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Arbitrary three-form can be put in a canonical form. The requirement of existence of
two-parametric Abelian Lie group to play the role of group of symmetry for three-form admits
selecting the three-forms that correspond to three-numbers and finding all the three-numbers
which cube of norm is a non-degenerate three-form with respect to a special coordinate system.
There are exactly two (up to isomorphism) such sets of hypercomplex numbers, namely the sets:
C3,H3. They can be regarded as generalizations of complex and binary (hyperbolic) bi-numbers
to the case of three-numbers.

1. Introduction

The real number is a stoneconcept for both the mathematics and physics. The
associative-commutative n-dimensional hypercomplex numbers over the field of real num-
bers, – which we shall call the n-numbers for short, – comprises an attractive extension
of this concept. The complex numbers are well adopted in solving problems of math-
ematical and theoretical physics and present actually a particular case of such hyper-
complex numbers, bi-numbers. Regrettably, the n-numbers at n > 2 have not been
studied in great detail. It can be hoped that, possessing such simplified properties as
associativity and commutativity and showing sufficient complexity in some cases, the
associative-commutative hypercomplex numbers shall find their non-trivial application.
At n > 2 the very classification and choice of the n-numbers for mathematical studies
with the aim of farther application in physics is a non-trivial problem. The formulation of
additional conditions to specify a narrow (but significant) class in all the set of n-numbers
seems to be a convenient way to attack the problem. The stipulating of a special basis in
term of which the coordinates of the n-numbers be similar (for example, the norm would
be independent of permutation of coordinate labels, the more strength condition insists
of fulfilling the requirement that n-th degree of norm of the n-number be non-degenerate
with respect to such coordinates) can play the role of such a condition. For the sake of
brevity, in the present work the n-form of the coordinates of the n-dimensional linear
space is meant to be the highsymmetric poly-linear form of n-th degree, all the arguments
of which being equal to a fixed vector. Highsymmetry of form means existence of such a
basis that the relevant representation of the symmetric form of n-vector arguments does
not change under permutation of of coordinates. The non-degeneracy of form means the
impossibility to express the form as an integer degree of a form of lower degree. Below
we shall often omit the term “non-degenerate” , implying merely an n-form.

The present work is devoted to studying the three-numbers, that is, the associative-
commutative hypercomplex numbers of the form

X = x1 + x2 · e2 + x3 · e3, (1)

where e2, e3 are symbolic elements, and x1, x2, x3 are real numbers applying as the coor-
dinates with respect to the basis e1 ≡ 1, e2, e3. If a number X admits the exponential
representation

X = ρ · exp(α · e2 + β · e3), (2)
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where ρ > 0, α, β – real numbers, then the quantity ρ can naturally be called the modulus
of the three-number X. Let us search for only the three-numbers that with respect to
a special basis (the latter is not necessary the basis e1 ≡ 1, e2, e3) the cube of the norm
ρ(x1, x2, x3) is a non-degenerate three-form of coordinates, that is,

ρ3 = Ω(x1, x2, x3; ω1, ω2, ω3), (3)

where the three-form of the general type

Ω(x1, x2, x3; ω1, ω2, ω3) = ω1Ω1(x1, x2, x3) + ω2Ω2(x1, x2, x3) + ω3Ω3(x1, x2, x3) (4)

is an arbitrary linear combination with real numbers ωi (i = 1, 2, 3) at the basis
three-forms:

Ω1(x1, x2, x3) ≡ x3
1 + x3

2 + x3
3, (5)

Ω2(x1, x2, x3) ≡ x1x
2
2 + x1x

2
3 + x2

1x2 + x2x
2
3 + x2

1x3 + x2
2x3, (6)

Ω3(x1, x2, x3) ≡ x1x2x3. (7)

It will be noted that in the three-dimensional space the symmetric cubic form of
three vector arguments, assuming the linearity in each argument, contains not three but
ten arbitrary real parameters; that is, the form is a more general notion then the high-
symmetric three-form and hence leads to the form which is more general then (4). The
requirement of non-degeneracy of three-form reads

Ω(x1, x2, x3; ω1, ω2, ω3) 6= Ω(x1, x2, x3; ω1, ω2, ω3) ≡ ω · (x1 + x2 + x3)
3. (8)

In the sequel we shall assume the non-degenerate type, unless otherwise stated ex-
plicitly.

The multiplication of the number X by a unimodular number X1 yields the number

Y = X1 ·X, (9)

which modulus is equal to the modulus of the number X, so that for such three-numbers
we have

Ω(y1, y2, y3; ω
′
1, ω

′
2, ω

′
3) = Ω(x1, x2, x3; ω1, ω2, ω3). (10)

Thus in order that the cube of norm be three-form, the set of unimodular num-
bers of this hypercomplex system must form a two-parametrical continuous Abelian Lie
group (the symmetry group which retains the form of the three-form) consisted of linear
transformations (9) of the coordinate space of considered three-forms.

Let us assume that for definite values of parameters of three-form (4) we find the
symmetry group which is two-parametric Abelian group of continuous linear transforma-
tions with generators E2, E3 given by real quadratic matrices 3 × 3. Then, as is known,
the linear transformations themselves can be defined through generators of matrix Â
according to the formula

Â = exp(α · Ê2 + β · Ê3), (11)

where α, β are real parameters. Let in this way the multiplication rules

Êi · Êj = pk
ij · Êk (12)

obey for generators, where i, j, k = 1, 2, 3; Ê1 stands for the unit matrix (the generator of
general scale transformation), pk

ij is some real number; summation over repeated indices
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is assumed. Then Ê1Ê2, Ê3 can be regarded as a representation of the basis elements
e1 ≡ 1, e2, e3 of some set of three-numbers, whence the representation of the set of such
numbers in the coordinate linear three-dimensional space x1, x2, x3 in the form of linear
quadratic matrices 3× 3. It is obvious that the multiplication law for the basis elements
e1 ≡ 1, e2, e3 will be of the same form (12) with the same characteristic numbers pk

ij

ei · ej = pk
ij · ek. (13)

Now we can write the numbers representable in the exponential form (2). The
coordinate linear space x1, x2, x3 is not obliged to be introduced in the same basis, that is
in accordance with the formula (1). Therefore, in general case there appears the following
relation for numbers representable in exponential form:

x1 · e′1 + x2 · e′2 + x3 · e′3 = ρ · exp(α · e2 + β · e3), (14)

where e′1, e
′
2, e

′
3 is a basis differed in general case from e1 ≡ 1, e2, e3, and such that e′1 may

differ from real unity. Using three coordinate relations (14) and finding two real parameter
α, β, we get the expression for the cube of norm through the coordinates x1, x2, x3:

ρ3 = f(x1, x2, x3). (15)

If an initial three-form enters the right-hand part of this formula, then the relevant
three-numbers are found.

2. Transformation of three-form to a canonical type

Apart of general scale transformation, there exists but one linear coordinate trans-
formation connected continuously with the identity by means of which an arbitrary
three-form goes over again in a three-form. Let us write the transformation in the matrix
form: 


x1

x2

x3


 =

1

3q




p + 2 p− 1 p− 1

p− 1 p + 2 p− 1

p− 1 p− 1 p + 2







y1

y2

y3


 , (16)

where q is an arbitrary positive real number, and

p ≡ q3. (17)

With respect to new variables, the three-form Ω(x1, x2, x3; ω1, ω2, ω3) transformed by
(16) takes on the form

Ω(x1, x2, x3; ω1, ω2, ω3) = Ω(y1, y2, y3; ω
′
1, ω

′
2, ω

′
3), (18)

where

ω′1 ≡ u · (w1p
3 + 3w2p + 2w3),

ω′2 ≡ 3u(w1p
3 − w3),

ω′3 ≡ 3u(2w1p
3 − 3w2p + 4w3),





(19)

u ≡ 1

27p
, (20)

w1 ≡ 3ω1 + 6ω2 + ω3,

w2 ≡ 6ω1 − ω3,

w3 ≡ 3ω1 − 3ω2 + ω3.





(21)
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Certainly, the classification of three-forms (by transforming to canonical type) can be
performed in various ways. Let us start with stipulating that the three-forms connected by
the linear non-degenerate coordinate transformation that does not affect the values of the
three-form itself, are equivalent, — in the sense that they differ by only the choice of basis
in three-dimensional linear space of x1, x2, x3, that is by the choice of basis (symbolic)
element in the space of three-numbers. When transforming three-form to a canonical form,
we shall consider not all linear non-degenerate transformations but only the possible triple,
namely, the transformation (16); the discrete transformation (changing simultaneously the
sign for all three coordinates); general scale transformation (multiplying simultaneously
all three coordinates by a fixed real positive number). The basis forms (5) – (7), because
of their preferable type, are certainly regarded as canonical.

So, let us consider three-form of the general type (4) and go over by the help of
the linear transformation (16) to new coordinates. Since the relationship between the
quantities wi and the parameters of the three-form ωi is one-to-one, we shall try to diminish
the number of parameters of three-form with respect to new coordinates, considering
various variants and using the quantities wi and the formulas (19).

1). If

sign(w1) = sign(w2) 6= 0, (22)

then by the help of the coordinate transformation (16) with the parameter value

p = 3

√
w3

w1

(23)

the initial three-form can be reduced to the form Ω(y1, y2, y3; ω
′
1, 0, ω

′
3).

2). If

sign(w1) = − sign(w3) 6= 0, (24)

then the two transformations (16) can always be found such that ω′1 can be nullified by
using one of them, whereas ω′3 can be nullified by using another member, and in both
cases the parameter ω′2 gets strongly not equal to zero at any value w2. Thus as a result,
one is to choose either the form Ω(y1, y2, y3; 0, ω

′
2, ω

′
3) or thereto equivalent three-form

Ω(y1, y2, y3; ω
′
1, ω

′
2, 0). In order to exclude ambiguity, we shall always choose the first

version, that is the three-form Ω(y1, y2, y3; 0, ω
′
2, ω

′
3). On so doing, the parameter p in the

transformation (16) is a real positive root of the cubic equation

w1p
3 + 3w2p + 2w3 = 0. (25)

There remains to consider the case when the quantities vanish either separately or totally.

3). If

w1 = 0, sign(w2) = − sign(w3) 6= 0, (26)

then by the help of the transformation (16) the three-form can be reduced to the canonical
form Ω(y1, y2, y3; 0, ω

′
2, ω

′
3), with ω′2 6= 0 and ω′3 6= 0, as well as

p = −2w3

3w2

. (27)

4). If

w1 = 0, sign(w2) = sign(w3) 6= 0, (28)
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then by the help of the transformation (16) the three-form can be reduced to the canonical
form Ω(y1, y2, y3; ω

′
1, ω

′
2, 0), with ω′1 and ω′2 6= 0, and

p =
4w3

3w2

. (29)

5). If
w1 = 0, w2 = 0, w3 6= 0, (30)

then
ω′1 = 2uw3, ω′2 = −3uw3, ω′3 = 12uw3. (31)

In this case the three-form can be presented by Ω(x1, x2, x3; ω1,−3
2
ω1, 6ω1), so that the

coordinate transformation (16) leads to the representation Ω(y1, y2, y3; ω
′
1,−3

2
ω′1, 6ω

′
1) with

ω′1 6= 0, that is, the transformation (16) degenerates to a general scale transformation.

6). If
sign(w1) = − sign(w2) 6= 0, w3 = 0, (32)

then the transformation (16) with the parameter

p =

√
−3w2

w1

(33)

transfers the initial three-form into the three-form Ω(y1, y2, y3; 0, ω
′
2, ω

′
3), with ω′2 6= 0 and

ω′3 6= 0.

7). If
sign(w1) = sign(w2) 6= 0, w3 = 0, (34)

then under the linear transformation (16) with

p =

√
3w2

2w1

(35)

the three-form is reduced to Ω(y1, y2, y3; ω
′
1, ω

′
2, 0), with ω′1 6= 0andω′2 6= 0.

8). If
w1 6= 0, w2 = 0, w3 = 0, (36)

then
ω′1 = uw1p

3, ω′2 = 3uw1p
3, ω′3 = 6uw1p

3, (37)

and hence under the transformation (16) the three-form Ω(x1, x2, x3; ω1, 3ω1, 6ω1) becomes
Ω(y1, y2, y3; ω

′
1, 3ω

′
1, 6ω

′
1), where sign(ω′1) = sign(ω1). Thus, the transformation (16) in

such a case is reduced to multiplication of the initial three-form by a real positive number,
that is, to a general scale transformation. We exclude such case in constructing three-
numbers, for the case is degenerate (see (8)).

9). Lastly, we are to consider the variant

w1 = 0, w2 6= 0, w3 = 0, (38)

in which

ω′1 = 3 · u · w2 · p =
w2

9
= ω1, ω′2 = ω2 = 0, ω′3 = −9 · u · w2 · p = −w2

3
= −3ω1, (39)
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that is, applying (16) with arbitrary p transforms the three-form Ω(x1, x2, x3; ω1, 0,−3ω1)
to Ω(y1, y2, y3; ω

′
1, 0,−3ω′1). Thus, in the given case the transformation (16) does not

influence parameters of three-form, so that we can conclude that this transformation is a
symmetry transformation for three-form Ω(x1, x2, x3; ω1, 0,−3ω1).

Subsequent simplifying the three-form can be performed by multiplying it by an
arbitrary real number deviating from zero. Such an operation is reduced to the following
two ones: the changing of sign for all the coordinates and the general scale transformation.
As a result, one of the coefficients ω′i 6= 0 of the three-form can be put to be unity,
that is, the normalization can be performed. The proposed scheme 1) – 9) together
with the normalization does not contradict to selecting three basis forms to play the
role of canonical coordinates and introducing the notion of non-degeneracy, for the given
algorithm goes over the basis forms (5) – (7) to the same basis forms, and any degenerate
form to a degenerate one.

Thus, we have arrived at the following conclusion. Studying three-form of the general
type Ω(x1, x2, x3; ω1, ω2, ω3) reduces to studying the 8 canonical three-forms:

Ω(x1, x2, x3; 1, 0, 0) ≡ Ω1(x1, x2, x3); (40)

Ω(x1, x2, x3; 0, 1, 0) ≡ Ω2(x1, x2, x3); (41)

Ω(x1, x2, x3; 0, 0, 1) ≡ Ω3(x1, x2, x3); (42)

Ω(x1, x2, x3; 1,−3

2
, 6); (43)

Ω(x1, x2, x3; 1, 3, 6) ≡ (x1 + x2 + x3)
3, (degenerate); (44)

Ω(x1, x2, x3; 1, ω, 0), ω ∈ [−1

2
; 0) ∪ (0; 1; ] (45)

Ω(x1, x2, x3; 1, 0, ω), ω 6= 0; (46)

Ω(x1, x2, x3; 0, 1, ω), ω 6= 0. (47)

The condition on the parameter ω (45) for the sixth canonical three-form is necessary
in order that the uncertainty be avoided that does exists under consideration of the
variant 2) of values of parameters of the general-type three-form. The condition ω 6= 0
for the sixth, seventh, and eighth canonical three-forms is necessary to exclude the basis
three-forms that have been ascribed to a canonical type.

3. Three-forms which may relate to three-numbers

Instead of searching directly the linear transformations leaving the three-forms 1
(40) – 8 (47) unchanged, we shall try to find the linear transformations which are infinitely
near to identical ones. This problem is reduced to finding relevant generators.

1. There does not exist any continuous two-parametric Abelian Lie group which
leave the form of the first canonical three-from (40) unchanged.

2. There does not exist any continuous two-parametric Abelian Lie group which
leave the form of the second canonical three-from (41) unchanged.

3. The third canonical three-form (42) has a two-parametric non-Abelian group Lie
to act as a symmetry group with the generators

â1 =



−1 0 0

0 1 0

0 0 0


 , â2 =



−1 0 0

0 0 0

0 0 1


 . (48)
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4. The fourth canonical three-form (43) has a three-parametric non-Abelian group
Lie to act as a symmetry group with the generators

â3 =




1 0 0

1 0 0

1 0 0


 , â4 =




0 1 0

0 1 0

0 1 0


 , â5 =




0 0 1

0 0 1

0 0 1


 . (49)

It is necessary to verify that whether a two-parametric Abelian sub-group exists in this
group.

5. The fifth canonical three-form (44) is non-degenerate and, therefore, is excluded
from searching the three-numbers corresponding thereto.

6. The sixth canonical three-form does involve any two-parametric Lie group (for any
admissible-type parameter (45)), although at ω = 1 this three-from has one-parametric
group of symmetry. Therefore the sixth canonical three-from cannot relates to three-
numbers.

7. ω = −3 7th is the only parameter value at which the three-form has a two-
parametric Abelian Lie group to serve as a symmetry group with the generators

â6 =




0 1 0

0 0 1

1 0 0


 , â7 =




0 0 1

1 0 0

0 1 0


 . (50)

It will be noted that the transformation (16) with the generator presented by the
sum of the generators (50) enters this symmetry group, so that the three-form
Ω(x1, x2, x3; 1, 0,−3) should related to special cases.

8. The eight canonical three-form (47) at ω = 3 has a one-parametric symmetry
group which cannot relate to three-numbers, and at ω = 2 has a two-parametric Abelian
symmetry group with the generators

â8 =



−2

3
−1 −1

0 1
3

1

0 1 1
3


 , â9 =




1
3

1 0

1 1
3

0

−1 −1 −2
3


 . (51)

Thus among the canonical three-forms we are able to find the four non-degenerate
types that may relate to three-numbers. Retaining the numeration of canonical three-
forms, let us write down these four forms indicating the related generators of symmetry
group:

1. −−−−−−−− ;

2. −−−−−−−− ;

3. Ω(x1, x2, x3; 0, 0, 1) ≡ Ω3(x1, x2, x3), {â1, â2}; (52)

4. Ω(x1, x2, x3; 1,−3

2
, 6) {â3, â4, â5}; (53)

5. −−−−−−−− ;

6. −−−−−−−− ;

7. Ω(x1, x2, x3; 1, 0,−3), {â12, â13}; (54)

8. Ω(x1, x2, x3; 0, 1, 2), {â14, â15}; (55)
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4. Three-forms Ω3(x1, x2, x3), Ω(x1, x2, x3; 0, 1, 2) and three-numbers

Let us consider the three-form Ω3(x1, x2, x3) which, as have been clarified above,
possesses a two-parametric continuous Lie group — namely the symmetry group with
the generators â1, â2 (48). Juxtaposing to the unit matrix and generators â1, â2 the basis
elements e1 ≡ 1, e2, e3 of sought system of three-numbers, we get for them the following
multiplication table:

× 1 e2 e3

1 1 e2 e3

e2 e2
1
3
(2− 2e2 + e3)

1
3
(1− e2 − e3)

e3 e3
1
3
(1− e2 − e3)

1
3
(2 + e2 − 2e3)

Table 1.

So the three-numbers which can relate to the three-form Ω3(x1, x2, x3) have been
found. It remains to verify whether a system of linear coordinates exists with respect to
which the cube of the found three-numbers is a three-form Ω3(x1, x2, x3).

From the form of generators (48) it is obvious that the obtained system of three-
numbers is isomorphic to the algebra of the diagonal matrices 3× 3; therefore, we denote
such numbers as H3 and introduce a linear coordinates x1, x2, x3 in terms of the basis

ψ1 =
1

3
(1− e2 − e3), ψ2 =

1

3
(1 + 2e2 − e3), ψ3 =

1

3
(1− e2 + 2e3) (56)

with the multiplication table

× ψ1 ψ2 ψ3

ψ1 ψ1 0 0

ψ2 0 ψ2 0

ψ3 0 0 ψ3

Table 2.

Whence,
x1ψ1 + x2ψ2 + x3ψ3 = ρ · exp(α · e2 + β · e3) (57)

or
x1ψ1 + x2ψ2 + x3ψ3 = ρ · exp[(−α− β) · ψ1 + exp(α) · ψ2 + exp(β) · ψ3] (58)

Thus the exponential representation of the numbers H3 is possible, if xi > 0 for
the coordinates. If the angles α, β are excluded from three relations, then we obtain the
expression for the cube of norm

ρ3 = x1 · x2 · x3 (59)

This is not a unique possibility of symmetric introducing linear coordinates. For the
numbers H3 there exists the basis involving two hyperbolic unities

1 = ψ1 + ψ2 + ψ3, j = −ψ1 − ψ2 + ψ3, k = −ψ1 + ψ2 − ψ3 (60)

× 1 j k

1 1 j k

j j 1 −1 + j + k

k k −1 + j + k 1

Table 3.



128 Garas’ko G.I. Three-numbers, which cube of norm is nondegenerate three-form

If linear coordinates are introduced with respect to this basis then the cube of norm
of the numbers H3 reads

ρ3 = Ω(x, x, x; 1,−1, 2) (61)

A noncanonical form enters the right-hand part of the formula (61). By the help of
the transformation (16) at p = 4, wich changing signs simultaneously for all the coordi-
nates and applying the general scale transformation, the three-form Ω(x1, x2, x3; 1,−1, 2)
can be sent into the eighth canonical three-form Ω(x, x, x; 0, 1, 2). The linear coordinates
xi for the numbers H3 can be introduce alternatively as

(x2 + x3)ψ1 + (x1 + x3)ψ2 + (x1 + x2)ψ3 = ρ · exp(α · e2 + β · e3), (62)

in which case

ρ3 = Ω(x1, x2, x3; 0, 1, 2) (63)

is again the eighth canonical form (55).

On so doing, the three-forms Ω(x1, x2, x3; 0, 0, 1) ≡ Ω3(x1, x2, x3),
Ω(x1, x2, x3; 1,−1, 2), Ω(x1, x2, x3; 0, 1, 2) relate to one and same three-numbers H3

which isomorphic to the algebra of quadratic diagonal matrices 3 × 3. Although the
three-forms Ω(x1, x2, x3; 0, 0, 1) ≡ Ω3(x1, x2, x3), Ω(x1, x2, x3; 0, 1, 2) cannot be obtained
one from another by applying continuous linear transformation (16) in conjunction
with scale-general transformation and probably also changing the sign of all the three
coordinates, the forms are nevertheless connected by discrete linear transformation of
corrdinates: 


x1

x2

x3


 =




0 1 1

1 0 1

1 1 0


 ·




y1

y2

y3


 . (64)

5. Three-form Ω(x1, x2, x3; 1,−2
3
, 6)

Let us consider the generators â3, â4, â5 of linear transformations which leave the
three-form Ω(x1, x2, x3; 1,−3

2
, 6) unchanged. These generators does not commute with

one another. To single out two commuting generators, let us comprise the following linear
combinations for these operators:

Ê0 = â3 + â4 + â5, Ê2 = −â3 + â4, Ê3 = −â3 + â5. (65)

For them the following multiplication table is operative:

× Ê0 Ê2 Ê3

Ê0 3Ê0 3Ê2 3Ê3

Ê2 0 0 0

Ê3 0 0 0

Table 4.

Thus,Ê2, Ê3 or arbitrary two linear-independent combination thereof can be taken
to serve as a pair of commuting generators. Using Table 4, , it can readily be shown that
apart of Ê2, Ê3 and their linear combinations, no linear combinations of three operators
Ê0, Ê2, Ê3, that is, the operators â3, â4, â5, may exist which commute with one another.
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Let us relate to Ê2, Ê3 the symbolic elements e2, e3 of the hypercomplex number. Then
for the basis elements e1 ≡ 1, e2, e3 we obtain the Kely table

× 1 e2 e3

1 1 e2 e3

e2 e2 0 0

e3 e3 0 0

Table 6.

Three-numbers with such a multiplication table of symbolic elements may naturally
be called dual and denoted by D3. For such three-numbers,

ρ · exp(α · e2 + β · e3) = ρ · (1 + α · e2 + β · e3). (66)

Up to the nummeration order, the unique possibility to introduce linear coordinates
xi in a symmetric fashion is

X = x1 + x2 · (1 + e2) + x3 · (1 + e3), (67)

so that the three-form

ρ3 = (x1 + x2 + x3)
3 ≡ Ω(x1, x2, x3; 1, 3, 6) (68)

is non-degenerate.

Thus no three-number which cube of norm is equal to this three-form
Ω(x1, x2, x3; 1,−3

2
, 6) can be found.

6. Three-form Ω(x1, x2, x3; 1, 0,−3)

The generators â6, â7 of the group symmetry under which actions the form
Ω(x1, x2, x3; 1, 0,−3) leaves unchanged possess the following multiplication rules:

â6 · â6 = â7, â7 · â7 = â6, â6 · â7 = â7 · â6 = 1. (69)

Juxtaposing with them the symbolic elements e2, e3 of the system of three-numbers, we
obtain the following Kely table:

× 1 e2 e3

1 1 e2 e3

e2 e2 e3 1

e3 e3 1 e2

Table 7.

The hypercomplex associative-commutative three-dimensional numbers with the
multiplication law for basis elements that is indicated by Table 7 will be denoted as
C3. Using this Kely table, we get the formula

exp(α · e2 + β · e3) =
1

3
eα+β{1 + 2e−

3
2
(α+β) · cos[

√
3

2
(α− β)]}+

+
1

3
eα+β{1− 2e−

3
2
(α+β) · cos[

√
3

2
(α− β) +

π

3
]} · e2+

1

3
eα+β{1− 2e−

3
2
(α+β) · cos[

√
3

2
(α− β)− π

3
]} · e3. (70)
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Let us introduce a coordinate system x1, x2, x3 with respect to the same basis as
follows:

x1 + x2 · e2 + x3 · e3 = exp(α · e2 + β · e3). (71)

Using the formula (70) and three coordinate relations (71), we get two relations

x1 + x2 + x3 = ρ · e(α+β), x2
1 + x2

2 + x2
3 =

1

3
ρ2 · e2(α+β){1 + 2 · e−3(α+β)}, (72)

which are no more involving any difference of parameters (α− β). Expressing the sum of
parameters (α + β) from (70), we get two relations

ρ3 =
3

2
· (x1 + x2 + x3} · (x2

1 + x2
2 + x2

3}−
1

2
· (x1 + x2 + x3}3 ≡ Ω(x1, x2, x3; 1, 0,−3}. (73)

Thus we observe that for the three-numbers C3 the cube of modulus is a three-form
Ω(x1, x2, x3; 1, 0,−3).

Although for the numbers C3, by using symbolic element and unity, one can comprise
the linear combination

j =
1

3
[1− 2(e2 + e3)], j2 = 1, (74)

which is a hyperbolic unity (j2 = 1), that is the numbers C3 really present a generalization
of hyperbolic (binary) numbers, it proves impossible to form a linear combination which
would be the elliptic unity (with i2 = −1); in a sense, the three-numbers C3 present a
generalization also for complex numbers for which the symbolic unity is a solution of the
algebraic equation x2 = −1. For the numbers C3 the basis elements 1, e2, e3 are roots
for the cubic equation x3 = 1, or with modified sign −1,−e2,−e3 they are roots for the
equation x3 = −1. Thus, from one side, in terms of complex numbers the equation x3 = 1
has three roots

1, −1

2
± i

√
3

2
, (75)

from which an imaginary unity can be singled out as their linear combination; from
another side, the formulas (70) involve trigonometric functions, so that (in just this sense)
the numbers C3 may be regarded as a generalization of not only binary (hyperbolic) but
also complex numbers for the three-dimensional case.

6. Conclusion

Up to isomorphism, two systems of hypercomplex three-dimensional numbers C3

and H3 are the only systems that can be selected from all the set of systems of associa-
tive-commutative hypercomplex numbers by setting forth the requirement of existence
of a basis which respect to which the cube of norm of three-number (if it exists) is a
non-degenerate three-form. The numbers C3 can be juxtaposed by canonical three-form
Ω(x1, x2, x3; 1, 0,−3) (see Section 6 of present work), whereas the three-numbers H3 by
canonical three-forms Ω3(x1, x2, x3), Ω(x1, x2, x3; 0, 1, 2) ((see Section 4 of present work).

It is hoped that the result obtained permits entailing that also for the n-numbers
with n > 3 the requirement of existence of a basis in term of which the n-degree of
norm (provided the latter be exist) of n-number is equal to the n-form of coordinates,
would select a narrow class of the hyperbolic numbers to play the role of generalization
of complex and hyperbolic numbers (bi-numbers). Probably it is the hyperbolic numbers
of such a type that primary find applications in mathematics and physics, being applied
to the problems which involve in a sense the symmetry with respect to permutation of
coordinates or some transformation “mixing” coordinates and simultaneously retaining
their legitimacy.


