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A review of modern study of algebraic, geometric and differential properties of quater-
nionic (Q) numbers with their applications. Traditional and ”tensor” formulation of Q-units
with their possible representations are discussed and groups of Q-units transformations leaving
Q-multiplication rule form-invariant are determined. A series of mathematical and physical
applications is offered, among them use of Q-triads as a moveable frame, analysis of Q-spaces
families, Q-formulation of Newtonian mechanics in arbitrary rotating frames, and realization of
a Q-Relativity model comprising all effects of Special Relativity and admitting description of
kinematics of non-inertial motion. A list of ”Quaternionic Coincidences” is presented revealing
surprising interconnection between basic relations of some physical theories and Q-numbers
mathematics.

Introduction

The discovery of quaternionic (Q) numbers dated by 1843 is usually attributed to
Hamilton [1, 2], but in the previous century Euler and Gauss made a contribution to math-
ematics of Q-type objects; moreover Rodriguez offered multiplication rule for elements of
similar algebra [3-5]. Active opposition of Gibbs and Heaviside to Hamilton’s disciples
gave a start to the modern vector algebra, and later to vector analysis, and quaternions
practically ceased to be a tool of mathematical physics, despite of exclusive nature of their
algebra confirmed by Frobenius theorem. At the beginning of 20 century last bastion
of Q-numbers amateurs, ”Association for the Promotion of the Study of Quaternions”,
was ruined. The only reminiscence of once famous hypercomplex numbers was the set
of Pauli matrices. Later on quaternions appeared incidentally as a mathematical mean
for alternative description of already known physical models [6, 7] or due to surprising
simplicity and beauty they were used to solve rigid body cinematic problems [8]. An
interest to quaternionic numbers essentially increased in last two decades when a new
generation of theoreticians started feeling in quaternions deep potential yet undiscovered
(e. g. [9 – 11]).

This work is an attempt to give more systematic overview of contemporary state of
Q-number mathematics, its applications to physical theories and possible perspectives in
this area. In the context some quite specific even surprising physical models, but worth
to pay attention to, are shortly discussed.

The review arranged as follows. In section 1 general relations of the quaternionic
algebra are briefly described in the traditional hamiltonian formulation as well as in
tensor-like format. Section 2 is devoted to description of structure of three ”imaginary”
quaternionic units. In section 3 the elements of differential Q-geometry are given with
examples of their mathematical application. Section 4 comprises Q-formulation of Newto-
nian mechanics in the rotating frames of reference. Quaternionic Relativity Theory with
a number of cinematic relativistic effects is found in section 5. Section 6 contains the list
of ”Great Quaternion Coincidences” and final discussion.
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1. Algebra of quaternions

Traditional approach

According to Hamilton, a quaternion is a mathematical object of the form

Q ≡ a + bi + cj + dk,

where a, b, c, d are real numbers, a is a coefficient at real unit ”1”, and i, j,k – three
imaginary quaternion units. The multiplication rule for these units given by Hamilton
and often used in literature is

1i = i1 ≡ i, 1j = j1 ≡ j, 1k = k1 ≡ k,

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j

These very cumbersome equations mean, that Q-multiplication loses a commutativity.

Q1Q2 6= Q2Q1,

so that a notion of the right and the left multiplication appears, but it remains associative.

(Q1Q2)Q3 = Q1(Q2Q3).

Two rather different algebraic parts are separated naturally in a quaternion, these once
could be denoted as scalar:

scal Q = a,

and vector
vect Q = bi + cj + dk.

Addition (subtraction) of quaternions is performed by components, scalar and vector parts
are added (subtracted) separately. With respect to addition the Q-algebra is commutative
and associative.

Further step is quaternion conjugation introduced similarly to that of the complex
numbers

Q̄ ≡ scal Q− vect Q = a− bi− cj− dk,

modulus of a Q-number is defined as

|Q| ≡
√

QQ̄ =
√

a2 + b2 + c2 + d2.

This permit to formulate a quaternionic division being as multiplication ”right” and ”left”

QL =
Q1Q̄2

|Q2|2
, QR =

Q̄2Q1

|Q2|2
.

Definition of Q-modulus enhances the famous four squares identity

|Q1Q2|2 = |Q1|2 |Q2|2 .

Due to the properties mentioned above the Q-numbers form the algebra, which belongs to
the elite group of four the so-called exclusive – ”very good” – algebras: of real, complex,
quaternionic numbers and the octonions (Frobenious and Horwits theorems of 1878-1898
[12]).
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Special attention should be paid to Q-units representations. In terms of Hamilton
real unit is simply 1 while three imaginary units similarly to complex numbers algebra
are denoted as i, j, k. Later a simple 2 × 2 matrices representation of these units was
revealed

i = −i

(
0 1

1 0

)
, j = −i

(
0 −i

i 0

)
, k = −i

(
1 0

0 −1

)
.

This representation of course is not unique. Here is a simple example. If in the above
expressions imaginary unit i of complex numbers is represented as 2×2 with real elements

i =

(
0 1

−1 0

)
,

then three vector Q-units turn out to be represented by real 4×4 matrices. The procedure
of the matrix rank duplication can obviously be continued further.

”Tensor” form and representations

If each Q-unit is endowed with its proper number (as components of a tensor)

(i, j,k) → (q1,q2,q3) = q, k, j, k, l,m, n, . . . = 1, 2, 3,

then quaternionic multiplication rule acquires compact form

1qk = qk1 = qk, qjqk = −δjk + εjknqn,

where δkn and εknj – respectively, 3-dimension (3D) symbols Kronecker and Levi-Chivita.

It is easy to show that a number of the Q-units representations even only by 2 × 2
matrices is infinite. Indeed for any 2× 2 matrices with properties

A =

(
a b

c −a

)
, B =

(
d e

f −d

)
, T rA = TrB = 0,

the first two Q-units can be constructed as follows

q1 =
A√

det A
, q2 =

B√
det B

,

while the third one is

q3 ≡ q1q2 =
AB√

det A det B
provided that Tr(AB) = 0.

The scalar unit is always invariant:

1 =

(
1 0

0 1

)
.
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Transformations of Q-units and invariancy of the multiplication rule

a. Spinor-type transformations

If U is an operator changing at once all the units, and there is an inverse operator
U−1 : UU−1 = E, then transformations

qk′ ≡ UqkU
−1 and 1′ ≡ U1U−1 = E1 = 1

retain the multiplication rule

1qk = qk1 = qk, qjqk = −δjk + εjknqn

form-invariant

qk′qn′ = UqkU
−1UqnU = UδknU

−1 + εknjUqjU
−1 = δkn + εknjqj′ .

Such operator can be represented for example by 2× 2 matrix

U =

(
a b

c d

)
, det U = 1,

or unimodular quaternion,

U =
a + d

2
+

√
1−

(
a + d

2

)2

q,

where

q ≡



√
1−

(
a + d

2

)2


−1 (

a−d
2

b

c −a−d
2

)
.

In general this transformation contains 3 independent complex parameter (or 6 real ones),
then U ∈ SL(2, C). In special case of only three real parameters, then U ∈ SU(2).

b. Vector type transformations

Vector Q-units can be transformed by 3× 3 matrix Ok′n

qk′ = Ok′nqn.

The requirement of Q-multiplication form-invariance forces the transformation matrix to
be orthogonal and unimodular

Ok′nOj′n = δkn ⇒ O−1
nk′ = Ok′n, det O = 1.

This transformation in general has 6 independent real parameters, then O ∈ SO(3, C). In
the special case of three parameters O ∈ SO(3, R). Below a variant of representation of
the transformation matrix O is given with x, y, z being arbitrary real or complex functions

O =




√
1− x2 − z2 −x

√
1−y2−z2+yz

√
1−x2−z2

1−z2

xy−z
√

1−x2−z2
√

1−y2−z2

1−z2

x
√

1−x2−z2
√

1−y2−z2−xyz

1−z2

−y
√

1−x2−z2−xz
√

1−y2−z2

1−z2

z y
√

1− y2 − z2


 .
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This matrix can be represented as a product of three irreducible multipliers

O =




√
1−x2−z2

1−z2 − x√
1−z2 0

x√
1−z2

√
1−x2−z2

1−z2 0

0 0 1







√
1− z2 0 −z

0 1 0

z 0
√

1− z2







1 0 0

0
√

1−y2−z2

1−z2 − y√
1−z2

0 y√
1−z2

√
1−y2−z2

1−z2


 .

after substitutions z ≡ sin B, x ≡ − sin A cos B, y ≡ − sin Γ cos B, where A,B, Γ – are
complex ”angles”, it takes the form

O =




cos A sin A 0

− sin A cos A 0

0 0 1







cos B 0 − sin B

0 1 0

sin B 0 cos B







1 0 0

0 cos Γ sin Γ

0 − sin Γ cosΓ


 = OA

3 OB
2 OΓ

1 .

If the angles are real: A = α, B = β, Γ = γ, then this transformation is an ordinary vector
rotation consisting of three simple rotations around numbered orthogonal axes: O ⇒
R,R = Rα

3 Rβ
2Rγ

1 . Correlation between related ”spinor” and ”vector” transformations is
easily determined:

Ok′n = −1

2
Tr(UqkU

−1qn), U =
1−Ok′nqkqn

2
√

1 + Omm′
.

Q-geometry in three dimensional space

Hamilton was the first to note that triad of Q-units behaves as three strictly tied unit
vectors (with length i) initiating Cartesian coordinate system, somewhat exotic because
of its ”imaginarity”. Due to the fact the Q-triad in 3D-space (q1,q2,q3) will be called
’quaternionic basis’ (Q-basis). Now Q-units transformations have apparent geometrical
sense of various rotations of the Q-basis. An example: a simple rotation by real angle α
around axis # 3

q′ = Rα
3q.

Notion of Q-basis helps to introduce 3D quaternionic vectors (Q-vectors), defined as

a = akqk,

here all its components ak are real. The most important property of Q-vector – is its
invariancy with respect to vector transformations from the group SO(3,R)

a′ = ak′qk′ = ak′Rk′jqj = ajqj = a.

The projection of Q-vector onto arbitrary coordinate axis (represented by any different
Q-unit) can be found in two ways. First, if at least one set of projections of Q-vector
and rotation matrices Rnk′ are known then projections of this vector on rotated axis are
immediately found

ak′ = anRnk′ .

The second approach is related to existence of internal structure of the Q-units; a brief
analysis of it is given in the next section.
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2. Structure of quaternionic ”imaginary” units

Eigenfunctions of Q-units [13]

Each vector Q-unit can be thought of as operator, so eigenfunctions and eigenvalues
problem can be formulated for it

qψ = λψ, ϕq = µϕ.

The solution of this problem are the eigenvalues (”imaginary length” of Q-unit with
division by parity)

λ = µ = ±i,

and two sets of eigenfunctions(one for each parity), possible given by columns ψ± and
rows ϕ±, being the functions of components q.

Here is an example explicit form of eigenfunction: for the Q-unit represented by
matrix

q = − i

T

(
a b

c −a

)
,

where T ≡ a2 + bc 6= 0, b 6= 0, c 6= 0, its eigenfunctions are defined as

ϕ± = x
(

1 ± b
T±a

)
, ψ± = y

(
1

∓ c
T±a

)
,

where x, y are arbitrary complex factors.

The freedom of components, arising in the calculations is reduced by convenient
normalization condition

ϕ±ψ± = 1,

while the eigenfunctions orthogonality (by parity) is an inherited property

ϕ∓ψ± = 0.

One can construct tensor products of eigenfunctions and obtain 2× 2 matrices

C± ≡ ψ±ϕ±,

possessing a properties reciprocal with respect to the ones of vector q:

det C = 0, T r C = 1,

whereas
detq = 1, T r q = 0.

Matrix C is idempotent
Cn = C,

and can be expressed throw their own unit Q-vector

C± =
1± iq

2
.

When inversed the latter expression gives information about internal structure of Q-unit

q = ±i(2C± − 1) = ±i(2ψ±ϕ± − 1),
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which turns out to consist of a combination of its eigenfunctions and scalar units.

Since each Q-unit has its own eigenfunctions the Q-triad as a whole possesses unique
set of eigenfunctions {ϕ±(k), ψ

±
(k)}. There is an interesting algebraic observation concerning

this set. Three Q-units are interrelated by obviously nonlinear combination – multiplica-
tion e. g.

q3 = q1q2,

but it is easy to show that corresponding eigenfunctions depend on each other linearly:

ϕ±(3) =
√∓iϕ±(1) ±

√
iϕ±(2), ψ±(3) =

√±iψ±(1) ±
√−iψ±(2).

Q-eigenfunctions help to represent a spinor-type transformation of Q-units retaining Q-
multiplication invariant in the familiar form

ψ±(k′) = Uψ±(k), ϕ±(k′) = ϕ±(k)U
−1,

so that the eigenfunctions can be regarded as a set of specific spinor functions, allowing
in subject in general to SL(2C) transformations. Yet another mathematical observa-
tion should be noted: from pairs of eigenfunctions, belonging to different Q-units of one
triad and having one parity, one can construct 24 scalar invariants SL(2C) group; these
invariants are real or complex numbers, e. g.:

σ+
12 ≡ ϕ+

(1)ψ
+
(2) =

√
− i

2
=

1− i

2
.

Quaternionic eigenfunctions as projectors

Eigenfunctions act on their own Q-basis as following

ϕ±(1)q1ψ
±
(1) = ±i, ϕ±(1)q2ψ

±
(1) = 0, ϕ±(1)q3ψ

±
(1) = 0,

or in general
ϕ±(k)qnψ

±
(k) = ±iδkn (no summation by k).

It looks like that eigenfunctions select a projection of the unit Q-vector, generating
them. This idea is confirmed by an example of an action of eigenfunctions of one Q-basis
onto the vectors of the rotated Q-basis

ϕ±(k)qn′ψ
±
(k) = ϕ±(k)Rn′mqmψ±(k) = ±iRn′k = ±i cos ∠(qn′ ,qk) (no summation by k),

the result of the action is ’nearly’ projection of Q-basis q′ on q. It is convenient to denote
precise projection as

〈qn′〉k ≡ ∓iϕ±(k)qn′ψ
±
(k) = cos ∠(qn′ ,qk) (no summation by k).

It is now easy to formulate rule of calculation of projection of a Q-vector a onto
arbitrary direction, defined by vector qj (e. g. with help of eigenfunctions of positive
parity)

〈a〉+j ≡ −iak′ϕ
+
(j)qk′ψ

+
(j) = ak′Rk′j = aj (no summation by j).

Thus quaternionic eigenfunctions with their own interesting properties are more funda-
mental mathematical objects then Q-units and too can serve as useful tool for practical
purposes such as computing projections of Q-vectors.
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4. Differential Q-geometry

Quaternionic connection

If vectors of Q-basis are smooth functions of parameters qk(Φξ) (index ξ enumerates
parameters), then

dqk(Φ) = ωξ kjqjdΦξ,

where an object ωξ kj is called quaternionic connection. Q-connection is antisymmetric
in vector indices

ωξ kj + ωξ jk = 0,

and has the following number of independent components

N = Gp(p− 1)/2,

where G is an number of parameters and p = 3 – is a number of space dimensions. If G
= 6 [a case of group SO(3,C)], then N = 18; if G = 3 [a case of group SO(3,R)], then N
= 9. Q-connection can be calculated at least in three ways:

using vectors of Q-basis ωξ kn =

〈
∂qk

∂Φξ

〉+

n

,

using matrices U from the group SL(2C) (general case) and special representation of
constant Q-units qk̃ = −iσk, where σk – Pauli matrices

ωξ kn =

〈
U−1 ∂U

∂Φξ

qk̃ − qk̃U
∂U−1

∂Φξ

〉+

n

,

and, finally, using matrices O from SO(3, C) (in a general case)

ωξ kn =
∂Okj̃

∂Φξ

Onj̃.

All the formulae of course provide same result.

From the point of view of vector transformations a Q-connection is not a tensor. If
qk = Okp′qp′ , then transformed components of connection are expressed throw original
ones with addition of inhomogeneous term

ωξ kj = Okp′Ojn′ωξ p′n′ + Ojp′
∂Okp′

∂Φξ

.

In 3D space Q-connectivity has clear geometrical and physical treatment as moveable
Q-basis with behavior of Cartan 3-frame. Parameters of its ordinary rotations can depend
on spatial coordinates Φξ = Φξ(xk), then ∂nqk = Ωnkjqj, then components of slightly
modified Q-connection

Ωnkj ≡ ωξ kj∂nΦξ

have a sense of Ricci rotation coefficients. Parameters can also depend on the length of
line of motion of the Q-basis or on the observer’s time. Then Φξ = Φξ(t), ∂tqk = Ωkjqj,
and components of Q-connection

Ωkj ≡ ωξ kj∂tΦξ

became generalized angular velocities of rotations of the frame.
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The typical examples of Q-frames and Q-connection are

a) Frene frame. For the smooth curve xk̃(s) defined in constant basis the Frene frame
is represented by the triad qk, obeying the equations

d

ds
q1 = RI(s)q2,

d

ds
q2 = −RI(s)q1 + RII(s)q3,

d

ds
q3 = −RII(s)q2,

where the first and the second curvatures are

RI = Ω12, RII = Ω23.

b) Twisted straight line. For a given straight line x1̃ = u, x2̃ = x3̃ = 0, one can
construct a Q-basis associated with it so that one vector is tangent to the line. In this
case Q-connection is not zero and represented the only component describing torsion (or
rather twist) of the line about itself.

q1 = −i

(
1 0

0 −1

)
, q2 = −i

(
0 −ie−iγ(u)

ieiγ(u) 0

)
, Ω23 =

dγ

du
,

here γ(u) is the angle, which is an arbitrary but smooth function of the line length.

Quaternionic spaces

Tangent Q-space [15]. It is known that on every N-dimensional differentiable man-
ifold UN with coordinates {yA} one can construct a tangent space TN with coordinates

{X(A)} so that dX(A) = g
(A)
B dyB, where g

(A)
B – Lame coefficients. By an extra rotation

one can construct a tangent Q-space T (U,q), with coordinates {xk}, k = 1,2,3, which
associated with Q-frame vectors.

dxk = hk(A)dX(A) = hk(A)g
(A)
B dyB,

where hk(A) are in general non-square matrices normalized by projectors of the basic space
onto 3D one or vice versa.

Proper quaternionic space itself U3 is defined as 3D-space, locally identical to own
tangent space T (U3,q). The Q-space has the following basic features. Its Q-metric
represented by vector part of the Q-multiplication rule qjqk = −δjk + εjknqn is non-
symmetric, its antisymmetric part is Q-operator (matrix), so that every point U3

has internal quaternionic structure. Q-connection U3 can be: (i) proper (metric)
Ωnkj ≡ ωξkj∂nΦξ, for variable Q-basis it is always non zero, and (ii) affine (non-metric),
independent from Q-basis. Q-torsion does not vanish in both cases, whereas Q-curvature
rknab = ∂aΩbkn − ∂bΩakn + ΩajnΩbjk − ΩbjkΩajn for the metric Q-connection identically
equals zero, but can be present in the space of affine Q-connection.

Once Q-space is introduced, there appears a new field of investigation of differential
manifolds and spaces. Thus in the preliminary classification of Q-spaces based on presence
and nature of curvature, torsion and non-metricity at least 10 different families can be
distinguish [15]. In addition Q-spaces can be a nontrivial background for classical and
quantum theories and problems.
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4. Newton mechanics in Q-basis

Dynamics equations in rotating frame [16]

The Q-basis endowed with clock becomes a classical (non-relativistic) reference sys-
tem. For an inertial observer the dynamic equations of classical mechanics can be written
in constant Q-basis

m
d2

dt2
xk̃qk̃ = Fk̃qk̃.

SO(3, R)-invariance of two Q-vectors, the radius-vector r ≡ xkqk and force F ≡ Fkqk

allow to represent these equations in Q-vector form

m
d2

dt2
(xkqk) = Fkqk, or mr̈ = F

In explicit form these equations possess enough complicated structure

m(
d2

dt2
xn + 2

d

dt
xkΩkn + xk

d

dt
Ωkn + xkΩkjΩjn) = Fn

which nevertheless can be simplified and interpreted from physical points of view. Due
to antisymmetry of the connection (generalized angular velocity)

Ωj ≡ Ωkn
1

2
εknj, Ωkn = Ωjεknj,

the dynamic equations can be rewritten in vector components

m(an + 2vkΩjεknj + xk
d

dt
Ωjεknj + xkΩjΩmεjkpεmpn) = Fn

or by conventional vector notation

m(~a + 2~Ω× ~v +~̇Ω× ~r + ~Ω× (~Ω× ~r)) = ~F .

Among left hand side terms one easily recognizes 4 classical accelerations: linear, Coriolis,
angular and centripetal. However this traditional interpretation is good only for simple
rotation; in the case of combination of many Q-frame rotations number of components
of generalized accelerations highly increases, and the equations become much more com-
plicated. However it is worth noting that derivation of these equations for the most
complicated rotations with the help of Q-basis and Q-connection is extremely simple.

Samples of Q-formulation of problems of classical mechanics

’Chasing’ Q-basis – is a frame with one of its vectors, say q1 is always directed to
observed particle. Dynamic equations for this case are written in explicit form in following
manner

r̈ − r(Ω2
2 + Ω2

3) = F1/m,

2ṙΩ3 + rΩ̇3 + rΩ2Ω1 = F2/m,

2ṙΩ2 + rΩ̇2 + rΩ1Ω3 = −F3/m.

Components of Q-connection are defined as functions of angles of two rotations, the first
(an angle α) – around vector q3, the second (an angle β) – around q2

Ω1 = α̇ sin β, Ω2 = −β̇, Ω3 = α̇ cos β.
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The chasing Q-basis approach is convenient to solve a number of mechanical problems
related to rotations, some times very complicated, of observed objects and systems of
reference. Here is an illustration.

Rotating oscillator. One seeks for motion law r(t) of a harmonic oscillator (mass m,
spring elasticity k) which has a freedom of motion along rigid smooth rod rotating in the
plane around one of its ends (here one end of the spring is fixed) with angular velocity
ω; the equilibrium point is located at the distance l from the rotation center, there is no
gravity. Radial and tangent dynamic equations in the chasing Q-basis (F is unknown rod
reaction force)

r̈ − rω2 = − k

m
(r − l), 2ṙω =

1

m
F,

admit the following family of solutions:

(i) r(t) = r0 + v0t + at2

mass moves away from the center of rotation with quadratic (or linear) law,

(ii) r(t) = const + Aeiwt + Be−iwt, w ≡
√

k/m− ω2

here are three different situations depending on a relation of the quantities under the
square root:

– r = const,

– harmonic oscillators,

– exponential motion away from the center of rotation.

It is interesting that the variants of rotating classical oscillator behavior with l = 0
are precisely similar to behavior of four known cosmological models of Einstein-DeSitter-
Friedman considered in the General Relativity.

5. Construction of Quaternionic Relativity

Hyperbolic rotations and biquaternions [17]

It was noted above, that SO(3,C)-transformations of Q-units admit pure imaginary
parameters. In this case rotations become hyperbolical (H – from hyperbolic); e. g.
simple H-rotation q′ = Hψ

3 q is performed by matrix of the form

Hψ
3 =




cosh ψ −i sin ψ 0

i sin ψ cosh ψ 0

0 0 1


 ,

and 2× 2 -matrices of Q-units representation are no longer hermitian:

q1′ = −i

(
0 eψ

e−ψ 0

)
.

This is the time to recall the notion of so called biquaternionic vectors (BQ). BQ-vector
is defined as Q-vector with complex components u = (ak + ibk)qk. Obviously for vectors
of this type the norm (or modulus) in general can not be defined; but among all BQ-
vectors there is a subset of ”good” elements with well definable norm by u2 = b2 − a2.
These vectors appear to be form-invariant with respect to transformations of subgroup
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SO(2, 1) ⊂ SO(3, C), and in particular, with respect to simple H-rotations q′ = Hqu =
ukqk = uk′qk′ , but only when reciprocally imaginary components akbk = 0 are orthogonal
to each other.

Quaternionic Relativity

The made above observation allows to suggest a space-time BQ-vector ”interval”

dz = (dxk + idtk)qk,

with specific properties:

(i) Temporal interval is defined by imaginary vector,

(ii) space-time of the model appears to have six-dimensional (6D),

(iii) vector of the displacement of the particle and vector of corresponding time
change must always be normal to each other dxkdtk = 0.

In this case BQ-vector-interval is invariant under group SO(2, 1) ⊂ SO(3, C), as well
as of course its square (which differs from the square of norm only by sign) dz2 = dt2−dr2,
the latter has precisely the same form as a space-time interval of Special Relativity of
Einstein. This 6D-model was initially named the Quaternionic Relativity. Temporal and
spatial variables symmetrically enter the expression of BQ-vector-interval, and the Q-triad
related to it describes relativistic system of reference Σ ≡ (q1,q2,q3). Transition from
one reference system to another is performed with the help of ’rotational equations’ of
the type Σ′ = OΣ with matrix O from the group SO(2, 1) is a product of matrices of real
and hyperbolic rotations. So the theory could also be named (may be more correctly)
’Rotational Relativity’. The meaning of a simple H-rotation is immediately revealed from
the first line of equation Σ′ = Hψ

3 Σ in the explicit form

iq1′ = i cosh ψ(q1 + tanh ψq2).

If like in Special Relativity cosh ψ = dt/dt′, then

idt′q1′ = idt(q1 + V q2),

which describes motion of reference system Σ′ relative to Σ with velocity V along direction
q2. It is easy to show that SO(2, 1)-rotations of Q-reference system enhance Lorenz
coordinate transformations and therefore all cinematic effects of Special Relativity.

It should be noted here that parameters of real and hyperbolic rotations can be
variable for instance dependent on observer’s time. This hints to expect of the discussed
theory a possibility to describe non-inertial motions. Analysis of the rotational equations
confirms the expectation. Well-known relativistic model of reference system constantly
accelerated with respect to the inertial one (hyperbolic motion), frequently found in liter-
ature and normally regarded with use of assumption beyond frames of Special Relativity,
in quaternionic theory is solved naturally and fast not only from the inertial observer
viewpoint, but from position of accelerated frame too [18].

The kinematic problem of other non-inertial motion – relativistic circular mo-
tion – can be completely and precisely resolved by means of the rotation equation
Σ′ = H

ψ(t)
2 R

α(t)
1 Σ, where Σ′ is reference system rotating along the circle around the

immobile frame Σ. This problem also can be solved both from the point of view of
inertial observer, in this case the result has the form

t =

∫
dt′ cosh ψ(t′), α(t) =

1

R

∫
dt′ tanh ψ(t′),
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atan(t) =
1

cosh2 ψ

dψ

dt
, anorm(t) = R

(
dα(t)

dt

)2

,

and from the point of view of the observer in the reference system arbitrary moving along
circular orbit.

The solution of the problem of ”classical” Thomas precession in the framework of
Special Relativity also needs additional assumptions, while in the quaternionic theory has
a single line form – the first row of the matrix of rotation equation Σ′′ = R

−α(t)
1 Hψ

2 R
α(t)
1 Σ,

in this case of course correct value of precession frequency is obtained

ωT = (1− cosh ψ) ≈ −1

2
ωV 2.

Moreover, the quaternionic theory of relativity appears to be able to describe Thomas
precession for the vectors moving along trajectories of general type. The basic rotational
equation in this case naturally generalized: Σ′′ = R−θ(t)Hψ(t)Rθ(t)Σ, here θ(t) – an angle of
instant rotation. Requirement that an axis of hyperbolic rotation be normal to the plane
formed by the radius-vector of observed frame and its velocity vector, is also significant.
In this case formula of variable frequency of general Thomas precession has the form

ΩT =
d

dt
(θ − θ′).

An example of such Thomas precession is an apparent displacement of mercurial
perihelion, for which calculations give a value ∆ε = 2, 7′′/100 years.

Universal character of motion of the bodies (including non-inertial motions) in the
Quaternionic Relativity suggests seeking for new cinematic relativistic effects. One is
found in Solar System planets’ satellites motion. Relative velocity of the Earth and other
planets changes with time and sometimes achieves significant value comparable somehow
to value of the fundamental velocity. This can lead to discrepancy between calculated
and observed from the Earth cinematic magnitudes characterizing cyclic processes on
this planet or near it. In particular there must be a deviation of the planetary satellite
position. Such an angular difference is surprisingly found to be linearly dependent upon
the time of observation

∆ϕ ≈ ωVEVP

c2
t,

here ω is an angular velocity of satellite motion around the planet, V – are linear velocities
of the Earth and the planet around the sun. The magnitude of the effect is the following
for the closest to the Jupiter and ”the fasters” Jupiter satellite ∆ϕ ∼= 12′ for 100 terrestrial
years; for the Mars satellite (Phobos) ∆ϕ ∼= 20′ for 100 terrestrial years [19]. Both values
are big enough for the effect to be noticed in prolonged and precise observations.

One can say that space-time model and kinematics of the Quaternionic Relativity are
nowadays studied in enough details and can be used as an effective mathematical tool for
calculation of many relativistic effects. But respective relativistic dynamic has not been
yet formulated, there are no quaternionic field theory; Q-gravitation, electromagnetism,
weak and strong interactions are still remote projects. However, there is a hope that it
is only beginning of a long way, and the theory will ”mature”. This hope is supported
by observation of number of remarkable ”Quaternionic Coincidences” forming a discrete
mosaic of physical and mathematical facts; probably one day it will turn into a logically
consistent picture providing new instruments and extending our insight of physical laws.
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6. Remarkable ”quaternionic coincidences”

There are, at least, five such coincidences (all of them given below), noted by different
authors in various time.

1. The Maxwell equations as an conditions of the analyticity of functions of quater-
nionic variable.

In 1937 year Fueter [20] noted, that Cauchy-Riemann ∂f/∂z∗ = 0 equations defining
the differentiability of complex variable function and modeling physically a flat motion of
liquid without sources and whirls, have the following quaternionic analogue

(
i
∂

∂t
− qk̃

∂

∂xk̃

)
H = 0, H = (Bñ + iEñ)qñ.

Surprising fact is that the equations of classic Maxwell electrodynamics in vacuum prove
to be corresponding physical model

div ~E = 0, div ~B = 0, rot ~E − ∂ ~B

dt
= 0, rot ~B +

∂ ~E

dt
= 0.

2. Classical mechanics in the rotating reference systems.

The compact form of Newton equations in quaternion frame is described above in
section 4. Finally it should be stressed that the form of dynamics equations naturally
arising and externally primitive

mr̈ = F

hides all possible combinations of rotations of reference systems or observed bodies. Using
differential quaternionic objects helps to easily obtain explicit form of the equations whose
elements have obvious physical meaning.

3. The quaternionic theory of relativity.

1:1 isomorphism of the Lorenz group of Special Relativity and the group of invariance
of quaternionic multiplication SO(3, C) leads to non-standard theory of relativity with
symmetric six-dimensional space-time. This theory significantly differs from Einstein
Special Relativity in origin, model, possibilities and mathematical tools, but predicts
absolutely similar cinematic effects. Invariance of specific biquaternionic vector ”interval”
dz = (dxkn+i dtk)qk under subgroup SO(2, 1) with in general variable parameters admits
calculation of relativistic effects for non-inertial motion of reference systems.

4. Pauli equations [21].

Consider the quantum particle with electric charge e, mass m, and generalized mo-
mentum

Pk ≡ −i~
∂

∂xk

− e

c
Ak

in the simplest quaternionic space (all the parameters are constant, connection, non-
metricity, torsion and curvature equal to zero). Hamiltonian of such particle in Q-metrics

H ≡ − 1

2m
PkPmqkqm

is the exact copy of Hamilton function of Pauli equation

H =
1

2m

(
~p− e

c
~A
)2

− e~
2mc

~B · ~σ,
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and the spin term ”automatically” acquires a coefficient equal to Bohr magneton.

5. Young-Mills field strength.

If one constructs a ”potential” vector in an arbitrary quaternionic space from
Q-connection components Ωamn (indices a, b, c enumerate coordinates of basic Q-space,
indices j, k, m, n enumerate vectors of tangent triad)

Aka ≡ 1

2
εkmnΩamn,

and similarly construct a ”field strength” vector

Fkab ≡ 1

2
εkmnrmnab,

from quaternionic curvature components

rknab = ∂aΩbkn − ∂bΩakn + ΩajnΩbjk − ΩbjkΩajn

then these two geometrical objects are interconnected in the similar manner as the field
strength and potential of the Young-Mills field

Fkab ≡ ∂bAka − ∂aAkb + εkmnAmaAnb.

(formula) It should be stressed that for the Q-spaces with metric (not affine) connection
curvature (field strength) identically vanish.

Discussion

Quaternionic numbers of course are first of all mathematical objects, so the problem
of development of their algebra, analysis and geometry is self-consistent. But history
of modern science states that once the geometry, in particular differential geometry, is
discussed the presence of physics is unavoidable. There is a known point of view that
Einstein who suggested General Relativity was a pioneer in geometrization of physics.
But it is also known that quite earlier Maxwell formulated his electrodynamics in terms of
quaternions convenient for description of ’etheric tensions’ which were thought to represent
field strength vectors. But since that the geometrical language has not been utilized for
many decades.

The aspects of quaternionic mathematics given in this review once again draw at-
tention to ’genetic relations’ between physics and geometry: from description of frames
rotations to quaternionic field structure phenomena in Pauli equations and Young-Mills
theory.

Wide variety of possibilities provided by Q-approach and derived within it non-
traditional physical models, like six-dimensional space-time or mentioned above coinci-
dences may lead to opinion that quaternions are still a mathematical play, something like
’lego’ elements, from which one can build many exotic constructions.

As a comment there are the following two observations.

1. Producing non-standard physical models Q-method nonetheless allows to success-
fully solve physical problems thus being a useful tool for practical purposes. A typical
example: inherited exponential character of representation of simple rotations helps to
simply formulate summation of different rotations, including, of course, imaginary ro-
tations, describing relativistic boosts. Recall that in classical mechanics summation of
ordinary rotations is quite a task.
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2. All physical quaternionic theories are not heuristically invented, but appear nat-
urally from fundamental mathematical lows, as though confirming Pythagorean idea on
”world – number” dependence. Indeed, Q-algebra, the last associative algebra, describes
well physical quantities, all of them up to our knowledge being associative with respect
to multiplication: from observable kinematic and dynamic one, to tensors and spinors
incorporated in the theories. All this gives a hope that further efforts in the research
”quaternions – physical laws” relations will once grow into wide scientific programme.
Yet another small, but persevering step in this direction has been recently made, when
the author of this review succeeded to found an exact solution for relativistic oscilla-
tor problem in the framework Quaternionic Relativity. Details of the solution will be
published elsewhere.
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