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The generalized metric space, that can be called the flat four-dimensional time, is based on
the Berwald-Moore’s Finslerianview of metric function. This variety let us introduce physical
notions: the event, the world lines, the reference frames, the multitude of relatively simultaneous
events, the proper time, the three-dimensional distance, the speed, etc. It is demonstrated how
from the point of the physical observer, associated with the world line, in absolutely symmetrical
four-dimensional time the contraposition of the coordinate takes place, that defines its proper
time, with the ones that appear as the result of the measurements made with the help of sample
signals. When the signals correspond with lines, which are practically parallel to the world line
of the observer, he starts to see the three-dimensional space which at the limit is the Euclidean
space.

1. Introduction

For the last 100 years the idea, that the Pseudo-Euclidean metric with an
alternating-sign quadratic dependence on the length of the vectors from the magnitude of
its components lays in the basis of geometry, has taken root in physics. But still numerous
and various attempts to connect all the known natural forces nature with the metric and
make true the idea of the total geometrization of physics have failed. This drives to the
idea that the reason lies not in the lack of scientists’ creativity, but in the metrics itself,
even better to say in the classical quadratic form, in place of which it is admittedly to
use other dependences. Unfortunately, this attitude, the possibility of which indicated
Riemann [1], was for the first time studied by Finsler [2], and up to nowadays used by
hundreds of investigator [3], did not give eventual pictures. Though nowadays the work
in this direction is continued, it considerably differs from many of them, as it is based
on the idea of scalar poly-products, which is new for the Finslerian geometry, and metric
form that is connected with one of the most fundamental notions in mathematics – the
real number.

2. Multidimensional time .

The spaces that have unique correspondence with algebras, that are the sum of
several real number algebras, stand out from Finslerian linear spaces. The metric functions
do not depend on the point and in one of the bases look like:

F (x′) =
∣∣∣

n∏
i=1

x′i
∣∣∣
1/n

, (1)

where x′i are the components of the vector and n is the number of dimensions. Such
metric functions are well-known in the theory of Finslerian spaces and took the name of
Berwald-Moore’s function [3].

Geometries with such metrics in many ways are of the same type and the difference
is related only to the dimension. The total equality of all non-isotropic directions is their
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main peculiarity. As any of such directions can be related to the proper time of the inertial
reference frame, it is appropriate to call such spaces the multi-dimensional time.

Note. It seems that it is possible to relate a general line with an inertial reference
frame in any linear space, where the element of the length is defined in every point. But
in many spaces some reference frames do not admit the presence of isotropic connections
with other lines that go in a parallel way with the given. For the viewer related to such
reference frames, the existence of isotropic vectors, with which it is traditional to associate
the light signals, becomes the origin to the idea of the physical distance and consequently
the physical space.

The defined in this way spaces not always have the same shape as the one we got used
to (in every day life and thanks to Euclid and Minkowski). At the same time we have to put
a more general meaning than usually into the idea of physical space. On the other hand
nothing prevent us from considering that in the sectors or dimensions, where isotropic
connection is not set or have an extraordinary characteristics, that physical directions are
undetectable, though representable from geometrical point of view. Consequently, it is
quite logical to suppose the existence of some spaces, some parts of directions and even
dimensions of which are not apparent from their physical side. From such point of view it
would be interesting to analyze arbitrary linear spaces and in particular those, connected
with quadratic forms and the Berwald-Moore’s metrics treated over the field of complex
numbers.

The chosen geometrical element of every n-dimensional time is its isotropic sub-space,
that is a figure constructed from n-hyperplanes, that divide the multiformity into 2n-equal
simply connected cameras. Any of the cameras adjoins to the others, but for the facing,
with which it borders in a point. The adjoining cameras can be classified according to
the distinguished by the dimension of the frontier planes from 1 to (n − 1). All simply
connected cameras are equal and have the shape of regular pyramids, n-hyperplanes of
which start from the top and go to the infinity. We will call such pyramids, by analogy
with isotropic cones of the Minkowski space, the light pyramids. Every light pyramid has
n one-dimensional edges that can easily be connected with a special basis. In the basis
the geometrical correlation of the multy-dimensional time appears in a vivid shape and,
as such a basis is to permutation unique, it is quite natural to call it the absolute.

Any single vector that belongs to the inner area of a light pyramid can be contin-
uously introduced into any other single vector that belongs to the same pyramid. The
respective transformation form n− 1-parametrical Abelian subgroup of movements, that
leaves the initial metric function (1) invariant. The metrics of such transformations in
the absolute basis is reduced to the diagonal shape:




a′1 0 . . . 0

0 a′2 . . . 0

. . . . . .

0 0 . . . a′n




, (2)

where
∏n

i=1 a′i = 1. The corresponding reflections can be classified as Hyperbolic turn
(that in a way are analogous to the busts of the pseudo-Euclidean spaces) because such
transformations leave on the place a point of convergence of the tops of all the pyramids
and isotropic edges of the last at the same time turn into themselves. Among continuous
movements of the multy-dimensional time along with hyperboloic turns there is also a
n-parametrical subgroup of parallel transfers. The examined variety doesn’t include any
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other continuous congruent transformations and that is why has less freedom than the
spaces with quadratic types of metrics. The very circumstance made Helmholtz, Lee,
Weyl prove a number of theorems that stated that the oneness of the quadratic metrics
[4 – 6]. The main emphasis was made to maximum mobility in quadratic spaces. This
according to them gave grounds to reject all other metric forms in the meaning of the
basis of the real space-time. Let us note without rejecting the theorem accuracy that its
approval is based on the examination of only the distinguished linear transformations,
which means that it gives a chance to other theorems, where non-linear symmetries play
the same role. In contrast to continuous congruent transformations the discrete group of
symmetry of the multy-dimensional time excels the corresponding Euclidean- and pseudo-
Euclidean spaces, but this is not enough to compete with the latter one. What really
makes the multy-dimensional time the multy-dimensional time interesting is the presence
of distinguished groups of non-linear transformations which are practically as fundamental
as the groups of movements.

Such transformations save invariant not the intervals, but specific scalar forms of
several vectors, that do not have direct analogous quadratic spaces, and that is why are
not well-studied.

It is better to come to the understanding of such polyforms through the generalizing
of the idea of the scalar product. It turns out that in a number of Finslerian linear spaces
the poly-linear symmetry form of n vectors [7] (its special case is the classical bilinear
form) can play the role of the scalar product. Let us call the poly-linear form the scalar
poly-product. Founding on this generalizing we can enlarge with some Finslerian spaces
such fundamental ideas of geometry as the length, the angle, the orthogonality, etc., the
introduction of which is difficult due to some problems [8].

In the absolute basis the scalar poly-product of the multy-dimensional time looks like:

(A,B, . . . ,Z) =
1

n!

∑

(i1,i2,...,in)

a′i1b
′
i2

. . . z′in , at ij 6= ik, if j 6= k. (3)

It is not difficult to believe that with A = B = . . . = Z the form (3) turns into the
metric function (1). We can build the geometry of the linear time in an arbitrary natural
scale using the poly-linear symmetrical form (3). But let us focus on this case if we base
on common ideas about physical measurements and vivid typological detailedness of the
four-dimensional space [9].

3. Four-dimensional time

According to (3) the scalar poly-product, that defines the four-dimensional time, in
the absolute basis looks like:

(A,B,C,D) =
1

4!

∑

(i1,i2,i3,i4)

a′i1b
′
i2
c′i3d

′
i4
, when ij 6= ik if j 6= k, (4)

it follows that the fourth degree of the vector length of such linear space is defined by the
expression:

(X,X,X,X) = |X|4 = x′1x
′
2x
′
3x
′
4. (5)

While turning to the basis analogous to the orthonormalized [7] (it is more visual than in
the absolute case) the expression transforms into a more complicated but still symmetrical
form:

|X|4 = x4
1 + x4

2 + x4
3 + x4

4 − 2(x2
1x

2
2 + x2

1x
2
3 + x2

1x
2
4 + x2

2x
2
3 + x2

2x
2
4 + x2

3x
2
4) + 8x1x2x3x4. (6)
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In a number of cases it is more convenient to use the form picking out one of the coordi-
nates, in particular x1:

|X|4 = x4
1−2(x2

2 +x2
3 +x2

4)x
2
1 +8(x2x3x4)x1 +(x4

2 +x4
3 +x4

4−2x2
2x

2
3−2x2

2x
2
4−2x2

3x
2
4). (7)

The main arguments in favor of the chance of confronting the four-dimensional time
to the real physical world is the presence of a group of continuous symmetries [10], that
can be examined as an alternative to the linear group of spatial turning of the Minkowsky
space. Not a scalar poly-product of the four-dimensional time (4) is an invariant to the
transformations, but a specific form, that is defined by 2 vectors:

S(A,B) =
(A,A,A,B)

(A,A,A,A)1/2
+

(A,B,B,B)

(B,B,B,B)1/2
. (8)

Though the form S(A,B) is not an additive quantity of the vectors that belong to the
interior of domain of a light pyramid, it complies with other very important characteristics
of the common scalar product, to be more specific: the symmetry, the rule of multipli-
cation by the vector, the sign distinctness and the triangle rule [10]. According to this
there exists a principal opportunity in the four-dimensional time to introduce the idea
of the three-dimensional distance, that corresponds to most of common conceptions of
the physical quantity, but for the additivity. From philosophical point of view the last
characteristic is very important. No, really, why should the rule of composition differ
from the one of three-dimensional distances, as both values are relative? Such linearity
appears only when we work with big distances, as well as the non-linearity of the rule of
speed composing is essential only in the relativist field. At the same time an additional
fundamental constant – the maximum possible magnitude of the physical system, or, in
other words, the radius of the Universe, acts as the light speed in the three dimensional
distance. For everyday distances we can still use the linear approximation, but in the
space scale, in case of logical appliance of the multy-dimensional time conception, certain
corrections should be made.

4. Plenty of relatively simultaneous events

We should first of all clarify the situation about a number of simultaneous events to
give the definition of the four-dimensional time, three-dimensional speed and distance. Let
us understand under it the total of points equidistant (of course in the meaning of the ac-
cepted Finslerian metrics (5)) from a pair of fixed events. In contrast to the Minkowskian
space, where a multitude of points constitute hyperplanes, in the four-dimensional time
the corresponding planes are non-linear [10]. Their form depends not only on the direction
of the world line, that connects the fixed points, but also on the magnitude of the interval
that separates them. This is the most fundamental difference from the space of the Special
Theory of Relativity, as the idea of simultaneosity is defined now not only by the speed
of the reference frame, but also by the interval of time that separates the instantaneous
position of the observer and the examined spatial layer of events. So the relativism in
the four-dimensional time touches upon not only the hyperbolic turns, with the help of
which realizes the switch between one system to another, but also the transmission, that
enables to change the reference point.

From philosophical point of view such generalization is quite logical, but in fact
establishes a sort of relationship between the two subgroups of the total group of congruent
symmetries. As an indirect affirmation of the made conclusion can serve the fact that
in algebra transmissions lack the operation of composition, which are a part of the four-
dimensional time, and hyperboloic turnings - multiplication, and mathematics do not
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question relationship between them. A natural way of introducing the idea of the physical
distance in the four-dimensional time is offering a method that from conceptual point
of view is analogous to the method of defining of the idea in the Minkowskian space.
By definition under distance we can understand a value that equals (or is proportional)
the tie intervals, that go along the world line of the observer, between sending some
uniformly moving model signals to the world lines of the examined objects, and receiving
the reflected signals. It leads to the fact that it is senseless to use the idea of distance
towards single events in the four-dimensional time, and is productive concerning only
chains of them, that are presented by certain lines. We can pay no attention to the fact
in the Minkowskian space, as multitudes regarding simultaneous events are hyperplanes,
as a result the distance defined for an arbitrary pair of parallel lines were still substantial
and for a pair of points.

Not to overload the brief article with excessive community, but at the same time to
be rather specific, we will give the result to which the described above algorithm drives
only in one case - when the world line of the observer coincides with the real axis, it
itself is situated at the point (T, 0, 0, 0) and the necessary layer goes through the point
(0, 0, 0, 0) (Fig. 1) [Here and later on the appearing coordinates relate to the generalized
orthogonal basis [7] that differs tremendously from the absolute].

Figure 1: The world lines of direct and opposite signals with speed module

In this case the equalization, that relates the real coordinate θ of a point of the plane
simultaneity to three other coordinates x2, x3 and x4, follows from the rule of equality
of the vector length that have the following components (T + θ, x2, x3, x4) and (T −
θ,−x2,−x3,−x4). (Variable θ means deviation of concrete point from hyperplane x1 = 0.)
Using the expression for the magnitude of the interval (7) and at the same time concerning
that for even degrees (−x)n = xn, we have:

(T+θ)4−2(x2
2−x2

3+x2
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Opening the brackets and collecting terms we get:

Tθ3 + (T 2 − x2
2 − x2

3 − x2
4)Tθ + 2x2x3x4T = 0. (9)

introducing sizeless value η = θ/T, χ2 = x2/T, χ3 = x3/T, χ4 = x4/T and taking into
consideration that T 6= 0 we get a cubic equalization relatively to η:

η3 + (1− χ2
2 − χ2

3 − χ2
4)η + 2χ2χ3χ4 = 0. (10)

Its real root characterizes the relative value of deflection of the simultaneity plane absciss
from the coming through its center according to the hyperplane x1 = 0. We will call such
parameter the coefficient of non-platitude. When χ2 ≈ χ3 ≈ χ4 → 0, η also stems to 0, we
mean around the point (0, 0, 0, 0) the plane of the simultaneity turns into the hyperplane
x1 = 0.

The plane of simultaneity has physical meaning only inside the light pyramide, that
has the world line of the observer, in other case it would be necessary to admit the physical
meaning of the superlight speed. Following the method of the Special Theory of Relativity,
with every vector that start at (−T, 0, 0, 0) and ends at the plane of simultaneity, or in
other words at (ηT, x2, x3, x4) it would be quite natural to connect the world line of the
signal, that has a definite uniform speed. We will transform the signals of the vectors,
if they have equal interval values, according to the value of the speed module: |Vdir|.
Logically the signal, that is confronted to the vector, connecting the points (ηT, x2, x3, x4)
and (T, 0, 0, 0), has the value that is inverse to the speed |Vrev|. On contrast to the
Minkowskian space such vectors have components that differ not only in sign but also
in value (Fig. 1), to be more specific: Vdir ↔ (ηT + T, x2, x3, x4) and Vrev ↔ (T −
ηT,−x2,−x3,−x4). In the Minkowskian space the coefficient of the non-platitude η for
every point of the plane of the simultaneity equals 0, as the result the components of the
vectors that correspond to direct and inverse signal look like: Vdir ↔ (T, x2, x3, x4) and
Vrev ↔ (T,−x2,−x3,−x4).

To give a definition of distance between the real axis and an arbitrary line parallel to
it, which is totally defined by 3 fixed coordinates x2, x3, x4, we should have a model signal,
or even better to say vectors related to it, with the help of which it is possible to make
intervals that would equal the distance of different directions. As well as in the space of the
Special Theory of Relativity, in the four-dimensional time it is more convenient to relate
such symbol signals to isotropic vectors, that at one end have the same beginning and
from the other - they set against the plane of simultaneity. In the Minkowskian geometry
a number of ends of such vectors represent an intersection of two light cones: the future
with the top at point (−T, 0, 0, 0) and the past whose top is deposed to (T, 0, 0, 0). As
is well known the result of such interception is a common sphere, that lies completely in
the hyperplane x1 = 0. This is typical only for spaces with a quadratic metric type. In
any case in the fur-dimensional time an analogous figure that is the result of interception
of two facing light pyramids, is not plane though consists of linear elements.

Tit is better to make sure of it using the three- and four-dimensional time [12] as the
example, in particular looking at Fig. 2 where it is demonstrated the interception of two
light pyramids. For comparison, an interception of two light cones of the three-dimensional
pseudo-Euclidean space is demonstrated on the same picture. In the three-dimensional
time the interior of domain, that belongs to either of the pyramids, is a common cube, one
diagonal of which is a segment of the real axis [−T, T ]. At the same time the interception
of two light pyramids results in a figure, built from (n− 2) edges of such cube, excluding
the points −T and T . In this case this is a hexagon ABCDEF and it does not belong to
the plane x1 = 0, though compiles one of it rectilinear elements.
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Figure 2: The simultaneous surface of three-dimensional time (right) and in three-dimensional
pseudo-Euclidian space (left)

It is analogous in the four-dimensional time: the area that belongs to two facing light
pyramids is a four-dimensional cube and the plane of the interception of their isotropic
edges is built by 20 2-edges of the cube, that do not include the main diagonal [−T, T ].It
is difficult to demonstrate this figure using a plane scheme that is why we will limit to
the examined above a three-dimensional prototype. In the work [13] there was made an
attempt to examine the corresponding dodecahedron (but it seems that the author has lost
its principle four-dimensional character and depicted it as a common three-dimensional
figure).

In the Minkowskian space the world lines that are parallel to the world line of the
observer and touch the figure, which is the interception of two light cones, are accepted as
equidistant points of the physical space of the observer, and the value proportional to the
axis length of such double cone is referred as the distance. We can act in the analogous
way in the four-dimensional time. In this case the parallel to the real axis lines, that
come through the point of interception of the edges of two facing light pyramids, become
equidistant from it, and in the role of the distant act the value that proportional to the
main diagonal of the hypercube that is the result of such interception. In order to find
the numerical value of it we should choose 2 real roots from the equalization:

x4
1− 2(x2

2 + x2
3 + x2

4)x
2
1 + 8(x2x3x4)x1 + (x4

2 + x4
3 + x4

4− 2x2
2x

2
3− 2x2

2x
2
4− 2x2

3x
2
4) = 0, (11)

which are nothing but the abscises of the interception point of the line, which is related to
the coordinates x2, x3, x4, and 4 isotropic hyperplanes. One of the roots x1,1 corresponds
to the point that belong to the pyramid of the past, another x1,2 - to the future, as
the other 2 redundant roots x1,3 and x1,4 belong to the edges of the plane of the side
pyramids. In this case we can consider the distance to be half of the sum of the first 2
roots: Rc = 1/2(x1,1 + x1,2), while the index ”c” emphasizes that the value is defined by
light signals.

The three-dimensional space that appears as the result of such procedure is the
Finslerian and is characterized by its indicatrix whose role plays the described above
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[13] dodecahedron. The space in its characteristics is quite close to the Euclidean, it
comes from the convexity and two-dimensional restraint of its indicatrices, that does not
differ greatly from the indicatrix of the Euclidean space, which is a common sphere. But
the difference between the Euclidean sphere and the examined dodecahedron is rather
principle to mix up their geometries. That is why there was made a conclusion in the
work [13] that the idea that in the basis of the geometry of the real macro-world lies the
four-dimensional time metrics. But still we think that while making the conclusion one
very important circumstance, that when orientating in the real space the observer uses
much slower signals rather than the light ones, was not taken into consideration. The light
only helps, it is to identify the objects, as the comparison of their distances is realized by
other slower means. The fact was not important in the Special Theory of Relativity as the
indicatrix of the physical space did not depend on the speed of the signal. It is not like this
in the multy-dimensional time. The more the relative speed of the probing signals differs
from the light, the less the corresponding indicatrix distinguished from the hyper-plane,
the more round become its angles and the more it looks like the three-dimensional sphere.
At the limit when the relative speed of signals, with the help of which the physical space
is examined, stems to 0, it stops being different from the Euclidean. So if we detect
some static objects in the four-dimensional time with the help of the light, and define the
distance with the help of other slower signals, so in this case we will come upon only the
Euclidean geometry. Let us note that the very condition is complied in the vast majority
of common for a man situations.

On the other hand it is not questioned that there is a principle opportunity to carry
out an experiment in order to get to know which geometry better suits the real physical
space – the Riemannian or the Finslerian. In this case it is important that the distance
between fixed objects should be made by other light or slower signals. It is paradoxical but
such experiments that do not accept double interpretation lack among the huge number
of experimental materials. But the differences that should be traced are not large and
that is why can be explained in different ways.

The above accepted conception of building the three-dimensional time explains why
in absolutely equal in geometrical rights coordinates of the four-dimensional time the
observer, associated with a world line, will register a significant difference between the
coordinate that relate to his proper time and the other three. The answer lies in the
topological difference between indicatrices of the geometrical and physical spaces. So if
the first has the look of a specific 16-line hyperboloid, the second is a ring closed in two
dimensions, its right form though depends on the used in measurements signals, is static
from topological point of view.

5. Conclusions

Forms that save the scalar form (8), do not leave the intervals invariant, and tot ell the
truth are not movements of the four-dimensional time. But as they turn the hyper-planes
of the simultaneity (10) into themselves and do not change the three dimensional distances
Rc they can act as common physical turns. There can emerge an explanation of the famous
paradox - between the forward and rotatory movement. It is difficult to use the principle
of relativity to the latter case, and the most famous attempt to examine it was made
by Mach, who thought that the centrifugal forces owe their existence to the enormous
mass of all the bodies in the Universe. According to Mach if we start turning the whole
Universe a static small body will be affected by the centrifugal force that equals the force
that emerge during the turning of the body itself. For many people it stays unclear the
truth of the statement, and the question itself is still acute. In case we correspond to
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the real world in place of the Galileo or Pseudo-Euclidean metrics the geometry of the
four-dimensional time the problem itself will not appear as the transformation that is
responsible for the forward and rotatory movement, correspond to absolutely different
continuous symmetries.

The analysis of the multiformity characteristics made in the work that claims to
become an alternative to the Minkowski space is far from being finished. But the fact
that we can give such condition for one of the most simple Finslerian metrics of the
fourth degree that has nothing in common with the usual quadratic form, when it can
stimulate not only classical but relative conceptions about the physical space, is worth
paying attention to.
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