and

Np
r
q = nrsNpsq, Nprq =

1

2
(npr,q + nqr,p − npq,r), (14)

together with

Nprq(g; t) = −1

4
G2HpqLr/S, (15)

which eventually yields

Np
r
q(g; t) = −1

4
G2LrHpq/S. (16)

Comparing the representation (4.16) with the identity (4.5) shows that

tpNp
r
q = 0, Np

s
s = 0, Nt

s
rNp

t
q = 0. (17)

Also,
∂Np

r
q

∂ts
− ∂Np

r
s

∂tq
= −1

4
G2(HpqHs

r −HpsHq
r)/S2. (18)

Using the identities (4.17)-(4.18) in the quasi-euclidean curvature tensor:

Rp
r
qs(g; t)

def
=

∂Np
r
q

∂ts
− ∂Np

r
s

∂tq
+ Np

w
qNw

r
s −Np

w
sNw

r
q, (19)

we arrive at the simple result:

Rprqs(g; t) = −1

4
G2(HpqHrs −HpsHqr)/S

2. (20)

This infers the identities

LpRpqrs = LqRpqrs = LrRpqrs = LsRpqrs = 0. (21)

Note. Because of the transformation rules (3.12) and (3.47), the representation
(4.20) is tantamount to Eqs. (2.69)–(2.70). Therefore we have got another rigorous proof
of Proposition 3, and of Eq. (2.71), concerning the Finsleroid curvature.
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Figure 2: g = 0.6 and g = −0.6



62 Asanov G. S. Finsleroid–space supplemented by angle and scalar product

~2arctan(0.5)

R

Z

–2e+06

–1.5e+06

–1e+06

–500000

0
–1e+06 –500000 500000 1e+06

~2arctan(0.5)

R

Z

500000

1e+06

1.5e+06

2e+06

–1e+06 –500000 500000 1e+06

Figure 3: g = 1.96 and g = −1.96

Figure 4: 3D-images of Finsleroid; g = 0.6


